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Alberto Pérez-Cervera · Benjamin Lindner · Peter J. Thomas

Received: date / Accepted: date

Abstract Seminal work by A. Winfree and J. Guck-

enheimer showed that a deterministic phase variable

can be defined either in terms of Poincaré sections or

in terms of the asymptotic (long-time) behaviour of

trajectories approaching a stable limit cycle. However,

this equivalence between the deterministic notions of

phase is broken in the presence of noise. Different no-

tions of phase reduction for a stochastic oscillator can

be defined either in terms of mean–return-time sec-

tions or as the argument of the slowest decaying com-

plex eigenfunction of the Kolmogorov backwards op-

erator. Although both notions of phase enjoy a solid

theoretical foundation, their relationship remains unex-

plored. Here, we quantitatively compare both notions

of stochastic phase. We derive an expression relating

both notions of phase, and use it to discuss differences
(and similarities) between both definitions of stochas-

tic phase for i) a spiral sink motivated by stochastic

models for electroencephalograms, ii) noisy limit-cycle

systems-neuroscience models, and iii) a stochastic het-
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1 Introduction

An important simplification in the analysis of nonlin-

ear oscillators is the reduction of their dimensionality

by means of a phase description. The study of oscilla-

tions by way of a phase variable facilitates the study of

relevant features of an oscillator such as possible syn-

chronization regimes, coherence, or sensitivity to per-

turbations (Winfree, 2001; Kuramoto, 2003; Pikovsky
et al., 2003). In deterministic systems, oscillations of-

ten correspond to attracting limit cycles in the phase

space. In these systems, the usage of the phase variable

is not restricted to the limit cycle but also to the whole

basin of attraction by means of the isochrons. Isochrons

can be understood as Poincaré sections having the same

return time (the period T of the oscillator itself) or as

the set of points having the same asymptotic conver-

gence to the cycle (Hirsch and Pugh, 1970; Winfree,

1974; Guckenheimer, 1975).

Due to the increasing importance of stochastic oscil-

lations in many biological systems, over the last decades

several authors have focused on describing stochastic

oscillators by means of a phase variable, applying deter-

ministic phase concepts to stochastic systems (Freund

et al., 2000; Freund et al., 2003; Yoshimura and Arai,

2008; Teramae et al., 2009; Zhou et al., 2013; Ma et al.,

2014; Bonnin, 2017; Bressloff and MacLaurin, 2018; Gi-

acomin et al., 2018; Aminzare et al., 2019; Engel and

Kuehn, 2021; Cheng and Qian, 2021). However, there
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are cases where noise strongly alters the dynamics of

the system or oscillations may even emerge only due

to noise, as for instance in excitable systems (Lindner

et al., 2004) or for noisy heteroclinic oscillators (Giner-

Baldo et al., 2017). In general, the stochastic case, if

it is not a weak perturbation of a deterministic limit-

cycle system, requires new phase concepts. Following

this insight, the above mentioned notions of determin-

istic phase, which are based on Poincaré sections and

on the system’s asymptotic behaviour, have been gener-

alised to stochastic systems. Whereas Schwabedal and

Pikovsky (2013) proposed a notion of phase based on

Poincaré sections having a uniform mean–return-time

(MRT) property, Thomas and Lindner (2014) intro-

duced an asymptotic phase for stochastic oscillators by

means of the argument of the slowest decaying com-

plex eigenfunction of the backward Kolmogorov opera-

tor (equivalently, the generator of the Markov process,

or the stochastic Koopman operator). However, and in

marked contrast to the deterministic case, these two no-

tions of stochastic phase are not equivalent (Cao, 2017).

In this paper, we explore the nature of the differ-

ences between these two notions of stochastic phase.

To this end, we will make use of a recently discovered

link between the MRT phase and the Kolmogorov back-

wards operator (Cao et al., 2020). By exploiting this

link we can calculate both phases using one computa-

tional framework; we will use this framework to com-

pare systematically the differences between the MRT

phase and the asymptotic phase for a number of stochas-

tic biological systems.

Our paper is organised as follows. In §2 we review

the deterministic phase and isochrons. Next, in §3 we

review both notions of stochastic phase, the MRT and

the asymptotic phase. Then, in §4 we show a proce-

dure relating both expressions which we illustrate by

different examples in §5. We conclude the paper with a

discussion of our results. In the Appendix we provide

details about the numerical methods used in this paper.

2 The deterministic Phase

Consider an autonomous system of ODEs

ẋ = F(x), x ∈ Rn, n ≥ 2, (1)

whose flow is denoted by ϕt(x). Moreover, we assume

F(x) is a C2 vector field having a T -periodic, asymp-

totically stable, normally hyperbolic limit cycle param-

eterized by the phase variable θ = 2πt/T

γ : T := R/Z → Rn

θ ↦→ γ(θ),
(2)

Hence, the dynamics of Eq. (1) in Γ can be reduced to

a single variable system

θ̇ =
2π

T
, (3)

As we study attracting limit cycles, any point x ∈ M,

where M is the basin of attraction of the limit cycle Γ ,

will approach Γ as t → ∞ (Hirsch and Pugh, 1970).

Thus, two points p and q ∈ M will have the same

asymptotic phase if

lim
t→∞

|ϕt(q)− ϕt(p)| = 0. (4)

This condition extends the notion of phase of oscillation

to the basin of attraction M of Γ . Indeed, we can define

the function

ϑ : M ⊂ Rn → T = [0, 2π),

x ↦→ ϑ(x) = θ.
(5)

assigning a phase to each point x ∈ M. We can thus

define the isochrons as the level sets of ϑ(x), that is

Iθ = {x ∈ M | ϑ(x) = θ} (6)

which correspond to the leaves of the (strong) stable fo-

liation (that is, the stable manifold M) of Γ (Winfree,

1974, Guckenheimer, 1975, Winfree, 1980). For a nor-

mally hyperbolic invariant manifold as M, the phase-

less sets correspond to Rn \M.

3 Stochastic phase notions

Next, we review two notions of phase for stochastic sys-

tems: the stochastic asymptotic phase and the mean–

return-time (MRT) phase. Throughout this Section we

will consider Langevin systems

dX

dt
= f(X) + g(X)ξ(t) (7)

where f is an n-dimensional C2 vector field, g is a C2

n× k matrix, and ξ is k-dimensional white noise with

uncorrelated components ⟨ξi(t)ξj(t′)⟩ = δ(t − t′)δi,j .

Moreover, we require the elements gij(x) in g to be such

that the matrix G = 1
2gg

⊤ is invertible for all x ∈ Rn
(see §4 for further details). For mathematical conve-

nience, we interpret the stochastic differential equation

Eq. (7) in the sense of Itô (Gardiner, 1985).
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3.1 The Mean–Return-Time Stochastic Phase

Schwabedal and Pikovsky (2013), introduced a defini-

tion for the phase of a stochastic oscillator in terms of

a system of Poincaré sections {ℓMRT (ϕ), 0 ≤ ϕ ≤ 2π},
foliating a domain R ⊂ R2 and possessing a MRT prop-

erty: a section ℓMRT satisfies the MRT property if for

all the points x ∈ ℓMRT the mean return time from x

back to ℓMRT , having completed one full rotation, is

constant.

