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Abstract

Homeostasis occurs in a control system when a quantity remains approximately con-
stant as a parameter, representing an external perturbation, varies over some range. Golu-
bitsky and Stewart (J. Math. Biol., 2017) developed a notion of infinitesimal homeostasis
for equilibrium systems using singularity theory. Rhythmic physiological systems (breath-
ing, locomotion, feeding) maintain homeostasis through control of large-amplitude limit
cycles rather than equilibrium points. Here we take an initial step to study (infinitesimal)
homeostasis for limit-cycle systems in terms of the average of a quantity taken around the
limit cycle. We apply the “infinitesimal shape response curve” (iSRC) introduced by Wang
et al. (STAM J. Appl. Dyn. Sys, 2021) to study infinitesimal homeostasis for limit-cycle sys-
tems in terms of the mean value of a quantity of interest, averaged around the limit cycle.
Using the iSRC, which captures the linearized shape displacement of an oscillator upon a
static perturbation, we provide a formula for the derivative of the averaged quantity with
respect to the control parameter. Our expression allows one to identify homeostasis points
for limit cycle systems in the averaging sense. We demonstrate in the Hodgkin-Huxley
model and in a metabolic regulatory network model that the iISRC-based method provides
an accurate representation of the sensitivity of averaged quantities.
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1 Introduction

“tous les mécanismes vitaux, quelque variés qu’ils soient, n’ont toujours qu’un
but, celui de maintenir I’unité des conditions de la vie dans le milieu intérieur.’

1“all the vital mechanisms, however varied they may be, have only one object, that of preserving constant the
conditions of life in the internal environment” — quoted in translation by [8].



— Claude Bernard [4], p. 121

Many problems in control, particularly in physiological systems, involve holding a quantity
steady despite variation of external conditions. Examples include stabilization of body tempera-
ture against changes in external temperature [29,130], maintenance of metabolite concentrations
in the face of fluctuating metabolic demands [31}34], and stabilization of blood pressure under
changes of body posture [23|132]. This form of robustness against sustained external pertur-
bations is called homeostasis [8]. Understanding mechanisms of homeostasis is an important
aspect of biological systems analysis.

In many instances, homeostasis involves a dynamical system with trajectories that converge
to a stable equilibrium point. As a parameter is varied, representing the external perturbation,
the location of the fixed point in an n-dimensional state space may shift, while the value of one
component of interest — representing the controlled quantity — remains approximately constant.
In this setting, there is a well developed theory for homeostasis based on singularity theory, de-
veloped by Golubitsky and Stewart [[15} (16} 22]]. These authors formulate “infinitesimal home-
ostasis” as the condition that the derivative of a particular component of the steady-state solution
with respect to the input parameter should vanish. This theory has been successfully applied to a
variety of biochemical and metabolic systems, each having a unique stable equilibrium for each
value of the input [2[34].

In contrast, in many physiological systems, the “locus of control” is not a dynamical fixed
point but rather a stable limit cycle. For example, in order to maintain approximately constant
concentrations of oxygen and carbon dioxide in the blood, the mammalian respiratory central
pattern generator produces ongoing large amplitude rhythmic activity that drives the biomechan-
ics of the airways and lungs [7, 9} 12, 14, 18], 135, 36} [37]]. Other examples include locomotion
[L, 3L 19} 41], in which the “objective” may be thought of as moving the center of mass for-
ward at a steady rate, despite variations in viscosity or steepness of terrain; and swallowing
[26l 138} 42]], with the quantity to be held constant representing the rate of intake of food, and
the perturbation coming from variable resistance of the food to being consumed. In general, the
quantity of interest may vary during each period of the limit cycle; in this paper we will assume
the mean value of some specified state space variable, averaged around the limit cycle, is the
quantity that is subject to control.

The singularity theoretic methods developed by Golubitsky and Stewart for studying in-
finitesimal homeostasis do not directly apply to systems in which the underlying dynamics is
oscillatory, except in special cases. The authors of [[10} [11], for example, investigated a system
undergoing a supercritical Hopf bifurcation, creating a small-amplitude limit cycle upon loss of
stability of an equilibrium point, as the input parameter varied. For certain examples of both
feedback- and feedforward-regulatory systems, the oscillatory output variable still remained
near a homeostatic plateau.

It would be desirable to develop a theory parallel to that established by Golubitsky and Stew-
art for systems in which the locus of control involves a limit cycle of unrestricted amplitude. To
emphasize the difference between fixed-point homeostasis and general limit-cycle homeostasis,
Fig.[1|shows a one-parameter family of limit cycles generated by the Hodgkin-Huxley equations
subject to a range of different driving currents. (See §3.2|for the HH equations.) As the injected
current I increases from 10 picoAmperes up to 150 pA, the period of the limit cycle decreases
and its shape — meaning the geometry of the point set corresponding to the closed loop of the
trajectory — changes as well. Thus, whereas identifying fixed-point homeostasis only requires
tracking the change in a scalar component of a static equilibrium under parameter changes, in-
vestigating homeostasis in a limit-cycle system potentially requires tracking changes in both
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Figure 1: One-parameter family of limit cycles generated by the Hodgkin-Huxley equations for
different values of the driving current I. Cf. (20) in §3.1] Left: Voltage (V) as a function of time
for 10 < I < 150 pA. Right: Closed orbits in the (V,n) plane for different values of applied
current /. Note that as the current increases, both the timing (period) and the shape of the orbits
changes.

shape and timing of the orbit.

