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THE NETWORK HHD: QUANTIFYING CYCLIC COMPETITION IN
TRAIT-PERFORMANCE MODELS OF TOURNAMENTS *

ALEXANDER STRANG T, KAREN C. ABBOTT, ¥, AND PETER J. THOMAS §

Abstract. Competitive tournaments appear in sports, politics, population ecology, and animal
behavior. All of these fields have developed methods for rating competitors and ranking them accord-
ingly. A tournament is intransitive if it is not consistent with any ranking. Intransitive tournaments
contain rock-paper-scissor type cycles. The discrete Helmholtz-Hodge decomposition (HHD) is well
adapted to describing intransitive tournaments. It separates a tournament into perfectly transitive
and perfectly cyclic components, where the perfectly transitive component is associated with a set of
ratings. The size of the cyclic component can be used as a measure of intransitivity. Here we show
that the HHD arises naturally from two classes of tournaments with simple statistical interpretations.
We then discuss six different sets of assumptions that define equivalent decompositions. This analysis
motivates the choice to use the HHD among other existing methods. Success in competition is often
mediated by the traits of the competitors. A trait-performance model assumes that the probability
that one competitor beats another is a function of their traits. We show that, if the traits of each
competitor are drawn independently and identically from a trait distribution then the expected de-
gree of intransitivity in the network can be computed explicitly. We show that increasing the number
of pairs of competitors who could compete promotes cyclic competition, and that correlation in the
performance of A against B with the performance of A against C' promotes transitive competition.
The expected size of cyclic competition can thus be understood by analyzing this correlation.

Key words. Cyclic competition, intransitivity measures, least squares rating, Helmholtz-Hodge
decomposition, trait-performance models

AMS subject classifications. 05C50, 05C20, 05C21

1. Introduction: Tournaments, Ranking, and Intransitivity. A tourna-
ment consists of a group of competitors who compete in pairwise events (head-to-head
matches). Tournaments are important across disciplines, from ecology and animal be-
havior [43, 63], to psychology and sports [6, 35]. Rating and ranking, that is, assigning
a measure of quality to the competitors and listing them in order from best to worst,
is important in each of these areas. In sports, ranking and rating teams and players
is a topic of broad popular interest. In biology, ratings are widely used to evaluate
the quality of competitors in social hierarchies. High standing in a competitive hier-
archy may be closely related to fitness, as it is often associated with priority access to
resources [17, 38, 39, 69], territory maintenance [64], and higher reproductive output
[54, 75]. Ranking is especially important in politics, as many electoral systems deter-
mine a winner by aggregating votes into a partial ranking of the candidates. Ratings
and rankings are often sought since they simplify the description of a tournament by
assigning each competitor a single number that purports to measure how good they
are.

Not every tournament allows for a consistent ranking of competitors. As a moti-
vating example, consider the 2019-2020 National Basketball Association (NBA) sea-
son, which was cut short by the COVID-19 pandemic. Imagine two fans arguing
whether the Cleveland Cavaliers (CLE) or Sacramento Kings (SAC) were the better
team. The two teams did not play in 2019-2020 due to the abbreviated season, so
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2 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

SAS

ATL

Fic. 1. A network representing the observed outcomes of games between the Cleveland Cavaliers
(CLE), Sacramento Kings (SAC), Atlanta Hawks (ATL), and San Antonio Spurs (SAS) in the
2019-2020 regular season. Arrows point from the team which lost the majority of the games to the
team which won the majority. Labels next to the arrows provide the game outcomes.

they cannot be compared directly. The Cleveland fan points out that CLE beat the
San Antonio Spurs (SAS) 2 out of 2 games, and SAS beat SAC 2 out of 3 games, so
surely CLE was better than SAC. The SAC fan counters that transitive predictions
of this kind are not always valid. For example, the Atlanta Hawks (ATL) beat SAS
2 out of 2 games, and SAS beat SAC 2 out of 3 games, yet SAC still beat ATL in
the game they played. Figure 1 illustrates these outcomes as a graph. Notably, the
graph contains a mixture of triangles which do and do not allow consistent rankings.
A believer in ranking could point to the triangle involving CLE, SAS and ATL as
evidence that NBA teams can be consistently ranked, while a skeptic might point to
the triangle involving SAS, ATL, and SAC.

The observation that not all tournaments admit consistent rankings motivates
classification into transitive and intransitive tournaments. A tournament is transitive
if knowing that A usually beats B, and B usually beats C, is enough to conclude that
A usually beats C. Transitive tournaments are consistent with a global ranking of all
the competitors. An intransitive tournament is a tournament that is not consistent
with any global ranking. Intransitive tournaments must contain at least one cycle
where the transitive assumption fails. Figure 2 illustrates examples of transitive and
intransitive tournaments.

Intransitive tournaments appear in practically every discipline where tournaments
are studied [10, 23, 52, 57, 59], and are the norm rather than the exception when using
real data [32, 35, 36, 43, 63, 66, 68]. Intransitivity may arise due to uncertainty in
observed data [35, 68], randomness in event outcomes, or may be intrinsic, as in the
game of rock-paper-scissors.

Intransitivity is important for two reasons. First, intransitivity presents a chal-
lenge when ranking since no ranking is consistent with the tournament. For example,
Condorcet’s paradox is a voting paradox in cyclic community preferences prevent any
fair ranking of candidates, and thus, any choice of winner [23].! Second, when intran-
sitivity is intrinsic, then the tournament contains cyclic structure, as in rock-paper-
scissors. Cyclic structures can radically alter optimal strategies [10] and long term
dynamics [52, 59, 58, 60, 61]. For example, in ecology it is widely hypothesized that
intransitive competition between species promotes biodiversity since no species domi-

LSuppose there are three candidates in an election and three voters. Suppose that the first voter
prefers A to B to C, the second B to C to A, and the third C to A to B. Then A would beat B, B
would beat C, and C would beat A in pairwise head-to-head elections.
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Transitive: 3 >4 > 1> 2 Cyclic Intransitive and Acyclic

FiGc. 2. Three example networks representing different classes of tournaments. The first is
transitive since the win probabilities are consistent with the ranking 3 = 4 >= 1 = 2. The second
s both intransitive, and, more strongly, is cyclic (see Section 3.1.2 for definitions). The third is
neither transitive nor cyclic, and represents a generic tournament, with the same pattern of expected
winners and losers as in Figure 1.

nates. This hypothesis is based on extensive theoretical work [43, 52, 59, 58, 60, 61, 80]
and limited case-studies [30, 36, 46, 47, 66].

The importance of intransitivity in real natural communities is controversial [25,
70, 77], in part because there are few robust metrics for measuring intransitivity
from incomplete and noisy data. Uncertainty in data can easily be conflated with
observed intransitivity, and common sampling methods for filling in missing data can
overestimate intransitivity [63]. Thus there is a need for ranking and rating methods
that are robust to intransitivity and measures of intransitivity that can handle noisy
and incomplete data.

Jiang and Lim introduced the discrete Helmholtz-Hodge Decomposition (HHD)
as a general method for ranking objects from incomplete and imbalanced data [32,
50]. The decomposition is a network theoretic tool that we adapt to the study of
competitive tournaments. The HHD accomplishes three fundamental tasks. First, it
assigns a rating to each competitor. Competitors can be ranked accordingly. Second,
it produces a measure of intransitivity that quantifies how far an observed network
is from the nearest perfectly transitive network. Third, it represents the observed
network as the direct sum of a perfectly transitive and a perfectly cyclic network.
This decomposition provides an elegant characterization of intransitivities present in
data, and can reveal underlying cyclic tendencies (c.f. [10]).

When compared to existing methods, the discrete HHD has a number of advan-
tages. It is more general than some classical methods since it applies to arbitrary
network topologies and can accommodate imbalanced data [32]. It is also more infor-
mative because it provides a clear description of both underlying transitive and cyclic
structures. Most ranking methods and intransitivity measures focus on the transi-
tive component while the HHD puts the transitive and cyclic components on equal
footing. Finally, it remains efficiently computable even for large, incomplete networks
[32]. In contrast, Slater’s index [68] requires solving an NP hard optimization problem
[11, 18], and Kendall’s index [35] requires a complete network.

This paper aims to answer two fundamental questions:

1. Why use the HHD to study competition when other methods exist?
2. Having chosen to use the HHD, what do we expect when competitive perfor-
mance is determined by individuals’ traits?
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Answering the first question is important since there are many possible meth-
ods to choose from, so the choice of method should be made in a principled way.
Answering the second question is important since it builds a conceptual bridge from
the competitors and competitive event to the overall tournament structure. As in
Landau [44], we seek to understand how the underlying distribution of traits among
competitors, and the relationship between traits and success, influence the overall
tournament.

The latter question is important across disciplines. In some biological settings,
success in competition is determined by individual traits, driving selection [76]. For
example, competition for social dominance among male elephant seals depends on
their body mass [26] and competition among male dwarf Cape chameleons depends
on coloration, head size, and body length [76]. Success in these competition events is
correlated with reproductive success, suggesting that heritable traits which improve
a male’s chances of success are strongly selected for [26]. In sports, the relationship
between the traits of a player or team and their success is an area of active interest - for
athletes, owners, fans, and researchers alike. The rise of sabermetrics, the statistical
study of baseball, is a popular example [49, 78].

This paper answers questions 1 and 2 as follows:

1. The HHD arises naturally from the study of ranking and intransitivity. To
illustrate this point, we provide a different derivation of the HHD than [32] or
[50]. Instead of imposing the decomposition ad hoc, we propose two special
classes of tournaments with clear statistical motivation. We then show that
any tournament can be uniquely decomposed into a combination of tourna-
ments from these classes. This decomposition is the HHD (see Theorem 3.5).
Next we illustrate that the HHD can be reached by six different approaches
(Corollary 8.1), and is thus robust to varying motivations.

2. We show that, under simple assumptions on the distribution of traits, the
expected sizes of the components of the decomposition can be computed ex-
plicitly from the number of competitors, number of pairs who could compete,
and the correlation in the performance of A against B with A against C'. This
correlation is shown to equal the uncertainty in the expected performance of
a competitor, linking a decomposition of uncertainty in performance to tour-
nament structure (see Theorem 4.1 and Corollary 9.1).

The answers to the second question prove, under minimal assumptions, a series
of intuitive statements about transitive/cyclic competition that appear, as heuristics,
across the literature. These include:

(a) The more predictable the performance of A against a randomly drawn competitor
(i.e., the less the performance of A depends on their opponent) the more transitive
the tournament.

(b) The more correlated the performance of A against B with the performance of A
against C, the more transitive the tournament.

(¢) The more pairs of competitors who could compete, the more cyclic the tournament
is, on average.

(d) Filling in missing data by random sampling overestimates intransitivity.
Statements a, b, and ¢ also hold in reverse. Decreasing a quantity that promotes

transivity promotes cyclic competition

The paper is structured as follows. In Section 2 we provide some necessary back-
ground. Next, in Section 3, we derive the HHD in the context of tournaments and de-
velop the associated ratings and intransitivity measure. Our derivation complements
the cohomological approach used by [50], as it is specially adapted to tournaments,

This manuscript is for review purposes only.



THE HHD AND TRAIT-PERFORMANCE 5

and only requires linear algebra and classical graph theory. In Section 4 we show
how assumptions about the statistics underlying competition promote or suppress in-
transitivity. We focus on trait-performance models in which performance is assumed
to be a function of traits sampled from a trait distribution. While win probabilities
are not always determined by traits, exploring trait determined performance affords a
more realistic and richer perspective than standard null models (c.f. [16]), and demon-
strates generic relationships. In particular, we present a theorem (4.1) which allows
the expected size of the intransitivity measure to be computed directly from the num-
ber of competitors, edges in the network, and correlation in the performance of A
against B with A against C. This result is extended by a corollary (9.1) which shows
that the correlation in performance is related to a decomposition in the uncertainty
of the performance of A against B. These results lead to a deeper conceptual un-
derstanding of how cyclic structure can arise from uncertainty in performance, and
can be suppressed by correlation in performance. We conclude by generalizing these
observations to scenarios where the trait-performance assumptions do not hold.