First defined by Schwabedal and Pikovsky (2013) by

means of an algorithmic numerical procedure, the MRT

phase was recently related to the solution of a bound-

ary value problem (Cao et al., 2020). As the authors

in this paper showed, the ℓMRT sections correspond to

the level curves of a function T (x), with appropriate

boundary conditions, satisfying the following PDE as-

sociated with a first-passage-time problem

L†T (x) = −1, (8)

where L† corresponds to the Kolmogorov backwards op-

erator (the adjoint of the Kolmogorov forward operator

L). Both operators read

L[u(x)] = −∇ · (f(x)u(x)) +
∑︂
i,j

∂i∂j(Gij(x)u(x)) (9)

L†[u(x)] = f(x) · ∇u(x) +
∑︂
i,j

Gij(x)∂i∂ju(x), (10)

where G = 1
2gg

⊤, and u is an arbitrary C2 function.

Cao et al. (2020) showed that upon imposing a bound-
ary condition amounting to a jump by T (the mean pe-

riod of the oscillator) across an arbitrary section trans-

verse to the oscillation, the unique solution of Eq. (8),

up to an additive constant T0, is a version of the so-

called MRT function,

Θ(x) = (2π/T )(T0 − T (x)). (11)

Hence, the MRT phase Θ(x) satisfies

L†Θ(x) =
2π

T
, (12)

so it evolves in the mean as

d

dt
E[Θ(x)] =

2π

T
, (13)

which is formally analogous to the dynamics for the

deterministic phase (see Eq. (3)).

3.2 The Stochastic Asymptotic Phase

Thomas and Lindner (2014) defined a notion of stochas-

tic asymptotic phase by means of the eigenfunctions

of the Kolmogorov backwards operator. Since the Kol-

mogorov backwards operator and the stochastic Koop-

man operator are equivalent (Črnjarić-Žic et al., 2019),

the setup in Thomas and Lindner (2014), which we next

review, generalises the Koopman approach to obtain

the phase of deterministic oscillators to stochastic sys-

tems (Mauroy and Mezić, 2018; Kato et al., 2021).

Consider an ensemble of trajectories described by

means of the conditional density

ρ(y, t | x, s) = 1

|dy|
Pr {X(t) ∈ [y,y + dy) |X(s) = x}

for s < t. The density evolves following Kolmogorov’s

equations

∂

∂t
ρ(y, t | x, s) = Ly[ρ], − ∂

∂s
ρ(y, t | x, s) = L†

x[ρ] (14)

for L and L† defined in Eq. (9). Assuming the opera-

tors L, L† admit a complete biorthogonal eigenfunction

expansion with respect to the standard inner product

⟨u | v⟩ =
∫︁
Rn u

∗(x)v(x) dx (where u ∈ C2 ∩ L∞ and

v ∈ C2 ∩ L1)

L[Pλ] = λPλ, L†[Q∗
λ] = λQ∗

λ, ⟨Qλ |Pλ′⟩ = δλλ′ (15)

we can write the conditional density as a sum

ρ(y, t|x, s) = P0(y) +
∑︂
λ̸=0

eλ(t−s)Pλ(y)Q
∗
λ(x), (16)

with P0 suitably normalized, representing the unique

stationary probability distribution. The normalization

condition in Eq. (16) implies Q0 ≡ 1.

The construction of the stochastic asymptotic phase

requires one to assume several properties of the system

(7) which Thomas and Lindner termed “robustly oscil-

latory”. First, we require that the nontrivial eigenvalue

in Eq. (15) with least negative real part λ1 = µ+ iω is

complex, and unique (occurs with algebraic multiplicity

one). Thus we can express its associated right (forward)

and left (backward or adjoint) eigenfunctions in polar

form as Pλ1(y) = v(y)e−iϕ(y) and Q∗
λ1
(x) = u(x)eiψ(x),

where v(y) ≥ 0 and u(x) ≥ 0 are real functions specify-

ing the amplitude of the corresponding eigenfunction.

Second, we require that all other nontrivial eigenval-

ues λ′ be significantly more negative, that is, ℜ[λ′] <
2µ. This condition guarantees that at sufficiently long

times, the sum in Eq. (16) may be written as

ρ(y, t|x, s)− P0(y)

2v(y)u(x)
≈ eµ(t−s) cos(ω(t−s)+ψ(x)−ϕ(y)).
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This asymptotic form means that the density approaches

its steady state as a damped focus, with an oscillation

period of 2π/ω, and a decaying amplitude with time

constant 1/|µ|.
The third assumption is heuristic rather than rigor-

ous: the description as a “stochastic oscillator” will be

more appropriate, the larger the quality factor |ω/µ|
(Giner-Baldo et al., 2017). That is, provided the os-

cillation completes sufficiently many rotations before

the damping reduces its phase coherence beyond de-

tectability, the system will be “robustly oscillatory”.

Thus we require |ω/µ| ≫ 1, without specifying an ex-

plicit threshold for this quantity.

The dynamics of this focus, capturing the asymp-

totic oscillatory behaviour of the system, can be ob-

tained in an alternative way: along trajectories X(t),

the slowest decaying modes Q∗
λ1
(X(t)) evolve in the

mean as

d

dt
E[Q∗

λ1
] = λ1E[Q∗

λ1
], (17)

so they exhibit the same linear focus behaviour as the

density ρ(y, t|x, s) when approaching its steady state

P0. Therefore, we can extract the “stochastic asymp-

totic phase” ψ(x) from Q∗
λ1
(x) = u(x)eiψ(x), so

ψ(x) = arg(Q∗
λ1
(x)), (18)

provided u(x) ̸= 0. Analogously to the deterministic

case, we will define the points

ū = {x | u(x) = 0}, (19)

in which a phase cannot be defined as “phaseless sets”.

The expected value of ψ(x) follows (see Appendix B

for the complete calculation details)

d

dt
E[ψ(x)] = ω − 2

∑︂
i,j

Gij∂i ln(u(x))∂jψ(x), (20)

hence, in the limit G → 0, the dynamics for E[ψ(x)] fol-
low the dynamics for the deterministic phase Eq. (3),

provided the deterministic system has a well-defined

phase (see also Appendix D for a discussion about the

relationship between ψ(x) and ϑ(x) in the noise van-

ishing limit). Moreover, if the assumptions under which

the uniqueness of solutions of Eq. (12) are met (see next

Section 4 for a brief review of such conditions), from

Eq. (20) it follows that if
∑︁
i,j Gij∂i ln(u(x))∂jψ(x) = 0,

then T = 2π/ω.

4 Mathematical relation between the phases

Following Cao et al. (2020) we assume (without loss

of generality) the existence of a parameterisation x =

K(α, β) 1

K : T× [R−, R+] ⊂ T× R → R ⊂ R2

(α, β) → K(α, β)
(21)

such that the original domain R ⊂ R2 of system Eq. (7)

can be mapped to an annulus via an angular variable

α(x) ∈ [0, 2π) and an amplitude-like variable β(x) ∈
[R−, R+]. Furthermore, we require the noise matrix G
in Eq. (9) to be nondegenerate (invertible), so that the

L† operator is strongly elliptic (McLean, 2000). For the

Fokker-Planck equation (9) we impose reflecting bound-

ary conditions at R±; for the backward equation (10)

we impose adjoint reflecting boundary conditions. For

the complete details on the assumptions required for

the MRT theory to apply, see Cao et al. (2020).

With these assumptions, we next show how the MRT

phase Θ(x) can be represented as the stochastic asymp-

totic phase ψ(x) plus an additional phase shift ∆ψ(x).