In this paper we take a first step towards a theory of homeostasis for limit cycle systems,
by analyzing how the average of an arbitrary quantity responds to a sustained change in a pa-
rameter influencing the limit cycle dynamics. We find that the key quantity in the analysis is
the infinitesimal shape response curve (ISRC) recently introduced in [42]. The iSRC comple-
ments the well-known infinitesimal phase response curve (iPRC). The latter quantifies, to linear
order, the effect of an instantaneous perturbation on the timing of the limit cycle, and also cap-
tures the cumulative effect of a sustained perturbation on the limit cycle period. In contrast, the
iSRC captures the effect of a sustained or parametric perturbation on the shape of a limit cycle
trajectory, to linear order.

As the main contribution of the paper, we give a formula for calculating the derivative of the
average of any physical quantity of interest with respect to a sustained perturbation, provided the
quantity and the underlying dynamical system are sufficiently smooth. The iSRC as introduced
by [42]] is actually a family of curves related by an arbitrary phase shift (much as the asymptotic
phase function of a limit cycle oscillator is defined only up to an arbitrary phase shift). As a
second contribution, we show here that the arbitrary phase shift associated with the iISRC drops
out when calculating the sensitivity of a quantity of interest averaged around the limit cycle.
This result clarifies the (in)significance of the ambiguity arising naturally in the definition of the
iSRC, and comports with physical intuition: the sensitivity of a well defined average should not
depend on the coordinate system in which the sensitivity is measured.

After specifying the mathematical framework of the problem, and establishing our technical
results, we apply the iSRC analysis to two smooth example systems. First, we calculate the
iSRC for the well-known Hodgkin-Huxley model for action potential generation in the squid
giant axon, and show that we can accurately find the sensitivities of quantities such as the mean
voltage, the mean sodium current and the mean potassium current. Then, we calculate the
iSRC for two metabolic regulatory networks undergoing Hopf bifurcation, and compare our
results with those of [10]. In both cases we find excellent agreement between the sensitivities
calculated by the iSRC-based method and direct numerical finite difference calculations.



2 Mathematical formulation

Consider a one-parameter family of smooth dynamical systems on a domain D in R",
dx
—~=F 1
- =F(x¢) (1)
with state vector x € D C R", parametrized by ¢ € Z C R representing a (static) perturbation.

We make the following assumptions:

Al The vector field F is continuously differentiable in both x and e, i.e. the derivatives VxF',
OF /0e, OV «F /Oe and Vy (OF /O€) are well defined continuous functions for x € D and
eel.

A2 For e € T the system (I)) has a hyperbolic and asymptotically attracting limit cycle solu-
tion x = ~,(t) with finite period T¢, which we denote I, = {7(¢),0 <t < T.}. We
assume I, C D fore € 1.

A3 We assume that 0 € 7 and that the period can be written asymptotically for small € as
T. = Ty + €Ty + O(€?), 2)
where 0 < T < oo and [T} < oo.
Note that the linear term 77 is given by the well known formula
7= — /0 Ry ‘W o 3)

where z(t) € R™ is the “infinitesimal phase response curve” (iPRC) of the limit cycle, see
e.g. [20,25)]. The iPRC satisfies the adjoint equation with periodic boundary condition [6} [13]]

%=—Dwmmmw,duﬂwzdw “)

with the normalization condition

F(7(t),0) - z(t) = 1. (5)

We consider the homeostasis problem defined as follows. There exists a stable limit cycle
solution x = 7,(¢) for (I)) when € € Z, with period T.. We denote the quantity of interest by ¢,
and let Q represent the average of ¢ evaluated around ~.(t) for one period, so that

1

Te
0= [ty (©)

We define a homeostasis criterion for limit-cycle systems in terms of the vanishing derivative
of Q with respect to the control parameter, in analogy to the formulation by [[10] for fixed-point
systems:

Definition 1. The average Q of a quantity q exhibits infinitesimal homeostasis at €y if

0Q
- =0. @)
O€ | —c,
It has a simple homeostasis point if further
0?Q
£0. ©)
€ | ¢,
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In the following, we provide a method to calculate Q /e, allowing us to find homeostasis
points for the mean value of a given quantity in a rhythmic control system. For stronger home-
ostasis conditions given by higher-order consecutive derivatives, such as chair homeostasis with
zero first and second derivatives and nonvanishing third derivative [15], it becomes complicated
for limit-cycle control systems and we do not discuss its analytical calculation here.

2.1 Infinitesimal shape response curve

The infinitesimal shape response curve (iSRC) introduced in [42] is a key tool in our home-
ostasis analysis. In this section we present a new, simplified derivation of the iSRC under the
assumption that the underlying dynamical system is sufficiently smooth.

