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Abstract. Competitive tournaments appear in sports, politics, population ecology, and animal4
behavior. All of these fields have developed methods for rating competitors and ranking them accord-5
ingly. A tournament is intransitive if it is not consistent with any ranking. Intransitive tournaments6
contain rock-paper-scissor type cycles. The discrete Helmholtz-Hodge decomposition (HHD) is well7
adapted to describing intransitive tournaments. It separates a tournament into perfectly transitive8
and perfectly cyclic components, where the perfectly transitive component is associated with a set of9
ratings. The size of the cyclic component can be used as a measure of intransitivity. Here we show10
that the HHD arises naturally from two classes of tournaments with simple statistical interpretations.11
We then discuss six different sets of assumptions that define equivalent decompositions. This analysis12
motivates the choice to use the HHD among other existing methods. Success in competition is often13
mediated by the traits of the competitors. A trait-performance model assumes that the probability14
that one competitor beats another is a function of their traits. We show that, if the traits of each15
competitor are drawn independently and identically from a trait distribution then the expected de-16
gree of intransitivity in the network can be computed explicitly. We show that increasing the number17
of pairs of competitors who could compete promotes cyclic competition, and that correlation in the18
performance of A against B with the performance of A against C promotes transitive competition.19
The expected size of cyclic competition can thus be understood by analyzing this correlation.20
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1. Introduction: Tournaments, Ranking, and Intransitivity. A tourna-24

ment consists of a group of competitors who compete in pairwise events (head-to-head25

matches). Tournaments are important across disciplines, from ecology and animal be-26

havior [43, 63], to psychology and sports [6, 35]. Rating and ranking, that is, assigning27

a measure of quality to the competitors and listing them in order from best to worst,28

is important in each of these areas. In sports, ranking and rating teams and players29

is a topic of broad popular interest. In biology, ratings are widely used to evaluate30

the quality of competitors in social hierarchies. High standing in a competitive hier-31

archy may be closely related to fitness, as it is often associated with priority access to32

resources [17, 38, 39, 69], territory maintenance [64], and higher reproductive output33

[54, 75]. Ranking is especially important in politics, as many electoral systems deter-34

mine a winner by aggregating votes into a partial ranking of the candidates. Ratings35

and rankings are often sought since they simplify the description of a tournament by36

assigning each competitor a single number that purports to measure how good they37

are.38

Not every tournament allows for a consistent ranking of competitors. As a moti-39

vating example, consider the 2019–2020 National Basketball Association (NBA) sea-40

son, which was cut short by the COVID-19 pandemic. Imagine two fans arguing41

whether the Cleveland Cavaliers (CLE) or Sacramento Kings (SAC) were the better42

team. The two teams did not play in 2019–2020 due to the abbreviated season, so43
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2 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

Fig. 1. A network representing the observed outcomes of games between the Cleveland Cavaliers
(CLE), Sacramento Kings (SAC), Atlanta Hawks (ATL), and San Antonio Spurs (SAS) in the
2019–2020 regular season. Arrows point from the team which lost the majority of the games to the
team which won the majority. Labels next to the arrows provide the game outcomes.

they cannot be compared directly. The Cleveland fan points out that CLE beat the44

San Antonio Spurs (SAS) 2 out of 2 games, and SAS beat SAC 2 out of 3 games, so45

surely CLE was better than SAC. The SAC fan counters that transitive predictions46

of this kind are not always valid. For example, the Atlanta Hawks (ATL) beat SAS47

2 out of 2 games, and SAS beat SAC 2 out of 3 games, yet SAC still beat ATL in48

the game they played. Figure 1 illustrates these outcomes as a graph. Notably, the49

graph contains a mixture of triangles which do and do not allow consistent rankings.50

A believer in ranking could point to the triangle involving CLE, SAS and ATL as51

evidence that NBA teams can be consistently ranked, while a skeptic might point to52

the triangle involving SAS, ATL, and SAC.53

The observation that not all tournaments admit consistent rankings motivates54

classification into transitive and intransitive tournaments. A tournament is transitive55

if knowing that A usually beats B, and B usually beats C, is enough to conclude that56

A usually beats C. Transitive tournaments are consistent with a global ranking of all57

the competitors. An intransitive tournament is a tournament that is not consistent58

with any global ranking. Intransitive tournaments must contain at least one cycle59

where the transitive assumption fails. Figure 2 illustrates examples of transitive and60

intransitive tournaments.61

Intransitive tournaments appear in practically every discipline where tournaments62

are studied [10, 23, 52, 57, 59], and are the norm rather than the exception when using63

real data [32, 35, 36, 43, 63, 66, 68]. Intransitivity may arise due to uncertainty in64

observed data [35, 68], randomness in event outcomes, or may be intrinsic, as in the65

game of rock-paper-scissors.66

Intransitivity is important for two reasons. First, intransitivity presents a chal-67

lenge when ranking since no ranking is consistent with the tournament. For example,68

Condorcet’s paradox is a voting paradox in cyclic community preferences prevent any69

fair ranking of candidates, and thus, any choice of winner [23].1 Second, when intran-70

sitivity is intrinsic, then the tournament contains cyclic structure, as in rock-paper-71

scissors. Cyclic structures can radically alter optimal strategies [10] and long term72

dynamics [52, 59, 58, 60, 61]. For example, in ecology it is widely hypothesized that73

intransitive competition between species promotes biodiversity since no species domi-74

1Suppose there are three candidates in an election and three voters. Suppose that the first voter
prefers A to B to C, the second B to C to A, and the third C to A to B. Then A would beat B, B
would beat C, and C would beat A in pairwise head-to-head elections.
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Fig. 2. Three example networks representing different classes of tournaments. The first is
transitive since the win probabilities are consistent with the ranking 3 ≻ 4 ≻ 1 ≻ 2. The second
is both intransitive, and, more strongly, is cyclic (see Section 3.1.2 for definitions). The third is
neither transitive nor cyclic, and represents a generic tournament, with the same pattern of expected
winners and losers as in Figure 1.

nates. This hypothesis is based on extensive theoretical work [43, 52, 59, 58, 60, 61, 80]75

and limited case-studies [30, 36, 46, 47, 66].76

The importance of intransitivity in real natural communities is controversial [25,77

70, 77], in part because there are few robust metrics for measuring intransitivity78

from incomplete and noisy data. Uncertainty in data can easily be conflated with79

observed intransitivity, and common sampling methods for filling in missing data can80

overestimate intransitivity [63]. Thus there is a need for ranking and rating methods81

that are robust to intransitivity and measures of intransitivity that can handle noisy82

and incomplete data.83

Jiang and Lim introduced the discrete Helmholtz-Hodge Decomposition (HHD)84

as a general method for ranking objects from incomplete and imbalanced data [32,85

50]. The decomposition is a network theoretic tool that we adapt to the study of86

competitive tournaments. The HHD accomplishes three fundamental tasks. First, it87

assigns a rating to each competitor. Competitors can be ranked accordingly. Second,88

it produces a measure of intransitivity that quantifies how far an observed network89

is from the nearest perfectly transitive network. Third, it represents the observed90

network as the direct sum of a perfectly transitive and a perfectly cyclic network.91

This decomposition provides an elegant characterization of intransitivities present in92

data, and can reveal underlying cyclic tendencies (c.f. [10]).93

When compared to existing methods, the discrete HHD has a number of advan-94

tages. It is more general than some classical methods since it applies to arbitrary95

network topologies and can accommodate imbalanced data [32]. It is also more infor-96

mative because it provides a clear description of both underlying transitive and cyclic97

structures. Most ranking methods and intransitivity measures focus on the transi-98

tive component while the HHD puts the transitive and cyclic components on equal99

footing. Finally, it remains efficiently computable even for large, incomplete networks100

[32]. In contrast, Slater’s index [68] requires solving an NP hard optimization problem101

[11, 18], and Kendall’s index [35] requires a complete network.102

This paper aims to answer two fundamental questions:103

1. Why use the HHD to study competition when other methods exist?104

2. Having chosen to use the HHD, what do we expect when competitive perfor-105

mance is determined by individuals’ traits?106
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4 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

Answering the first question is important since there are many possible meth-107

ods to choose from, so the choice of method should be made in a principled way.108

Answering the second question is important since it builds a conceptual bridge from109

the competitors and competitive event to the overall tournament structure. As in110

Landau [44], we seek to understand how the underlying distribution of traits among111

competitors, and the relationship between traits and success, influence the overall112

tournament.113

The latter question is important across disciplines. In some biological settings,114

success in competition is determined by individual traits, driving selection [76]. For115

example, competition for social dominance among male elephant seals depends on116

their body mass [26] and competition among male dwarf Cape chameleons depends117

on coloration, head size, and body length [76]. Success in these competition events is118

correlated with reproductive success, suggesting that heritable traits which improve119

a male’s chances of success are strongly selected for [26]. In sports, the relationship120

between the traits of a player or team and their success is an area of active interest - for121

athletes, owners, fans, and researchers alike. The rise of sabermetrics, the statistical122

study of baseball, is a popular example [49, 78].123

This paper answers questions 1 and 2 as follows:124

1. The HHD arises naturally from the study of ranking and intransitivity. To125

illustrate this point, we provide a different derivation of the HHD than [32] or126

[50]. Instead of imposing the decomposition ad hoc, we propose two special127

classes of tournaments with clear statistical motivation. We then show that128

any tournament can be uniquely decomposed into a combination of tourna-129

ments from these classes. This decomposition is the HHD (see Theorem 3.5).130

Next we illustrate that the HHD can be reached by six different approaches131

(Corollary 8.1), and is thus robust to varying motivations.132

2. We show that, under simple assumptions on the distribution of traits, the133

expected sizes of the components of the decomposition can be computed ex-134

plicitly from the number of competitors, number of pairs who could compete,135

and the correlation in the performance of A against B with A against C. This136

correlation is shown to equal the uncertainty in the expected performance of137

a competitor, linking a decomposition of uncertainty in performance to tour-138

nament structure (see Theorem 4.1 and Corollary 9.1).139

The answers to the second question prove, under minimal assumptions, a series140

of intuitive statements about transitive/cyclic competition that appear, as heuristics,141

across the literature. These include:142

(a) The more predictable the performance of A against a randomly drawn competitor143

(i.e., the less the performance of A depends on their opponent) the more transitive144

the tournament.145

(b) The more correlated the performance of A against B with the performance of A146

against C, the more transitive the tournament.147

(c) The more pairs of competitors who could compete, the more cyclic the tournament148

is, on average.149

(d) Filling in missing data by random sampling overestimates intransitivity.150

Statements a, b, and c also hold in reverse. Decreasing a quantity that promotes151

transivity promotes cyclic competition152

The paper is structured as follows. In Section 2 we provide some necessary back-153

ground. Next, in Section 3, we derive the HHD in the context of tournaments and de-154

velop the associated ratings and intransitivity measure. Our derivation complements155

the cohomological approach used by [50], as it is specially adapted to tournaments,156
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and only requires linear algebra and classical graph theory. In Section 4 we show157

how assumptions about the statistics underlying competition promote or suppress in-158

transitivity. We focus on trait-performance models in which performance is assumed159

to be a function of traits sampled from a trait distribution. While win probabilities160

are not always determined by traits, exploring trait determined performance affords a161

more realistic and richer perspective than standard null models (c.f. [16]), and demon-162

strates generic relationships. In particular, we present a theorem (4.1) which allows163

the expected size of the intransitivity measure to be computed directly from the num-164

ber of competitors, edges in the network, and correlation in the performance of A165

against B with A against C. This result is extended by a corollary (9.1) which shows166

that the correlation in performance is related to a decomposition in the uncertainty167

of the performance of A against B. These results lead to a deeper conceptual un-168

derstanding of how cyclic structure can arise from uncertainty in performance, and169

can be suppressed by correlation in performance. We conclude by generalizing these170

observations to scenarios where the trait-performance assumptions do not hold.171

2. Mathematical Framework. Consider an ensemble of V competitors. As-172

sume that each competition event involves exactly two competitors, and never results173

in a tie. This standard assumption [35, 43] can be weakened to allow for ties. We will174

refer to competition of this kind as a tournament.2175

The probability of any sequence of event outcomes in a tournament is determined176

by the probabilities that competitors beat each other. If the event outcomes are177

independent, then for each possible pairing of competitors there is an unambiguous178

probability one beats the other. Let pAB denote the probability competitor A beats B.179

The shorthand A ≻ B denotes the case when A is expected to beat B (pAB > 1/2). In180

principle, the win probabilities could change in time, and could depend on the history181

of the process (c.f. [24]). We focus on tournaments with unchanging win probabilities182

to avoid modeling additional temporal dynamics. Then a fixed set of win probabilities183

p determine the probability of any sequence of events. Thus the tournament dynamics184

are realizations of a random process, with probabilities controlled by p and the event185

order. The event order, i.e. the schedule, could be fixed or random. As in other studies186

of transitivity, we focus on the structure of the win probabilities p, not the schedule187

or tournament dynamics, since the win probabilities p determine the distribution of188

possible tournament outcomes, and whether competition is transitive or intransitive.189