Consider the equality:

L†[Q∗
λ1
(x)] = (µ+ iω)Q∗

λ1
(x); (22)

using Q∗
λ1

= u(x)eiψ(x) and the definition of the L†

operator, dividing by eiψ(x), taking the imaginary part

and assuming u(x) is a non-vanishing function in R, we

find (see Appendix B for a complete derivation)

L†[ψ(x)] + 2
∑︂
i,j

Gij∂i ln(u(x))∂jψ(x) = ω. (23)

Considering the difference between the two phases,∆ψ(x) =

Θ(x)− ψ(x), it obeys the equation

L†[∆ψ(x)] =

Ω(x)⏟ ⏞⏞ ⏟
2
∑︂
i,j

Gij∂i ln(u(x))∂jψ(x)+

∆ω⏟ ⏞⏞ ⏟
2π

T
− ω (24)

Indeed, if we use Θ(x) = ψ(x) +∆ψ(x), we obtain

L†[Θ(x)] = L†[ψ(x) +∆ψ(x)]

= L†[ψ(x)] + L†[∆ψ(x)] =

= L†[ψ(x)] +Ω(x) +∆ω =
2π

T
,

(25)

which is exactly the definition of MRT phase in Eq. (12).

As one can see, since both phase functions,Θ(x) and

ψ(x), have a 2π jump, the function ∆ψ(x) = Θ(x) −
ψ(x), will not have a jump. We notice the dependence

1 See Guillamon and Huguet (2009) and Pérez-Cervera
et al. (2020a) for methods to obtain such parameterisation.
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of L†[∆ψ(x)] on the term ∆ω corresponding to the dif-

ference between the frequency ω of the slowest decay-

ing complex eigenmode Q∗
λ1
(x) and the MRT frequency

2π/T . Whereas ω can be extracted from the spectra of

L†, the MRT period T can be obtained from the sta-

tionary probability current J⃗0, which is given by

J⃗0 =

[︃
J0,x
J0,y

]︃
=

[︃
fx
fy

]︃
P0 −

1

2

[︃
∂x(GxxP0) + ∂y(GxyP0)

∂x(GyxP0) + ∂y(GyyP0)

]︃
,

where P0(x) corresponds to the stationary probability

density, satisfying L[P0(x)] = 0 and
∫︁
P0(x)dx = 1. As

shown in Cao et al. (2020), one obtains the mean period

by integrating the α-component of the current J⃗0 along

a simple smooth, non–self-intersecting curve, connect-

ing the inner and outer domain boundaries. That is,

1

T
=

∫︂ R+

R−

J0,α(α, β)dβ. (26)

See Appendices A.2 and C for details of the numeri-

cal calculation, and an analytical solvable example of

Eq. (26), respectively.

In conclusion, solving for and using the first two

functions of the eigenvalue problem for L and L†, gives

us both the stochastic asymptotic phase, the MRT phase,

and the difference between the two phases.

5 Examples

Next, we consider different examples to study how the

MRT phase Θ(x) and the stochastic asymptotic phase

ψ(x) are related. We will proceed under the assumption

that all the models we study satisfy the eigenfunction

expansion in Eq. (16), as well as the regularity assump-

tions given in Cao et al. (2020). For numerical details

about computations in this Section, we refer the reader

to the numerical appendix A.

5.1 Spiral Sink

We start considering a classical and well studied stochas-

tic process: a two-dimensional Ornstein-Uhlenbeck pro-

cess (OUP) in a setting such that the origin becomes

a stable sink (Uhlenbeck and Ornstein, 1930; Gardiner,

1985; Leen et al., 2016; Thomas and Lindner, 2019).

The general Langevin equation is:

ẋ = Ax+Bξ (27)

where we assume that the two eigenvalues of A are a

complex conjugate pair denoted as λ± = µ ± iω with

µ < 0 and ω > 0. We write the matrices A and B as

A =

(︃
µ −ω
ω µ

)︃
, B =

(︃
B11 B12

B21 B22

)︃
. (28)

For Eq. (27), the matrix G = 1
2BB

⊤ in L† (see Eq. (9))

can be written in the following way

G =
1

2

(︃
B2

11 +B2
12 B11B21 +B12B22

B11B21 +B12B22 B2
22 +B2

21

)︃
= ϵ

(︃
1 + βD βc
βc 1− βD

)︃ (29)

Following Thomas and Lindner (2019), we know the

asymptotic phase function for Eq. (27) is written as2

ψ(x) = arctan(x2/x1) (30)

whose expected value follows

d

dt
E[ψ(x)] = ω + 4ϵ

(︄
βDx1x2

(x2
1 + x2

2)
2
− βc(x

2
1 − x2

2)

2(x2
1 + x2

2)
2

)︄
= ω −Ω(x),

(31)

showing that, as long as there is some noise in the sys-

tem (ϵ > 0), the term Ω(x) diverges at the origin.

In Appendix C we derive the following expression

for the mean period T :

T =
2π(ω2 + µ2(1− β2

c − β2
D))

ω(µ2 + ω2)
. (32)

which, together with Eq. (31) yields that if βD = βc =

0, that is for isotropic noise of the same amplitude, the

the MRT phase and the stochastic asymptotic phase for

the stochastic sink in Eq. (27), are equivalent.

To illustrate the OUP case, we choose coefficients

from Powanwe and Longtin (2019), in which a noisy

focus is used to model fast gamma-band brain signals

(see also Duchet et al. (2020); Spyropoulos et al. (2020)

for similar modeling approaches in a neuroscience con-

text). In particular, we take A = [0.1598, −0.52; 0.7227,

−0.319] and B =
√
2D · [1, 0; 0, 0.5] with D = 0.01125.

After a linear change of variables, we put the model in

the form of Eq. (28), with µ = −0.0796, ω = 0.564

and B = [0, 0.0492,−0.126, 0.0214] from which we ob-

tain ϵ, βD, βc = [0.0046,−0.74, 0.11].

Fig. 1 (a,b) shows both level curves of the stochastic

asymptotic phase ψ(x) and the MRT phase Θ(x). As

Eq. (31) indicates, the farther we move from the origin,

the smaller the term Ω(x) becomes. As a consequence,

the difference ∆ψ(x) is almost negligible far from the

origin (panel 1c) thus causing ψ(x) and Θ(x) to dif-

fer just in a small neighbourhood of the origin (panel

2 Algorithmically, we interpret arctan(x2/x1) as
arctan2(x1,x2) to avoid dividing by zero.
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Fig. 1 Phase analysis of a noisy linear focus Eq. (27). (a,b)
Level curves of the stochastic asymptotic phase ψ(x) and the
MRT Θ(x) (y-label shared). (c) Difference ∆ψ (d) Station-
ary probability distribution (color coded), with a comparison
between some level sets of Ψ(x) (dashed) and Θ(x) (solid).
(e) Comparison of the MRT property (T ≈ 11.07, 2π/ω ≈
11.13) for ψ(x) (blue) and Θ(x) (orange) for three different
MRT-isochrons.

1d). In this case, thanks to the analytical expression

for ∆ψ (see Appendix A), we are able to find the val-

ues of the difference near the phaseless set (the origin).

As Fig. 1c illustrates, near the origin, the term ∆ψ(x)

alternates between positive and negative values. Panel

1e confirms that the resulting MRT isochrons have the

MRT property. While the numerically computed MRT

isochrons satisfy the MRT property with high accuracy,

the isochrons based on the stochastic asymptotic phase

show small but significant deviations from uniformity.

5.2 Noisy Wilson-Cowan

Next, we study a noisy version of the Wilson-Cowan

(WC) equations, which are widely used to model large-

scale neural activity (Wilson and Cowan, 1973; Des-

texhe and Sejnowski, 2009; Akam et al., 2012). We

adopt the form

Ė = −E + Se(c1E − c2I + P ) +Deξe(t),

İ = −I + Si(c3E − c4I +Q) +Diξi(t),
(33)

with Se,i(x) = [1 + exp (−ae,i(x− θe,i))]
−1

being the

sigmoidal activation function and ξe,i(t) being Gaussian

white noise. Here De, Di = D · [1, 0.5] with D = 0.1.