Fix a starting point pp on the ¢ = 0 limit cycle, and let S be a smooth Poincaré section
transverse to the flow at pg. Standard results on the persistence of invariant manifolds under
perturbation (cf. [44], §6.2) guarantee that for sufficiently small values of e[, the perturbed limit
cycle will intersect S at a smooth family of points

Pe = po + ep1 + O(€?). )

Here py is the point where the limit cycle intersects S, and p; € R" is an element of the tangent
space of S at pg. Let x = 7,(t) be the limit cycle solution beginning at p.. Following Wang et
al. [42]] we write

Ve(7e(t)) = 0(t) + ema(t) + O(€%) (10)

where 7¢(t) is a smooth, monotonically increasing function satisfying 7.(0) = 0 and 7. (t+7p) =
Te(t) 4+ Te. One such rescaled time coordinate is given simply by the linear scaling:

TE

Te(t) = ?Ot. an
With time suitably rescaled to accommodate any change in the period of the limit cycle, the
expansion (10) is uniform in time (cf. Lighthill’s method of “strained coordinates” as discussed
in [21] §6.3). The vector function ~y; (¢), periodic with period Tp, is defined as the infinitesimal
shape response curve (iSRC). The iSRC quantifies the linearized change in the shape of the limit

cycle trajectory I'. upon a static perturbation of the parameter e.
The authors of [42] define a nonhomogeneous variational equation for ~y; with the linear

time scaling (I1):

dy (t OF (o(t), €
1O DF(0(1),0m(0) + mEGo(0), 0+ 0N g
dt Oe =0
where v = % is independent of . Here we generalize their equation into a nonuniform/local

timing sensitivity case, for which we require an additional assumption:

A4 The functions 7, () and 7(¢) must be continuously differentiable in both ¢ and € (cf. [A1])
fore € 1.

The reasonableness of this assumption follows from the persistence of stable limit cycles under
parametric perturbation, assumption [A3] concerning the period, and the use of a Poincaré sec-
tion S to construct the intersection point pe, {pe} = SN I, which sets 7, (0), and the possibility
to specify the simple time rescaling (T1).

We denote

it = 24D,



whence 1 (t) = 7(t, 0). Differentiating i with respect to ¢ gives

)
K g ( > % (W) -5 (Fm(n(t)),e)agf))

( ()) )87—6() 0 87—6(t)
S Fadn. o5 (T )

_ (DF(fye(Te(t)),e)n(t, ) + HOArdt ))’e)> agf) FRGr0), ) o (agi :

Note that in the second step, changing the order of differentiation is allowed due to [A4]. Setting
e = 0, we obtain a generalization of the infinitesimal SRC defined in [42], which is a T-periodic
function satisfying a nonhomogeneous variational equation:

dy(t OF (yo(t), €
) _ D (0(6), 0021 (1) + 1 (OF (o(0),0) + 200D )
dt Oe =0
nonhomogeneous terms
where v (t) = 8223(5) ’ . is a local timing sensitivity parameter. Compared with Theorem 1 in
§9 of [3, the generalized iSRC system (T3) has a Ty-periodic solution if and only if
To OF (o(t
[ a0 (moFeuo.0+ FOD ) g
0 86 €e=0
and so from (3 and (3,
To
/ vi(t)dt = Ty. (14)
0

In the special case of 7. with a constant slope (), the generalized iSRC equation (13)
reduces to (I2)), consistent with the formula obtained through a different argument by Wang et
al. #4424 One can easily check that such choice of the rescaled time coordinate satisfies the
condition for a Tp-periodic solution. In the rest of the paper, we adopt this linear time
rescaling and the corresponding iSRC equation (12)).

Equation (12)) requires an initial condition, which is

71(0) = p1- (15)

Changing the Poincaré section transverse to the unperturbed limit cycle, S, changes the direction
along which the base point p. is displaced relative to pg. As shown in [42] and Lemma [I|below,
the resulting iISRC functions are related by a simple phase shift (just as the asymptotic phase of
an oscillator is itself only defined up to an additive constant). The iSRC is closely connected to
the problem of tracking the change in any average quantity upon static perturbation of the limit
cycle (changing €), as we will show below.

2.2 Sensitivity of an average for limit cycle families

In this subsection we calculate how the average of any smooth quantity evaluated along a limit
cycle trajectory changes as we vary a parameter influencing the limit cycle dynamics. We estab-
lish the connection between the iSRC and the average quantity, and we show that the sensitivity
of the average is independent of our choice of Poincaré section, provided it is transverse to the
limit cycle at the base point pg.

)
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Figure 2: Two periodic orbits cut by a common Poincaré section, illustrating the construction for
comparing the average of a quantity around each orbit. The section S intersects the loop x (blue
trace) at point xg = pg. The section intersects the loop y (red trace) at point yg = p,. From the
intersection point, each orbit is divided into n steps of equal time 77, /n or T, /n, respectively,
giving points (xg, X1, X2, . .., X,—1) (blue dots) and (yo,y1,y2,.-.,¥n—1) (red dots).

Suppose we have two periodic orbits, x and y, with periods T, and T, respectively. Fig. |Z|
illustrates a construction from which we can derive a comparison of the average of a quantity
¢(x) around each orbit. As in the figure, mark off points of equal time, T}, /n or T}, /n, respec-

tively. That is, define
k k
Xp =X <Tx) s YE=Y (Ty>
n n

Let Q, be the average of a smooth function ¢(x) around the trajectory x, and similarly Q,. If ¢
and the limit cycle are both smooth, then

n—

Qx:

S

1
1
o= N
k_oq(xk)—i- <n2>’ asn — oo,

with a similar expression for Q,. We want an expression for Q,, — Q, when |p. — po| is small.