The win probabilities may be conveniently represented using a competitive net-190

work, G⇄ = (V, E , p). Assign each competitor a node from the vertex set V. Then191

V = |V|. Introduce a pair of directed edges between each pair of competitors who192

could compete. The edge from B to A is assigned the weight pAB . We assume that193

the tournament is finite, connected and reversible. That is, there are finitely many194

competitors, for any pair of competitors A B there is a path from A to B and from B195

to A through G⇄ with probability greater than zero, and that pAB ̸= 0 or 1 for any196

pair A,B who could compete.197

Sometimes it is preferable to simplify the competition network by rounding all198

weights less than 1/2 to 0, and all weights greater than 1/2 to 1. This can be conve-199

niently represented as an unweighted graph G→ which contains all directed edges from200

G⇄ with weights greater than a half, and an undirected edge between all pairs with201

pAB = 1/2. The edges in this graph point from expected losers to expected winners.202

Most intransitivity measures focus on this graph (see [35], [44], [68]).203

2This is distinct from a complete tournament in which it must be possible for all pairs to compete.
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A ranking is an ordered list of competitors from best to worst, specified by a204

rank function R which returns the rank of each competitor. Note that this is distinct205

from a rating, r, which is a function that returns a real number for each competitor206

[45]. Rankings are often generated by first rating each competitor, then listing them207

in decreasing order. For example, given competitors A,B,C with ratings rA = 10,208

rB = 20, rC = 0 the corresponding ranking would be RA = 2, RB = 1, RC = 3 and209

the competitors would be listed B ≻ A ≻ C. Ratings provide an intuitive description210

of competition in which some innate competitive ability determines performance.211

Ranking methods are diverse, and well studied. Famous examples include the212

page-rank method used by Google to sort search results [9], the Massey and Col-213

ley methods used by the NCAA to rank basketball and football teams [45], and the214

Elo rating/ranking widely used by chess federations [24, 71]. The rating system pro-215

duced by the HHD is a kind of log-least squares rating as is frequently used in paired216

comparison [6, 41, 42]. Examples of least squares rating systems are included in217

[14, 34, 45, 51, 72, 73].218

A competitive network G⇄ is consistent with a ranking R if A ≻ B whenever219

R(A) < R(B). If a competitive network is consistent with a ranking then this ranking220

is unique and the network is transitive. Transitive networks satisfy the intuitive221

property that if we consider some sequence of competitors with A ≻ B ≻ C ≻ D222

then A ≻ D. That is, G→ contains no cycles, and all the edges in G→ point from223

competitors with worse ranks to competitors with better ranks.224

If G→ contains a cycle, then there exists a sequence of competitors such that A ≻225

B ≻ C ≻ .... ≻ A, and the tournament is intransitive. If a network is intransitive then226

it is not consistent with any ranking [57]. Speaking broadly, measures of intransitivity227

either count the number of intransitive triangles present in G→ [35], or measure how228

far G→ is from a nearby transitive network [68]. The Kendall measure [35] counts the229

number of intransitive triangles in G→. This can be done efficiently, however prioritizes230

triangles over larger loops and does not weight edges equally [2, 68]. The Slater231

measure of intransitivity is the minimum number of edge directions that need to be232

reversed in order to transform G→ into a transitive network [68]. While conceptually233

preferable [32], finding the closest transitive network is an NP hard problem [3], [19],234

[27], [32]. Despite some fast heuristics [18], complexity concerns limit the application235

of the Slater measure to small networks. The intransitivity measure associated with236

the HHD is conceptually analogous to the Slater measure, but can be computed237

efficiently even for very large networks. Note that transitivity and intransitivity are238

defined relative to the sign of (pAB − 1/2), rather than the exact value pAB . In239

contrast, the intransitivity measure associated with the HHD is continuous in the win240

probabilities, so uses all the information available in G⇄.241

3. The Network HHD. The Network Helmholtz-Hodge Decomposition (HHD)242

can be derived by defining two special classes of tournaments. These parallel the two243

classes of games defined in [10].244

3.1. Arbitrage Free and Favorite Free Tournaments.245

3.1.1. Arbitrage Free Tournaments (Perfectly Transitive). A currency246

market is said to be arbitrage free if it is impossible to make money by exchanging247

currencies cyclically [32]. By analogy, we define an arbitrage free tournament to be a248

tournament for which it is impossible to expect to make money by betting on cyclic249

sequences of events. Specifically, a tournament is arbitrage free if, for any cyclic250

sequence of competitors C = {i1, i2, . . . , .i|C|, i|C|+1 = i1}, a sequence of wins where ij251
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loses to ij+1 is equally likely as a sequence of wins where ij beats ij+1 for all j. Here252

|C| denotes the number of competitors in the cycle.253

Cycle Condition: A tournament is arbitrage free if and only if, for every cycle254

C = {i1, i2, . . . , i|C|, i|C|+1 = i1}, the win probabilities satisfy:255

(3.1) pi1i2pi2i3 ...pi|C|i1 = pi1i|C| ...pi3i2pi2i1 .256

The cycle condition can be simplified by dividing the right hand side across to257

the left hand side and taking a logarithm. Then:258

(3.2)

|C|∑︂
j=1

fijij+1 = 0259

where the fij is the log-odds that competitor i beats competitor j:260

(3.3) fij = logit(pij) ≡ log

(︃
pij

1− pij

)︃
.261

The cycle condition is satisfied if and only if the sum of f around any cycle is262

zero. The log-odds, f , are an example of an edge flow : an alternating function,263

fij = −fji, on the edges [32]. Note that logit(x) = log(x/(1 − x)) is the inverse of264

logistic(y) = 1/(1 + exp(−y)), so no information is lost in moving to f from p.265

The sum of f around a cycle is an example of a path sum. A path sum against266

an edge flow is the discrete analog of a path integral against a vector field. Given a267

sequence of competitors P =
{︁
i1, i2, . . . , i|C|

}︁
the path sum against f over the path P268

is
∑︁|C|−1

j=1 fij+1ij . The cycle condition requires that path sums over cycles equal zero.269

If path integrals around closed loops equal zero, then the value of path integrals270

depend only on the endpoints of the path, are otherwise path independent, and the271

vector field is the gradient of potential. These properties also hold for networks.272

Lemma 3.1 (Arbitrage Free). A tournament is arbitrage free if and only if there273

exists a unique set of ratings r, with average rating equal to zero, such that the win274

probabilities satisfy pij = logistic(ri − rj). Moreover if a tournament is arbitrage free275

then it is transitive.276

If there exist a set of ratings such that pij = logistic(ri − rj) then fij = ri − rj277

so path sums over f are telescoping, and thus cancel around loops. Then the cycle278

condition holds automatically. The rest of Lemma 6.1 can be proved using a simple279

spanning tree construction illustrated in of Figure 3 (panel a). We sketch the proof280

here; the supplement provides further details.281

If a network is arbitrage free then the cycle condition requires that the path sum282

of f around any loop is zero. It follows that path sums over f are path independent.283

Our goal is to find a rating r such that the difference in r on each edge produces the284

edge flow f . We recover r by picking a spanning tree3, and assigning it an arbitrary285

root, A. Uncentered ratings u are computed by setting ui equal to the path sum from286

A to node i along the paths in the tree. Then the ratings r are set equal to ui minus287

the average value of u. Path independence guarantees that the choice of tree does288

not influence u, and centering the ratings eliminates any dependence on the choice of289

3A spanning tree is a subgraph of the network that contains no loops, includes all competitors,
and is connected.
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Fig. 3. Panel a. The spanning tree construction for recovering the ratings for an arbitrage-free
tournament. The tree is shown with solid lines, and the chords with dotted lines. The root of the
tree, A, is marked in grey. Two vertices, i and j connected by a chord ij, are shown in blue and
green respectively. The sequence of nodes leading from A to i and j are labelled. If the ratings, r,
are constructed by evaluating path sums over the tree, then the path sum from j to A is rj −rA, and
the path sum from A to i is rA − ri. Then, by the cycle condition, the sum around the loop marked
with arrows is zero, hence fij = ri − rj . Panel b. A favorite free tournament must be a cyclic
tournament. The arrows represent the direction of competition. If the network is favorite free, then
whenever there is an edge pointing into a set there must be an edge pointing out of it. A path from
A to B is shown in black. Then the sets S1(B), S2(B), S3(B) are shown as shaded polygons. These
contain all competitors distance 1, 2, and 3 (respectively) from B. These sets continue to expand
until they include A, hence there is a path from B to A.

A. Then, by construction, ri − rj = fij on all edges in the tree. The cycle condition290

guarantees that ri − rj = fij on all edges not in the tree. Since f are the log-odds,291

pij = logistic(ri − rj). Transitivity follows automatically since p must be consistent292

with the ranking induced by r.293

Lemma 6.1 shows that arbitrage free tournaments are the only tournaments which294

match the logistic rating model pij = logistic(ri − rj) used for Elo rating [1, 29, 45].4295

Arbitrage free tournaments are also the only tournaments that match the Bradley-296

Terry model:5 pij = qi/(qi + qj) where qi ≥ 0 are the Bradley-Terry ratings [8, 7].297

If a network is arbitrage free, then setting qi = exp (ri) recovers the Bradley-Terry298

model. If the tournament satisfies the Bradley-Terry model, then setting ri = log (qi)299

produces a rating which satisfies pij = logistic(ri − rj), so the network must be300

arbitrage free.301

Since arbitrage free networks are a special class of transitive networks, we will302

refer to them as “perfectly” transitive. Note that a perfectly transitive network must303

satisfy the cycle condition, which is a requirement on the values of p rather than the304

sign of (p− 1/2). Hence, while all perfectly transitive networks are transitive, not all305

transitive networks are perfectly transitive. For example, if pAB = 0.99, pBC = 0.99,306

and pAC = 0.51 then the tournament is transitive, even though pAC is much smaller307

than might be expected. This example is not perfectly transitive since it does not308

satisfy the cycle condition. The leftmost network in Figure 2 is perfectly transitive.309

4The Elo rating system was originally proposed to rate chess players, but is also used to rank
Sumo wrestlers [71], English league football teams [29] and international football teams. In the latter
example the Elo method was the most predictive out of all methods tested [48]. The Women’s World
Cup uses a variant on the Elo method [48].

5The Bradley-Terry model is widely used in pairwise comparison and to rank competitors in
tournaments. Examples include professional tennis [40, 53], Cape dwarf chameleons [76] and northern
elephant seals [26]. Bradley-Terry models accounting for surface type, and discounting old games,
have been shown to be effective in predicting the outcome of ATP tennis tournaments [53].
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3.1.2. Favorite Free Tournaments (Perfectly Cyclic). In contrast, we de-310

fine a favorite free tournament to be a tournament for which it is impossible to make311

money on average by betting on a favorite competitor over their neighbors. Specifi-312

cally, A is equally likely to beat all of their neighbors, as to lose to them. Let N (i)313

denote the neighborhood of i, the set of all competitors who could compete with i.314

Then the win probabilities must satisfy a neighborhood condition.315

Neighborhood Condition: A tournament is favorite free if and only if, for316

every competitor i with neighborhood N (i), the win probabilities satisfy:317

(3.4)
∏︂

j∈N (i)

pij =
∏︂

j∈N (i)

pji.318

Like the cycle condition, the neighborhood condition can be written directly as a319

condition on the log-odds edge flow f defined in equation (3.3). A tournament satisfies320

the neighborhood condition if and only if the sum of fij over the neighborhood of i321

is zero for all competitors i:322

(3.5)
∑︂

j∈N (i)

fij = 0.323

If the neighborhood condition is satisfied then it can be extended to all sets of324

competitors. Let S be a set of competitors and let N (S) be the set of all competitors325

not in S who neighbor S. Then the neighborhood condition implies:326

(3.6)
∑︂

j∈N (S),i∈S

fij = 0.327

This identity follows from the discrete analog to the divergence theorem: the sum of328

f over the neighborhood of S equals the sum of f over the neighborhood of every329

competitor in S.6 Then
∑︁

j∈N (S),i∈S fij =
∑︁

i∈S

∑︁
j∈N (i) fij =

∑︁
i∈S 0 = 0.330

The cycle condition defined a special subset of transitive tournaments. The neigh-331

borhood condition also defines a special class that is a subset of a larger class - the332

class of cylic tournaments. A cyclic tournament is a tournament such that, if there333

is a path from A to B in G→, then there is a path back from B to A in G→.334

Lemma 3.2 (favorite free). A favorite free tournament is cyclic, and is never335

transitive unless pij = 1/2 for all connected i, j.336

Like Lemma 6.1, Lemma 7.1 can be proved with a simple construction. The proof337

is sketched here and illustrated in Figure 3 (panel b). See supplement for details.338

If there is a path from A to B in G→ then we need to construct a path back339

to A from B. To this end, we define a nested sequence of sets where Sd(B) is all340

vertices within distance from d of B in G→. The neighborhood condition extends to341

sets of vertices, so if there is an edge into a set S in G→ then there must also be342

an edge leaving S. It follows that, if A is not in Sd(B), then Sd+1(B) ̸= Sd(B), so343

we can keep expanding the sequence of nested sets. If the network is finite then the344

sets cannot expand forever without eventually including A. To finish, a favorite free345

tournament cannot be transitive unless it is neutral, pij = 1/2 for all i, j, since only346

neutral tournaments are simultaneously transitive and cyclic.7347

6If i and j are both in S then the sum over the neighborhood of i contributes fij , and the sum
over the neighborhood of j contributes fji = −fij . Therefore the edge flow on any edge connecting
a pair of nodes in S cancels in the sum.