Since the conditions for the WC model to show os-

cillations are well known (Wilson and Cowan, 1972;

Borisyuk and Kirillov, 1992), we choose parameters c1,

c2, c3, c4, ae, ai, θe, θi = [13, 12, 6, 4, 1.3, 2, 4, 1.5] and

use P,Q as bifurcation parameters. We choose (P,Q) =

(2.5, 0), so the system Eq. (33) shows a stable limit cy-

cle of period T = 5.26 (Pérez-Cervera et al., 2020b).

Fig. 2 displays the results. Panels (a,b) compare the

level curves of the stochastic asymptotic phase ψ(x)

and the MRT phase Θ(x). In this case, the differences

between both level curves are more striking than in the

linear focus case. As Fig. 2c shows, and similarly as

in the linear focus case, near the phaseless set of the

deterministic system, the difference ∆ψ alternates be-

tween positive and negative values. However, the non-

linearities of Eq. (33) cause ∆ψ to differ from 0 in the

bulk of the domain, thus causing differences between

the level sets of ψ(x) and Θ(x) (see panel d). Panel

(e) demonstrates that the isochrons of the numerically

computed MRT phase Θ(x) satisfy the MRT property

to within a 1% margin of error, while the isochrons of

the stochastic asymptotic phase ψ(x) do not. Moreover,

panel (e) also shows that the larger the differences be-

tween the level curves of ψ(x) and Θ(x), the larger the

deviations of ψ(x) from the MRT property (compare re-

sults in panel (e) for I2π and I 4π
3
). This result confirms

our expectations.

5.3 Noisy Van der Pol Oscillator

Next, we study a stochastic version of the Van der Pol

equations,

ẋ = −y + x− x3 +Dxξx(t),

ẏ = x+Dyξy(t),
(34)

which in the absence of noise displays a limit cycle

of period T ≈ 6.663. In this case we set the noise in

each component to be [Dx, Dy] =
√
2D · [1, 0.1], with

D = 0.1. Due to their similarity with the FitzHugh-

Nagumo model (FitzHugh, 1961; Nagumo et al., 1962),

these equations are widely used in neuroscience as a

useful reduction of the Hodgkin–Huxley neuron model

(Izhikevich, 2007). At a macroscopic level, they are also

used to describe successfully the dynamics of epileptic

tissue (Proix et al., 2017; Pérez-Cervera and Hlinka,

2021).

We illustrate results for this oscillator in Fig. 3. As

panels (a,b) illustrate, differences between the stochas-

tic asymptotic phase ψ(x) and the MRT phase Θ(x) are

very small and they are restricted to a neighbourhood of

the origin. Indeed, the structure of the discrepancies is
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Fig. 2 Phase analysis of a noisy Wilson-Cowan system near a
Hopf bifurcation. (a,b) Level curves of the stochastic asymp-
totic phase ψ(x) and the MRT phase Θ(x) (y-label shared).
(c) Phase difference ∆ψ (d) Stationary probability distribu-
tion (color coded), with a comparison between level sets of
ψ(x) (dashed) and Θ(x) (solid). (e) Comparison of the MRT
property (T ≈ 5.7, 2π/ω ≈ 5.99) for ψ(x) (blue) and Θ(x)
(orange) for three different MRT-isochrons.

similar to the differences for the OUP. That is, they al-

ternate between negative and positive values (compare

panel (c) in Figs. 1 and 3). We observe (panel 3d) that

both phases are almost identical near the maxima of
the stationary distribution P0. Together with the near

equivalence of both periods 2π/ω ≈ 6.59, T ≈ 6.55,

their similarity causes both phases to be nearly indis-

tinguishable in this case. Indeed, as panel 3(e) shows,

the MRT property is satisfied very accurately for both

phases, except for ψ(x) in points very near the origin

(where phase discrepancies ∆ψ(x) are larger).

5.4 Noisy Heteroclinic Oscillator

We complete our comparison between the stochastic

asymptotic phase ψ(x) and the MRT phase Θ(x) by

studying a noisy heteroclinic oscillator. The specific

form of the deterministic heteroclinic system we con-

sider was introduced in Hirsch et al. (2012), chapter 10,

and was adapted to a biological context as a conceptual

model for a central pattern generator control mecha-

nism based on a dynamical architecture alternative to

the standard limit cycle architecture (Shaw et al., 2012,

Fig. 3 Phase analysis of a noisy Van der Pol oscillator with
anisotropic noise [Dx, Dy] =

√
2D ·[1, 0.1] with D = 0.1. (a,b)

Level curves of the stochastic asymptotic phase ψ(x) and the
MRT phase Θ(x) (y-label shared). (c) Phase difference ∆ψ.
(d) Stationary probability distribution (color coded), with a
comparison between level sets of ψ(x) (dashed) and Θ(x)
(solid). (e) Comparison of the MRT property (T ≈ 6.55,
2π/ω ≈ 6.59) for ψ(x) (blue) and Θ(x) (orange) for three
different MRT-isochrons.

2015; Lyttle et al., 2017; Park et al., 2018). We study

the form given in (Giner-Baldo et al., 2017), namely

Ẋ = cos(X) sin(Y) + α sin(2X) +
√
2Dξ1(t)

Ẏ = − sin(X) cos(Y) + α sin(2Y) +
√
2Dξ2(t)

(35)

with α = 0.1, D = 0.01125 and reflecting boundary con-

ditions on the domain −π/2 ≤ {X,Y} ≤ π/2. With-

out noise, Eq. (35) has an attracting heteroclinic cycle,

consisting of a closed loop of trajectories connecting a

sequence of saddle equilibria which is capable of sustain-

ing robust oscillations in the presence of noise (Thomas

and Lindner, 2014).

We study this oscillator for lower (D = 0.01125)

and higher (D = 0.1) level of noise and present re-

sults for each case in Figs. 4 and 5, respectively. Panels

(a,b) compares the stochastic asymptotic phase ψ(x)

and the MRT phase Θ(x). In contrast to the previous

cases, the structure of the phase difference ∆ψ(x) ap-

pears to be rotationally symmetric, to a good approx-

imation, in a neighborhood of the center (see both c

panels). These differences in phase lead to the prin-

cipal discrepancies between the level curves of both
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Fig. 4 Phase analysis of a noisy Heteroclinic Oscillator with
lower (D = 0.01125) noise. (a,b) Level curves of the stochastic
asymptotic phase ψ(x) and the MRT phase Θ(x) (y-label
shared). (c) Phase difference ∆ψ (d) Stationary probability
distribution (color coded), with a comparison between some
level sets of ψ(x) (dashed) and Θ(x) (solid). (e) Comparison
of the MRT property (T ≈ 16.26, 2π/ω ≈ 16.38) for ψ(x)
(blue) and Θ(x) (orange) for three different MRT-isochrons.

phases appearing near the origin (panel d). Indeed, as

the MRT property check in panel (e) shows, whereas

the MRT property holds quite well for points com-

puted using the MRT phase Θ(x), it does not hold in
general for the stochastic asymptotic phase ψ(x). How-

ever, for lower noise, the MRT property holds for points

away from the origin in which the level curves for both

phases coincide and the stationary probability is con-

centrated. As noise increases, the mean return time of

the stochastic asymptotic phase becomes increasingly

position-dependent close to the domain border.