Let 1 be the iSRC for a constant time rescaling function 7(t) = %t, as defined above, and
let x and y be the limit cycles generated by F(-,0) and F(-, €), respectively. So T, = Tj and
T, = Tc. Then we have

n—1
Qy— Q= %Z(Q(Yk) —q(xx)) + O (;)

k=0

n—1
= % > Valxx) - (v —x) + O (lys — xif*) +0 <nl2>
k=0

- ;nzl Va(xp) - <f‘;T0> +0 (&) +0 (;) .



The sensitivity of the average is

_ To
Je = lin tim 22— [Tg00(0) 0t (16
Thus the change in the average value of any quantity around the limit cycle, when the limit cycle
is changed due to a static (parametric) perturbation, is given by the infinitesimal shape response
curve and the gradient of the quantity.

We show next that the sensitivity of the average quantity Q is invariant with respect to the
choice of Poincaré section used to define the initial condition of the iSRC, 71 (0) = p;. First,
Lemma |[T] and Fig. 3| show that the iSRC is a family of curves related by a phase shift. Lemma
[T] previously appeared as Lemma 2.3 of [42], but the proof presented here is new and greatly
simplified.

Lemma 1. Under assumptions AI-A2, if n(t) and £(t) are solutions to the iSRC equation (12)
with different Poincaré section, then

n(t) — &(t) = ¢F (10(2),0), (17)

where ¢ # 0 is the constant phase shift intoduced by the initial conditions 1n(0) — £(0) =
¢F(70(0),0).
Proof. Let
A(t) = n(t) — &(1).
Then 7(t) and £(t) satisfy the iISRC equation

dzl(tt) = DF(VO(”, O)U(t) + VIF(")/()(t), 0) + aF(’YaOEt),G) ’
e=0

dé;tt) = DF(’YO(t), 0)§(t) + ylF(fYO(t)’ 0) + ({W ’
e=0

with initial condition 7(0) and £(0), respectively. Taking the difference of the above equations

leads to
dA(t)

dt
which has a unique solution

= DF(10(t),0)A(t),  A(0) = n(0) - £(0),

A(t) = 6F (70(1),0)
with ¢ given by 7/(0) — £(0) = ¢F (70(0), 0). =



Rﬂ

k)

Figure 3: Two distinct iSRCs differ along the unperturbed flow (see Lemma([T)). The unperturbed
limit cycle (blue trace) intersects sections S and Sa at pg = 79(0) (blue dot). The perturbed

limit cycle (red trace) intersects S; at pi (magenta dot) and intersects S at pf (green dot). Ma-

P:—Po.
green arrow shows the direction of the linear shape displacement £(0) = p? = lim.— @
(cf. (9)). Their difference is parallel with the unperturbed vector field at yo(0). For further shape

responses as time evolves, 7)(t) and £(t) always differ along the direction of v (¢) (not shown).

genta arrow shows the direction of the linear shape displacement 7(0) = p} = lim.—g

By eq. (16)), the sensitivity of the average given by different shape response curves follows

09 0Q 1 To 1 To
<0€>n_ (&)52 7 ), Vq(’yo(t))‘n(t)dt—fo i Va(vyo(t)) - £(t) dt

1 [To

=7 Va(yo(t)) - A(t) dt. (18)
0.Jo

Then, from the periodicity of o (t), fundamental theorem of calculus, eq. (I) and Lemmall}

To To
:/0 %(q(’yo(t))) dt:/ﬂ quo(t)%d’@t(t) dt

To

To
_ /O VQ(Wo(t))'F(’Yo(t),O)dtZ; [ a0t - At at,

80\ (09
(&)n - (%), 9

Thus, the sensitivity of an average is independent of the choice of the Poincaré section.

which gives

3 Applications

In this section, to illustrate the principles derived above, we consider two specific smooth sys-
tems: the well-known Hodgkin-Huxley model of excitability in the squid giant axon, which



exhibits large-amplitude limit cycles, (cf. [20], §2.3), and a metabolic feedforward-regulatory
structure studied in [11]], which exhibits small-amplitude oscillations. For each application, we
find its infinitesimal shape response curves and illustrate the empirical curves of the average
with analytically derived tangent curves for quantities of interest. Specifically, in the Hodgkin-
Huxley example, we illustrate some basic principles and calculation related to the iSRC de-
scribed above; for the feedforward chain, we illustrate the utility of our rate of change formula
to study homeostasis behavior of some averaged quantity. Simulation codes required to produce
each figure are available at https://github.com/zhuojunyu-appliedmath/Homeostasis-iSRC.

3.1 Hodgkin-Huxley model

In this subsection, we use the Hodgkin-Huxley model ([20], §2.3) to illustrate how to compute
the shape response curve, the relation between different components in the iSRC family, and
its application to compute the sensitivity of the average of some physical quantities, which is
independent of the choice of the iSRC.