2. Mathematical Framework. Consider an ensemble of V' competitors. As-
sume that each competition event involves exactly two competitors, and never results
in a tie. This standard assumption [35, 43] can be weakened to allow for ties. We will
refer to competition of this kind as a tournament.?

The probability of any sequence of event outcomes in a tournament is determined
by the probabilities that competitors beat each other. If the event outcomes are
independent, then for each possible pairing of competitors there is an unambiguous
probability one beats the other. Let pap denote the probability competitor A beats B.
The shorthand A > B denotes the case when A is expected to beat B (pap > 1/2). In
principle, the win probabilities could change in time, and could depend on the history
of the process (c.f. [24]). We focus on tournaments with unchanging win probabilities
to avoid modeling additional temporal dynamics. Then a fixed set of win probabilities
p determine the probability of any sequence of events. Thus the tournament dynamics
are realizations of a random process, with probabilities controlled by p and the event
order. The event order, i.e. the schedule, could be fixed or random. As in other studies
of transitivity, we focus on the structure of the win probabilities p, not the schedule
or tournament dynamics, since the win probabilities p determine the distribution of
possible tournament outcomes, and whether competition is transitive or intransitive.

The win probabilities may be conveniently represented using a competitive net-
work, G= = (V,&,p). Assign each competitor a node from the vertex set V. Then
V = |V|. Introduce a pair of directed edges between each pair of competitors who
could compete. The edge from B to A is assigned the weight pag. We assume that
the tournament is finite, connected and reversible. That is, there are finitely many
competitors, for any pair of competitors A B there is a path from A to B and from B
to A through G= with probability greater than zero, and that pap # 0 or 1 for any
pair A, B who could compete.

Sometimes it is preferable to simplify the competition network by rounding all
weights less than 1/2 to 0, and all weights greater than 1/2 to 1. This can be conve-
niently represented as an unweighted graph G_, which contains all directed edges from
G= with weights greater than a half, and an undirected edge between all pairs with
pap = 1/2. The edges in this graph point from expected losers to expected winners.
Most intransitivity measures focus on this graph (see [35], [44], [68]).

2This is distinct from a complete tournament in which it must be possible for all pairs to compete.
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6 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

A ranking is an ordered list of competitors from best to worst, specified by a
rank function R which returns the rank of each competitor. Note that this is distinct
from a rating, r, which is a function that returns a real number for each competitor
[45]. Rankings are often generated by first rating each competitor, then listing them
in decreasing order. For example, given competitors A, B, C' with ratings r4 = 10,
rg = 20, r¢ = 0 the corresponding ranking would be R4 = 2, Rg = 1, Rc = 3 and
the competitors would be listed B = A = C. Ratings provide an intuitive description
of competition in which some innate competitive ability determines performance.

Ranking methods are diverse, and well studied. Famous examples include the
page-rank method used by Google to sort search results [9], the Massey and Col-
ley methods used by the NCAA to rank basketball and football teams [45], and the
Elo rating/ranking widely used by chess federations [24, 71]. The rating system pro-
duced by the HHD is a kind of log-least squares rating as is frequently used in paired
comparison [6, 41, 42]. Examples of least squares rating systems are included in
[14, 34, 45, 51, 72, 73].

A competitive network G— is consistent with a ranking R if A > B whenever
R(A) < R(B). If a competitive network is consistent with a ranking then this ranking
is unique and the network is transitive. Transitive networks satisfy the intuitive
property that if we consider some sequence of competitors with A = B = C »= D
then A = D. That is, G_, contains no cycles, and all the edges in G_, point from
competitors with worse ranks to competitors with better ranks.

If G_, contains a cycle, then there exists a sequence of competitors such that A >~
B> C > .... = A, and the tournament is intransitive. If a network is intransitive then
it is not consistent with any ranking [57]. Speaking broadly, measures of intransitivity
either count the number of intransitive triangles present in G_, [35], or measure how
far G_, is from a nearby transitive network [68]. The Kendall measure [35] counts the
number of intransitive triangles in G_,. This can be done efficiently, however prioritizes
triangles over larger loops and does not weight edges equally [2, 68]. The Slater
measure of intransitivity is the minimum number of edge directions that need to be
reversed in order to transform G_, into a transitive network [68]. While conceptually
preferable [32], finding the closest transitive network is an NP hard problem [3], [19],
[27], [32]. Despite some fast heuristics [18], complexity concerns limit the application
of the Slater measure to small networks. The intransitivity measure associated with
the HHD is conceptually analogous to the Slater measure, but can be computed
efficiently even for very large networks. Note that transitivity and intransitivity are
defined relative to the sign of (pap — 1/2), rather than the exact value pap. In
contrast, the intransitivity measure associated with the HHD is continuous in the win
probabilities, so uses all the information available in G=.

3. The Network HHD. The Network Helmholtz-Hodge Decomposition (HHD)
can be derived by defining two special classes of tournaments. These parallel the two
classes of games defined in [10].

3.1. Arbitrage Free and Favorite Free Tournaments.

3.1.1. Arbitrage Free Tournaments (Perfectly Transitive). A currency
market is said to be arbitrage free if it is impossible to make money by exchanging
currencies cyclically [32]. By analogy, we define an arbitrage free tournament to be a
tournament for which it is impossible to expect to make money by betting on cyclic
sequences of events. Specifically, a tournament is arbitrage free if, for any cyclic
sequence of competitors C = {iy, 42, ...,.i|c|,%|c|+1 = %1}, a sequence of wins where ;
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THE HHD AND TRAIT-PERFORMANCE 7

loses to i;41 is equally likely as a sequence of wins where i; beats i;; for all j. Here
|C| denotes the number of competitors in the cycle.

Cycle Condition: A tournament is arbitrage free if and only if, for every cycle
C = {i1,i2,...,%¢|,i|c|+1 = i1}, the win probabilities satisfy:

(31) pi1i2pi2i3"'pi|c‘i1 = pi1i|c‘ --PiziaPigiy -

The cycle condition can be simplified by dividing the right hand side across to
the left hand side and taking a logarithm. Then:

IC]

(3'2) Z fijij+1 =0
j=1

where the f;; is the log-odds that competitor i beats competitor j:

(3.3) fi; = logit(p;;) = log (lpw>
— Dij

The cycle condition is satisfied if and only if the sum of f around any cycle is
zero. The log-odds, f, are an example of an edge flow: an alternating function,
fij = —fji, on the edges [32]. Note that logit(x) = log(x/(1 — «)) is the inverse of
logistic(y) = 1/(1 + exp(—y)), so no information is lost in moving to f from p.

The sum of f around a cycle is an example of a path sum. A path sum against
an edge flow is the discrete analog of a path integral against a vector field. Given a
sequence of competitors P = {i1, 19, . .. ,i‘c|} the path sum against f over the path P
is Z‘jcz‘fl fi;11i;- The cycle condition requires that path sums over cycles equal zero.

If path integrals around closed loops equal zero, then the value of path integrals
depend only on the endpoints of the path, are otherwise path independent, and the
vector field is the gradient of potential. These properties also hold for networks.

LEMMA 3.1 (Arbitrage Free). A tournament is arbitrage free if and only if there
exists a unique set of ratings r, with average rating equal to zero, such that the win
probabilities satisfy p;; = logistic(r; — ;). Moreover if a tournament is arbitrage free
then it is transitive.

If there exist a set of ratings such that p;; = logistic(r; — r;) then fi; =, —r;
so path sums over f are telescoping, and thus cancel around loops. Then the cycle
condition holds automatically. The rest of Lemma 6.1 can be proved using a simple
spanning tree construction illustrated in of Figure 3 (panel a). We sketch the proof
here; the supplement provides further details.

If a network is arbitrage free then the cycle condition requires that the path sum
of f around any loop is zero. It follows that path sums over f are path independent.
Our goal is to find a rating  such that the difference in r on each edge produces the
edge flow f. We recover r by picking a spanning tree®, and assigning it an arbitrary
root, A. Uncentered ratings u are computed by setting u; equal to the path sum from
A to node i along the paths in the tree. Then the ratings r are set equal to u; minus
the average value of u. Path independence guarantees that the choice of tree does
not influence u, and centering the ratings eliminates any dependence on the choice of

3 A spanning tree is a subgraph of the network that contains no loops, includes all competitors,
and is connected.
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F1a. 3. Panel a. The spanning tree construction for recovering the ratings for an arbitrage-free
tournament. The tree is shown with solid lines, and the chords with dotted lines. The root of the
tree, A, is marked in grey. Two vertices, i and j connected by a chord ij, are shown in blue and
green respectively. The sequence of nodes leading from A to i and j are labelled. If the ratings, v,
are constructed by evaluating path sums over the tree, then the path sum from j to A isrj—ra, and
the path sum from A to i is ra —r;. Then, by the cycle condition, the sum around the loop marked
with arrows is zero, hence fij = r; —r;. Panel b. A favorite free tournament must be a cyclic
tournament. The arrows represent the direction of competition. If the network is favorite free, then
whenever there is an edge pointing into a set there must be an edge pointing out of it. A path from
A to B is shown in black. Then the sets S1(B), S2(B), S3(B) are shown as shaded polygons. These
contain all competitors distance 1, 2, and 3 (respectively) from B. These sets continue to erpand
until they include A, hence there is a path from B to A.

A. Then, by construction, r; —7; = f;; on all edges in the tree. The cycle condition
guarantees that r; — r; = f;; on all edges not in the tree. Since f are the log-odds,
pi; = logistic(r; — r;). Transitivity follows automatically since p must be consistent
with the ranking induced by r.

Lemma 6.1 shows that arbitrage free tournaments are the only tournaments which
match the logistic rating model p;; = logistic(r; — r;) used for Elo rating [1, 29, 45].%

Arbitrage free tournaments are also the only tournaments that match the Bradley-
Terry model:® p;; = ¢;/(q; + q;) where ¢; > 0 are the Bradley-Terry ratings [8, 7].
If a network is arbitrage free, then setting ¢; = exp (r;) recovers the Bradley-Terry
model. If the tournament satisfies the Bradley-Terry model, then setting r; = log (¢;)
produces a rating which satisfies p;; = logistic(r; — r;), so the network must be
arbitrage free.

Since arbitrage free networks are a special class of transitive networks, we will
refer to them as “perfectly” transitive. Note that a perfectly transitive network must
satisfy the cycle condition, which is a requirement on the values of p rather than the
sign of (p — 1/2). Hence, while all perfectly transitive networks are transitive, not all
transitive networks are perfectly transitive. For example, if pag = 0.99, pgc = 0.99,
and pac = 0.51 then the tournament is transitive, even though pac is much smaller
than might be expected. This example is not perfectly transitive since it does not
satisfy the cycle condition. The leftmost network in Figure 2 is perfectly transitive.

4The Elo rating system was originally proposed to rate chess players, but is also used to rank
Sumo wrestlers [71], English league football teams [29] and international football teams. In the latter
example the Elo method was the most predictive out of all methods tested [48]. The Women’s World
Cup uses a variant on the Elo method [48].

5The Bradley-Terry model is widely used in pairwise comparison and to rank competitors in
tournaments. Examples include professional tennis [40, 53], Cape dwarf chameleons [76] and northern
elephant seals [26]. Bradley-Terry models accounting for surface type, and discounting old games,
have been shown to be effective in predicting the outcome of ATP tennis tournaments [53].
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THE HHD AND TRAIT-PERFORMANCE 9

3.1.2. Favorite Free Tournaments (Perfectly Cyclic). In contrast, we de-
fine a favorite free tournament to be a tournament for which it is impossible to make
money on average by betting on a favorite competitor over their neighbors. Specifi-
cally, A is equally likely to beat all of their neighbors, as to lose to them. Let A (4)
denote the neighborhood of i, the set of all competitors who could compete with 3.
Then the win probabilities must satisfy a neighborhood condition.