6 Discussion

In this paper, we have derived a framework to com-

pute simultaneously the MRT phase and the asymp-

totic phase of a stochastic oscillator. Our results build

on prior work by Schwabedal and Pikovsky (2013) and

Thomas and Lindner (2014) defining the notions of

MRT phaseΘ(x) and stochastic asymptotic phase ψ(x),

respectively. While initially defined on an algorithmic

basis, the MRT phase was recast by Cao et al. (2020)

as the solution of a PDE with jump-periodic boundary

Fig. 5 Phase analysis of a noisy Heteroclinic Oscillator with
higher (D = 0.1) noise. (a,b) Level curves of the stochastic
asymptotic phase ψ(x) and the MRT phase Θ(x). (c) Phase
difference ∆ψ (d) Stationary probability distribution (color
coded), with a comparison between some level sets of ψ(x)
(dashed) and Θ(x) (solid) (y-label shared). (e) Comparison
of the MRT property (T ≈ 11.41, 2π/ω ≈ 12.43) for ψ(x)
(blue) and Θ(x) (orange) for three different MRT-isochrons.

conditions. As a result of Cao et al. (2020), a relation-

ship between the Kolmogorov backwards L† operator

and the MRT phase was derived (see Eq. (12)). Since

the stochastic asymptotic phase was already defined as

the argument of the slowest decaying eigenfunction of

L†, in this work we developed the link between both

phases and the Kolmogorov backwards operator to ob-

tain an expression for the difference between the two

phases. That is, Θ(x) = ψ(x) + ∆ψ(x), with ∆ψ(x)

satisfying Eq. (24).

The computation of the difference ∆ψ(x) allowed us

to compare both phases in different dynamical scenar-

ios: we have considered two examples of noise induced

oscillations (a spiral sink and an heteroclinic oscilla-

tor) and noisy limit cycle dynamics. Formally, from the

uniqueness results in Cao et al. (2020) (see Theorem

3.1) it follows that both phases are not equivalent if

the term Ω(x) =
∑︁
i,j Gij∂i ln(u(x))∂jψ(x) in the right

hand side of Eq. (20) is not zero. As Cao (2017) ob-

served, for a planar oscillator with isotropic noise, the

condition Ω(x) = 0 is satisfied if the eigenfunction Q∗
λ1

is a complex analytic function of its arguments (in the

sense of complex variables theory). But the practical
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significance of the difference ∆ψ(x) has not been sys-

tematically explored before now.

6.1 Two perspectives on stochastic oscillators

Anderson et al. (2015) articulate the distinction be-

tween pathwise and ensemble descriptions of a stochas-

tic process. For example, a general diffusion process

may be described either in terms of the Itô stochastic

differential equation

Ẋ = f(X) + g(X)ξ(t),

which describes the evolution of a single trajectory along

a sample path, or in terms of the Fokker-Planck equa-

tion

∂ρ

∂t
= −∇ (ρf(x)) +

1

2

∑︂
ij

∂2

∂xixj

[︂
(gg⊺)ij ρ

]︂
which describes the evolution of the density ρ(x, t) =
1

|dx|Pr [X(t) ∈ [x,x+ dx)] of an ensemble of trajecto-

ries (Øksendal, 2003).

Similarly, a discrete chemical reaction process com-

prising M reactions with stoichiometry vectors ζk and

hazard functions λk, driven by independent Poisson

processes {Yk(t)}Mk=1 has a pathwise description of the

form

X(t) = X0 +

M∑︂
k=1

ζkYk

(︃∫︂ t

0

λk(X(s)) ds

)︃
,

as well as an evolution equation (the so-called “chemical

master equation” (Higham, 2008)) of the form

d

dt
p(x, t) =

M∑︂
k=1

p(x− ζk, t)λk(x− ζk)−p(x, t)
M∑︂
k=1

λk(x)

where p(x, t) is the probability that the state X(t) is

exactly x at time t (Anderson and Kurtz, 2015).

The transit time for a stochastic oscillator to reach

a Poincaré section from a starting point on that sec-

tion, having completed one full rotation, is a stopping

time (Karatzas and Shreve, 2012), thus, a random vari-

able that arises from the individual sample path. The

“mean–return-time” function T (x) (Cao et al., 2020) is

defined from the ensemble average of this quantity. Im-

portantly, the MRT property describes the behavior of

trajectories over a finite time horizon, namely looking

roughly one period into the future.

In contrast, one defines the stochastic asymptotic

phase ψ(x) (Thomas and Lindner, 2014) in terms of the

long-time statistical behavior of an ensemble of trajec-

tories, as captured by the biorthogonal eigenfunction

expansion Eq. (15) of the forward and backward oper-

ators. Thus, while the equations satisfied by both the

MRT function, namely L†[T ] = −1, and the stochastic

asymptotic phase eigenfunction, namely L†[Q] = λQ,

involve the backward Kolmogorov operator, we see the

MRT as related to a “pathwise” description over a fi-

nite time horizon, and the asymptotic phase as related

to the “ensemble” description of the process at long

times.

We speculate that this distinction may turn out

to play a role in choosing which notion of phase ap-

plies more naturally to specific problems, such as syn-

chronization of coupled stochastic oscillators (long-time

behavior), or “phase response” of a stochastic oscilla-

tor to a single kick (short-time behavior). Fortunately,

as we have seen above, for many biological examples

the quantitative difference between the two types of

phase are small. Their quantitative similarity thus pro-

vides investigators a degree of flexibility in working with

whichever notion of phase is conceptually best suited to

a given problem.

6.2 Noise Amplitude

For systems with an underlying limit cycle, we observe

empirically that both phases appear to coincide with

the deterministic phase as the level of noise approaches

zero. For the MRT phase, its convergence to the deter-

ministic phase in the case of vanishing noise has been

investigated by Cao et al. (2020) §2.4, who established

convergence under additional regularity assumptions.

For the stochastic asymptotic phase, its convergence to

the deterministic phase for vanishing noise was antici-

pated by Thomas and Lindner (2014), see also the dis-

cussion in terms of the Koopman operator by Kato et al.

(2021) and derived in Appendix D in this manuscript

using the same additional regularity assumptions as in

Cao et al. (2020). In line with these observations, al-

though the intrinsic differences between both phases

depend on each particular system, we have found the

differences between the MRT phase and the stochastic

asymptotic phase to grow as the noise is increased. It

is nevertheless interesting to observe that, in every case

we have explored, the differences between both phase

level curves were restricted to areas where the station-

ary density was low. Therefore, once differences in mean

period were accounted for, both phases were practi-

cally indistinguishable when describing single trajecto-

ries, differing only in how well they satisfy the MRT

property, which is a property of the ensemble.

For a deterministic limit cycle (LC) system, in which

both phase perspectives coincide, the function eiψ(x) is

an eigenfunction of L† with eigenvalue λ1 = iω. As soon
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as some noise is introduced in the system (G ̸= 0), the

eigenvalue λ1 associated to the slowest decaying eigen-

function becomes complex instead of purely imaginary,

that is λ1 = µ+ iω (with µ < 0). As a consequence, for

G ≠ 0, the information about the initial phase is dis-

sipated as time progresses. By contrast, we can think

of the MRT function as a function containing informa-

tion about the oscillatory system which does not vanish

as t → ∞. Therefore, for systems having an underly-

ing LC, one can expect that the more robustly oscilla-

tory the system (i.e. |µ| ≪ ω), the more similar ψ(x)

and Θ(x) become. This interpretation agrees for the

LC systems we studied: the Wilson-Cowan (WC) equa-

tions and Van der Pol (VdP) model. For the WC equa-

tions, we observed larger discrepancies between ψ(x)

and Θ(x) than in the VdP model. These differences

cause a loss of the MRT property for the stochastic

phase, which is consistent with the magnitude of |µ/ω|
for both cases: |µ/ω| ≈ 0.415 for the WC equations and

|µ/ω| ≈ 0.054 the VdP model, respectively (see Table 1

and Fig. 6 at Appendix A).