The 4-dimensional Hodgkin-Huxley system is

CV =1 — gxn*(V — Ex) — gnam®h(V — Eng) — gL(V — Er)
n=a,(V)(1-=n)—pF,(V)n
m = amn(V)(1—=m)— Bn(V)m
h=ap(V)(1=h) = Bu(V)h.

(20)

Parameters and the activation/inactivation rate functions «, 5, are given in Appendix [Al We

apply a small static perturbation to the injected current, I — I+ ¢, and rescale the timing of the
perturbed trajectory by 7.(t) = %t. As a reference, Fig. 4| shows the time course of the model

for two different values of the applied current, each plotted for three periods.

(a)I=50 (b)I=60
80 80 : :
£ 40 £ 40
> >
0 ‘ 0
0 5 10 15 20 25 0 5 10 15 20
1 ’ " 1
3 0
= 05 = 05
(=] (=]
0= : : ‘ ‘ = 0 ; : .
0 5 10 15 20 25 0 5 10 15 20
t t

Figure 4: A reference figure showing V' (black curve), n (blue curve), m (red curve), h (magenta
curve) for two different values of the current, I = 50 (left) and I = 60 (right), with period
Tr—50 = 8.49 and Tj_g9 = 7.98, respectively.

We compute two solutions to the iSRC equation (T2)), with different Poincaré sections, for
I = 50, and compare their difference with the flow of the unperturbed limit cycle. Define a
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Poincaré section

av
51—{V—0, dt>0}.

This section intersects the unperturbed limit cycle at point pg = (0, ng, mo, ho) and intersects
the perturbed limit cycle at point p!. As in (9)), the linear displacement from py is

)

Take another Poincaré section transverse to the unperturbed limit cycle at the same base point

Po: J
n
ng{n:no, dt<0},

which intersects the perturbed flow at p?.Then,

p2 = imPE—PO _ o
! Oe

om
veo Oe€

@
V=0 " Oe

1_
€

1_ .. Pc—Po on
b1 = 1% € ( " Oe

e=0

om
Y Y 86

n=no

oh
" Oe

n=ng

nno)

Numerically, we approximate p} (i = 1,2) by p! ~ (p. — po)/e with e = 0.5. Let ()
be a representative Ty-periodic iSRC given by the initial condition 7(0) = pi (cf. (I5)) and
£(t) be another Ty-periodic iSRC with £(0) = p?. Fig. [5|shows the components of 7(¢) and
&(t) to illustrate how the shape changes in response to the perturbation. Note that changing the
direction of the Poincaré section through the common base point pg significantly changes each
component of the iSRC.

e=0

(@ n(® (®) &0
2
2 L
0]
= = 1t
= o
-2 0f
4 ol
0 5 10 15 20 25 0 5 10 15 20 25
0.04 002}
2 3
@ ®
-0.04 -0.02
0 5 10 15 20 25 0 5 10 15 20 25
t t

Figure 5: ISRC components of four variables of the Hodgkin-Huxley system, for two different
Poincaré sections / initial conditions. (a): The iSRC 7(t) specified by section Sy. (b): The
iSRC £(t) specified by Sy. Colors as in Fig. {4l Each case has the same reference trajectory with
driving current I = 50 and period 7y = 8.49.

As stated in Lemma [T}, despite different shape response curves shown in Fig. [5] they are

related by a fixed offset — a vector in the direction of the flow along the unperturbed limit
cycle, represented by a constant phase shift. In our example, we have ¢ ~ —0.0585 and Fig. [f]

11



illustrates that their difference A(t) shows great agreement with ¢F (yo(t),0), as proof of the
concept.

%107
5, T
2_
— 0,
>
E-2 c 5
>
5 -10 }
0 5 10 15 20 25 0. 435 10 15 20 25
%10
10
0.05
5_
£ 0 =
0_
-0.05
. ‘ . . . 5L . . h ‘ .
0 5 10 15 20 25 0 5 10 15 20 25
t t

Figure 6: Difference of the two iSRCs in the four directions. Black solid trace: n(t) — £(t); red
dashed trace: ¢F(v(t),0) with ¢ = —0.0585. The curves show excellent agreement.

To demonstrate the utility of the shape response curve for determining the sensitivity of an
arbitrary quantity as a control parameter is varied, we focus on the average of three quantities
— membrane potential, sodium current and potassium current — as we vary the value of the
injected current. The expressions of the two currents are

Ina = —gnam®h(V — Fna), Ix = —ggn*(V — Ex).

We show that the slope analytically derived from the rate of change formula (T6)) is in line with
the average curve. For instance, Fig.[7illustrates the case evaluated at I = 50, with 7)(¢) chosen
from the iSRC family.

16.8 109 159
16.4 3 Slope = dg(\' 5
S = 108 I~ -156
16 .
k " 160
15.6 107
45 50 55 45 50 55 45 50 55
I I I

Figure 7: Empirical curves with analytically derived tangent curves for voltage V' (left), sodium
current Iy, (middle) and potassium current [k (right). Black star: direct calculation of the
average of the three quantities as the value of I varies. Red solid: tangent line at I = 50
with slope analytically derived from the iSRC calculation with 7(¢) chosen, i.e., @ = Qj_50 +
%’1:50 (I = 50).