Neighborhood Condition: A tournament is favorite free if and only if, for
every competitor ¢ with neighborhood N (i), the win probabilities satisfy:

(3.4) H pij = H Dji-

JEN(3) JEN(7)
Like the cycle condition, the neighborhood condition can be written directly as a
condition on the log-odds edge flow f defined in equation (3.3). A tournament satisfies

the neighborhood condition if and only if the sum of f;; over the neighborhood of :
is zero for all competitors 4:

(3.5) > fu=0
)

JEN (i

If the neighborhood condition is satisfied then it can be extended to all sets of
competitors. Let S be a set of competitors and let N'(S) be the set of all competitors
not in S who neighbor S. Then the neighborhood condition implies:

(3.6) > fu=0

JEN(S),ieS

This identity follows from the discrete analog to the divergence theorem: the sum of
f over the neighborhood of S equals the sum of f over the neighborhood of every
competitor in 5. Then 5. x5y ies fij = 2ics 2ojentiy fis = 2oies 0= 0.

The cycle condition defined a special subset of transitive tournaments. The neigh-
borhood condition also defines a special class that is a subset of a larger class - the
class of cylic tournaments. A cyclic tournament is a tournament such that, if there
is a path from A to B in G_,, then there is a path back from B to A in G_,.

LEMMA 3.2 (favorite free). A favorite free tournament is cyclic, and is never
transitive unless p;; = 1/2 for all connected i, j.

Like Lemma 6.1, Lemma 7.1 can be proved with a simple construction. The proof
is sketched here and illustrated in Figure 3 (panel b). See supplement for details.

If there is a path from A to B in G_, then we need to construct a path back
to A from B. To this end, we define a nested sequence of sets where Sy(B) is all
vertices within distance from d of B in G_,. The neighborhood condition extends to
sets of vertices, so if there is an edge into a set S in G_, then there must also be
an edge leaving S. It follows that, if A is not in Sg(B), then Sq41(B) # Sa(B), so
we can keep expanding the sequence of nested sets. If the network is finite then the
sets cannot expand forever without eventually including A. To finish, a favorite free
tournament cannot be transitive unless it is neutral, p;; = 1/2 for all ¢, j, since only
neutral tournaments are simultaneously transitive and cyclic.”

61f 4 and j are both in S then the sum over the neighborhood of i contributes fij, and the sum
over the neighborhood of j contributes f;; = —f;;. Therefore the edge flow on any edge connecting
a pair of nodes in S cancels in the sum.

"Note that a neutral tournament is considered transitive since it can be consistently ranked - all
competitors should be ranked the same.
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So, just as the cycle condition (no tendency to cycle) implied transitivity, the
neighborhood condition, (no favorites) implies that the network is cyclic. Whether a
tournament is cyclic or not depends on the sign of (p;; — 1/2), while the neighbor-
hood condition is a condition on the values of p;;. This motivates the definition: a
tournament is perfectly cyclic if and only if it is favorite free. As before, all perfectly
cyclic tournaments are cyclic, but not all cyclic tournaments are perfectly cyclic. The
middle network in Figure 2 is perfectly cyclic.

Note that, unlike perfectly transitive tournaments where f is determined by a set
of ratings r, we are not currently equipped to relate the edge flow of a favorite free
tournament to a lower dimensional representation. In Subsection 3.2.2 we will show
that a favorite free tournament has edge flows f which can always be represented as
a sum of cyclic intensities (or vorticities) on a set of loops. This result will parallel
the conclusions of Lemma 6.1.

3.2. The Discrete HHD. Given these two classes of tournaments it is natural
to ask: can a generic tournament be decomposed into a perfectly transitive (arbitrage
free) part and a perfectly cyclic (favorite free) part? We answer in the affirmative.
This is the Helmholtz-Hodge decomposition.

3.2.1. Operators. In order to define the decomposition succinctly, it is helpful
to have a pair of operators analogous to the gradient and curl operators in the contin-
uum. We simplify the topological presentation in [32] by expressing the decomposition
entirely through linear algebra. For a cohomological discussion see [50].

First, define the edge space R¥, where E is the number of pairs i, who could
compete. Index each pair so that edge k points from competitor j(k) to competitor
i(k). Note that this requires assigning each edge an arbitrary start and endpoint.
Positive f indicates that the competitor at the end is expected to beat the competitor
at the start, and negative f indicates the reverse. This is simply a sign convention.

Let the discrete gradient operator G be the E x V matrix which maps from R
to R¥ by setting:

(3.7) [Gulk = wi(ky = wjr)-

Then gxp = 1if h =i(k), equals —1 if h = j(k), and is zero otherwise. The matrix G
is sometimes called the edge incidence matrix since it records the start and end point
of each edge.

Notice that if r is a rating function on the nodes, then attempting to find r such
that r; —r; = fi; is equivalent to looking for r such that Gr = f. Since any arbitrage
free tournament admits a unique rating r satisfying Gr = f, the space of perfectly
transitive competitive networks is equivalent to the space of competitive networks
with edge flow f in the range of the gradient.®

The gradient transpose, G is the discrete divergence operator. The divergence
maps from the space of edges to the space of nodes (competitors) such that:

(3.8) GTfli= > fis

JEN (1)

The neighborhood condition (3.5) is equivalent to requiring that G* f = 0. That
is, the space of favorite free tournaments is equivalent to the space of tournaments
with edge flow f in the null space of the divergence.

8 Assuming that the competitive network is connected, the gradient has a one-dimensional null-
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FiG. 4. The gradient, divergence, and curl for the example networks in Figure 2. A spanning
tree for networks of this form could consist of edges I, II, and IV. Then the edges III and V are the
chords, and the associated loops are the triangles labelled A and B.

In order to build a parallel description for perfectly cyclic tournaments, we need
a space of loops. First define the sum of two cycles C1, Co to be all edges included
in either C; or C5 but not both. Equipped with this addition operation, the space of
cycles is a vector space, which can be represented with a cycle basis. A cycle basis is
a collection of linearly independent cycles C1,Ca,...,Cr such that any other cycle C
can be expressed as a linear combination of cycles in the collection [21].

Any connected graph admits a cycle basis. A simple construction follows. First,
pick a spanning tree of the network. Then the spanning tree includes V' —1 edges, and
E — (V —1) edges are left out. The latter are the chords. By construction, the tree
does not contain any loops. If one chord is added to the tree then the network contains
exactly one cycle. Note that no two chords can produce the same cycle, and that the
set of cycles produced by adding the chords is necessarily linearly independent since
no chord appears in more than one of these cycles. Let L be the number of chords. If
we enumerate the chords from 1,2,..., L = E—V +1 then the set of cycles Cy,...,Cr,
associated with each chord is a cycle basis. The Figure 4 caption provides an example.

A basis generated by a spanning tree is a fundamental cycle basis [5, 21]. Cycle
bases are rarely unique, since there are often many possible spanning trees, and not
all bases are fundamental. An alternate basis for the network shown in Figure 4 could
be the outer square consisting of edges I, IV, V and III, and either of the triangles.

Next, define the cycle space R to be the space of real vectors with one entry for
each cycle in a chosen cycle basis. The dimension of the cycle space L=FE —V +1is
the cyclomatic number of the network [5, 21]. We define the discrete curl operator to
be the matrix which maps from R¥ to RY (edges to cycles) by performing the path
sum around each loop. If {k1, k2, ..., kic,|} = C; then:

(3.9) cfli= S fi.

ke

Note that in order to perform this sum, each loop must be assigned an arbitrary
direction of traversal. This is another sign convention.

space spanned by the vector [1;1;...1]. It follows that G(r + ¢) = Gr if c is some constant. This
motivates the constraint ), r; = 0 used throughout.
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We limit our attention to curl operators such that there exists an invertible matrix
T for which TC' = C, where C is the curl defined with respect to a fundamental basis.

This curl is analogous to the curl in continuous space, which is a path integral
over infinitesimally small loops. Note that the discrete curl defined in this way is
more general than the discrete curl defined in [32, 50], where the curl is restricted
to act on triangles. Restricting the curl can lead to unintuitive conclusions. For
example, if pap = ppc = pcp = Ppa = 0.99 then there is clearly a cyclic tendency
in competition, but if the curl is restricted to only act on triangles, then the curl
would be zero. Here we extend the curl to act on loops of arbitrary length since, like
[68], we do not see a fundamental distinction between cyclic structure on triangles
and cyclic structure on larger loops. If desired, we could partition the curl operator
into blocks, each according to loops of a fixed length, and treat each block as the curl
operator restricted to loops of a given size. In this way our approach is distinct from
the approaches developed from cohomology, and is closer to the methods developed
by Kirchoff to study electric circuits [5].

Figure 4 provides examples of these operators.

LEMMA 3.3 (Orthogonality). The curl C and gradient G satisfy CG = 0.

Proof. Consider the product CGu for some arbitrary vector v € RY. The product
Gu produces a perfectly transitive edge flow, so the product CGu evaluates the path
sum of that edge flow around a set of loops. All perfectly transitive edge flows are
arbitrage free, so the path sum of Gu over any loop is zero. It follows that CGu =0
for all u € RV so:

(3.10) CG =0. 0

LEMMA 3.4. Let f be an edge flow, C' be a curl operator, and G be the gradient.
If Cf =0, then there exists a set of ratings v such that Gr = f.

Proof. This Lemma is a direct consequence of Lemma 6.1. If C is a curl operator,
then there exists an invertible transform 7' such that C' = T'C' where C is the curl
operator with respect to some fundamental cycle basis. Then C'f = TC'f = 0 if and
only if Cf = 0. Since C is defined with respect to a fundamental cycle basis, C is
defined with respect to a spanning tree 7 which generates the cycle basis. Requiring
that C'f = 0 is equivalent to requiring that the sum of f around every loop formed by
adding one chord into the tree is zero. This condition is sufficient to reconstruct r such
that Gr = f using the spanning tree construction given in the proof of Lemma 6.1,
where the chosen tree is T . O

Lemma 3.3 and Lemma 3.4 establish that, if the edge flow is the gradient of some
set of ratings then its curl is zero, and if the curl of the edge flow is zero then it can be
expressed as the gradient of some set of ratings. Therefore the range of the gradient is
the nullspace of the curl. The equivalence of these two spaces and the orthogonality of
the operators allows us to decompose f into unique perfectly transitive and perfectly
cyclic components. This decomposition is the HHD.

3.2.2. The Discrete Helmholtz-Hodge Decomposition.
THEOREM 3.5 (The HHD). Any f € RE can be decomposed such that:
(3.11) [ =T+ fe

where fy is arbitrage free (perfectly transitive) and f. is favorite free (perfectly cyclic)
and both are unique. In addition, there exists a unique rating r satisfying >, r; =0
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f=6r+cCc™v

F1a. 5. A schematic representation of the decomposition for a complete tournament on three
competitors. The edge flow f is set equal to logit(p), and then broken into a set of ratings v and
vorticities v, such that f = Gr + CTv.

such that f, = Gr and, for any choice of C, a unique vorticity v € RY exists such
that f. = CTv. Thus the original edge flow f can be uniquely decomposed:

(3.12) f=Gr+ .

Proof. By the fundamental theorem of linear algebra R = null(C') @ range(CT)
[74]. Lemma 3.3 and Lemma 3.4 guarantee that range(G) = null(C'), so:

(3.13) RE = range(G) @ range(CT).

Thus any edge flow can be uniquely decomposed into the sum of a perfectly transitive
and perfectly cyclic edge flow, and those edge flows are the projections of f onto the
perfectly transitive and cyclic subspaces.

Equation (3.13) establishes that there exists an r such that Gr = f;, and a v such
that CTv = f.. We have already proved r was unique. Equation (3.13) guarantees
E = rank(G) + rank(CT). In general, G has nullity equal to the number of connected
components in the network. We assumed the network is connected, so G has a one-
dimensional nullspace and rank V — 1. Therefore, rank(CT) = E — (V — 1) = L.
By construction, C7 has L columns, so is full rank. It follows that the linear system
CTv = f has a unique solution if f € range(CT). 0

Therefore, any arbitrary tournament can be decomposed into a perfectly transi-
tive and a perfectly cyclic tournament, where the perfectly transitive tournament is
specified by a set of ratings, and the perfectly cyclic tournament is specified by a set
of vorticities. The ratings associated with the HHD are the Hodge ratings proposed
by [32]. Figure 5 provides a schematic representing the decomposition.