7Note that a neutral tournament is considered transitive since it can be consistently ranked - all
competitors should be ranked the same.
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So, just as the cycle condition (no tendency to cycle) implied transitivity, the348

neighborhood condition, (no favorites) implies that the network is cyclic. Whether a349

tournament is cyclic or not depends on the sign of (pij − 1/2), while the neighbor-350

hood condition is a condition on the values of pij . This motivates the definition: a351

tournament is perfectly cyclic if and only if it is favorite free. As before, all perfectly352

cyclic tournaments are cyclic, but not all cyclic tournaments are perfectly cyclic. The353

middle network in Figure 2 is perfectly cyclic.354

Note that, unlike perfectly transitive tournaments where f is determined by a set355

of ratings r, we are not currently equipped to relate the edge flow of a favorite free356

tournament to a lower dimensional representation. In Subsection 3.2.2 we will show357

that a favorite free tournament has edge flows f which can always be represented as358

a sum of cyclic intensities (or vorticities) on a set of loops. This result will parallel359

the conclusions of Lemma 6.1.360

3.2. The Discrete HHD. Given these two classes of tournaments it is natural361

to ask: can a generic tournament be decomposed into a perfectly transitive (arbitrage362

free) part and a perfectly cyclic (favorite free) part? We answer in the affirmative.363

This is the Helmholtz-Hodge decomposition.364

3.2.1. Operators. In order to define the decomposition succinctly, it is helpful365

to have a pair of operators analogous to the gradient and curl operators in the contin-366

uum. We simplify the topological presentation in [32] by expressing the decomposition367

entirely through linear algebra. For a cohomological discussion see [50].368

First, define the edge space RE , where E is the number of pairs i, j who could369

compete. Index each pair so that edge k points from competitor j(k) to competitor370

i(k). Note that this requires assigning each edge an arbitrary start and endpoint.371

Positive f indicates that the competitor at the end is expected to beat the competitor372

at the start, and negative f indicates the reverse. This is simply a sign convention.373

Let the discrete gradient operator G be the E × V matrix which maps from RV374

to RE by setting:375

(3.7) [Gu]k = ui(k) − uj(k).376

Then gkh = 1 if h = i(k), equals −1 if h = j(k), and is zero otherwise. The matrix G377

is sometimes called the edge incidence matrix since it records the start and end point378

of each edge.379

Notice that if r is a rating function on the nodes, then attempting to find r such380

that ri − rj = fij is equivalent to looking for r such that Gr = f . Since any arbitrage381

free tournament admits a unique rating r satisfying Gr = f , the space of perfectly382

transitive competitive networks is equivalent to the space of competitive networks383

with edge flow f in the range of the gradient.8384

The gradient transpose, GT is the discrete divergence operator. The divergence385

maps from the space of edges to the space of nodes (competitors) such that:386

(3.8) [GT f ]i =
∑︂

j∈N (i)

fij .387

The neighborhood condition (3.5) is equivalent to requiring that GT f = 0. That388

is, the space of favorite free tournaments is equivalent to the space of tournaments389

with edge flow f in the null space of the divergence.390

8Assuming that the competitive network is connected, the gradient has a one-dimensional null-
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THE HHD AND TRAIT-PERFORMANCE 11

Fig. 4. The gradient, divergence, and curl for the example networks in Figure 2. A spanning
tree for networks of this form could consist of edges I, II, and IV. Then the edges III and V are the
chords, and the associated loops are the triangles labelled A and B.

In order to build a parallel description for perfectly cyclic tournaments, we need391

a space of loops. First define the sum of two cycles C1, C2 to be all edges included392

in either C1 or C2 but not both. Equipped with this addition operation, the space of393

cycles is a vector space, which can be represented with a cycle basis. A cycle basis is394

a collection of linearly independent cycles C1, C2, . . . , CL such that any other cycle C395

can be expressed as a linear combination of cycles in the collection [21].396

Any connected graph admits a cycle basis. A simple construction follows. First,397

pick a spanning tree of the network. Then the spanning tree includes V −1 edges, and398

E − (V − 1) edges are left out. The latter are the chords. By construction, the tree399

does not contain any loops. If one chord is added to the tree then the network contains400

exactly one cycle. Note that no two chords can produce the same cycle, and that the401

set of cycles produced by adding the chords is necessarily linearly independent since402

no chord appears in more than one of these cycles. Let L be the number of chords. If403

we enumerate the chords from 1, 2, . . . , L = E−V +1 then the set of cycles C1, . . . , CL404

associated with each chord is a cycle basis. The Figure 4 caption provides an example.405

A basis generated by a spanning tree is a fundamental cycle basis [5, 21]. Cycle406

bases are rarely unique, since there are often many possible spanning trees, and not407

all bases are fundamental. An alternate basis for the network shown in Figure 4 could408

be the outer square consisting of edges I, IV, V and III, and either of the triangles.409

Next, define the cycle space RL to be the space of real vectors with one entry for410

each cycle in a chosen cycle basis. The dimension of the cycle space L = E−V +1 is411

the cyclomatic number of the network [5, 21]. We define the discrete curl operator to412

be the matrix which maps from RE to RL (edges to cycles) by performing the path413

sum around each loop. If {k1, k2, . . . , k|Cl|} = Cl then:414

(3.9) [Cf ]l =
∑︂
k∈Cl

fk.415

Note that in order to perform this sum, each loop must be assigned an arbitrary416

direction of traversal. This is another sign convention.417

space spanned by the vector [1; 1; ...1]. It follows that G(r + c) = Gr if c is some constant. This
motivates the constraint

∑︁
i ri = 0 used throughout.
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12 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

We limit our attention to curl operators such that there exists an invertible matrix418

T for which TC = C̃, where C̃ is the curl defined with respect to a fundamental basis.419

This curl is analogous to the curl in continuous space, which is a path integral420

over infinitesimally small loops. Note that the discrete curl defined in this way is421

more general than the discrete curl defined in [32, 50], where the curl is restricted422

to act on triangles. Restricting the curl can lead to unintuitive conclusions. For423

example, if pAB = pBC = pCD = pDA = 0.99 then there is clearly a cyclic tendency424

in competition, but if the curl is restricted to only act on triangles, then the curl425

would be zero. Here we extend the curl to act on loops of arbitrary length since, like426

[68], we do not see a fundamental distinction between cyclic structure on triangles427

and cyclic structure on larger loops. If desired, we could partition the curl operator428

into blocks, each according to loops of a fixed length, and treat each block as the curl429

operator restricted to loops of a given size. In this way our approach is distinct from430

the approaches developed from cohomology, and is closer to the methods developed431

by Kirchoff to study electric circuits [5].432

Figure 4 provides examples of these operators.433

Lemma 3.3 (Orthogonality). The curl C and gradient G satisfy CG = 0.434

Proof. Consider the product CGu for some arbitrary vector u ∈ RV . The product435

Gu produces a perfectly transitive edge flow, so the product CGu evaluates the path436

sum of that edge flow around a set of loops. All perfectly transitive edge flows are437

arbitrage free, so the path sum of Gu over any loop is zero. It follows that CGu = 0438

for all u ∈ RV so:439

(3.10) CG = 0.440

Lemma 3.4. Let f be an edge flow, C be a curl operator, and G be the gradient.441

If Cf = 0, then there exists a set of ratings r such that Gr = f .442

Proof. This Lemma is a direct consequence of Lemma 6.1. If C is a curl operator,443

then there exists an invertible transform T such that C = TC̃ where C̃ is the curl444

operator with respect to some fundamental cycle basis. Then Cf = TC̃f = 0 if and445

only if C̃f = 0. Since C̃ is defined with respect to a fundamental cycle basis, C̃ is446

defined with respect to a spanning tree T which generates the cycle basis. Requiring447

that C̃f = 0 is equivalent to requiring that the sum of f around every loop formed by448

adding one chord into the tree is zero. This condition is sufficient to reconstruct r such449

that Gr = f using the spanning tree construction given in the proof of Lemma 6.1,450

where the chosen tree is T .451

Lemma 3.3 and Lemma 3.4 establish that, if the edge flow is the gradient of some452

set of ratings then its curl is zero, and if the curl of the edge flow is zero then it can be453

expressed as the gradient of some set of ratings. Therefore the range of the gradient is454

the nullspace of the curl. The equivalence of these two spaces and the orthogonality of455

the operators allows us to decompose f into unique perfectly transitive and perfectly456

cyclic components. This decomposition is the HHD.457

3.2.2. The Discrete Helmholtz-Hodge Decomposition.458

Theorem 3.5 (The HHD). Any f ∈ RE can be decomposed such that:459

(3.11) f = ft + fc460

where ft is arbitrage free (perfectly transitive) and fc is favorite free (perfectly cyclic)461

and both are unique. In addition, there exists a unique rating r satisfying
∑︁

i ri = 0462
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Fig. 5. A schematic representation of the decomposition for a complete tournament on three
competitors. The edge flow f is set equal to logit(p), and then broken into a set of ratings r and
vorticities v, such that f = Gr + CT v.

such that ft = Gr and, for any choice of C, a unique vorticity v ∈ RL exists such463

that fc = CT v. Thus the original edge flow f can be uniquely decomposed:464

(3.12) f = Gr + CT v.465

Proof. By the fundamental theorem of linear algebra RE = null(C)⊕ range(C⊺)466

[74]. Lemma 3.3 and Lemma 3.4 guarantee that range(G) = null(C), so:467

(3.13) RE = range(G)⊕ range(CT ).468

Thus any edge flow can be uniquely decomposed into the sum of a perfectly transitive469

and perfectly cyclic edge flow, and those edge flows are the projections of f onto the470

perfectly transitive and cyclic subspaces.471

Equation (3.13) establishes that there exists an r such that Gr = ft, and a v such472

that CT v = fc. We have already proved r was unique. Equation (3.13) guarantees473

E = rank(G)+ rank(CT ). In general, G has nullity equal to the number of connected474

components in the network. We assumed the network is connected, so G has a one-475

dimensional nullspace and rank V − 1. Therefore, rank(CT ) = E − (V − 1) = L.476

By construction, CT has L columns, so is full rank. It follows that the linear system477

CT v = f has a unique solution if f ∈ range(CT ).478

Therefore, any arbitrary tournament can be decomposed into a perfectly transi-479

tive and a perfectly cyclic tournament, where the perfectly transitive tournament is480

specified by a set of ratings, and the perfectly cyclic tournament is specified by a set481

of vorticities. The ratings associated with the HHD are the Hodge ratings proposed482

by [32]. Figure 5 provides a schematic representing the decomposition.483

The three example networks displayed in Figure 2 are actually an example of484

an HHD. Reading left to right, the first network is perfectly transitive, the second485

is perfectly cyclic, and they add to produce the generic network shown on the right.486

The edge flows, ratings r, and vorticities v are shown in Figure 6.487

The gradient G has exactly 2 nonzero entries per edge, so it becomes sparser as the488

number of competitors increases. Consequently, the decomposition can be performed489

efficiently, even for large, fully connected networks. Methods are discussed in [10, 32].490

The intransitivity measure associated with the HHD is the size of the cyclic com-491

ponent ||fc||2. Because the HHD is a decomposition onto orthogonal subspaces, this492

measure is equal to the distance from f to the closest perfectly transitive tournament.493

Therefore the Helmholtz-Hodge intransitivity measure is conceptually analogous to494

the Slater intransitivity measure [68], and its variants [57], [70], [77]. Similarly, the495
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14 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