Despite not having a limit cycle, we observe that

for the noisy heteroclinic oscillator (HO), the system

is less robustly oscillatory as the noise increases. More

precisely, |µ/ω| ≈ 0.115 for D = 0.01125, and |µ/ω| ≈
0.269 for D = 0.1, respectively (see Table 1 and Fig. 6).

Indeed, our computations for the HO suggest that both

µ and ω tend to 0 as G → 0, which can be interpreted as

the system approaching an infinite period closed loop as

G → 0. Hence, the results for the HO can be considered

a particular case of the LC case, thus supporting the

interpretation of the role of |µ/ω| in the loss of the

MRT property for the stochastic asymptotic phase.

The focus case requires a different interpretation.

Unlike the LC or HO cases, stable focus systems have

no closed loop structure in the absence of noise. Indeed,

in the focus case µ, approaches the negative non-zero

real part of the stable focus eigenvalue as G → 0. As a

consequence, the addition of noise may, in general, in-

crease or decrease |µ/ω|. In this paper we considered a

widely used linear model: the Ornstein-Uhlenbeck pro-

cess (OUP). For this model, we provided a new for-

mula T and an initial seed for computing ∆ψ(x) accu-

rately even near the origin, thus facilitating the compu-

tation of its MRT function. However, the OUP system

we studied has the particular property of not changing

|µ/ω| as the noise increases. Studying how the change

of µ/ω affects the phase dynamics and other important

features of nonlinear stochastic foci, such as the ampli-

tude of the stochastic oscillator (Pérez-Cervera et al.,

2021), appears as an interesting topic for further re-

search.

6.3 Future Perspectives

In developing our numerical examples, we have pro-

ceeded under the assumption that the robustly oscil-

latory criteria are met and that each system studied

has a complete biorthogonal eigenfunction expansion.

Whether this is rigorously true or not in specific cases

is a question of functional analysis that goes beyond

the scope of this paper. However, although our theo-

retical development assumes the expansion, it appears

that practically, all that is really required is that the

low-lying spectral elements (eigenmodes with eigenval-

ues having relatively small real and imaginary parts)

exist and are discrete.

From a numerical perspective, the methodology in-

troduced in this paper extends the numerical procedure

introduced in Cao et al. (2020) which assumes the loca-

tion of the phaseless set to be known a priori (see Sec-

tion A.4 in the Appendix for further discussion of this

point). However, whereas our procedure is restricted to

systems in which the set of SDEs describing the system

is known, and the noise is temporally uncorrelated and

Gaussian, the procedure presented in Schwabedal and

Pikovsky (2013) (based on Monte Carlo simulations)

applies to a wide range of systems, noise types and also

to data. Nevertheless, due to the equivalence between

the Kolmogorov backwards operator and the stochas-

tic Koopman operator (Črnjarić-Žic et al., 2019), we

expect that the computation of the eigenfunctions of

interest from data via dynamical decomposition meth-

ods (Schmid, 2010; Budǐsić et al., 2012; Proctor et al.,

2016; Brunton and Kutz, 2019; Mauroy et al., 2020),

combined with the theoretical expression we gave in

Eq. (24), may provide an alternative way of obtaining

the MRT phase from data.

A Numerical Details

In this Appendix we detail the numerical methodology lead-
ing to the results in this paper. Results in this Appendix fol-
low from previous work in Cao et al. (2020); Pérez-Cervera
et al. (2021).

A.1 Diagonalization of the L† operator

We construct the L† operator as follows. Given a Langevin
equation as in Eq. (7), we restrict its phase space to a rect-
angular domain

D = [x−, x+]× [y−, y+]. (36)

whose size is chosen large enough so that the probability
for individual trajectories X(t) to reach the boundaries is
very low. For the special case of the heteroclinic oscillator,
boundaries are given by the nature of the system. Then,
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we discretize the domain D in N and M points such that
∆x = (x+ −x−)/N and ∆y = (y+ − y−)/M . Then, we build
L† by using a standard centered finite difference scheme, ex-
cept at the borders of the domain. For the heteroclinic oscil-
lator, we implemented adjoint reflecting boundary conditions
at the borders of the domain Gardiner (1985). In contrast, for
the unbounded systems, since there is no natural border, we
substitute the centered finite difference scheme by a forward
(or backward) finite difference scheme over a bounded do-
main. Using adjoint reflecting boundary conditions for these
systems yielded numerically very similar results.

By diagonalizing the resulting matrix, we obtain the eigen-
values and the associated eigenfunctions of L†. We remark we
are not interested in the complete spectrum of L† but on the
small part of it (see Fig. 6). As we review at §3, we just need to
consider the eigenvalue associated with the slowest decaying
complex eigenfunction Q∗

λ1
(x) to obtain the functions u(x)

and ψ(x).

A.2 Computing the MRT period T

To compute the MRT period T , we build the Kolomogorov
forward operator L in Eq. (9) following the same numeri-
cal procedure as in A.1 underlying the construction of L†.
We obtain P0 as the eigenfunction of L with null eigenvalue.
Then, as we explained in Section 4, we compute the inte-
gral in Eq. (26) to obtain T . More precisely, if we denote the
phaseless point as (x̄, ȳ), we determine T by integrating the
y component of the stationary probability current J0,y along
the line joining x̄ and x+

1

T
=

∫︂ x+

x̄

J0,y(x, ȳ)dx. (37)

Of course, other choices may be possible (e.g. integrating the
x component along the y axis).

A.3 Computation of the phase offset ∆ψ

In order to obtain the phase difference ∆ψ, we interpret the
system

L†[∆ψ(x)] = 2
∑︂
i,j

Gij∂i ln(u(x))∂jψ(x) +
2π

T
− ω,

= Ω(x) +∆ω

(38)

as a linear system of the form Ax = B. Since we have already
build the L† operator, and we already know ω and T , we just
need to build the terms Ω(x) and ∆ω. The computation of
the derivatives of ln(u(x)) and ψ(x) in Ω(x) is done using a
finite difference scheme.

However, solving above Eq. (38) requires to deal with two
sources of numerical instability. On the one hand, the deriva-
tives of ln(u(x)) and ψ(x) diverge at the phaseless set. For
this reason the computed numerical values of Ω(x)+∆ω near
the phaseless set are not accurate. On the other hand, the L†

operator is represented by a sparse matrix, thus making the
computation of its inverse numerically unstable. To overcome
these numerical issues we remove the values of Ω(x) + ∆ω
falling inside a small radius rmin around the phaseless set, and
solve Eq. (38) by means of a least squares iterative method
to approximate the solution. This procedure finds a solution
∆ψ(x) of Eq. (38) having a very small error (for the studied

Fig. 6 For the five models considered in the main text,
namely, (a) the spiral sink in Eq. (27), (b) the noisy Wilson-
Cowan in Eq. (33) and (c) the Van der Pol equations in
Eq. (34) the noisy heteroclinic oscillator in Eq. (35) for lower
(d) and larger (e) noise we show: Eigenvalue spectra of L†

(left panel). The stochastic asymptotic phase ψ(x) can be
obtained fomr the argument of the eigenfunctions Q∗

λ1
(x) as-

sociated to the eigenvalues the smallest non-negative purely
complex eigenvalues λ± (λ+ = λ1). In addition, the eigen-
function Σ(x) associated with the smallest non-negative
purely real eigenvalue λFloq corresponds to the stochastic
isostables. Right panel: level curves of the isostable func-
tion Σ(x), ten trajectories and the stochastic limit cycle
Σ0 ≡ {x |Σ(x) = 0} (black curve).