The three example networks displayed in Figure 2 are actually an example of
an HHD. Reading left to right, the first network is perfectly transitive, the second
is perfectly cyclic, and they add to produce the generic network shown on the right.
The edge flows, ratings r, and vorticities v are shown in Figure 6.

The gradient G has exactly 2 nonzero entries per edge, so it becomes sparser as the
number of competitors increases. Consequently, the decomposition can be performed
efficiently, even for large, fully connected networks. Methods are discussed in [10, 32].

The intransitivity measure associated with the HHD is the size of the cyclic com-
ponent || f.||2. Because the HHD is a decomposition onto orthogonal subspaces, this
measure is equal to the distance from f to the closest perfectly transitive tournament.
Therefore the Helmholtz-Hodge intransitivity measure is conceptually analogous to
the Slater intransitivity measure [68], and its variants [57], [70], [77]. Similarly, the
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8T6LT =Y
80860 = ¢¥/

4 4
Perfectly Transitive + Perfectly Cyclic = Generic
1 = —0.3466,1, = —1.4452, v, = 1.3863, v = 0.4055

1y = 1.4452,1, = 0.3466

F1ag. 6. An example HHD using the three metworks from Figure 2. From left to right: the
leftmost network is perfectly transitive, the middle network is perfectly cyclic, and the network on
the right is the sum of the perfectly transitive and cyclic networks. The ratings associated with the
perfectly transitive graph are provided beneath it. Notice that the difference in the ratings recover the
edge flow on each edge. For example, r3 —r4 = 1.4452 —0.3466 = 1.0986 = f34. Also notice that the
curl of the edge flow around any loop is zero. For example, f41+ fi2 = 0.693141.0986 = 1.7918 = f42
so fa1 + fi2 + foa = fa1 + fi2 — faz = 0. The vorticities associated with the perfectly cyclic
network are provided beneath it. Notice that the perfectly cyclic edge flow satisfies the neighborhood
condition. For example, the total flow into node 2 is 1.3863 — 0.9808 — 0.4055 = 0. Finally, notice
that the values of the edge flow in the rightmost network are the sum of the edge flows in the
perfectly transitive and cyclic networks. For example, looking at the edge connecting nodes 1 and 2,
—1.0986 + 1.3863 = 0.2877.

transitivity measure associated with the HHD is the size of the transitive component
[|ftl]2, and is the distance from f to the closest perfectly cyclic tournament.

Note that these measures are continuous in p. In contrast, classical methods such
as the Kendall [35] or Slater [68] measures only depend on G_, so are discrete in
p. This distinction is important, since it means that the Helmholtz-Hodge measure
distinguishes between the cases pap = ppc = poca = 0.99 and pap = ppo = pca =
0.51 (intransitivity 7.96 and 0.07 respectively). Using the discrete measures, these two
tournaments are equally intransitive. Thus the Helmholtz-Hodge measure reflects the
absolute strength of cyclic competition by distinguishing strong and weak cycles. The
discrete measures reflect the relative strength of cyclic competition since they only
depend on the sign of f, which depends on both f. and f;. If the transitive part is
large then it may mask weaker cyclic competition when using a discrete measure. For
example, if pap = 0.99, ppc = 0.99 and pca = 0.49 then the probability that C' beats
A is much larger than might be expected. However, in this example competition is
transitive so all discrete measures of intransitivity would return their minimal value, 0.
In contrast, the Helmholtz-Hodge measure returns intransitivity 5.29. These examples
are illustrated in Figure 7. Normalizing the Helmholtz-Hodge measures by ||f||2
produces the equivalent relative measures: ||f.||2/||f]l2 and || ft|l2/|]f]|2-

3.2.3. Equivalent Formulations. Here we present six different approaches
that arrive at the same decomposition. These provide different, useful, perspectives on
the HHD, and illustrate that it is robust to varying motivations. The ensuing Corol-
lary follows directly from standard properties of projection onto orthogonal subspaces,
so we omit the proof.

COROLLARY 3.6 (Equivalent Formulations). The following six decompositions
are equivalent:
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Fic. 7. Transitivity and intransitivity of 10* triangular networks with randomly drawn win
probabilities. The horizontal axis is the size of the transitive component and the vertical axis is the
size of the cyclic component. Fach scatter point is a sampled network. Smaller blue scatter points
are transitive, larger red points are intransitive. The upper and lower purple lines (slope V2 and
V0.5) divide regions where competition on triangles is always cyclic, either transitive or cyclic, and
always transitive. The large black circles represent example networks. The text next to each example
gives the probability A beats B, B beats C, and C beats A. If all of these numbers are greater than 0.5
then the network is intransitive. Note that the classification into transitive and intransitive draws
a sharp distinction between networks whose win probabilities are nearly identical, while networks
with similar win probabilities remain close to each other when using the Hodge measures. Also
note that the boundary between transitive and intransitive networks is an angular sector, hence
this classification is based on the relative sizes of the transitive and cyclic components, not their
absolute sizes. In contrast the Hodge measures reflect the absolute size of each component. Thus the
example with win probabilities 0.99,0.99,0.49 can be transitive and the example 0.51,0.51,0.51 can
be intransitive, even though the former has a larger cyclic component than the latter.

1. f = fi + fc where fy is arbitrage free and f. is favorite free;

2. f=fi + f. where f; = Gr for ratings v and f, = CTv for vorticity v;
3. the ratings r solve the constrained least squares problem:
v
(3.14) Minimize ||Gu — f||s> given u € RV and Zui =0
i=1

and ft = GT)fC = f - ft;

4. the vorticities v solve the least squares problem:
(3.15) Minimize: ||[CTw — f||22 given w € R

and fo = CTU7ft =f—Je

5. f = fit + fo where f; = Gr for the unique ratings r such that the circulant
f — ft is favorite free;

6. f = fi + f. where f. = CTv for the unique vorticities v such that f — f. is
arbitrage free.
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16 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

Each of these approaches provides a different perspective on the HHD. We might
seek to decompose f into components that do not circulate and do not converge, into
components defined by a set of ratings and vorticities, according to the best perfectly
transitive or perfectly cyclic approximation, so that the residue left over when ap-
proximating f does not circulate, or so that the residue left over when approximating
f does not converge anywhere. In each case the resulting decomposition is the same.
The fact that the HHD is equivalent to all of these approaches motivates its use.

It is worth highlighting the third and fourth approach, which show that f; is
the nearest perfectly transitive edge flow to f, and f. is the nearest perfectly cyclic
edge flow to f. Decomposition 3 shows that the ratings produced by the HHD are
a type of least squares rating. Least squares ratings methods are widely used [6, 14,
34, 41, 42, 45, 51, 72, 73]. Although the literature has focused almost exclusively on
Decomposition 3, Decompositions 3 and 4 are dual to one another. This parity in
approach sets the HHD apart from existing methods.

4. Null Models and the Trait-Performance Theorem. How intransitive is
a typical tournament?

Answering this question requires defining a statistical model for sampling tour-
naments - in particular, for sampling edge flows. How do assumptions about the
distribution of possible edge flows affect the expected strength of cyclic competition?
What statistical features tend to promote or suppress cyclic competition?

We initially explore these questions for a generic null model where the edge flow,
F, is sampled randomly from an unspecified distribution. This analysis identifies
which features of the edge flow and the network topology influence the degree of
cyclic competition. These conclusions set the stage for the following insight.

If the edge flow is sampled using a trait-performance model, then the covariance
of the edge flow takes on a canonical form which depends only on two statistical quan-
tities: the variance in the flow on each edge, and the correlation in the flow on pairs
of edges that share an endpoint. This simplified structure leads to an elegant closed
form expression for the expected sizes of the cyclic and transitive components that
separates the influence of the network topology from the trait-performance statistics.

We generalize this result in two ways. First, the relations between correlation
and network structure derived under the trait-performance assumptions hold for any
complete network - whether or not the trait-performance assumptions are valid. Sec-
ond, we show that the canonical form for the covariance can be used to design null
models for tournaments with tunable transitive structure. These models can be easily
adjusted to promote or suppress cycles, and could be used to define more nuanced
transitivity tests than the standard randomization tests [2, 15, 35].

4.1. Generic Null Models. We start by considering generic null models where
the edge flow F € R¥ is drawn randomly from some distribution. For now we in-
troduce no assumptions on the distribution other than that it has finite first and
second moments. Denote the expected edge flow f = E[F] and the covariance
Cov(F) = E[(F — [)(F - [)T].

Let P, be the orthogonal projector onto the space of perfectly cyclic (favorite
free) tournaments. Then the expected squared strength of cyclic competition is:

E[||F.||*] = E[F" P P.F] = E[F" P.F| = Y (Pe)), E[FF]
kl

=D (Po)y (Fifi + Cov(F)a) = || ]lI? + trace(P.Cov(F))
kel

(4.1)
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where ||f,||? = ]_“TPCJ_” is the cyclic component of the expected edge flow.

Therefore, no matter the underlying distribution of edge flows, the expected
strength of cyclic competition is determined exclusively by three quantities: the ez-
pected edge flow, the covariance in the edge flow, and the topology of the network
(which determines P.).

The matrix inner product, trace(P,Cov(F')), can be simplified if the flows on each
edge are independent. Then Cov(F) is diagonal with entries o7 = E[(F}, — f;)?]. It
follows that trace(P.V) = Y r_, (P.), 02

The nonzero eigenvalues of a projector all equal one, so its trace equals the dimen-
sion of the space it projects onto. The projector P, projects onto the space of perfectly
cyclic tournaments, which has dimension L = E — (V' —1). Therefore >, (P.),, = L.
Rewrite the expected strength of cyclic competition:

E
(12 BlIFIF =171+ 2 (95 ) ot
k=1

Since the diagonal entries of an orthogonal projector are always nonnegative, the
right hand term can be interpreted as a weighted average of the variance on each
edge. Therefore, when the edges are independent, the expected strength of cyclic
competition is given by the strength of the cyclic component of the expected edge
flow, plus the dimension of the loop space times a weighted average of the variance
on each edge. Similarly, the expected strength of transitive competition is:

E
(4.3) ENEI = IFP+ (V-1 ((fo’“’f) i

k=1

and the expected total strength of competition is:
(4.4) E[|[FI[2] = I7]|? + Eo?

where 52 is the average of the variance in the flow on each edge. Equation (4.4) is
valid even if the edges are not independent, as the projector onto the full space is
simply the identity.

Equations (4.2) - (4.4) show that the contribution to the expected strength of
competition from the variances is not distributed equally between the transitive and
cyclic spaces. Instead, the amount that is cyclic is proportional to the number of
cycles, while the amount that is transitive is proportional to the number of com-
petitors. As a result, adding edges to a network will typically increase the expected
degree to which competition is cyclic. It follows that sparse networks with randomly
drawn edge flows will be relatively more transitive than would be expected given f,
while dense networks will typically be more cyclic. It also follows that, for a posterior
distribution of possible edge flows given observed data, uncertainty will likely lead
to an overestimate of the degree to which competition is cyclic when the network is
dense. If a tournament is complete, then £ =V (V —1)/2s0o (V —1)/E =2/V and
L/E =1-2/V. Tt follows that, for a complete tournament with more than four com-
petitors, any uncertainty in the edge flow will typically bias competition to appear
more cyclic than transitive.”

9This result does not contradict Shizuka’s result that the proportion of transitive triangles in
a network with uniformly randomly sampled dominance relations is independent of the network
topology [63], since our measure accounts for the global structure of the edge flow, thus incorporates
cyclic structure over longer cycles.
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Numerical studies have suggested that filling in missing edges with randomly
drawn F' typically overestimates the degree to which competition is cyclic, thereby
weakening transitivity tests [63]. Our result provides a clear explanation for this
observation. When the edge flow F' is drawn randomly to fill in missing data, it is
usually drawn independently and identically distributed, cf. [15]. If edges are added
until the network is complete, then, for any tournament with more than four com-
petitors, the resulting “imputed” tournament will likely be significantly more cyclic
than the original tournament. Therefore, unless the edge flows are well modeled by
assuming that the Fj are independent and identically distributed, and that all pairs of
competitors could compete, this procedure is not valid for estimating the strength of
cyclic competition in a partially observed tournament. This observation underscores
the need for intransitivity measures that can be applied to incomplete tournaments.