Fig. 6. An example HHD using the three networks from Figure 2. From left to right: the
leftmost network is perfectly transitive, the middle network is perfectly cyclic, and the network on
the right is the sum of the perfectly transitive and cyclic networks. The ratings associated with the
perfectly transitive graph are provided beneath it. Notice that the difference in the ratings recover the
edge flow on each edge. For example, r3− r4 = 1.4452−0.3466 = 1.0986 = f34. Also notice that the
curl of the edge flow around any loop is zero. For example, f41+f12 = 0.6931+1.0986 = 1.7918 = f42
so f41 + f12 + f24 = f41 + f12 − f42 = 0. The vorticities associated with the perfectly cyclic
network are provided beneath it. Notice that the perfectly cyclic edge flow satisfies the neighborhood
condition. For example, the total flow into node 2 is 1.3863− 0.9808− 0.4055 = 0. Finally, notice
that the values of the edge flow in the rightmost network are the sum of the edge flows in the
perfectly transitive and cyclic networks. For example, looking at the edge connecting nodes 1 and 2,
−1.0986 + 1.3863 = 0.2877.

transitivity measure associated with the HHD is the size of the transitive component496

||ft||2, and is the distance from f to the closest perfectly cyclic tournament.497

Note that these measures are continuous in p. In contrast, classical methods such498

as the Kendall [35] or Slater [68] measures only depend on G→ so are discrete in499

p. This distinction is important, since it means that the Helmholtz-Hodge measure500

distinguishes between the cases pAB = pBC = pCA = 0.99 and pAB = pBC = pCA =501

0.51 (intransitivity 7.96 and 0.07 respectively). Using the discrete measures, these two502

tournaments are equally intransitive. Thus the Helmholtz-Hodge measure reflects the503

absolute strength of cyclic competition by distinguishing strong and weak cycles. The504

discrete measures reflect the relative strength of cyclic competition since they only505

depend on the sign of f , which depends on both fc and ft. If the transitive part is506

large then it may mask weaker cyclic competition when using a discrete measure. For507

example, if pAB = 0.99, pBC = 0.99 and pCA = 0.49 then the probability that C beats508

A is much larger than might be expected. However, in this example competition is509

transitive so all discrete measures of intransitivity would return their minimal value, 0.510

In contrast, the Helmholtz-Hodge measure returns intransitivity 5.29. These examples511

are illustrated in Figure 7. Normalizing the Helmholtz-Hodge measures by ||f ||2512

produces the equivalent relative measures: ||fc||2/||f ||2 and ||ft||2/||f ||2.513

3.2.3. Equivalent Formulations. Here we present six different approaches514

that arrive at the same decomposition. These provide different, useful, perspectives on515

the HHD, and illustrate that it is robust to varying motivations. The ensuing Corol-516

lary follows directly from standard properties of projection onto orthogonal subspaces,517

so we omit the proof.518

Corollary 3.6 (Equivalent Formulations). The following six decompositions519

are equivalent:520
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Fig. 7. Transitivity and intransitivity of 104 triangular networks with randomly drawn win
probabilities. The horizontal axis is the size of the transitive component and the vertical axis is the
size of the cyclic component. Each scatter point is a sampled network. Smaller blue scatter points
are transitive, larger red points are intransitive. The upper and lower purple lines (slope

√
2 and√

0.5) divide regions where competition on triangles is always cyclic, either transitive or cyclic, and
always transitive. The large black circles represent example networks. The text next to each example
gives the probability A beats B, B beats C, and C beats A. If all of these numbers are greater than 0.5
then the network is intransitive. Note that the classification into transitive and intransitive draws
a sharp distinction between networks whose win probabilities are nearly identical, while networks
with similar win probabilities remain close to each other when using the Hodge measures. Also
note that the boundary between transitive and intransitive networks is an angular sector, hence
this classification is based on the relative sizes of the transitive and cyclic components, not their
absolute sizes. In contrast the Hodge measures reflect the absolute size of each component. Thus the
example with win probabilities 0.99, 0.99, 0.49 can be transitive and the example 0.51, 0.51, 0.51 can
be intransitive, even though the former has a larger cyclic component than the latter.

1. f = ft + fc where ft is arbitrage free and fc is favorite free;521

2. f = ft + fc where ft = Gr for ratings r and fc = CT v for vorticity v;522

3. the ratings r solve the constrained least squares problem:523

(3.14) Minimize ||Gu− f ||22 given u ∈ RV and

V∑︂
i=1

ui = 0524

and ft = Gr, fc = f − ft;525

4. the vorticities v solve the least squares problem:526

(3.15) Minimize: ||CTw − f ||2
2

given w ∈ RL527

and fc = CT v, ft = f − fc;528

5. f = ft + fc where ft = Gr for the unique ratings r such that the circulant529

f − ft is favorite free;530

6. f = ft + fc where fc = CT v for the unique vorticities v such that f − fc is531

arbitrage free.532
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Each of these approaches provides a different perspective on the HHD. We might533

seek to decompose f into components that do not circulate and do not converge, into534

components defined by a set of ratings and vorticities, according to the best perfectly535

transitive or perfectly cyclic approximation, so that the residue left over when ap-536

proximating f does not circulate, or so that the residue left over when approximating537

f does not converge anywhere. In each case the resulting decomposition is the same.538

The fact that the HHD is equivalent to all of these approaches motivates its use.539

It is worth highlighting the third and fourth approach, which show that ft is540

the nearest perfectly transitive edge flow to f , and fc is the nearest perfectly cyclic541

edge flow to f . Decomposition 3 shows that the ratings produced by the HHD are542

a type of least squares rating. Least squares ratings methods are widely used [6, 14,543

34, 41, 42, 45, 51, 72, 73]. Although the literature has focused almost exclusively on544

Decomposition 3, Decompositions 3 and 4 are dual to one another. This parity in545

approach sets the HHD apart from existing methods.546

4. Null Models and the Trait-Performance Theorem. How intransitive is547

a typical tournament?548

Answering this question requires defining a statistical model for sampling tour-549

naments - in particular, for sampling edge flows. How do assumptions about the550

distribution of possible edge flows affect the expected strength of cyclic competition?551

What statistical features tend to promote or suppress cyclic competition?552

We initially explore these questions for a generic null model where the edge flow,553

F , is sampled randomly from an unspecified distribution. This analysis identifies554

which features of the edge flow and the network topology influence the degree of555

cyclic competition. These conclusions set the stage for the following insight.556

If the edge flow is sampled using a trait-performance model, then the covariance557

of the edge flow takes on a canonical form which depends only on two statistical quan-558

tities: the variance in the flow on each edge, and the correlation in the flow on pairs559

of edges that share an endpoint. This simplified structure leads to an elegant closed560

form expression for the expected sizes of the cyclic and transitive components that561

separates the influence of the network topology from the trait-performance statistics.562

We generalize this result in two ways. First, the relations between correlation563

and network structure derived under the trait-performance assumptions hold for any564

complete network - whether or not the trait-performance assumptions are valid. Sec-565

ond, we show that the canonical form for the covariance can be used to design null566

models for tournaments with tunable transitive structure. These models can be easily567

adjusted to promote or suppress cycles, and could be used to define more nuanced568

transitivity tests than the standard randomization tests [2, 15, 35].569

4.1. Generic Null Models. We start by considering generic null models where570

the edge flow F ∈ RE is drawn randomly from some distribution. For now we in-571

troduce no assumptions on the distribution other than that it has finite first and572

second moments. Denote the expected edge flow f̄ = E[F ] and the covariance573

Cov(F ) = E[(F − f̄)(F − f̄)T ].574

Let Pc be the orthogonal projector onto the space of perfectly cyclic (favorite575

free) tournaments. Then the expected squared strength of cyclic competition is:576

(4.1)

E[||Fc||2] = E[FTPT
c PcF ] = E[FTPcF ] =

∑︂
kl

(Pc)kl E[FkFl]

=
∑︂
kl

(Pc)kl (f̄kf̄ l +Cov(F )kl) = ||f̄ c||2 + trace(PcCov(F ))
577
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where ||f̄ c||2 = f̄
T
Pcf̄ is the cyclic component of the expected edge flow.578

Therefore, no matter the underlying distribution of edge flows, the expected579

strength of cyclic competition is determined exclusively by three quantities: the ex-580

pected edge flow, the covariance in the edge flow, and the topology of the network581

(which determines Pc).582

The matrix inner product, trace(PcCov(F )), can be simplified if the flows on each583

edge are independent. Then Cov(F ) is diagonal with entries σ2
k = E[(Fk − f̄k)

2]. It584

follows that trace(PcV ) =
∑︁E

k=1 (Pc)kk σ
2
k.585

The nonzero eigenvalues of a projector all equal one, so its trace equals the dimen-586

sion of the space it projects onto. The projector Pc projects onto the space of perfectly587

cyclic tournaments, which has dimension L = E− (V −1). Therefore
∑︁

k (Pc)kk = L.588

Rewrite the expected strength of cyclic competition:589

(4.2) E[||Fc||2] = ||f̄ c||2 + L

E∑︂
k=1

(︃
(Pc)kk

L

)︃
σ2
k.590

Since the diagonal entries of an orthogonal projector are always nonnegative, the591

right hand term can be interpreted as a weighted average of the variance on each592

edge. Therefore, when the edges are independent, the expected strength of cyclic593

competition is given by the strength of the cyclic component of the expected edge594

flow, plus the dimension of the loop space times a weighted average of the variance595

on each edge. Similarly, the expected strength of transitive competition is:596

(4.3) E[||Ft||2] = ||f̄ t||2 + (V − 1)

E∑︂
k=1

(︃
(Pt)kk
V − 1

)︃
σ2
k597

and the expected total strength of competition is:598

(4.4) E[||F ||2] = ||f̄ ||2 + Eσ̄2
599

where σ̄2 is the average of the variance in the flow on each edge. Equation (4.4) is600

valid even if the edges are not independent, as the projector onto the full space is601

simply the identity.602

Equations (4.2) - (4.4) show that the contribution to the expected strength of603

competition from the variances is not distributed equally between the transitive and604

cyclic spaces. Instead, the amount that is cyclic is proportional to the number of605

cycles, while the amount that is transitive is proportional to the number of com-606

petitors. As a result, adding edges to a network will typically increase the expected607

degree to which competition is cyclic. It follows that sparse networks with randomly608

drawn edge flows will be relatively more transitive than would be expected given f̄ ,609

while dense networks will typically be more cyclic. It also follows that, for a posterior610

distribution of possible edge flows given observed data, uncertainty will likely lead611

to an overestimate of the degree to which competition is cyclic when the network is612

dense. If a tournament is complete, then E = V (V − 1)/2 so (V − 1)/E = 2/V and613

L/E = 1−2/V . It follows that, for a complete tournament with more than four com-614

petitors, any uncertainty in the edge flow will typically bias competition to appear615

more cyclic than transitive.9616

9This result does not contradict Shizuka’s result that the proportion of transitive triangles in
a network with uniformly randomly sampled dominance relations is independent of the network
topology [63], since our measure accounts for the global structure of the edge flow, thus incorporates
cyclic structure over longer cycles.
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Numerical studies have suggested that filling in missing edges with randomly617

drawn F typically overestimates the degree to which competition is cyclic, thereby618

weakening transitivity tests [63]. Our result provides a clear explanation for this619

observation. When the edge flow F is drawn randomly to fill in missing data, it is620

usually drawn independently and identically distributed, cf. [15]. If edges are added621

until the network is complete, then, for any tournament with more than four com-622

petitors, the resulting “imputed” tournament will likely be significantly more cyclic623

than the original tournament. Therefore, unless the edge flows are well modeled by624

assuming that the Fk are independent and identically distributed, and that all pairs of625

competitors could compete, this procedure is not valid for estimating the strength of626

cyclic competition in a partially observed tournament. This observation underscores627

the need for intransitivity measures that can be applied to incomplete tournaments.628

Unfortunately the projectors Pt and Pc may be expensive to compute, and can-629

not always be constructed directly without performing a matrix decomposition. This630

makes it challenging to identify exactly how the topology of the network and covari-631

ance structure promote or suppress cyclic competition. Nevertheless, as we show in632

the next section, using a more principled model for sampling F , ensures that the co-633

variance matrix Cov(F ) takes on a canonical form. This form clarifies the interaction634

between the topology of the network and the distribution of edge flows.635

4.2. Trait-Performance. The outcomes of real-world competition events are636

typically influenced by a constellation of underlying competitor traits. Examples of637

trait-influenced competition abound, ranging from sports10 to simulated competitive638

events to biology.11 In some cases, trade-offs inherent in certain traits have been ob-639

served to lead to cyclic competition between organisms [36, 66].12 In such examples,640

trade-offs lead to advantages against certain opponents, and weaknesses that are ex-641

ploited by others. In evolutionary biology, trade-offs of this kind challenge the notion642

that members of intransitive communities can be consistently ranked according to fit-643

ness. Intransitivity can lead to deeply counterintuitive evolutionary dynamics [20, 33],644

and may promote biodiversity since no single species has an absolute advantage over645

all competitors [59, 58, 60, 61, 70]. These considerations motivate a study of how the646

10Some predictive tennis models estimate the probability that one competitor will beat another
based on a parameterized model for the probability that each player will win a point, where the
underlying parameters depend on traits of the players [40]. Similarly, considerable effort has been
devoted to predictive models for baseball based on team and player statistics [78].