As expected from our theory, the average of any quantity is an invariant with respect to
which element of the family is selected by the Poincaré section defining the initial conditions.
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The slopes at I = 50 given by 7(¢) (cf. Fig.[7) are

(3‘/> = 0.099187, <8INa> — —0.148480,
n n

Oe Oe

If calculated by £(¢), the results are

(‘W) = 0.099161, (61““) — —0.150017,
Oe ¢ ¢

Oe

within 1.04% error relative to those calculated by 7(t).

3.2 Feedforward network

<8IK> = —0.821531.
Oe .

7
<6K) — —0.820998,
Oe ¢

Duncan et al. [[10} [11] investigated homeostasis in the presence of Hopf bifurcations in several
metabolic networks supporting limit cycle oscillations with a wide range of near-constant am-
plitudes and periods. They showed that when the amplitudes of the oscillations are relatively
small, the output variable remains near a homeostatic plateau. We adopt one of their examples
and apply our method to illustrate homeostasis for limit cycles in the sense of averaging.

n

A — X — X, — X, .
Y, » Y, — Y, — ¥, —>
¢

Figure 8: A simple metabolic chain exhibiting the coexistence of homeostasis-Hopf-bifurcation,
redrawn from [[L1]]. A is the input parameter to the network. X3 has a homeostasis point and
acts as an input to the Y system which undergoes a Hopf bifurcation.

Fig.|8|shows a feedforward network studied in [11]]. The equations for the system are

551:)\—2561

352 = —2£U2

Z3 =x9 — (1 +n(z1))zs

Y1 = 23 — ((y4)11
Yo = C(ya)y1 — 12

Ys = Y2 — Y3
Ya = Y3 — Y4

2n

where A is the input parameter and y,4 is considered as the output variable. There are two
saturating nonlinearities taking the forms n(z) = 1/(1 + exp [<2]) and ((y) = 10/(1 +

13

a



y'%) + b. The qualitative behaviors of the system can be distinct under different choices from
the parameter space {a, b, ¢}, and [11]] listed all possible varieties. We choose two cases —
(a, b, ¢) = (0.73, 0.01, 4.78) and (a, b, ¢) = (0.65, 0.01, 4.88) (cf. [11]], Fig. 9(d,g)) to study
the homeostasis of averages of the system.

For any A\ € [5,15], the X system always approaches a stable fixed point and X3 feeds
into the Y network which can maintain small-amplitude oscillations in some range of A. In
Fig. [0l we offer a reference figure showing the oscillations of variable y4 at A = 10.5 for case
1 and at A = 10 for case 2, and their respective infinitesimal shape response curve 7(t) in
the y, direction, specified by Poincaré section {y; = 1.6, dd%“ > 0}. In the first case, the
y4 component of 1 has a symmetric area above and below the horizontal axis for each period.
Following formula (I6) and Definition [I] the average of y4 at A = 10.5 is an infinitesimal
homeostasis point:

Y, 1 [T

A=10.5 To Jo

1 [T
= = t)dt = 0.
= [ maar=o

Likewise, in the second case, the location of its iSRC indicates a negative sensitivity of 7, at
A = 10. For the behavior of y, over other values of A, we give more details in what follows.

(a) case 1 (b) case 2
1.65 165}
= 16 = 16
1.55 1.55
0 2 4 6 8 10

Figure 9: A reference figure showing the time evolution of y4 (top panels) at A = 10.5 for case
1 (left) and at A = 10 for case 2 (right) and their respective iSRC in the ¢4, component, defined
by the section {ys = 1.6, ddit“ > 0} (bottom panels). The curves are plotted using the same
scale for the vertical axes. (a) case 1: « = 0.73, b = 0.01, ¢ = 4.78, with period Ty = 3.46.
The compensating area of 7, (t) above and below 7,, = 0 indicates % | se105 = 0. (b) case
2:a = 0.65, b = 0.01, c = 4.88, with period Ty = 3.49. The iSRC 7, is mostly located below
the zero horizontal axis, leading to a negative A-derivative of 77, at A\ = 10. Compare Fig. [T0}

We apply the averaging method stated above to study the behavior of quantity w = yyu,
in terms of the stable critical element, for the two cases over A € [5,15]. In the ranges of A
in which the equilibrium point is stable (blue curves in Fig. [I0} top panels), we can directly
solve (21)) for the steady state condition to obtain the output value w as a function of the input
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parameter \ at steady-state:

A 1
w()\)zz (1+U(S)>’

from which the first A-derivative of w can be computed directly —

2c

dw 2a(1—|—77(%)) — e 2
. 8a (141 (3))"

A

n(3)°

This calculation allows us to look for homeostasis points such that dw/dA = 0. Note that in
regions where the fixed point is unstable and gives way to a stable limit cycle, the unstable equi-
librium also follows the same \-derivative formula, but we are not concerned with its behavior.
Instead, we seek the average output value w around the stable limit cycle, and we can apply our
shape response curve method to find the sensitivity of the-average-eutput-vatae W, see (16). We
repeat here the analytical calculation of dw/d\ for any value of A € [5,15] (w reduces to w
when it is a stable equilibrium which has “period zero™):

g | 20EG)aeE ()
= sa(ten(3))"

dA Tob\) OTO()‘) Vz(yo(t)) - v1(t)dt, X € {range for stable limit cycles}

A € {range for stable equilibra} 22)

where 7 (t) is the limit cycle solution at a given A with period Tp() and 7 (¢) is the solution
to the iISRC equation (12).