Unfortunately the projectors P, and P, may be expensive to compute, and can-
not always be constructed directly without performing a matrix decomposition. This
makes it challenging to identify exactly how the topology of the network and covari-
ance structure promote or suppress cyclic competition. Nevertheless, as we show in
the next section, using a more principled model for sampling F', ensures that the co-
variance matrix Cov(F') takes on a canonical form. This form clarifies the interaction
between the topology of the network and the distribution of edge flows.

4.2. Trait-Performance. The outcomes of real-world competition events are
typically influenced by a constellation of underlying competitor traits. Examples of
trait-influenced competition abound, ranging from sports'® to simulated competitive
events to biology.'! In some cases, trade-offs inherent in certain traits have been ob-
served to lead to cyclic competition between organisms [36, 66].'% In such examples,
trade-offs lead to advantages against certain opponents, and weaknesses that are ex-
ploited by others. In evolutionary biology, trade-offs of this kind challenge the notion
that members of intransitive communities can be consistently ranked according to fit-
ness. Intransitivity can lead to deeply counterintuitive evolutionary dynamics [20, 33],
and may promote biodiversity since no single species has an absolute advantage over
all competitors [59, 58, 60, 61, 70]. These considerations motivate a study of how the

10Some predictive tennis models estimate the probability that one competitor will beat another
based on a parameterized model for the probability that each player will win a point, where the
underlying parameters depend on traits of the players [40]. Similarly, considerable effort has been
devoted to predictive models for baseball based on team and player statistics [78].

1 Ecological studies of competition for dominance in social hierarchies have analyzed how traits
confer success, because selection acts on heritable traits contributing to reproductive success. Exam-
ples include competition among male northern elephant seals [26] and male Cape dwarf chameleons
[76]. Relevant traits for elephant seals include body mass, length, age, and time of arrival on the
beach [26]. Relevant traits for chameleons include body mass, length from snout to base of tail,
length of the tail, jaw length, head width, casque size, and size of a pink colored flank patch used in
signaling [76].

12Two particularly famous examples are side-blotched lizards and colicin producing E. coli [36, 66].
In the former example, large orange-throated males maintain large territories, medium blue-throated
males defend small territories, while small yellow-throated ‘sneaker’ males resemble females and do
not maintain territories. Orange-throated males typically defeat the smaller blue-throated males, who
defeat the even smaller yellow throated males, who defeat the orange throated males by sneaking into
their territories [66]. In the latter example, three strains of E. coli were grown in direct competition
in a laboratory setting. The first strain produced a colicin toxin, the second was susceptible to
the toxin, and the third was resistant to the toxin but not toxin-producing. In the absence of the
resistant strain, the toxic strain could outcompete the susceptible strain. In the absence of the toxic
strain, the susceptible strain could outcompete the resistant strain, which reproduced more slowly
because resistance is costly. But, in the absence of the susceptible strain, the resistant strain could
outcompete the toxic strain by reproducing more quickly [36].
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distribution of traits, and the way traits confer success, either promote or suppress
cyclic competition.

To study this scenario, suppose that win probabilities p can be modeled as a
function of some underlying traits « of each competitor. Let X (i) = [ X1 (i), ..., X7 (i)]
denote the T randomly sampled traits of the i** competitor. Then let f(x,y) be a
performance function, such that f(x,y) is the log-odds that a competitor with traits
x would beat a competitor with traits y.

To construct a trait-performance model assume that:

1. The trait vectors of the competitors are drawn independently and identically
from a trait distribution m.

2. There exists a performance function f(x,y) that maps from R” x R” to R.
We require that the performance function is alternating, f(z,y) = —f(y, ),
for any trait vectors x and y in the support of m,. This ensures that f
can be used to generate an edge flow. It also ensures that the performance
function is fair, E[f(X,Y)] = 0, since when X and Y are drawn i.i.d then
E[f(X,Y)] =E[f(Y,X)] = —E[f(X,Y)] which implies E[f(X,Y)] = 0.

3. There exists a connected competitive network G- with edges representing
possible competition events, and the network is either fixed a priori or sampled
independently from the traits.

The first assumption holds if all competitors are drawn from the same trait pool.
Different pools can be incorporated into the model by adding a trait which indexes
which pool each competitor is sampled from, provided that trait can be sampled
independently of the graph. For example, Major League Baseball team budgets vary
widely. In 2018 the Yankees’ total value was over 4.6 billion dollars, which was
more than the total value of the bottom six teams combined [56]. This difference in
resources gives high value teams the opportunity to pay higher salaries'® and attract
stars. Thus wealth could be incorporated as a trait.

The second assumption is valid whenever the probability that one competitor
beats another can be conditioned on the traits of the competitors, independent of
their location on the network, and of the outcomes of past events. Note that in some
biological contexts, such as social hierarchies, event outcomes are not necessarily
independent, and may be influenced by past events. For example, winner, loser, and
bystander effects, in which winners are more likely to win again, losers are more likely
to lose again, and bystander behavior is influenced by observed events between other
competitors, play an important role in the self-organization of certain social hierarchies
[12, 13, 28, 55, 65]. The assumption that competition outcomes are mediated by traits
is also not supported in convention based societies where rank is determined by a
social convention, such as matrilineal rank inheritance (c.f. [69, 75]). Nevertheless,
other hierarchies can be explained by traits (c.f. [31, 62]), and even in situations when
competition outcomes are influenced by past events, competitor attributes typically
influence competition outcomes as well [4, 13].

The third assumption treats the network topology (who competes with whom) as
independent from the traits of the competitors. This may not be realistic if competi-
tors avoid competing when they are likely to lose [67]. This also limits our ability to
model systems where traits or rank are heritable (c.f. [69, 75]), or distributed differ-
ently across different clusters of competitors (different divisions, or local populations).

While these assumptions do not hold in all situations, they provide a tractable
paradigm that lays the foundation for a more general understanding.

13For example, in 2019 the Yankees’ combined payroll was three times larger than the Marlins’.
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Under assumptions 1-3, we define a trait-performance model as follows. First,
sample X (i) ~ 7, for all competitors i. Then, set Fi, = f(X (i(k)), X(j(k))), where
i(k), j(k) are the endpoints of edge k.

THEOREM 4.1 (Trait-Performance). Let G= be a competitive network with V
competitors, E edges and L loops, satisfying assumption 3. If the traits of each
competitor are drawn independently from m,, and the edge flow is defined by Fj =
F(X(i(k)), X(j(k))) where f(x,y) is an alternating performance function, then the
covariance Cov(F) of the edge flow has the form:

(4.5) Cov(F) =0 [I+p(GG" —2I)]

where o2 is the variance in Fj, for arbitrary k, and p is the correlation coefficient
between f(X,Y) and f(X, W) for X, Y, W drawn i.i.d from 7.
Moreover:

1 d A e R 1
(46) E |:||F||2:| _ 0_2 ecompose
r B | IR = -20) ¢

E E
The correlation p ranges from 0 to 1/2, and if p = 1/2 then competition is perfectly
transitive.

Proof. First consider the covariance matrix Cov(F).
Since the trait vectors are drawn i.i.d from the trait distribution, the diagonal
entries of the covariance are given by:

(A7) Cov(F)u = E [F(X(i(k), X(j(h)] = E[(/(X,V))’] = 0?

where X,Y are drawn i.i.d from the trait distribution, and o2 is the variance in

f(X,Y). Thus, the diagonal entries of the covariance are identical.

The off-diagonal entries are E [f(X (i(k)), X (j(k))) - f(X (1)), X (4(1)))] -

Suppose the edges k and [ do not share an endpoint. Then i(k) # i(l) or j(I)
and j(k) # i(l) or j(I). Then f(X(i(k)),X(j(k))) is a function of two random vec-
tors, and f(X(i(1)), X (5(1))) is a function of two other random vectors, where the
pair of random vectors are independent. It follows that f(X(i(k)), X (j(k))) is inde-
pendent of f(X(i(k)),X(j(k))). Then, since competition is fair for all alternating
performance functions, Cov(F), = E[f(X((k)), X(j(k))) - f(X (1)), X(H1)))] =
E[f(X k), XGEENE[F(XE(D)),X(F(1)))] = 0. It follows that the support of the
covariance matches the adjacency structure of the edges of the competition network.

If the edges do share an endpoint, then there are four possibilities. Either i(k) =
i(l), (k) = 5(1), i(k) = j(), or j(k) = i(l). We say that the edges are consistently
oriented if they share either the same starting point or the same ending point, and
are inconsistently oriented if the endpoint of one is the start of another. Since all the
trait vectors are drawn i.i.d., we suppress the indices and let the three trait vectors
Y, W, Z be drawn i.i.d. from m,. The performance function is alternating, so:

ELF(Y, W) (Y, 2)] = E[f(W, V) }(Z,Y)] = po
E[f(Y,W)f(Z,Y)] =E[f(W.Y)f(Y,Z)] = ~E[f(Y,W)[(Y,Z)] = —po®
where p is the correlation coefficient between f(Y,W) and f(Y,Z). Notice that a

positive correlation indicates that the probability that A beats B is increased by
conditioning on the event that A beats C.

(4.8)
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Competitive Network Edge Graph

Fi1G. 8. The edge graph (right) associated with a competitive network (left). The middle panel
shows an intermediate graph where a node has been introduced for each edge. The edges of the
competitive network become the nodes of the edge graph. The edges of the edge graph correspond to
nodes in the competitive network that are the shared endpoint of a pair of edges. These are labelled
with a + or — to indicate whether the edges are consistently or inconsistently oriented with respect
to the shared endpoint.

The edge graph is the graph with a node for each edge in the competition network,
and with an undirected edge between nodes corresponding to connected edges in the
competition network (Figure 8). Let Ag be the weighted adjacency matrix for the
edge graph with ag,; = +1 or —1 if edges k and [ are consistently or inconsistently
oriented with respect to a shared endpoint. Then:

(4.9) Cov(F) = o*[I + pAg].

The weighted adjacency matrix Ag for the edge graph is equal to GGT — 21 since:
2if k=1
1ifi(k) =i(l) or j(k) = j(1)
—1ifi(k) =7() or j(k) =i(l)
0 else

(4.10) [GGT )i = (esn) — €jy) " (i) — €50)) =

where e; € R is the indicator vector for node i. Thus we establish (4.5).

All of the absolute measures of the strength of competition (squared) are given by
the squared length of the orthogonal projection of the edge flow onto some subspace.
Let Pg be an arbitrary orthogonal projector onto some subspace S. By construction,
the edge flow is zero mean, therefore, by equation (4.1), the expected value of the
associated measure is:

(4.11) E [||Fs||?] = trace(PsCov(F)).

The intensity of competition, ||F||?, corresponds to the projector I, ||F}||? cor-
responds to the projector P, and ||F.||?> corresponds to the projector P.. Then, by
equation (4.11):

l 2 _l _E 2 _ 2
(4.12) E [E||F|| ] = Etrace(Cov(F)) =50 =0

This formula establishes that the absolute strength of competition only depends
on the variance o2 in each individual performance function.
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To compute || Fy||?, use equation (4.11) with projector P;:

1 1 2
E [||Ft|2} = —trace(P,Cov(F)) = 7 trace (P + p(GGT —21)])
(4.13) E v L7 .
o po 2p0
= Etraee (P) + Ftrace (P(GG™)) — Ttrace (P) .