11Ecological studies of competition for dominance in social hierarchies have analyzed how traits
confer success, because selection acts on heritable traits contributing to reproductive success. Exam-
ples include competition among male northern elephant seals [26] and male Cape dwarf chameleons
[76]. Relevant traits for elephant seals include body mass, length, age, and time of arrival on the
beach [26]. Relevant traits for chameleons include body mass, length from snout to base of tail,
length of the tail, jaw length, head width, casque size, and size of a pink colored flank patch used in
signaling [76].

12Two particularly famous examples are side-blotched lizards and colicin producing E. coli [36, 66].
In the former example, large orange-throated males maintain large territories, medium blue-throated
males defend small territories, while small yellow-throated ‘sneaker’ males resemble females and do
not maintain territories. Orange-throated males typically defeat the smaller blue-throated males, who
defeat the even smaller yellow throated males, who defeat the orange throated males by sneaking into
their territories [66]. In the latter example, three strains of E. coli were grown in direct competition
in a laboratory setting. The first strain produced a colicin toxin, the second was susceptible to
the toxin, and the third was resistant to the toxin but not toxin-producing. In the absence of the
resistant strain, the toxic strain could outcompete the susceptible strain. In the absence of the toxic
strain, the susceptible strain could outcompete the resistant strain, which reproduced more slowly
because resistance is costly. But, in the absence of the susceptible strain, the resistant strain could
outcompete the toxic strain by reproducing more quickly [36].

This manuscript is for review purposes only.



THE HHD AND TRAIT-PERFORMANCE 19

distribution of traits, and the way traits confer success, either promote or suppress647

cyclic competition.648

To study this scenario, suppose that win probabilities p can be modeled as a649

function of some underlying traits x of each competitor. LetX(i) = [X1(i), . . . , XT (i)]650

denote the T randomly sampled traits of the ith competitor. Then let f(x, y) be a651

performance function, such that f(x, y) is the log-odds that a competitor with traits652

x would beat a competitor with traits y.653

To construct a trait-performance model assume that:654

1. The trait vectors of the competitors are drawn independently and identically655

from a trait distribution πx.656

2. There exists a performance function f(x, y) that maps from RT × RT to R.657

We require that the performance function is alternating, f(x, y) = −f(y, x),658

for any trait vectors x and y in the support of πx. This ensures that f659

can be used to generate an edge flow. It also ensures that the performance660

function is fair, E[f(X,Y )] = 0, since when X and Y are drawn i.i.d then661

E[f(X,Y )] = E[f(Y,X)] = −E[f(X,Y )] which implies E[f(X,Y )] = 0.662

3. There exists a connected competitive network G⇄ with edges representing663

possible competition events, and the network is either fixed a priori or sampled664

independently from the traits.665

The first assumption holds if all competitors are drawn from the same trait pool.666

Different pools can be incorporated into the model by adding a trait which indexes667

which pool each competitor is sampled from, provided that trait can be sampled668

independently of the graph. For example, Major League Baseball team budgets vary669

widely. In 2018 the Yankees’ total value was over 4.6 billion dollars, which was670

more than the total value of the bottom six teams combined [56]. This difference in671

resources gives high value teams the opportunity to pay higher salaries13 and attract672

stars. Thus wealth could be incorporated as a trait.673

The second assumption is valid whenever the probability that one competitor674

beats another can be conditioned on the traits of the competitors, independent of675

their location on the network, and of the outcomes of past events. Note that in some676

biological contexts, such as social hierarchies, event outcomes are not necessarily677

independent, and may be influenced by past events. For example, winner, loser, and678

bystander effects, in which winners are more likely to win again, losers are more likely679

to lose again, and bystander behavior is influenced by observed events between other680

competitors, play an important role in the self-organization of certain social hierarchies681

[12, 13, 28, 55, 65]. The assumption that competition outcomes are mediated by traits682

is also not supported in convention based societies where rank is determined by a683

social convention, such as matrilineal rank inheritance (c.f. [69, 75]). Nevertheless,684

other hierarchies can be explained by traits (c.f. [31, 62]), and even in situations when685

competition outcomes are influenced by past events, competitor attributes typically686

influence competition outcomes as well [4, 13].687

The third assumption treats the network topology (who competes with whom) as688

independent from the traits of the competitors. This may not be realistic if competi-689

tors avoid competing when they are likely to lose [67]. This also limits our ability to690

model systems where traits or rank are heritable (c.f. [69, 75]), or distributed differ-691

ently across different clusters of competitors (different divisions, or local populations).692

While these assumptions do not hold in all situations, they provide a tractable693

paradigm that lays the foundation for a more general understanding.694

13For example, in 2019 the Yankees’ combined payroll was three times larger than the Marlins’.
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Under assumptions 1-3, we define a trait-performance model as follows. First,695

sample X(i) ∼ πx for all competitors i. Then, set Fk = f(X(i(k)), X(j(k))), where696

i(k), j(k) are the endpoints of edge k.697

Theorem 4.1 (Trait-Performance). Let G⇄ be a competitive network with V698

competitors, E edges and L loops, satisfying assumption 3. If the traits of each699

competitor are drawn independently from πx, and the edge flow is defined by Fk =700

f(X(i(k)), X(j(k))) where f(x, y) is an alternating performance function, then the701

covariance Cov(F ) of the edge flow has the form:702

(4.5) Cov(F ) = σ2
[︁
I + ρ

(︁
GGT − 2I

)︁]︁
703

where σ2 is the variance in Fk for arbitrary k, and ρ is the correlation coefficient704

between f(X,Y ) and f(X,W ) for X,Y,W drawn i.i.d from πx.705

Moreover:706

(4.6) E
[︃
1

E
||F ||2

]︃
= σ2 decompose−−−−−−−→

⎧⎪⎪⎨⎪⎪⎩
E
[︃
1

E
||Ft||2

]︃
= σ2

[︃
(V − 1)

E
+ 2ρ

L

E

]︃
E
[︃
1

E
||Fc||2

]︃
= σ2 (1− 2ρ)

L

E

707

The correlation ρ ranges from 0 to 1/2, and if ρ = 1/2 then competition is perfectly708

transitive.709

Proof. First consider the covariance matrix Cov(F ).710

Since the trait vectors are drawn i.i.d from the trait distribution, the diagonal711

entries of the covariance are given by:712

(4.7) Cov(F )kk = E
[︁
f(X(i(k)), X(j(k)))2

]︁
= E

[︂
(f(X,Y ))

2
]︂
≡ σ2

713

where X,Y are drawn i.i.d from the trait distribution, and σ2 is the variance in714

f(X,Y ). Thus, the diagonal entries of the covariance are identical.715

The off-diagonal entries are E [f(X(i(k)), X(j(k))) · f(X(i(l)), X(j(l)))] .716

Suppose the edges k and l do not share an endpoint. Then i(k) ̸= i(l) or j(l)717

and j(k) ̸= i(l) or j(l). Then f(X(i(k)), X(j(k))) is a function of two random vec-718

tors, and f(X(i(l)), X(j(l))) is a function of two other random vectors, where the719

pair of random vectors are independent. It follows that f(X(i(k)), X(j(k))) is inde-720

pendent of f(X(i(k)), X(j(k))). Then, since competition is fair for all alternating721

performance functions, Cov(F )kl = E [f(X(i(k)), X(j(k))) · f(X(i(l)), X(j(l)))] =722

E [f(X(i(k)), X(j(k)))]E [f(X(i(l)), X(j(l)))] = 0. It follows that the support of the723

covariance matches the adjacency structure of the edges of the competition network.724

If the edges do share an endpoint, then there are four possibilities. Either i(k) =725

i(l), j(k) = j(l), i(k) = j(l), or j(k) = i(l). We say that the edges are consistently726

oriented if they share either the same starting point or the same ending point, and727

are inconsistently oriented if the endpoint of one is the start of another. Since all the728

trait vectors are drawn i.i.d., we suppress the indices and let the three trait vectors729

Y,W,Z be drawn i.i.d. from πx. The performance function is alternating, so:730

(4.8)
E[f(Y,W )f(Y,Z)] = E[f(W,Y )f(Z, Y )] ≡ ρσ2

E[f(Y,W )f(Z, Y )] = E[f(W,Y )f(Y,Z)] = −E[f(Y,W )f(Y,Z)] = −ρσ2
731

where ρ is the correlation coefficient between f(Y,W ) and f(Y,Z). Notice that a732

positive correlation indicates that the probability that A beats B is increased by733

conditioning on the event that A beats C.734
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Fig. 8. The edge graph (right) associated with a competitive network (left). The middle panel
shows an intermediate graph where a node has been introduced for each edge. The edges of the
competitive network become the nodes of the edge graph. The edges of the edge graph correspond to
nodes in the competitive network that are the shared endpoint of a pair of edges. These are labelled
with a + or − to indicate whether the edges are consistently or inconsistently oriented with respect
to the shared endpoint.

The edge graph is the graph with a node for each edge in the competition network,735

and with an undirected edge between nodes corresponding to connected edges in the736

competition network (Figure 8). Let AE be the weighted adjacency matrix for the737

edge graph with aEkl = +1 or −1 if edges k and l are consistently or inconsistently738

oriented with respect to a shared endpoint. Then:739

(4.9) Cov(F ) = σ2 [I + ρAE ] .740

The weighted adjacency matrix AE for the edge graph is equal to GGT −2I since:741

(4.10) [GGT ]kl = (ei(k) − ej(k))
T (ei(l) − ej(l)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if k = l

1 if i(k) = i(l) or j(k) = j(l)

− 1 if i(k) = j(l) or j(k) = i(l)

0 else

⎫⎪⎪⎪⎬⎪⎪⎪⎭742

where ei ∈ RV is the indicator vector for node i. Thus we establish (4.5).743

All of the absolute measures of the strength of competition (squared) are given by744

the squared length of the orthogonal projection of the edge flow onto some subspace.745

Let PS be an arbitrary orthogonal projector onto some subspace S. By construction,746

the edge flow is zero mean, therefore, by equation (4.1), the expected value of the747

associated measure is:748

(4.11) E
[︁
||FS ||2

]︁
= trace(PSCov(F )).749

The intensity of competition, ||F ||2, corresponds to the projector I, ||Ft||2 cor-750

responds to the projector Pt, and ||Fc||2 corresponds to the projector Pc. Then, by751

equation (4.11):752

(4.12) E
[︃
1

E
||F ||2

]︃
=

1

E
trace(Cov(F )) =

E

E
σ2 = σ2.753

This formula establishes that the absolute strength of competition only depends754

on the variance σ2 in each individual performance function.755
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To compute ||Ft||2, use equation (4.11) with projector Pt:756

(4.13)

E
[︃
1

E
||Ft||2

]︃
=

1

E
trace(PtCov(F )) =

σ2

E
trace

(︁
Pt[I + ρ(GGT − 2I)]

)︁
=

σ2

E
trace (Pt) +

ρσ2

E
trace

(︁
Pt(GGT )

)︁
− 2ρσ2

E
trace (Pt) .

757

The trace of an orthogonal projector equals the dimension of the subspace it758

projects onto, so trace(Pt) = V − 1. The range of GGT is in the range of G, which759

is the subspace Pt projects onto. It follows that PtGGT = GGT so trace(PtGGT ) =760

trace(GGT ) = 2E (see equation (4.10)). Therefore:761

(4.14) E
[︃
1

E
||Ft||2

]︃
= σ2

[︃
V − 1

E
+ 2ρ

E − (V − 1)

E

]︃
= σ2

[︃
V − 1

E
+ 2ρ

L

E

]︃
.762

Since L ≥ 0, E[ 1E ||Ft||2] increases monotonically in ρ: the larger ρ, the more A763

beating B is correlated with A beating C, implying transitive competition.764

Then, by the orthogonality of the decomposition f = fc + ft:765

(4.15) E
[︃
1

E
||Fc||2

]︃
= E

[︃
1

E
||F ||2

]︃
− E

[︃
1

E
||Ft||2

]︃
= σ2 [1− 2ρ]

L

E
.766

It follows that the expected absolute strength of cyclic competition is monoton-767

ically decreasing in the correlation coefficient ρ. Note that, as when considering the768

generic null models, dense networks promote cyclic competition.769

To conclude, we show that ρ ∈ [0, 1/2], so the expected measures are maximized770

and minimized when ρ is 0 or 1/2, respectively.771

The correlation ρ is nonnegative sinceW and Z are i.i.d., thus f(y,W ) and f(y, Z)772

are also i.i.d. for all y. Then:773

(4.16)

σ2ρ = EY,W,Z [f(Y,W )f(Y, Z)] =

∫︂
RT

EW,Z [f(y,W )f(y, Z)]πx(y)dy

=

∫︂
RT

EW [f(y,W )]EZ [f(y, Z)]πx(y)dy =

∫︂
RT

EW [f(y,W )]2πx(y)dy ≥ 0.