We obtain excellent agreement between the analytical result and direct numerical differenti-
ation of the average curve, see Fig.[T0] In the first case, the top panel shows that for small values
of )\, the equilibria of y4 are stable and change rapidly (blue curve). The equilibrium loses sta-
bility via a supercritical Hopf bifurcation (magenta dot) and gives birth to small-size limit cycle
attractors with the amplitudes shown by green curves. The coexisting unstable fixed points are
represented with a red curve. When A\ is large, the oscillatory behavior of 44 stops and the unsta-
ble equilibrium regains stability via another Hopf bifurcation. In the middle panel, we show the
average of y4. For the ranges of A without oscillations, it is simply viewed as the equilibria of y,
Y4 = y4 (blue curve); otherwise, it is integrated around the limit cycle, 7, = Tio fOT O ys(yo(t)) dt
(red curve). At bottom, the analytical calculation of 9y, /0\, following (22)), is shown by solid
curves, which shows good agreement with the direct calculation of the slope of 77, (green dashed
curve). By Definition [T] the averages evaluated along the limit cycles are homeostatic for in-
termediate values of the input with two simple homeostasis points (grey dot). For case 2, we
follow the same method and again demonstrate the accuracy of our formula for calculating the
sensitivity of the averaged quantity. For stable limit-cycle control systems, this indicates that
the shape response curve for determining the sensitivity of the average output can be a reliable
tool to study limit-cycle homeostasis.
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(a)case 1 (b)case 2

Figure 10: Behavior of the output variable Y, as the input A varies in the chain network. (a)
case 1: a = 0.73,b = 0.01, ¢ = 4.78; (b) case 2: a = 0.65, b = 0.01, ¢ = 4.88. Top
panels: the value of y4 at equilibrium. Hopf bifurcation points are marked in magenta dots. For
small )\, the equilibria are stable (blue trace); at the bifurcation point, the equilibrium becomes
unstable (red trace) and coexists with a stable limit cycle. The maximum and minimum values
of the limit cycles are shown in green curves. At next Hopf point, the oscillations terminate and
the equilibrium regains stability. (Cf. Fig. 9(d,g) from [11]].) Middle panels: the average of
y4. In the limit-cycle region, it is evaluated along the limit cycle (red trace). In the interval for
stable equilibria, the average is simply the equilibrium itself (blue trace). Bottom panels: the
analytically and numerically determined A-derivative of 7. Solid trace: analytical calculation
given by eq. (22). Dashed green trace: direct numerical differentiation of the average curve in
the middle panel. The points where 0y,/0X = 0 (grey dots) match well with those with zero
slope in the middle panels, which indicates simple homeostasis averages for the limit cycles.

4 Discussion

Biological homeostasis requires that a quantity of interest — given by an “output” z — maintains
an approximately constant value as the external conditions — given by an “input” A — vary. This
notion is widely considered in the networks of “admissible vector fields”, which associates a
state variable with each node and associates coupling terms between these node variables with
the arrows of the network [[13]. In this context, input-output networks are constructed, with
only one distinguished input node depending on the input parameter(s) and one different distin-
guished output node. For the output node, there are many observables given by the time series
of its corresponding state variable. A natural observable is the equilibrium of the output vari-
able. Golubitsky and coauthors define an input-output function that maps the input parameter to
the equilibrium, and have conducted a comprehensive study on the homeostasis in terms of the
equilibrium points 11l 17 221 341 [43]).

The infinitesimal notion of homeostasis (namely, the derivative of the input—output function
is vanishing at an isolated point) is developed to introduce singularity theory into the anal-
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y31s ot homeostaus propertles of blologlcal systems [-] %mathaﬂa&ea}%rmrﬂa&erret

preperﬁe%ef—bre}egrealrﬁateme Spe01ﬁcally, Golubltsky and Stewart use normal form the—

ory to discuss universal unfoldings of singularities associated with homeostasis, distinguishing
simple homeostasis (when dz/d\ = 0 and d?z/d\?> # 0; in this case the normal form is

2(\) = £A?) from chair homeostasis (when dz/d\ = 0 and d?z/d)\? = 0 but d®z/d\3 # 0;
in this case the normal form is z(\) = £\? and the universal unfolding is z(\) = £\3 + a)).
Transformation of a homeostasis point to a normal form representation allows them to introduce
the notion of a d-homeostasis region, i.e. the set of A such that z(\) remains within 0 of the
homeostasis value. This notion provides a quantitative basis for comparing the robustness of
different homeostasis mechanisms.

In addition, Golubitsky and Stewart characterize a reasonable class of coordinate changes
under which homeostasis of a given variable is preserved. They also develop a linear-algebraic
method (by a straightforward application of Cramer’s rule) for finding homeostasis points in a
given model, and identify mechanisms giving rise to homeostasis in specific networks, such as
feed-forward (or lateral) inhibition. In subsequent work Golubitsky and Wang [17]] elassified
all-homeostatic-mechanisms-in-a-family-of small-networks give a classification of “homeosta-
sis types” in three-node input—output networks, which is then generalized into arbitrarily large
input—output networks [43]].