The trace of an orthogonal projector equals the dimension of the subspace it
projects onto, so trace(P;) = V — 1. The range of GG is in the range of G, which
is the subspace P; projects onto. It follows that P,GGT = GG' so trace(P,GGT) =
trace(GGT) = 2F (see equation (4.10)). Therefore:

DAY, P
E g

414) E |:;||Ft||2} _ 2 [Vb: Pk Ve 1)}

[V —1 L
T .
Since L > 0, E[4||F;|[%] increases monotonically in p: the larger p, the more A
beating B is correlated with A beating C, implying transitive competition.
Then, by the orthogonality of the decomposition f = f. + f;:

@1s) B[ GIRIR| =B | ZIFR] - B | ZIRIE] =021 - 201,

It follows that the expected absolute strength of cyclic competition is monoton-
ically decreasing in the correlation coefficient p. Note that, as when considering the
generic null models, dense networks promote cyclic competition.

To conclude, we show that p € [0,1/2], so the expected measures are maximized
and minimized when p is 0 or 1/2, respectively.

The correlation p is nonnegative since W and Z are i.i.d., thus f(y, W) and f(y, Z)
are also i.i.d. for all y. Then:

o?p = Evaw 2 [f(Y, W) £(Y, 2)] = / Euw.21f (0 W) £y, Z)]ms (4)dy
(4.16) B

- / Euw [ (5. WIEZLf (v, Z)]ms (v)dy = / Euw [ (4, W) (y)dy > 0.
RT RT

Here expectation is taken with respect to the variables in the subscript.
To prove that p < 1/2, note that all covariance matrices are positive semi-definite,
so, for any vector wu:

(4.17) uw?'Cov(F)u = o?u™ (I + p(GGT —2I))u = o*(1 — 2p)||u||* + pu” GGTu > 0.

If E > V — 1, then the network has at least one loop, so the range of C” is
non-empty, hence the null-space of GT' is non-empty. Choosing u perfectly cyclic sets
GTu =00 0*(1—2p)||ul|? > 0 which requires p < 1. If E =V —1 then the network
is a tree, so all competition is necessarily perfectly transitive.

It follows that the expected absolute strength of transitive competition is mini-
mized when p = 0, and maximized when p = 1/2. In contrast, the expected strength
of cyclic competition is maximized when p = 0, and minimized when p = 1/2.

If p = 1/2 then E[||F.||?] = 0. The measure is nonnegative for all edge flows.
Therefore, its expected value is only zero if the probability that ||F.||*> # 0 is zero.
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> Var(E[f (X,V)|X]) — 0?p—> cov(f(X, V). f(X,W)) — E[IF]I”] —<
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Conditioned on Traits of Competitors
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Performance Competition

Fic. 9. A schematic representing the conclusions of Theorem 4.1 and Corollary 9.1. The left
hand side decomposes the uncertainty in performance into the uncertainty in the expected perfor-
mance given X, and the expected uncertainty in the performance, given X. These uncertainties
are converted into p and v which describe the correlation structure of triples of competitors. The
sizes of p and v, plus the topology of the network, determine the expected sizes of the transitive and
cyclic components. Thus we convert a decomposition of the uncertainty in the performance into a
decomposition of the intensity of the edge flow representing competition.

In this case, the tournament is arbitrage free. It follows that, if p = 1/2, then the
tournament must be perfectly transitive.'* 0

Theorem 4.1 establishes that the expected degree to which competition is transi-
tive or cyclic depends principally on the density of the network, and the correlation
structure of F'. In particular, the degree to which a network is cyclic or transitive
depends on the correlation between the performance of A against B with the per-
formance of A against C'. The larger this correlation, the more consistently each
competitor performs, hence the more consistent the network is with a set of ratings.

The variance o2 and the correlation coefficient p could be computed given an
assumed trait distribution 7, and performance function f(x,y). This could be done
analytically if 7, and f lead to simple calculations. Otherwise, ¢2 and p can be
approximated numerically by sampling or quadrature. The analytic method follows.

Suppose that X,Y are drawn from a sample space Q which is a subset of R”.
Then, for trait distribution 7,:

BB o U @ )ma)dy) (o) de
]EX,Y[f(X’ Y)Q] fQ fQ [z, y)zm (y)ms(x)dydx

Note that the correlation coefficient is only large if it is possible to find some set
of traits which are expected to perform either well or poorly on average, and if these

(4.18)

Note that p = 1/2 guarantees perfect transitivity but p = 0 does not guarantee that the

tournament is perfectly cyclic. A counterexample suffices to explain why. Suppose each competitor
chooses rock, paper, or scissors uniformly and independently. Suppose there are three competitors
and the tournament is complete. Then, in order for the tournament to be perfectly cyclic, rock
must be chosen by one competitor, scissors by another, and paper by the last. There are 6 ways
this can happen but 27 possible tournaments, so there is a 21/27 chance the tournament is perfectly
transitive. Note that if the network is dense and p = 0 the network may be predominantly, if not
perfectly, cyclic.
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traits occur sufficiently often. That is, there must be some z such that |Ey[f(z,Y)]|
is large, and 7, () is not too small. From this expression, it is not surprising that the
expected strength of transitive competition is monotonically increasing in p. If there
is a set of traits x which, on average, either overperform or underperform against
randomly drawn opponents, and are frequently sampled, then a random sample of V'
competitors is expected to include some who perform well, and some poorly, against
their neighbors. If, on the other hand, the expected performance conditioned on
traits = is close to neutral, then p is small and competition is expected to be cyclic.
In a rock-paper-scissors style game in which competitors are randomly and uniformly
assigned rock, paper, or scissors, conditioning on receiving a particular trait does not
change the probability that an individual with that trait will win most contests, hence
the tournament is expected to be highly cyclic if L is large relative to V.

Another way to read (9.3) is as follows. Define the expected performance of
traits = to be Ey[f(z,Y)]. Then, since Ex[Ey[f(X,Y)]] = Exy[f(X,Y)] = 0,
Ex[Ey[f(X,Y)]?] is the variance in the expected performance given X. Therefore
p is the ratio of the variance in the expected performance given X to the variance
in performance. A large variance in the expected performance means we are likely
to sample some competitors who perform well, or poorly, against most opponents.
Consequently, the sampled edge flow is expected to be more transitive than cyclic.

Rereading Theorem 4.1 in this way leads to the following insight:

COROLLARY 4.2. If the traits W, X,Y are sampled independently from mw, and
F = f(X,Y) then the correlation coefficient p is proportional to the variance in the
expected performance:

1 1
(4.19) p = —5Cov(J(X,Y), F(X,W)) = — Var (E[F|X]).
Let v be the expected variance in the performance:
1
(4.20) V= ;E [Var(F|X)].

Then v = L Var[f(X,Y) — f(X,W)] = 1 — p, so E[||F¢|[*] is monotonically
increasing in v and E[||Fy||?] is monotonically decreasing in v.

The proof is provided in the supplement and follows from the law of total variance,
(4.21) 0? = Var(F) = E [Var(F|X)] + Var [E(F|X)] = o%(p + v).

Theorem 4.1 identifies which statistical feature of the trait distribution and perfor-
mance function promotes transitive and suppresses cyclic competition. Corollary 9.1
identifies which feature suppresses transitive and promotes cyclic competition. Tran-
sitive competition is promoted by uncertainty in expected performance, Var[E(F|X)],
and suppressed by expected uncertainty, E[Var(F|X)]. Conversely, cyclic competition
is suppressed by uncertainty in expected performance, and promoted by expected un-
certainty. If the expected uncertainty in performance is large, then performance is
competitor dependent, hence competition is mostly cyclic.

Theorem 4.1 and Corollary 9.1 provide conceptual bridges between uncertainty in
the edge flow, correlation structure on adjacent edges, and network structure (see Fig-
ure 9). They establish the intuitive statements that conclude the introduction (p. 4).
For example, the expected uncertainty in the performance of A against a random
competitor is 02y = LEx[Vary (f(X,Y)|X)]. Thus, “the less predictable the perfor-
mance of A against a randomly drawn competitor, the more cyclic the tournament”.
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By the equivalence of Ex[Vary (f(X,Y)|X)] to Var(f(X,Y) — f(X,W)), “the more
the performance of A depends on their opponent, the more cyclic the tournament.”

4.3. Generalization. The trait-performance assumptions are not valid for all
tournaments of interest.

Nevertheless, the conclusions of the trait-performance can be generalized to sit-
uations where the assumptions do not hold. We propose three generalizations. First
we consider a situation where performance is only partially determined by traits. Sec-
ond, if the network is complete, then the established relationship between expected
structure and correlation holds when p is replaced with its empirical estimate. The
empirical correlation depends only on the observed network, so the relation is an alge-
braic fact that is true for all complete networks, whatever the underlying distribution.
Third, the trait-performance results hinged on a canonical form for the covariance in
the edge flow (4.5). If an edge flow distribution has covariance in the canonical form,
then the expected structure of the network satisfies (4.6). Thus, the conclusions re-
lating structure to correlation hold for any edge flow distribution with covariance in
the canonical form, whether or not that distribution came from a trait-performance
model. If we assume a priori that our distribution has a covariance in this form, then
p is a single parameter that tunes the sampled networks structure.

To start, what if performance is influenced by some random factors (such as
unmeasured traits) in addition to a set of measured traits? Decompose Cov(F') using
the law of total variation. The first term in the decomposition would be the covariance
in the the expected log-odds given the traits, which is a function of randomly drawn
traits, so would take the canonical form (4.5) where the performance function f(x,y)
is replaced with E[F|z,y]. Then, since E[||F}||?] and E[||F.||?] are linear in Cov(F),
the expected sizes of the transitive and cyclic components could each be expressed as a
combination of a term contributed by the uncertainty in traits, and a term contributed
by the uncertainty in performance given traits. The first term would simplify in the
standard way, so the influence of the measured traits on expected network structure
would follow as in the trait-performance theorem.

Second, we define the empirical correlation p(G=) and variance 0?(G=) associated
with a particular competitive network G—=. The empirical variance and correlation
are estimators for the variance and correlation given the observed network. The
empirical correlation is the covariance in the edge flow over all pairs of edges sharing
an endpoint, divided by the empirical variance in the edge flow. Note that we only
have one observation of f per edge, so we need to make some assumption about the
expected value of the edge flow. We compute both the covariance and variance under
the assumption that the expected edge flow is zero on each edge k. The assumption
is valid provided that we would have no way to predict the sign of fj (whether i(k)
or j(k) usually wins) from the network topology alone. Then, p(G=) is the average
value of agp fik);k)figr)j) over all pairs of edges k, [ that share an endpoint, where
app; = 1 if the edges are consistently oriented, and ag,, = —1 if the edges are
inconsistently oriented. The empirical variance 02(G=) is simply +||f]|*.

LEMMA 4.3. If the competitive network is complete, has V wvertices, E edges, L
loops, empirical variance 0(G=), and correlation p(G=) then:

1
1 decompose E||ft||2 = OQ(Q(:,)
(4.22)  ZIIfIP = 0*(G=) =

HIIP = 2(G=) (1 - 20(62)
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FiG. 10. Transitivity and intransitivity of sampled networks with varying edge density, number
of competitors, and correlation p. Each row represents networks with a fived ratio L/E where L is
the number of loops, E — (V — 1), and E is the number of edges. FEach column represents a fized
correlation p. When p = 0 the edge flows on all edges are independent. When p = 0.5 the randomly
sampled networks are all perfectly transitive. The blue shaded region is a heat map representing
10* sampled networks with 20 competitors. The red shaded region is a heat map representing 104
sampled networks with 300 competitors. The topology of each network is sampled randomly from
the family of connected Erdos-Renyi networks. The edge flows are sampled from the multivariate
Gaussian distribution with mean zero and covariance of form (4.5). The solid black line represents
the expected relative sizes of the transitive and intransitive component predicted by equation (4.6).
The dashed black line represents the expected total intensity of competition, 2. The intersection of
these two lines gives the expected absolute sizes of the transitive and intransitive components. Notice
that the trait-performance theorem correctly predicts the relative and absolute sizes of the transitive
and intransitive components as a function of L/E, o, and p. Moreover, the more competitors in the
network, the tighter the agreement to the expected sizes.

The proof is provided in the supplement.

Third, the conclusions of the trait-performance theorem relating correlation and
topology to structure hold as long as the edge flow F' has covariance in the canonical
form (4.5). The trait-performance assumptions guarantee that the covariance takes
this form, but an edge flow F' may have a covariance in this form whether or not
it is related to an underlying trait-performance model. Thus the conclusions of the
theorem generalize to all edge flow distributions with covariance of the form (4.5).