774

Here expectation is taken with respect to the variables in the subscript.775

To prove that ρ ≤ 1/2, note that all covariance matrices are positive semi-definite,776

so, for any vector u:777

(4.17) uTCov(F )u = σ2uT (I + ρ(GGT − 2I))u = σ2(1− 2ρ)||u||2 + ρuTGGTu ≥ 0.778

If E > V − 1, then the network has at least one loop, so the range of CT is779

non-empty, hence the null-space of GT is non-empty. Choosing u perfectly cyclic sets780

GTu = 0 so σ2(1− 2ρ)||u||2 ≥ 0 which requires ρ ≤ 1
2 . If E = V − 1 then the network781

is a tree, so all competition is necessarily perfectly transitive.782

It follows that the expected absolute strength of transitive competition is mini-783

mized when ρ = 0, and maximized when ρ = 1/2. In contrast, the expected strength784

of cyclic competition is maximized when ρ = 0, and minimized when ρ = 1/2.785

If ρ = 1/2 then E[||Fc||2] = 0. The measure is nonnegative for all edge flows.786

Therefore, its expected value is only zero if the probability that ||Fc||2 ̸= 0 is zero.787
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Fig. 9. A schematic representing the conclusions of Theorem 4.1 and Corollary 9.1. The left
hand side decomposes the uncertainty in performance into the uncertainty in the expected perfor-
mance given X, and the expected uncertainty in the performance, given X. These uncertainties
are converted into ρ and ν which describe the correlation structure of triples of competitors. The
sizes of ρ and ν, plus the topology of the network, determine the expected sizes of the transitive and
cyclic components. Thus we convert a decomposition of the uncertainty in the performance into a
decomposition of the intensity of the edge flow representing competition.

In this case, the tournament is arbitrage free. It follows that, if ρ = 1/2, then the788

tournament must be perfectly transitive.14789

Theorem 4.1 establishes that the expected degree to which competition is transi-790

tive or cyclic depends principally on the density of the network, and the correlation791

structure of F . In particular, the degree to which a network is cyclic or transitive792

depends on the correlation between the performance of A against B with the per-793

formance of A against C. The larger this correlation, the more consistently each794

competitor performs, hence the more consistent the network is with a set of ratings.795

The variance σ2 and the correlation coefficient ρ could be computed given an796

assumed trait distribution πx and performance function f(x, y). This could be done797

analytically if πx and f lead to simple calculations. Otherwise, σ2 and ρ can be798

approximated numerically by sampling or quadrature. The analytic method follows.799

Suppose that X,Y are drawn from a sample space Ω which is a subset of RT .800

Then, for trait distribution πx:801

(4.18) ρ =
EX [EY [f(X,Y )]2]

EX,Y [f(X,Y )2]
=

∫︁
Ω

(︁∫︁
Ω
f(x, y)πx(y)dy

)︁2
πx(x)dx∫︁

Ω

∫︁
Ω
f(x, y)2πx(y)πx(x)dydx

.802

Note that the correlation coefficient is only large if it is possible to find some set803

of traits which are expected to perform either well or poorly on average, and if these804

14Note that ρ = 1/2 guarantees perfect transitivity but ρ = 0 does not guarantee that the
tournament is perfectly cyclic. A counterexample suffices to explain why. Suppose each competitor
chooses rock, paper, or scissors uniformly and independently. Suppose there are three competitors
and the tournament is complete. Then, in order for the tournament to be perfectly cyclic, rock
must be chosen by one competitor, scissors by another, and paper by the last. There are 6 ways
this can happen but 27 possible tournaments, so there is a 21/27 chance the tournament is perfectly
transitive. Note that if the network is dense and ρ = 0 the network may be predominantly, if not
perfectly, cyclic.
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traits occur sufficiently often. That is, there must be some x such that |EY [f(x, Y )]|805

is large, and πx(x) is not too small. From this expression, it is not surprising that the806

expected strength of transitive competition is monotonically increasing in ρ. If there807

is a set of traits x which, on average, either overperform or underperform against808

randomly drawn opponents, and are frequently sampled, then a random sample of V809

competitors is expected to include some who perform well, and some poorly, against810

their neighbors. If, on the other hand, the expected performance conditioned on811

traits x is close to neutral, then ρ is small and competition is expected to be cyclic.812

In a rock-paper-scissors style game in which competitors are randomly and uniformly813

assigned rock, paper, or scissors, conditioning on receiving a particular trait does not814

change the probability that an individual with that trait will win most contests, hence815

the tournament is expected to be highly cyclic if L is large relative to V .816

Another way to read (9.3) is as follows. Define the expected performance of817

traits x to be EY [f(x, Y )]. Then, since EX [EY [f(X,Y )]] = EX,Y [f(X,Y )] = 0,818

EX [EY [f(X,Y )]2] is the variance in the expected performance given X. Therefore819

ρ is the ratio of the variance in the expected performance given X to the variance820

in performance. A large variance in the expected performance means we are likely821

to sample some competitors who perform well, or poorly, against most opponents.822

Consequently, the sampled edge flow is expected to be more transitive than cyclic.823

Rereading Theorem 4.1 in this way leads to the following insight:824

Corollary 4.2. If the traits W,X, Y are sampled independently from πx and825

F = f(X,Y ) then the correlation coefficient ρ is proportional to the variance in the826

expected performance:827

(4.19) ρ =
1

σ2
Cov(f(X,Y ), f(X,W )) =

1

σ2
Var (E[F |X]) .828

Let ν be the expected variance in the performance:829

(4.20) ν =
1

σ2
E [Var(F |X)] .830

Then ν = 1
σ2Var[f(X,Y ) − f(X,W )] = 1 − ρ, so E[||Fc||2] is monotonically831

increasing in ν and E[||Ft||2] is monotonically decreasing in ν.832

The proof is provided in the supplement and follows from the law of total variance,833

(4.21) σ2 = Var(F ) = E [Var(F |X)] + Var [E(F |X)] = σ2(ρ+ ν).834

Theorem 4.1 identifies which statistical feature of the trait distribution and perfor-835

mance function promotes transitive and suppresses cyclic competition. Corollary 9.1836

identifies which feature suppresses transitive and promotes cyclic competition. Tran-837

sitive competition is promoted by uncertainty in expected performance, Var[E(F |X)],838

and suppressed by expected uncertainty, E[Var(F |X)]. Conversely, cyclic competition839

is suppressed by uncertainty in expected performance, and promoted by expected un-840

certainty. If the expected uncertainty in performance is large, then performance is841

competitor dependent, hence competition is mostly cyclic.842

Theorem 4.1 and Corollary 9.1 provide conceptual bridges between uncertainty in843

the edge flow, correlation structure on adjacent edges, and network structure (see Fig-844

ure 9). They establish the intuitive statements that conclude the introduction (p. 4).845

For example, the expected uncertainty in the performance of A against a random846

competitor is σ2ν = 1
2EX [VarY (f(X,Y )|X)]. Thus, “the less predictable the perfor-847

mance of A against a randomly drawn competitor, the more cyclic the tournament”.848
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By the equivalence of EX [VarY (f(X,Y )|X)] to Var(f(X,Y ) − f(X,W )), “the more849

the performance of A depends on their opponent, the more cyclic the tournament.”850

4.3. Generalization. The trait-performance assumptions are not valid for all851

tournaments of interest.852

Nevertheless, the conclusions of the trait-performance can be generalized to sit-853

uations where the assumptions do not hold. We propose three generalizations. First854

we consider a situation where performance is only partially determined by traits. Sec-855

ond, if the network is complete, then the established relationship between expected856

structure and correlation holds when ρ is replaced with its empirical estimate. The857

empirical correlation depends only on the observed network, so the relation is an alge-858

braic fact that is true for all complete networks, whatever the underlying distribution.859

Third, the trait-performance results hinged on a canonical form for the covariance in860

the edge flow (4.5). If an edge flow distribution has covariance in the canonical form,861

then the expected structure of the network satisfies (4.6). Thus, the conclusions re-862

lating structure to correlation hold for any edge flow distribution with covariance in863

the canonical form, whether or not that distribution came from a trait-performance864

model. If we assume a priori that our distribution has a covariance in this form, then865

ρ is a single parameter that tunes the sampled networks structure.866

To start, what if performance is influenced by some random factors (such as867

unmeasured traits) in addition to a set of measured traits? Decompose Cov(F ) using868

the law of total variation. The first term in the decomposition would be the covariance869

in the the expected log-odds given the traits, which is a function of randomly drawn870

traits, so would take the canonical form (4.5) where the performance function f(x, y)871

is replaced with E[F |x, y]. Then, since E[||Ft||2] and E[||Fc||2] are linear in Cov(F ),872

the expected sizes of the transitive and cyclic components could each be expressed as a873

combination of a term contributed by the uncertainty in traits, and a term contributed874

by the uncertainty in performance given traits. The first term would simplify in the875

standard way, so the influence of the measured traits on expected network structure876

would follow as in the trait-performance theorem.877

Second, we define the empirical correlation ρ(G⇄) and variance σ2(G⇄) associated878

with a particular competitive network G⇄. The empirical variance and correlation879

are estimators for the variance and correlation given the observed network. The880

empirical correlation is the covariance in the edge flow over all pairs of edges sharing881

an endpoint, divided by the empirical variance in the edge flow. Note that we only882

have one observation of f per edge, so we need to make some assumption about the883

expected value of the edge flow. We compute both the covariance and variance under884

the assumption that the expected edge flow is zero on each edge k. The assumption885

is valid provided that we would have no way to predict the sign of fk (whether i(k)886

or j(k) usually wins) from the network topology alone. Then, ρ(G⇄) is the average887

value of aEklfi(k)j(k)fi(l)j(l) over all pairs of edges k, l that share an endpoint, where888

aEkl = 1 if the edges are consistently oriented, and aEkl = −1 if the edges are889

inconsistently oriented. The empirical variance σ2(G⇄) is simply 1
E ||f ||2.890

Lemma 4.3. If the competitive network is complete, has V vertices, E edges, L891

loops, empirical variance σ2(G⇄), and correlation ρ(G⇄) then:892

(4.22)
1

E
||f ||2 = σ2(G⇄)

decompose−−−−−−−→

⎧⎪⎪⎨⎪⎪⎩
1

E
||ft||2 = σ2(G⇄)

[︃
(V − 1)

E
+ 2ρ(G⇄)

L

E

]︃
1

E
||fc||2 = σ2(G⇄) (1− 2ρ(G⇄))

L

E

893
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Fig. 10. Transitivity and intransitivity of sampled networks with varying edge density, number
of competitors, and correlation ρ. Each row represents networks with a fixed ratio L/E where L is
the number of loops, E − (V − 1), and E is the number of edges. Each column represents a fixed
correlation ρ. When ρ = 0 the edge flows on all edges are independent. When ρ = 0.5 the randomly
sampled networks are all perfectly transitive. The blue shaded region is a heat map representing
104 sampled networks with 20 competitors. The red shaded region is a heat map representing 104

sampled networks with 300 competitors. The topology of each network is sampled randomly from
the family of connected Erdos-Renyi networks. The edge flows are sampled from the multivariate
Gaussian distribution with mean zero and covariance of form (4.5). The solid black line represents
the expected relative sizes of the transitive and intransitive component predicted by equation (4.6).
The dashed black line represents the expected total intensity of competition, σ2. The intersection of
these two lines gives the expected absolute sizes of the transitive and intransitive components. Notice
that the trait-performance theorem correctly predicts the relative and absolute sizes of the transitive
and intransitive components as a function of L/E, σ, and ρ. Moreover, the more competitors in the
network, the tighter the agreement to the expected sizes.