Quantitative comparison of the mean–return-time phase and the stochastic asymptotic phase for noisy oscillators 13

N M x+ x− y+ y− µ ω λFloq

Sp. Sink 120 120 1.5 -1.5 1.5 -1.5 -0.080 0.564 -0.159
Wilson-Cowan 120 120 1.0 -0.3 0.9 -0.1 -0.435 1.049 -0.828
Van der Pol 120 120 2.5 -2.5 2.5 -2.5 -0.051 0.952 -0.758
Het-low 120 120 π/2 −π/2 π/2 −π/2 -0.044 0.383 -0.332
Het-high 120 120 π/2 −π/2 π/2 −π/2 -0.136 0.505 -0.553

Table 1 Parameters for numerical implementation and resulting leading eigenvalues for the different stochastic oscillators.

cases in this paper max error values were O(10−3)). Then,
we obtain an estimate for ∆ψ(x) for the points of the grid
inside rmin by using extrapolation routines.

For the noisy spiral sink in Eq. (27), we found

∆ψ(x) =
ϵ

(ω2 + µ2)(x2 + y2)2

(︂
γ(x2 − y2) + 2αxy

)︂
(39)

with γ = −βcµ + βDω and α = βcω + βDµ to be a very
good initial seed since it solves Eq. (38) with an O(ϵ2) error.
Thanks to this initial seed, it was not necessary to remove
any point from the least square iterative solver (that is to say
rmin = 0).

A.4 Topological Considerations

Fig. 7 Comparison for different topologies between the MRT
sections for the noisy heteroclinic oscillator with isotropic
noise (D = 0.01125). The blue-yellow color scheme corre-
sponds to the results published in Cao et al. (2020) (with a
small hole around the origin, corresponding to an annulus).
We superimposed the results of the present paper (see Fig. 4
c) without a hole (hence, a topological grid). Both topologies
yield numerically indistinguishable isochrons.

The theoretical framework for the MRT phase requires
that the domain be an annulus having inner and outer radius
[R−, R+], and implicitly assumes the existence of a phaseless
point ū (see Eq. (19)) inside the inner radius. In systems
with a sufficiently high degree of symmetry, the location of
the phaseless set may be clear a priori. For instance, in the
heteroclinic oscillator, which has the symmetry of the square,
the phaseless point should be at the center of the square.
However, in other systems, such as the Wilson-Cowan system,
the location may not be known a priori. This lacuna prevents

one from constructing an annular domain numerically that is
guaranteed to exclude the phaseless point.

Fortunately, we have observed that in systems for which
the phaseless set’s location is known, there is no practical dif-
ference in the structure of the isochrons produced by solving
the MRT equation with a small central exclusion with reflect-
ing boundary conditions, and a construction with a grid that
covers the entire domain without implementing the central
excluded region (see Fig. 7). This apparent robustness of the
numerical procedure means that in a nonsymmetric system
such as the Wilson-Cowan example, we may construct our nu-
merical implementation without the inner annular exclusion.
The resulting isochrons will converge and conflict in a small
region on the scale of a single grid spacing. This singularity
localizes the phaseless point to within the accuracy of a grid
spacing.

For these reasons, despite the topological differences, we
prefer to use a complete rectangular grid instead of an an-
nulus for numerical implementation. This method leads to
a simpler implementation which nevertheless still yields nu-
merically indistinguishable results, with respect to the ones
which would be obtained by explicitly adding a hole around
the phaseless set. On a theoretical level, there are four sepa-
rate kinds of isochrons that one may consider: the eigenvalue
λ and eigenfunction Q = ueiψ for the simply connected do-
main, and for an annular domain; and the MRT phase θ for
the annular domain and the MRT phase obtained numerically
for a simply connected domain. In this paper we investigated
analytically the relationship between ψ and θ on a general
domain, and investigated numerically the two phases on the
simply-connected domain. The MRT isochrons obtained us-
ing the (theoretically questionable) simply-connected domain
nevertheless satisfied the MRT property: the mean time to re-
turn to the isochron was independent of the starting position
along the isochron.

Thus the topological discrepancy between the annular
and simply-connected domain does not seem to be signifi-
cant numerically, at least for the examples we considered in
this paper. It is an interesting open question to ask how λ
and Q compare on the annular versus the simply-connected
domain. What impact does the size and location of the an-
nular exclusion have on λ and Q? Moreover, how do λ and Q
change if the hole is located at a point not overlapping the
phaseless set of the simply connected domain? In cases for
which we do not know a priori the location of the phaseless
set, these questions may become highly relevant.

A.5 Choosing the zero-th phase through the stochastic

isostables

Like deterministic phase variables, the MRT phase Θ and the
stochastic asymptotic phase ψ are defined up to an arbitrary
additive constant. In deterministic limit cycle systems, the
phase is often chosen to be zero at the maximum of some
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variable of interest, such as the voltage of a spiking neuron.
In order to compare Θ and ψ we use a recently introduced
generalization of the isostable coordinate adapted to stochas-
tic systems Pérez-Cervera et al. (2021). Briefly, just as the
slowest decaying complex eigenmode Q∗

λ1
(x) allows one to de-

fine a stochastic phase ψ(x), the slowest decaying purely real
eigenmode allows one to define a stochastic amplitude since
it accounts for the slowest mode describing pure contraction
without an associated oscillation. Hence, the level curves of
such a slowest decaying purely real eigenmode – which we
denote as Σ(x) – correspond to the stochastic isostables (see
Fig. 6). For this reason, and following the usual approach
from deterministic systems, in this paper we used the max-
imum of the “stochastic limit cycle”, corresponding to the
0-level isostable Σ0 ≡ {x | Σ(x) = 0} in the x direction, to
set the zero phase point for both phases Θ(x) and ψ(x). In
this way we are able to provide a consistent basis for compar-
ison throughout the paper.

A.6 Computation of the MRT property

Once ∆ψ is computed, we obtain the MRT phase as Θ(x) =
ψ(x)+∆ψ(x). To check if the computed function Θ(x) satis-
fies the MRT property we do the following for each point x0:
first we interpolate Θ(x) in the whole domain D in Eq. (36)
by using a 2D spline method. Then, we integrate the system
of interest for a time large enough to assure that the first
return occurs with overwhelming probability. In practice, we
integrate for a time 3T by means of a Euler-Heun scheme
with a time step O(10−3). By using the interpolated grid, we
can obtain a description of the trajectory X(t) in terms of
the phase θ(t) = Θ(X(t)). Hence, we can check at which time
we first cross Θ(x∗) = Θ(x0) + 2π. We repeat the procedure
averaging the return time over 105 realisations. To check the
MRT property for the stochastic asymptotic phase ψ(x) we
repeat the previous procedure just substituting Θ(x) by ψ(x).
The computed standard error of the MRT results in panel (e)
of Figs. 1-5 was found to be less than 0.1.