It follows that we can use the trait-performance results to design families of null
models with tunable structure. For example, suppose that we are given a specific
network topology. Then we could sample F' from the multivariate Gaussian distri-
bution with mean zero and covariance chosen to match (4.5). By choosing o2 and
p we uniquely specify the edge flow distribution. Then the expected absolute and
relative sizes of the transitive and cyclic components would be directly controlled by
the choice of o2 and p. We could tune the overall intensity of competition by varying
02, and the relative degree of intransitivity by varying p. Results from null models of
this kind are demonstrated in Figure 10. The figure demonstrate that it is possible
to define null models with a chosen degree of transitivity by tuning the correlation p.

Null models of this kind could be useful since many empirical studies involve
complex competition events where reasonable statistical modelling of sampling error
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is difficult [16, 79]. Absent a statistical error model, the observed edge flow must be
treated as truth, so significance must be computed with respect to a null distribu-
tion. The standard test approximates significance relative to a uniform distribution
of dominance relationships (sign of the edge flow) on a complete network [2, 15, 35].
This significance is only useful so far as the uniform null model is a plausible model
for competition, or as it restricts the space of possible competition structures. The
fact that most studies identify significant transitivity suggests that the uniform dis-
tribution is rarely plausible. Failure to match a uniform distribution also does not
limit the competitive structure significantly, since, as demonstrated above, it is easy
to construct null models that produce intermediate levels of transitivity.

In fact, complete networks with edge flow drawn uniformly are the most cyclic
edge flow distribution with covariance of the form (4.5) since they are simultaneously
as dense and uncorrelated as possible. Complete networks with uniform i.i.d. edge
flow live in the upper left-hand corner of Figure 10. It is not surprising that most
empirical networks are more transitive than the most cyclic ensemble. For this reason,
significance computed against the uniform complete null model may depend primarily
on the number of imputed edges, as observed in [63, 37, 22], rather than true structure.

The family of null models proposed here could generalize the standard random-
ization test in two useful ways. First, it allows for arbitrary network topology, so
does not require imputing missing edges which reduces the strength of the test [63].
Second, the expected degree of transitivity in the null model can be tuned using one
parameter, p. Once p is chosen, we could compute the probability of observing a
network that is more or less transitive or intransitive relative to random networks
with correlation p. Thus significance could be measured against a flexible range of
networks with varying degrees of transitivity. Then it would be possible to search
over p € [0,0.5] to find the largest and smallest p which produce random networks
with significantly different structure than the observed network. The interval between
these upper and lower bounds on p would define an interval in each transitivity mea-
sure that could plausibly correspond to the observed network. Thus, expanding the
family of null models would allow more flexible, informative, significance testing, as
well as interval estimation of the measures of competitive structure.

5. Discussion. The discrete HHD provides a natural, unified method for rank-
ing and measuring intransitivity via a decomposition into perfectly transitive and
cyclic components. The expected size of these components can be computed from
the correlation structure of the edge flow. Using a trait-performance model simplifies
this structure. We provide an illustrative example in the supplement. Note that the
trait-performance conclusions are valid whenever the assumptions hold, whether or
not the relevant traits or performance function are known. Thus the assumptions can
be tested by checking whether the observed correlation structure matches (4.5).

Further theoretical work could address random network topologies. If the network
is sampled independently of the edge flow then the results of Theorem 4.1 are largely
unchanged, so one might consider random networks whose topology is coupled to the
competitor traits. For example, neighbors in the network might have correlated traits.
Future work could also investigate null models with different covariance structures.

We emphasize that the HHD can be applied to analyze a tournament independent
of a null model. Code for implementing our methods are available on github. In
particular, our methods can be extended to analyze data from real tournaments. By
studying win-loss records it is possible to infer the log odds, and thus estimate the
components of the HHD. The estimation problem is saved for future work.
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Supplementary Materials
6. Proof of Lemma 3.1.

LEMMA 6.1 (Arbitrage Free). A tournament is arbitrage free if and only if there
exists a unique set of ratings r with average rating equal to zero such that the win
probabilities satisfy p;; = logistic(r; —r;) '°. Moreover if a tournament is arbitrage
free then it is transitive.

Proof. Suppose that a tournament is arbitrage free. Then it must satisfy the cycle
condition. The cycle condition requires that the path sum of f around any cycle is
zero. Consider two paths P; and P, both starting at A and ending at B. The value
of the path sum over P; minus the path sum over Py equals the path sum around
a cycle following P; from A to B, then following the path Ps backwards from B to
A. The path sum around any cycle is zero, thus the path sum over P; and P, must
be equal. It follows that, for any pair of endpoints A, B, the value of the path sum
of f over a path connecting A to B only depends on A and B and is otherwise path
independent.

To recover the associated ratings, pick an arbitrary spanning tree of the network
and an arbitrary starting competitor A.'® Then let up equal the path sum of f over
the path connecting A to B in the tree. Then u are ratings relative to competitor
A. Path independence guarantees that the values u depend only on the choice of A,
not the choice of spanning tree. To eliminate the dependence on A, center the ratings
by subtracting off their average. Let rg = ug — % Zz/:l u;. Then r are unique and
independent of the choice of tree and A, and, by construction, ), r; = 0. It remains to
show that r; —r; = f;; for all connected pairs %, j. This equality holds by construction
for all 4, j that are connected through an edge in the spanning tree. Consider an edge
not in the spanning tree (a chord) connecting ¢ and j. Let i1 = A,is,...,4; = i and
j1=A,jo,...,jk = j be the paths from A to ¢ and j through the spanning tree (see
Figure 11). Then, the path sum from j to ¢ in the tree equals r; — r;:

-1 k—1 2 -1
TP =Ty = U — Uy = E Jinirin — E Jini1in = E Jin_1in + E Jinsirin
\_v_/ — — —

n=1 n=1 n==k n=1

Rating difference

sum A to i sum A to j sum j to %

The chord connecting j and i also defines a path from j to i. Since path sums
are path independent when the network is arbitrage free, the path sum over the chord
ij equals the path sum through the tree. The path sum over the chord is f;; so
fi; = ri — r;. Therefore, if a tournament is arbitrage free then there exist a set of
ratings r such that r; — r; = f;;. Then, since f;; = logit(p;;), p;; = logistic(r; — ;).

Suppose that p;; = logistic(r; — ;). Then f;; = r; —r; for all connected i, j, and,
given a path 41,42, ...,%, the sum fi, i, + figio +.--fi i, =7, —Ti, as it telescopes.
If the path is a loop then i,, = i; so the sum equals zero. But then f satisfies the
cycle condition, so the tournament is arbitrage free.

Suppose the tournament is arbitrage free. Then p;; = logistic(r; —r;) for a unique
set of ratings r. This means that p;; > 1/2 if and only if r; > r;. It follows that
A > B if and only if r4 > g, so the win probabilities are consistent with the ranking
induced by the ratings r, thus the tournament is transitive. |

5]ogistic(x) = logit 1 (z) = 1/(1 + exp(—=x)).

16 A spanning tree is a subgraph of the network that contains no loops, includes all competitors,
and is connected.

This manuscript is for review purposes only.



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

32 A. STRANG, K. C. ABBOTT, AND P. J. THOMAS

Fic. 11. The spanning tree construction for recovering the ratings for an arbitrage-free tour-
nament. The tree is shown with solid lines, and the chords with dotted lines. The root of the tree,
A is marked in grey. Two wvertices, i and j connected by a chord ij, are shown in blue and green
respectively. The sequence of nodes leading from A to i and j are labelled. Then, by the cycle
condition, the sum around the loop marked with arrows is zero, hence fij = r; —r;.

7. Proof of Lemma 3.2.

LEMMA 7.1 (favorite free). A favorite free tournament is cyclic, and is never
transitive unless p;; = 1/2 for all connected i, j.

Proof. Suppose that a tournament is favorite free. Then > JEN; fi; = 0 for all 4.
This leaves two distinct possibilities, either f;; = 0 for all j € N(4), or there is some
j such that f;; # 0. The former case requires p;; = 1/2 for all j € N (i). We will refer
to this case as the neutral case. If the neighborhood of i is not neutral then f;; # 0
for some j € N(4). Since the sum over all j is zero this means that there must be
at least one other edge ik such that sign(f;;) = —sign(fix). Thus, if there is an edge
into competitor 7 in G_, there must also be an edge out of 7 in G_,.

Since the neighborhood condition can be extended from the neighborhood of
competitors to the neighborhood of sets this property also extends to sets. If there is
an edge into the set S in G_, then there must also be an edge out of the set.

Now suppose that there is a path from A to B in G_,. It remains to construct a
path back to A.

Define the nested sets So(B), S1(B), .. .,, where S4(B) is the set of all nodes that
can be reached from B with a path in G_, of length less than or equal to d. Since there
is a path from A to B in G_, there is an edge in G_, arriving at {B} = So(B). Thus
there is a path from A to all competitors in S;(B). Now there are two possibilities,
either A is in S1(B), or A is not in Sy(B). If A is in S;(B) then we are done. If
not, then there is an edge entering S;(B) in G_, since there is a path from A ¢ S;(B)
to B € S1(B). Then the neighborhood condition implies that there is an edge out
of S1(B), which means that S3(B) # S1(B). Now the logic repeats. Either A is in
Sa(B), in which case we are done, or it is not. If it is not then there must be an edge
entering Sa(B) so there must be an edge leaving S2(B) so S3(B) # S2(B). As long as
A ¢ S4(B) there is a larger set Sg41(B) # Sq(B) which can be reached from B. Since
we assumed that there are finitely many competitors this can only continue until A
is contained in Sq(B) for some B. See Figure 12 for illustration.

Suppose that the tournament is transitive, favorite free, and not neutral. Since it
isn’t neutral there must be at least one pair ij such that p;; > 1/2. This means that
R; < R; and there is an edge from j to ¢ in G_,. But, if the tournament is favorite
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F1a. 12. A favorite free tournament must be a cyclic tournament. The arrows represent the
direction of competition. If the network is favorite free then if there is an edge pointing into a set
there must be an edge pointing out of it. A path from A to B is shown in black. Then the sets
S1(B), S2(B), S3(B) are shown as shaded polygons. These contain all competitors distance 1, 2,
and 8 (respectively) from B. These sets continue to expand until they include A, hence there is a
path from B to A.

free then there must be some other path from ¢ back to j in G_,. Then R; < R; since
there is a path in G_, from j to ¢. This is clearly a contradiction. Therefore, a cyclic
tournament is not transitive unless it is neutral: p;; = 1/2 for all ij A7 ]

8. Interpretation of Corollary 3.6.

COROLLARY 8.1 (Equivalent Formulations). The following siz decompositions
are equivalent:
1. f=fi+ f. where f; is arbitrage free and f. is favorite free;
2. f = fi+ f. where f; = Gr for some rating r and f. = CTv for some vorticity
v;
3. the ratings r solve the constrained least squares problem:

v
(8.1) Minimize ||Gu — f|[>* given u € RV and Zul =0
i=1
and ft = GT, fc = f - ftf'
4. the vorticities v solve the least squares problem:
(8.2) Minimize: ||[CTw — f||22 given w € RE

and fo = OT'Uaft =f—fe

5. f = ft + fc where fy = Gr for the unique ratings r such that the circulant
f — fi is favorite free;

6. f = fi + f. where f. = CTv for the unique vorticities v such that f — f. is
arbitrage free.

The first decomposition separates f into a pair of flows each defined by what it
is not: namely, one is not circulatory, and the other has no tendency to diverge or
converge. The second decomposition separates f into a pair of flows each defined by
what they are: namely, one is perfectly transitive, and the other is perfectly cyclic.
The equivalence of these two decompositions was established by Theorem 3.5.