The proof is provided in the supplement.894

Third, the conclusions of the trait-performance theorem relating correlation and895

topology to structure hold as long as the edge flow F has covariance in the canonical896

form (4.5). The trait-performance assumptions guarantee that the covariance takes897

this form, but an edge flow F may have a covariance in this form whether or not898

it is related to an underlying trait-performance model. Thus the conclusions of the899

theorem generalize to all edge flow distributions with covariance of the form (4.5).900

It follows that we can use the trait-performance results to design families of null901

models with tunable structure. For example, suppose that we are given a specific902

network topology. Then we could sample F from the multivariate Gaussian distri-903

bution with mean zero and covariance chosen to match (4.5). By choosing σ2 and904

ρ we uniquely specify the edge flow distribution. Then the expected absolute and905

relative sizes of the transitive and cyclic components would be directly controlled by906

the choice of σ2 and ρ. We could tune the overall intensity of competition by varying907

σ2, and the relative degree of intransitivity by varying ρ. Results from null models of908

this kind are demonstrated in Figure 10. The figure demonstrate that it is possible909

to define null models with a chosen degree of transitivity by tuning the correlation ρ.910

Null models of this kind could be useful since many empirical studies involve911

complex competition events where reasonable statistical modelling of sampling error912
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is difficult [16, 79]. Absent a statistical error model, the observed edge flow must be913

treated as truth, so significance must be computed with respect to a null distribu-914

tion. The standard test approximates significance relative to a uniform distribution915

of dominance relationships (sign of the edge flow) on a complete network [2, 15, 35].916

This significance is only useful so far as the uniform null model is a plausible model917

for competition, or as it restricts the space of possible competition structures. The918

fact that most studies identify significant transitivity suggests that the uniform dis-919

tribution is rarely plausible. Failure to match a uniform distribution also does not920

limit the competitive structure significantly, since, as demonstrated above, it is easy921

to construct null models that produce intermediate levels of transitivity.922

In fact, complete networks with edge flow drawn uniformly are the most cyclic923

edge flow distribution with covariance of the form (4.5) since they are simultaneously924

as dense and uncorrelated as possible. Complete networks with uniform i.i.d. edge925

flow live in the upper left-hand corner of Figure 10. It is not surprising that most926

empirical networks are more transitive than the most cyclic ensemble. For this reason,927

significance computed against the uniform complete null model may depend primarily928

on the number of imputed edges, as observed in [63, 37, 22], rather than true structure.929

The family of null models proposed here could generalize the standard random-930

ization test in two useful ways. First, it allows for arbitrary network topology, so931

does not require imputing missing edges which reduces the strength of the test [63].932

Second, the expected degree of transitivity in the null model can be tuned using one933

parameter, ρ. Once ρ is chosen, we could compute the probability of observing a934

network that is more or less transitive or intransitive relative to random networks935

with correlation ρ. Thus significance could be measured against a flexible range of936

networks with varying degrees of transitivity. Then it would be possible to search937

over ρ ∈ [0, 0.5] to find the largest and smallest ρ which produce random networks938

with significantly different structure than the observed network. The interval between939

these upper and lower bounds on ρ would define an interval in each transitivity mea-940

sure that could plausibly correspond to the observed network. Thus, expanding the941

family of null models would allow more flexible, informative, significance testing, as942

well as interval estimation of the measures of competitive structure.943

5. Discussion. The discrete HHD provides a natural, unified method for rank-944

ing and measuring intransitivity via a decomposition into perfectly transitive and945

cyclic components. The expected size of these components can be computed from946

the correlation structure of the edge flow. Using a trait-performance model simplifies947

this structure. We provide an illustrative example in the supplement. Note that the948

trait-performance conclusions are valid whenever the assumptions hold, whether or949

not the relevant traits or performance function are known. Thus the assumptions can950

be tested by checking whether the observed correlation structure matches (4.5).951

Further theoretical work could address random network topologies. If the network952

is sampled independently of the edge flow then the results of Theorem 4.1 are largely953

unchanged, so one might consider random networks whose topology is coupled to the954

competitor traits. For example, neighbors in the network might have correlated traits.955

Future work could also investigate null models with different covariance structures.956

We emphasize that the HHD can be applied to analyze a tournament independent957

of a null model. Code for implementing our methods are available on github. In958

particular, our methods can be extended to analyze data from real tournaments. By959

studying win-loss records it is possible to infer the log odds, and thus estimate the960

components of the HHD. The estimation problem is saved for future work.961
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Supplementary Materials1144

6. Proof of Lemma 3.1.1145

Lemma 6.1 (Arbitrage Free). A tournament is arbitrage free if and only if there1146

exists a unique set of ratings r with average rating equal to zero such that the win1147

probabilities satisfy pij = logistic(ri − rj)
15. Moreover if a tournament is arbitrage1148

free then it is transitive.1149

Proof. Suppose that a tournament is arbitrage free. Then it must satisfy the cycle1150

condition. The cycle condition requires that the path sum of f around any cycle is1151

zero. Consider two paths P1 and P2 both starting at A and ending at B. The value1152

of the path sum over P1 minus the path sum over P2 equals the path sum around1153

a cycle following P1 from A to B, then following the path P2 backwards from B to1154

A. The path sum around any cycle is zero, thus the path sum over P1 and P2 must1155

be equal. It follows that, for any pair of endpoints A,B, the value of the path sum1156

of f over a path connecting A to B only depends on A and B and is otherwise path1157

independent.1158

To recover the associated ratings, pick an arbitrary spanning tree of the network
and an arbitrary starting competitor A.16 Then let uB equal the path sum of f over
the path connecting A to B in the tree. Then u are ratings relative to competitor
A. Path independence guarantees that the values u depend only on the choice of A,
not the choice of spanning tree. To eliminate the dependence on A, center the ratings
by subtracting off their average. Let rB = uB − 1

V

∑︁V
i=1 ui. Then r are unique and

independent of the choice of tree and A, and, by construction,
∑︁

i ri = 0. It remains to
show that ri−rj = fij for all connected pairs i, j. This equality holds by construction
for all i, j that are connected through an edge in the spanning tree. Consider an edge
not in the spanning tree (a chord) connecting i and j. Let i1 = A, i2, . . . , il = i and
j1 = A, j2, . . . , jk = j be the paths from A to i and j through the spanning tree (see
Figure 11). Then, the path sum from j to i in the tree equals ri − rj :

ri − rj = ui − uj⏞ ⏟⏟ ⏞
Rating difference

=

l−1∑︂
n=1

fin+1in⏞ ⏟⏟ ⏞
sum A to i

−
k−1∑︂
n=1

fjn+1jn⏞ ⏟⏟ ⏞
sum A to j

=

2∑︂
n=k

fjn−1jn +

l−1∑︂
n=1

fin+1in⏞ ⏟⏟ ⏞
sum j to i

The chord connecting j and i also defines a path from j to i. Since path sums1159

are path independent when the network is arbitrage free, the path sum over the chord1160

ij equals the path sum through the tree. The path sum over the chord is fij so1161

fij = ri − rj . Therefore, if a tournament is arbitrage free then there exist a set of1162

ratings r such that ri − rj = fij . Then, since fij = logit(pij), pij = logistic(ri − rj).1163

Suppose that pij = logistic(ri− rj). Then fij = ri− rj for all connected i, j, and,1164

given a path i1, i2, . . . , in the sum fi2i1 + fi3i2 + ...finin−1 = rin − ri1 as it telescopes.1165

If the path is a loop then in = i1 so the sum equals zero. But then f satisfies the1166

cycle condition, so the tournament is arbitrage free.1167

Suppose the tournament is arbitrage free. Then pij = logistic(ri−rj) for a unique1168

set of ratings r. This means that pij > 1/2 if and only if ri > rj . It follows that1169

A ≻ B if and only if rA > rB , so the win probabilities are consistent with the ranking1170

induced by the ratings r, thus the tournament is transitive.1171

15logistic(x) = logit−1(x) = 1/(1 + exp(−x)).
16A spanning tree is a subgraph of the network that contains no loops, includes all competitors,

and is connected.
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Fig. 11. The spanning tree construction for recovering the ratings for an arbitrage-free tour-
nament. The tree is shown with solid lines, and the chords with dotted lines. The root of the tree,
A is marked in grey. Two vertices, i and j connected by a chord ij, are shown in blue and green
respectively. The sequence of nodes leading from A to i and j are labelled. Then, by the cycle
condition, the sum around the loop marked with arrows is zero, hence fij = ri − rj .

7. Proof of Lemma 3.2.1172

Lemma 7.1 (favorite free). A favorite free tournament is cyclic, and is never1173

transitive unless pij = 1/2 for all connected i, j.1174

Proof. Suppose that a tournament is favorite free. Then
∑︁

j∈Ni
fij = 0 for all i.1175

This leaves two distinct possibilities, either fij = 0 for all j ∈ N (i), or there is some1176

j such that fij ̸= 0. The former case requires pij = 1/2 for all j ∈ N (i). We will refer1177

to this case as the neutral case. If the neighborhood of i is not neutral then fij ̸= 01178

for some j ∈ N (i). Since the sum over all j is zero this means that there must be1179

at least one other edge ik such that sign(fij) = −sign(fik). Thus, if there is an edge1180

into competitor i in G→ there must also be an edge out of i in G→.1181

Since the neighborhood condition can be extended from the neighborhood of1182

competitors to the neighborhood of sets this property also extends to sets. If there is1183

an edge into the set S in G→ then there must also be an edge out of the set.1184

Now suppose that there is a path from A to B in G→. It remains to construct a1185

path back to A.1186

Define the nested sets S0(B), S1(B), . . . ,, where Sd(B) is the set of all nodes that1187

can be reached from B with a path in G→ of length less than or equal to d. Since there1188

is a path from A to B in G→ there is an edge in G→ arriving at {B} = S0(B). Thus1189

there is a path from A to all competitors in S1(B). Now there are two possibilities,1190

either A is in S1(B), or A is not in S1(B). If A is in S1(B) then we are done. If1191

not, then there is an edge entering S1(B) in G→ since there is a path from A /∈ S1(B)1192

to B ∈ S1(B). Then the neighborhood condition implies that there is an edge out1193

of S1(B), which means that S2(B) ̸= S1(B). Now the logic repeats. Either A is in1194

S2(B), in which case we are done, or it is not. If it is not then there must be an edge1195

entering S2(B) so there must be an edge leaving S2(B) so S3(B) ̸= S2(B). As long as1196

A /∈ Sd(B) there is a larger set Sd+1(B) ̸= Sd(B) which can be reached from B. Since1197

we assumed that there are finitely many competitors this can only continue until A1198

is contained in Sd(B) for some B. See Figure 12 for illustration.1199

Suppose that the tournament is transitive, favorite free, and not neutral. Since it1200

isn’t neutral there must be at least one pair ij such that pij > 1/2. This means that1201

Ri < Rj and there is an edge from j to i in G→. But, if the tournament is favorite1202
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Fig. 12. A favorite free tournament must be a cyclic tournament. The arrows represent the
direction of competition. If the network is favorite free then if there is an edge pointing into a set
there must be an edge pointing out of it. A path from A to B is shown in black. Then the sets
S1(B), S2(B), S3(B) are shown as shaded polygons. These contain all competitors distance 1, 2,
and 3 (respectively) from B. These sets continue to expand until they include A, hence there is a
path from B to A.

free then there must be some other path from i back to j in G→. Then Rj < Ri since1203

there is a path in G→ from j to i. This is clearly a contradiction. Therefore, a cyclic1204

tournament is not transitive unless it is neutral: pij = 1/2 for all ij.171205

8. Interpretation of Corollary 3.6.1206

Corollary 8.1 (Equivalent Formulations). The following six decompositions1207

are equivalent:1208

1. f = ft + fc where ft is arbitrage free and fc is favorite free;1209

2. f = ft+fc where ft = Gr for some rating r and fc = CT v for some vorticity1210

v;1211

3. the ratings r solve the constrained least squares problem:1212

(8.1) Minimize ||Gu− f ||22 given u ∈ RV and

V∑︂
i=1

ui = 01213

and ft = Gr, fc = f − ft;1214

4. the vorticities v solve the least squares problem:1215

(8.2) Minimize: ||CTw − f ||2
2

given w ∈ RL1216

and fc = CT v, ft = f − fc;1217

5. f = ft + fc where ft = Gr for the unique ratings r such that the circulant1218

f − ft is favorite free;1219

6. f = ft + fc where fc = CT v for the unique vorticities v such that f − fc is1220

arbitrage free.1221

The first decomposition separates f into a pair of flows each defined by what it1222

is not: namely, one is not circulatory, and the other has no tendency to diverge or1223

converge. The second decomposition separates f into a pair of flows each defined by1224

what they are: namely, one is perfectly transitive, and the other is perfectly cyclic.1225

The equivalence of these two decompositions was established by Theorem 3.5.1226

17This shows that the two classes of tournaments are distinct, as their only overlap is the neutral
case. Note that a neutral tournament is considered transitive since it can be consistently ranked -
all competitors should be ranked the same.
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The next two decompositions are based on fitting problems. In each case the goal1227

is to represent f as nearly as possible when restricted to the range of an operator.1228

Decomposition 3 searches for a set of ratings r such the error, Gr−f , is minimized in1229

the least squares sense. This means that the ratings produced by the HHD are a type1230

of least squares rating, in particular, log least squares rating [6, 41, 42]. Least squares1231

ratings methods are widely used [14, 34, 45, 51, 72, 73]. Decomposition 3 also shows1232

that the HHD is equivalent to finding the nearest perfectly transitive edge flow.1233

Similarly, Decomposition 4 searches for a set of vorticities v such that the error1234