We observe that all of this analysis is premised on being able to discuss the derivative dz /dA.
In many rhythmic physiological systems, however, homeostasis is maintained through control
of limit cycles rather than equilibrium points. A special observable for this paper is the average
of a quantity of interest, or an output, taken around the limit cycle, and the main contribution is
to 1ntroduce a Way to calculate the derlvatrve of the average with respect to the 1nput parameter

fe%aqua&&tye#ﬂﬁeres%q%werageekeveﬁﬁmﬁeye}e ThlS opens the p0551b111ty of analyzmg
factors contributing to homeostasis, such as sensory feedback [24}43]], in physiological systems
operating with large amplitude limit cycles, as in breathing, heartbeat, locomotion, feeding, and
other vital behaviors. Thus this paper takes a first step towards a theory for homeostasis for
systems in which the locus of control is a limit cycle rather than a fixed point.

We follow the concepts of homeostasis points defined by Golubitsky and Stewart related to
fixed-point systems and build a homeostasis criterion for smooth limit-cycle control systems in
terms of the vanishing derivative of z with respect to A\. We provide a formula for analytically
calculating the first order A\-derivative of z. (In fact, when the limit cycle case has “period zero”
the formula reduces to the much simpler formula for the equilibrium case in terms of Cramer’s
rule given by 22].) At some point \g where z'(\g) = 0, one can easily tell whether the
second derivative vanishes through calculating the first derivative over a small neighborhood of
Ao, so that a simple homeostasis point can be distinguished. We applied such a method to the
metabolic regulatory network discussed in This opens up an approach to examine sim-
ple homeostasis behavior of maintaining near-constant averaged quantities around limit cycles.
Chair points, a more robust form of homeostasis, require judgment of all derivatives up to the
third order, complicating the analysis for limit cycle systems, which is beyond the scope of the
present paper.

Our rate of change formula is based on the infinitesimal shape response curve developed by
Wang et al. [42]. The iSRC, a family of curves parameterized by a simple phase shift, quantifies
the linearized change in the shape of a periodic orbit in response to a sustained perturbation.
The accuracy of the iSRC depends on its local timing sensitivity induced by the timing response
of the system to the perturbation, and [42] chose a linear time change in their formulation.
We rederive the iSRC equation with a simplified approach and present a generalization of the

17



equation to any arbitrary rescaled time coordinate (see eq. (I3)). Despite the phase-shift am-
biguity of the iSRC, we show that the sensitivity of the average is invariant with respect to
which element of the iSRC family is selected by the Poincaré section defining the initial con-
ditions. This observation is consistent with physical intuition but is nevertheless important to
establish mathematically. All the theoretical principles related to the iSRC are well verified in
the Hodgkin-Huxley example discussed in

A recent theory for a complete classification of “homeostasis types” regarding the input-
output network with an equilibrium path is developed by Wang et al. 43]]. The homeostasis
matrix, whose entries are linearized couplings between nodes, plays a key role in finding equi-
librium homeostasis points. They factor the determinant polynomial of the homeostasis matrix,
and introduce four different types of possible homeostasis associated with different structures
of the network. Specifically, each factor corresponds to a subnetwork of the input-output net-
work. In contrast, in limit-cycle systems, such a structural classification remains elusive. To
see why, consider our analysis of an input-output network (e.g., §3.2). Here, when we average
terms around the output limit cycle, our derivative formula (T6) involves integral and shape re-
sponse curves which cannot immediately be related algebraically to the network architecture.
Extending the classification theory would be an interesting future direction.

Finally, we note that although here we only consider the homeostasis condition for limit
cycle systems arising from a smooth vector field, the iSRC analysis of [42] encompasses certain
classes of nonsmooth dynamical systems that are important in motor control. For example, one
finds limit cycles for which the trajectory passes through a switching surface across which the
vector field changes discontinuously [33, 39], as well as “limit cycle with sliding component”
systems [42], in which the trajectory is confined to a constraint surface for part of the period.
In locomotion problems these nonsmooth dynamics typically appear in the transition between
a “power stroke” and “recovery stroke” in a repeated motion, such as swing/stance transitions
in walking [41]], scratching [40], inspiration/expiration transitions in breathing [9} 27, 28], and
flexing/extending transitions in grasping or pulling movements [26) 38]. Although we do not
pursue these nonsmooth examples here, we do not foresee any fundamental difficulty applying
our sensitivity-of-the-average formula (16)) to these cases.
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A Hodgkin-Huxley Equations

In the Hodgkin-Huxley system (20)), the activation/inactivation rate functions are

10—V -V
W(V)=001——— (V) = 0.125exp | — ),
(V) =001 (V) = 012500 (1)
25—V -V
m(V =01l—m—, m(V) =14 o |
an(V) =01y (V) = e (75 )
-V 1
10

Parameter values for the system are listed in Table|[T]
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Table 1: Parameter values for HH system

Conductances Reversal potentials Other
(mS/cm?) (mV)

gL =0.3 EL =10.6 C =1 pF/cm?
gk = 36 Fx =—-12 I as in figure
gNa = 120 Eng =120
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