B Derivation of d
dt
E[ψ(x)] (Eq. (20)) and

L†[ψ(t)] (Eq. (23))

In this Section we give details of the derivation of Eqs. (20)
and (23). We thank the anonymous reviewer who provided the
following elegant derivation. For the aim of a compact nota-
tion, we remove the x dependence for the functions, adopt
Einstein’s summation convention (implicit summation over
repeated indices) and derive results for Q∗

λ1
. First,

L†[Q∗
λ1

] = L†[ueiψ],

= uL†[eiψ] + eiψL†[u] + 2Gjk(∂ju)(∂keiψ),

= uL†[eiψ] + eiψ
(︁
L†[u] + 2iGjk(∂ju)(∂kψ)

)︁ (40)

since

L†[eiψ] = (fj∂j + Gjk∂j∂k)eiψ,

= ieiψfj∂jψ + iGjk∂j(eiψ∂kψ),

= eiψ
[︁
i
(︁
fj∂jψ + Gjk∂2

jkψ
)︁
− Gjk(∂jψ)(∂kψ)

]︁
= eiψ

[︁
iL†[ψ]− Gjk(∂jψ)(∂kψ)

]︁ (41)

then, substituting (41) in (40) leads to

L†[Q∗
λ1

] = eiψ
[︂
L†[u]− Gjk(∂jψ)(∂kψ)

+ i
(︂
uL†[ψ] + 2Gjk(∂ju)(∂kψ)

)︂]︂ (42)

hence, substituting L†[Q∗
λ1

] = (µ + iω)ueiψ in (42) and di-

viding by eiψ,(︁
µ+ iω

)︁
u = L†[u]− Gjk(∂jψ)(∂kψ)

+ i
(︂
uL†[ψ] + 2Gjk(∂ju)(∂kψ)

)︂
.

(43)

Equating imaginary parts in (43) yields

uL†[ψ] + 2Gjk(∂ju)(∂kψ) = uω. (44)

Thus, wherever u ≥ 0 is nowhere vanishing, (43) we recover

L†[ψ] + 2Gjk(∂j ln(u))(∂kψ) = uω,

which results in (20), (23). For completeness, we also state

L†[u] = µu+ Gjk(∂jψ)(∂kψ) (45)

whose significance remains to be explored elsewhere.

C Oscillation frequency and mean return time

period for the noisy spiral sink

In this Section we briefly discuss the details involving the
derivation of the mean return period T for the two-dimensional
spiral sink in Section 5.1.

Following Thomas and Lindner (2019), we know we can
express the stationary probability density P0(x) as follows:

P0(x) =
(ϵ2π)−1√︁
det(Π)

exp
(︂
−
Π−1

11 x
2
1 + 2Π−1

21 x1x2 +Π−1
22 x

2
2

2ϵ

)︂
with

Π−1
11 = −µ

(1− βD)µ2 + ω2 − µωβc

ω2 + µ2(1− β2
c − β2

D)
,

Π−1
22 = −µ

(1 + βD)µ2 + ω2 + µωβc

ω2 + µ2(1− β2
c − β2

D)
,

Π−1
12 = Π−1

21 = µ
βcµ2 − µωβD

ω2 + µ2(1− β2
c − β2

D)
,

(46)

and

Π11 =
(1 + βD)µ2 + ω2 + µωβc

−µ(ω2 + µ2)
,

Π22 =
(1− βD)µ2 + ω2 − µωβc

−µ(ω2 + µ2)
,

Π12 = Π21 =
−βcµ2 + µωβD

−µ(ω2 + µ2)
,

(47)

with

det(Π) =
ω2 + µ2(1− β2

c − β2
D)

µ2(µ2 + ω2)
. (48)

Then, the probability current J⃗ can be written as

Jx(x1, x2) =
[︂
µx1 − ωx2 − ϵ

(︁
(1 + βD)∂x1

+ βc∂x2

)︁]︂
P0(x),

Jy(x1, x2) =
[︂
ωx1 + µx2 − ϵ

(︁
(1− βD)∂x2

+ βc∂x1

)︁]︂
P0(x),
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so the mean period T can be computed as

1

T̄
=

∫︂ ∞

0

Jx(0, x2)dx2, (49)

which yields

1

T
=

w

2πµ
√︁

det(Π)
. (50)

from which we obtain T in Eq. (32).

D Relation to the asymptotic phase for

deterministic systems

In this section we explore the relationship between the mean
return time (MRT) phase Θ(x), the stochastic asymptotic
phase ψ(x), and the deterministic phase ϑ(x). Under certain
regularity assumptions, Cao et al. (2020) §2.4 established con-
vergence of Θ(x) to ϑ(x) in the limit of vanishing noise. Here,
we present a similar argument as in Cao et al. (2020) §2.4, to
establish that if suitable regularity conditions are satisfied,
then in the limit of small noise the stochastic asymptotic
phase ψ(x) likewise converges to ϑ(x).

We start by taking the time derivative of the deterministic
phase function ϑ(x), defined in Eq. (5),

dϑ(x)

dt
= f(x)⊺∇ϑ(x) =

2π

T
, (51)

which holds ∀x in the basin of attraction of the limit cycle.
Consider a family of stochastic differential equations as

in Eq. (7), but with the noise scaled by a small parameter√
ϵ. That is,

dX

dt
= f(X) +

√
ϵg(X)ξ(t) (52)

where ξ is a vector with components comprising independent
delta-correlated white noise. Moreover, we also consider the
corresponding family of solutions of Eq. (20), that is

L†
ϵ [ψϵ(x)] = f(x)⊺∇ψϵ(x) + ϵ

∑︂
ij

Gij∂2
ijψϵ(x)

= ωϵ − 2
∑︂
i,j

Gij∂i ln(uϵ(x))∂jψϵ(x).
(53)

We now make the regularity assumption that as ϵ→ 0, ψϵ(x)
converges uniformly on compact subsets of the domain to a
C2 function ψ0(x).3 As for any ϵ, ψϵ(x) is defined up to an
additive constant, we consider convergence in the sense that
for arbitrary nonzero vectors v ∈ R2,

v⊺(∇ψ0(x)−∇ψϵ(x)) → 0 as ϵ→ 0, (54)

for all x in the domain. Fixing x and setting v = f(x), we see
for each x

f⊺∇ψ0(x)− f⊺∇ψϵ(x) = f⊺∇ψ0(x)−
(︂
ωϵ+O(ϵ)

)︂
→ 0, (55)

3 Proving rigorous conditions on f and g that are either nec-
essary or sufficient to guarantee that this assumption holds
would lie beyond the scope of this paper. To our knowledge,
such conditions have not yet been established in existing lit-
erature.

as ϵ→ 0; here we have used Eq. (53). Consequently, if ψϵ(x)
converges to a well-behaved function ψ0(x) in this way, it
must satisfy

L†
0[ψ0(x)] = f(x)⊺∇ψ0(x) = ω0. (56)

Comparing Eq. (51) and Eq. (56), evidently if the determin-
istic system has a stable limit cycle, then the function ψ0(x)
must correspond with the deterministic phase ϑ(x) through
the linear relation

ψ0(x) = ϑ(x) + ϑ0, (57)

for an arbitrary constant ϑ0.
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Budǐsić M, Mohr R, Mezić I (2012) Applied Koopmanism.
Chaos 22(4):047510

Cao A (2017) Dimension reduction for stochastic oscilla-
tors: investigating competing generalizations of phase and
isochrons. Master’s thesis, Case Western Reserve Univer-
sity

Cao A, Lindner B, Thomas PJ (2020) A partial differential
equation for the mean–return-time phase of planar stochas-
tic oscillators. SIAP 80(1):422–447
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