CT v − f in approximating f with CT v is minimized in the least squares sense. This1235

is equivalent to finding the nearest perfectly cyclic edge flow. Although the literature1236

has focused almost exclusively on Decomposition 3, Decompositions 3 and 4 are dual1237

to one another. This parity in approach sets the HHD apart from existing methods.1238

The final two decompositions are defined by enforcing a constraint on the residue1239

when approximating f with either the gradient of a set of ratings or the curl transpose1240

of a set of vorticities. These approaches can be motivated as follows. Suppose one1241

sought a rating r such that Gr approximated f . The error in this approximation1242

(the circulant) is Gr − f . As long as the divergence of the circulant is nonzero the1243

approximation has not captured a tendency of the edge flow to either point inwards1244

towards, or outwards from, a competitor. If the net flow into a competitor is positive,1245

then that competitor tends to outperform their neighbors in a way that the ratings1246

fail to capture. Therefore it would be natural to adjust the ratings until the net flow1247

into or out of any set of competitors is zero. That is, until the divergence of the1248

circulant is zero, or equivalently, the circulant is favorite free.1249

The final decomposition can be motivated similarly. Define the divergent, CT v−f1250

to be the error upon approximating f with vorticity v. As long as the curl of the1251

divergent is nonzero, the approximation has failed to capture some tendency of f1252

to circulate. This tendency to circulate is exactly what the vorticities are meant to1253

capture, so it is natural to look for a v such that the curl of the divergent is zero on1254

every loop. That is, until the divergent is arbitrage free.1255

9. Proof of Corollary 4.2.1256

Corollary 9.1. If the traits W,X, Y are sampled independently from πx and1257

F = f(X,Y ) then the correlation coefficient ρ is proportional to the variance in the1258

expected performance:1259

(9.1) ρ =
1

σ2
Cov(f(X,Y ), f(X,W )) =

1

σ2
Var (E[F |X]) .1260

Let ν be the expected variance in the performance:1261

(9.2) ν =
1

σ2
E [Var(F |X)] .1262

Then ν = Var[f(X,Y )−f(X,W )] = 1−ρ, so E[||Fc||2] is monotonically increasing1263

in ν, E[||Ft||2] is monotonically decreasing in ν.1264

Proof. The proof of equation (9.1) follows from the explicit expression for ρ:1265

(9.3) ρ =

∫︁
Ω

(︁∫︁
Ω
f(x, y)πx(y)dy

)︁2
πx(x)dx∫︁

Ω

∫︁
Ω
f(x, y)2πx(y)πx(x)dydx

=
EX [EY [f(X,Y )]2]

EX,Y [f(X,Y )2]
.1266

Then, since E[F ] = 0, EX [EY [f(X,Y )]2] = Var(EY [f(X,Y )]) = Var(E[F |X]).1267
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Next, ν = 1− ρ follows from the law of total variance:1268

(9.4) σ2 = Var(F ) = E [Var(F |X)] + Var [E(F |X)] = σ2(ρ+ ν).1269

Since E[||Fc||2] is decreasing in ρ, it is increasing in ν. Similarly, since E[||Ft||2]1270

is increasing in ρ, it is decreasing in ν.1271

The intermediate expression for ν follows from σ2ν = σ2(1−ρ) = Var[f(X,Y )]−1272

cov[f(X,Y ), f(X,W )]. Since Y and W are i.i.d., Var[f(X,Y )] = 1
2 (Var[f(X,Y )] +1273

Var[f(X,W )]). Substituting in gives σ2ν = 1
2E[(f(X,Y )−f(X,W ))2]. Since E[f(X,Y )]1274

equals E[f(X,W )] this raw second moment is the variance in f(X,Y )− f(X,W ).1275

10. Proof of Lemma 4.3.1276

Lemma 10.1. If the competitive network is complete, has m vertices, E edges,1277

L = E − (m− 1) loops, empirical variance σ2(G⇆), and correlation ρ(G⇆) then:1278

(10.1)
1

E
||f ||2 = σ2(G⇆)

decompose−−−−−−−→

⎧⎪⎪⎨⎪⎪⎩
1

E
||ft||2 = σ2(G⇆)

[︃
(V − 1)

E
+ 2ρ(G⇆)

L

E

]︃
1

E
||fc||2 = σ2(G⇆) (1− 2ρ(G⇆))

L

E

1279

Proof. The empirical correlation ρ(G⇆) is given by averaging sk,lfkfl over all1280

pairs of edges k and l that share an endpoint, then normalizing by the average of f2
k .1281

The prefactor sk,l = 1 if edges k and l both start or both end at the same node, and1282

equals −1 otherwise. The prefactor sk,l is the k, l entry of the weighted adjacency1283

matrix for the edge graph, AE . The weighted adjacency matrix equals GG⊺ − 2I1284

where G is the gradient operator. Therefore:1285

(10.2)

ρ(G⇆) =
E∑︁

k,l |[GG⊺ − 2I]k,l|
f⊺(GG⊺ − 2I)f

f⊺f

=
E∑︁

k,l |[GG⊺ − 2I]k,l|

(︃
||G⊺f ||2

||f ||2
− 2

)︃1286

The sum in the denominator is twice the total number of pairs of edges sharing an1287

endpoint. The factor of two cancels since each pair of edges is counted twice in the1288

quadratic product in the numerator.1289

For a complete tournament the projector from f to its transitive component is1290
1
V GG⊺ [74]. Therefore ||G⊺f ||2 = f⊺GG⊺f = V f⊺ft. But f = ft + fc where fc1291

is orthogonal to ft since it is the projection of f onto the cyclic subspace, which1292

is perpendicular to the transitive subspace. Therefore f⊺ft = f⊺
t ft = ||ft||2 and1293

f⊺GG⊺f = V ||ft||2.1294

For a complete tournament with V competitors there are V −1 edges leaving each1295

competitor and V (V −1)/2 edges total. Therefore, each edge shares an endpoint with1296

2(V − 2) other edges, so there are V (V − 1)(V − 2)/2 distinct pairs of edges sharing1297

an endpoint. The cyclomatic number in a complete graph is V (V − 1)/2− (V − 1) =1298

(V − 1)(V − 2)/2. Therefore L = (V − 1)(V − 2)/2, and
∑︁

k,l |[GG⊺ − 2I]k,l| =1299

V (V − 1)(V − 2) = 2V L.1300

Thus:1301

(10.3) ρ(G⇆) =
E

2V L

(︃
V ||ft||2

||f ||2
− 2

)︃
1302
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Solving for ||ft||2 gives:1303

(10.4) ||ft||2 = ||f ||2
(︃

2

V
+ 2ρ(G⇆)

L

E

)︃
1304

In a complete network (V −1)/E = 2/V since E = V (V −1)/2. Then, substituting1305

in ||f ||2 = Eσ2(G⇆) yields the desired result:1306

(10.5)
1

E
||ft||2 = σ2(G⇆)

(︃
V − 1

E
+ 2ρ

L

E

)︃
1307

Since fc + ft = f and fc is orthogonal to ft, ||fc||2 = ||f ||2 − ||ft||2. Therefore:1308

(10.6)
1

E
||fc||2 = σ2(G⇆)(1− 2ρ(G⇆))

L

E
1309

11. A Trait-Performance Example. Suppose that each competitor has a set1310

of T traits. Assume that the traits are chosen so that the performance function f(x, y)1311

is non-decreasing in xj , and non-increasing in yj , for all j. This amounts to choosing1312

a sign convention for each trait so that increasing any trait improves performance.1313

Then a competitor with traits x has an advantage (in trait j) over an opponent with1314

traits y if xj > yj .1315

In some events, competitors with a large advantage in a given trait can dominate,1316

so that the event is primarily mediated by that trait. That is, competitors press their1317

advantages. For example, a performance function of this type is the extremal perfor-1318

mance function f(x, y) = xj − yj , where j is the dimension in which this difference is1319

largest in magnitude, j = argmaxj |xj − yj |. In the extremal performance model, the1320

performance is completely controlled by the largest advantage, so competitive events1321

are as one-sided as possible, given the competitor’s traits.1322

Consider, in contrast, a competitive event in which competitors cannot press their1323

advantages. For example: f(x, y) = xj − yj for the dimension j = argminj |xj − yj |1324

that minimizes the advantage. This rule could model a contest in which competitors1325

are required to reach a consensus about how to compete in advance or, where the1326

weaker competitor controls which traits primarily mediate the competitive event.1327

Competitors could be motivated or compelled to compete without pressing advantages1328

by an external mediating body. For example, a sports league is motivated to keep1329

teams evenly matched, even if the individual teams are motivated to win.1330

Suppose that the traits are drawn i.i.d from either an exponential, Gaussian, or1331

uniform distribution. In each case, the variance of the trait distribution has no effect1332

on ρ so, without loss of generality, each distribution is chosen to have variance one.1333

We estimated the correlation coefficient ρ for all six models (two performance1334

functions, three distributions) with trait dimension varying from 1 to 25. To estimate1335

the correlation coefficient for a given model and trait dimension we sampled 1061336

triples of trait vectors X,Y,W and computed f(X,Y )f(X,W ). Averaging over all1337

106 triples gave an empirical estimate for the covariance, which was then normalized1338

by an empirical estimate of the variance σ2. Figure 13 shows the results.1339

For all three choices of trait distribution, ρ(T ) was larger if the extremal advan-1340

tage model was used instead of the fair-fight model. This indicates that, the more1341

competitors can press their advantages, the more transitive competition is, on average.1342

This is not surprising, since in the fair-fight model, the traits mediating performance1343

for competitor A against competitor B are likely different from the traits mediating1344
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Fig. 13. The correlation coefficient ρ for two different performance functions and three different
trait distributions as a function of the number of competitive traits. Error bars represent three
standard deviations in the estimated correlation coefficient. The “Press Your Advantage” panel
shows ρ(T ) for the extremal performance model: f(x, y) = xj−yj for j that maximizes the difference.
The“Fair Fight” panel shows ρ(T ) for f(x, y) = xj − yj for j that minimizes the difference. In all
cases the correlation coefficient is higher in the ‘Press-your-Advantage” model than in the “Fair-
Fight” model. In both panels the correlation coefficient is larger for exponential than Gaussian traits,
and Gaussian than uniform traits. In all cases ρ(T ) decreases with increasing trait dimension. The
corresponding variances σ2 are computed in the supplement.

competition between A and C. As a result, the success of competitor A is highly1345

competitor dependent. Thus competition is more cyclic.1346

Note that this conclusion is much easier to test using the trait-performance theo-1347

rem than by sampling a series of random edge flows. We only needed to sample trait1348

vectors for triples of competitors to evaluate ρ. This simplification greatly reduces1349

the sampling cost.1350

In all six models tested, ρ(T ) is decreasing in T , so the expected proportion1351

of competition that is cyclic is increasing. This matches the results in [44], where1352

increasing the trait dimension typically decreased the expected degree of transitivity.1353

This is intuitive, since larger T allows more ways for two competitors to compete, so1354

it is harder to assign a single rating to a competitor.181355

When using the extremal performance model the correlation ρ(T ) decays much1356

faster in T for Gaussian and uniform traits than for exponential traits. This is be-1357

cause exponentially sampled traits are more likely to include large outliers. Since the1358

extremal performance model sets f to the largest trait difference, the performance is1359

more likely to depend on the outlier traits of each competitor. If a competitor has one1360

particularly large trait, and T is large, then it is unlikely that any other competitor1361

has a comparably large trait value in the same dimension. As a result, the competitor1362

with the largest trait usually competes along that dimension and their performance1363

against other competitors is fairly consistent. This leads to a relatively high ρ.1364

On the other hand, if the traits are drawn uniformly from [0, 1] then no competitor1365

can achieve a universal advantage by having one extremely large trait value. Instead,1366

as the dimension of the trait space increases, competitors succeed by having a large1367

trait value where their opponent has a small trait value - that is, by exploiting their1368

18Note that while this is often true it is not true for all trait-performance models.
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opponents’ weaknesses. In this situation, the relevant trait dimension that determines1369

the outcome of competition depends on whom each competitor competes with. Con-1370

sequently the correlation ρ becomes very small as T becomes large, so competition1371

becomes predominantly cyclic.1372

In the fair-fight model all three trait distributions produce nearly identical cor-1373

relations, since outlier traits do not mediate performance. Instead, performance is1374

mediated by average traits, since the smallest advantage Xj − Yj is likely to come1375

from a trait dimension where both Xj and Yj are close to their expected values.1376

This example illustrates the explanatory power of the trait-performance theorem.1377

By separating the influence of network topology from statistical assumptions about1378

competition, the theorem facilitates numerical hypothesis testing and affords deeper1379

insights by focusing the questions we ask about competitive tournaments.1380

12. Code Repository. A code repository is available at https://github.com/1381

AlexRunsAway/HHD and Trait Performance. The repository contains a read me file1382

which explains the contents.1383
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