17This shows that the two classes of tournaments are distinct, as their only overlap is the neutral
case. Note that a neutral tournament is considered transitive since it can be consistently ranked -
all competitors should be ranked the same.
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The next two decompositions are based on fitting problems. In each case the goal
is to represent f as nearly as possible when restricted to the range of an operator.
Decomposition 3 searches for a set of ratings r such the error, Gr — f, is minimized in
the least squares sense. This means that the ratings produced by the HHD are a type
of least squares rating, in particular, log least squares rating [6, 41, 42]. Least squares
ratings methods are widely used [14, 34, 45, 51, 72, 73]. Decomposition 3 also shows
that the HHD is equivalent to finding the nearest perfectly transitive edge flow.

Similarly, Decomposition 4 searches for a set of vorticities v such that the error
CTv — f in approximating f with CTv is minimized in the least squares sense. This
is equivalent to finding the nearest perfectly cyclic edge flow. Although the literature
has focused almost exclusively on Decomposition 3, Decompositions 3 and 4 are dual
to one another. This parity in approach sets the HHD apart from existing methods.

The final two decompositions are defined by enforcing a constraint on the residue
when approximating f with either the gradient of a set of ratings or the curl transpose
of a set of vorticities. These approaches can be motivated as follows. Suppose one
sought a rating r such that Gr approximated f. The error in this approximation
(the circulant) is Gr — f. As long as the divergence of the circulant is nonzero the
approximation has not captured a tendency of the edge flow to either point inwards
towards, or outwards from, a competitor. If the net flow into a competitor is positive,
then that competitor tends to outperform their neighbors in a way that the ratings
fail to capture. Therefore it would be natural to adjust the ratings until the net flow
into or out of any set of competitors is zero. That is, until the divergence of the
circulant is zero, or equivalently, the circulant is favorite free.

The final decomposition can be motivated similarly. Define the divergent, CTv— f
to be the error upon approximating f with vorticity v. As long as the curl of the
divergent is nonzero, the approximation has failed to capture some tendency of f
to circulate. This tendency to circulate is exactly what the vorticities are meant to
capture, so it is natural to look for a v such that the curl of the divergent is zero on
every loop. That is, until the divergent is arbitrage free.

9. Proof of Corollary 4.2.

COROLLARY 9.1. If the traits W, X,Y are sampled independently from m, and
F = f(X,Y) then the correlation coefficient p is proportional to the variance in the
expected performance:

(9.1) p= 5 Cov(f(X,Y), f(X, W) = — Var (BIF|X)).

Let v be the expected variance in the performance:
1
(9.2) v= ;E [Var(F|X)].

Thenv = Var[f(X,Y)—f(X,W)] = 1—p, so E[||F.||?] is monotonically increasing
in v, E[||Fy||?] is monotonically decreasing in v.

Proof. The proof of equation (9.1) follows from the explicit expression for p:

_ JoUs e, y)me(y)dy)” 7o (2)de _ Ex[Ey[f(X, V)]
fQ fQ f(xa y)27rm (y)ﬂ—x (’Jj)dyd’l;’ ]EX,Y[f(Xa Y>2]

Then, since E[F| = 0, Ex[Ey [f(X,Y)]?] = Var(Ey[f(X,Y)]) = Var(E[F|X]).

(9.3)
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1268 Next, v =1 — p follows from the law of total variance:

1260 (9.4) 0? = Var(F) = E [Var(F|X)] + Var [E(F|X)] = o%(p + v).

1270 Since E[||F.||%] is decreasing in p, it is increasing in v. Similarly, since E[||F}|[?]
1271 is increasing in p, it is decreasing in v.

1272 The intermediate expression for v follows from o?v = 02(1 — p) = Var[f(X,Y)] —
1273 cov[f(X,Y), f(X,W)]. Since Y and W are iid., Var[f(X,Y)] = 3(Var[f(X,Y)] +
1274 Var[f(X, W)]). Substituting in gives 0?v = 1E[(f(X,Y)—f(X,W))?]. Since E[f(X,Y)]}}
1275 equals E[f(X, W)] this raw second moment is the variance in f(X,Y) — f(X,W). 0O

1276 10. Proof of Lemma 4.3.

1277 LEmMA 10.1. If the competitive network is complete, has m wvertices, E edges,
1278 L =FE — (m — 1) loops, empirical variance 0*(G=), and correlation p(G=) then:

1 V-1 I
1 2 2 decompose E||ft||2 = UQ(QS) ( B ) + 2p<g‘:>)E
2 (101) P = 0?(G=) 1 !
Fllfel® = 0*(G=) (1 = 20(G=)) &
1280 Proof. The empirical correlation p(Gs) is given by averaging sy ;fxfi over all

1281 pairs of edges k and [ that share an endpoint, then normalizing by the average of f7.
1282 The prefactor s ; = 1 if edges k and [ both start or both end at the same node, and
1283 equals —1 otherwise. The prefactor s is the k,! entry of the weighted adjacency
1284 matrix for the edge graph, Ag. The weighted adjacency matrix equals GGT — 21
1285 where G is the gradient operator. Therefore:

- E FHGGT —2D)f
; >k [GGT = 215 If

_ 2 (IIGTf|2 . 2)
S GGT =20l \ TITIR

1287 The sum in the denominator is twice the total number of pairs of edges sharing an
1288 endpoint. The factor of two cancels since each pair of edges is counted twice in the
1289 quadratic product in the numerator.

1290 For a complete tournament the projector from f to its transitive component is
1291 +GGT [74]. Therefore ||GTf||> = fTGGTf = VfTf,. But f = f; + f. where f.
1292 is orthogonal to f; since it is the projection of f onto the cyclic subspace, which

p(G=)
1286 (10.2)

1203 is perpendicular to the transitive subspace. Therefore fTf, = fffi = ||fi||* and
1204 fTGGTf =V||f:]
1295 For a complete tournament with V' competitors there are V —1 edges leaving each

1206 competitor and V(V —1)/2 edges total. Therefore, each edge shares an endpoint with
1207 2(V — 2) other edges, so there are V(V — 1)(V — 2)/2 distinct pairs of edges sharing
1298 an endpoint. The cyclomatic number in a complete graphis V(V —1)/2—-(V —-1) =
1200 (V= 1)(V — 2)/2. Therefore L = (V — 1)(V — 2)/2, and }_, ,|[GGT — 2]],;| =
1300 V(V—-1)(V—-2)=2VL. 7

1301 Thus:

2
1302 (10.3) p(Gs) = QVLL (V|I|ff|t|2| - 2)

[\
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Solving for || f;||? gives:

2 L
(10.9 102 = 1171P (5 +20(0-) 5 )

In a complete network (V—1)/E = 2/V since E = V(V —1)/2. Then, substituting
in ||f||? = Eo?(G=) yields the desired result:

1 V-1 L
(10.5) E||ft||2 =0%(G=) <E =+ QPE)

Since f.+ fi = f and f,. is orthogonal to fi, ||fe||> = || f||> = || f¢||>. Therefore:

(10.6) SRR = 0%(G=)(1 ~ 2p(G=) 5 0

11. A Trait-Performance Example. Suppose that each competitor has a set
of T traits. Assume that the traits are chosen so that the performance function f(x,y)
is non-decreasing in x;, and non-increasing in y;, for all j. This amounts to choosing
a sign convention for each trait so that increasing any trait improves performance.
Then a competitor with traits  has an advantage (in trait j) over an opponent with
traits y if x; > y;.

In some events, competitors with a large advantage in a given trait can dominate,
so that the event is primarily mediated by that trait. That is, competitors press their
advantages. For example, a performance function of this type is the extremal perfor-
mance function f(z,y) = x; — y;, where j is the dimension in which this difference is
largest in magnitude, j = argmaxj|xj — y;|. In the extremal performance model, the
performance is completely controlled by the largest advantage, so competitive events
are as one-sided as possible, given the competitor’s traits.

Consider, in contrast, a competitive event in which competitors cannot press their
advantages. For example: f(z,y) = z; — y; for the dimension j = argmin;|z; — y;|
that minimizes the advantage. This rule could model a contest in which competitors
are required to reach a consensus about how to compete in advance or, where the
weaker competitor controls which traits primarily mediate the competitive event.
Competitors could be motivated or compelled to compete without pressing advantages
by an external mediating body. For example, a sports league is motivated to keep
teams evenly matched, even if the individual teams are motivated to win.

Suppose that the traits are drawn i.i.d from either an exponential, Gaussian, or
uniform distribution. In each case, the variance of the trait distribution has no effect
on p so, without loss of generality, each distribution is chosen to have variance one.

We estimated the correlation coefficient p for all six models (two performance
functions, three distributions) with trait dimension varying from 1 to 25. To estimate
the correlation coefficient for a given model and trait dimension we sampled 109
triples of trait vectors X,Y, W and computed f(X,Y)f(X,W). Averaging over all
108 triples gave an empirical estimate for the covariance, which was then normalized
by an empirical estimate of the variance o2. Figure 13 shows the results.

For all three choices of trait distribution, p(T') was larger if the extremal advan-
tage model was used instead of the fair-fight model. This indicates that, the more
competitors can press their advantages, the more transitive competition is, on average.
This is not surprising, since in the fair-fight model, the traits mediating performance
for competitor A against competitor B are likely different from the traits mediating
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F1G. 13. The correlation coefficient p for two different performance functions and three different
trait distributions as a function of the number of competitive traits. FError bars represent three
standard deviations in the estimated correlation coefficient. The “Press Your Advantage” panel
shows p(T) for the extremal performance model: f(x,y) = x;—y; for j that mazimizes the difference.
The “Fair Fight” panel shows p(T) for f(x,y) = x; —y; for j that minimizes the difference. In all
cases the correlation coefficient is higher in the ‘Press-your-Advantage” model than in the “Fair-
Fight” model. In both panels the correlation coefficient is larger for exponential than Gaussian traits,
and Gaussian than uniform traits. In all cases p(T) decreases with increasing trait dimension. The
corresponding variances o2 are computed in the supplement.

competition between A and C. As a result, the success of competitor A is highly
competitor dependent. Thus competition is more cyclic.

Note that this conclusion is much easier to test using the trait-performance theo-
rem than by sampling a series of random edge flows. We only needed to sample trait
vectors for triples of competitors to evaluate p. This simplification greatly reduces
the sampling cost.

In all six models tested, p(T) is decreasing in T, so the expected proportion
of competition that is cyclic is increasing. This matches the results in [44], where
increasing the trait dimension typically decreased the expected degree of transitivity.
This is intuitive, since larger T allows more ways for two competitors to compete, so
it is harder to assign a single rating to a competitor.'®

When using the extremal performance model the correlation p(T) decays much
faster in T for Gaussian and uniform traits than for exponential traits. This is be-
cause exponentially sampled traits are more likely to include large outliers. Since the
extremal performance model sets f to the largest trait difference, the performance is
more likely to depend on the outlier traits of each competitor. If a competitor has one
particularly large trait, and T is large, then it is unlikely that any other competitor
has a comparably large trait value in the same dimension. As a result, the competitor
with the largest trait usually competes along that dimension and their performance
against other competitors is fairly consistent. This leads to a relatively high p.

On the other hand, if the traits are drawn uniformly from [0, 1] then no competitor
can achieve a universal advantage by having one extremely large trait value. Instead,
as the dimension of the trait space increases, competitors succeed by having a large
trait value where their opponent has a small trait value - that is, by exploiting their

18Note that while this is often true it is not true for all trait-performance models.
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opponents’ weaknesses. In this situation, the relevant trait dimension that determines
the outcome of competition depends on whom each competitor competes with. Con-
sequently the correlation p becomes very small as T becomes large, so competition
becomes predominantly cyclic.

In the fair-fight model all three trait distributions produce nearly identical cor-
relations, since outlier traits do not mediate performance. Instead, performance is
mediated by average traits, since the smallest advantage X; — Y; is likely to come
from a trait dimension where both X; and Y; are close to their expected values.

This example illustrates the explanatory power of the trait-performance theorem.
By separating the influence of network topology from statistical assumptions about
competition, the theorem facilitates numerical hypothesis testing and affords deeper
insights by focusing the questions we ask about competitive tournaments.

12. Code Repository. A code repository is available at https://github.com/
AlexRunsAway/HHD_and_Trait_Performance. The repository contains a read me file
which explains the contents.
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