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Abstract

The evolutionary consequences of quorum sensing in regulating bacterial cooperation
are not fully understood. In this study, we reveal unexpected effects of regulating public
good production through quorum sensing on bacterial population dynamics, showing
that quorum sensing can be a collectively harmful alternative to unregulated production.
We analyze a birth-death model of bacterial population dynamics accounting for public
good production and the presence of non-producing cheaters. Our model demonstrates
that when demographic noise is a factor, the consequences of controlling public good
production according to quorum sensing depend on the cost of public good production
and the growth rate of populations in the absence of public goods. When public good
production is inexpensive, quorum sensing is a destructive alternative to unconditional
production, in terms of the mean population extinction time. When costs are higher,
quorum sensing becomes a constructive strategy for the producing strain, both
stabilizing cooperation and decreasing the risk of population extinction.

Author summary

Quorum sensing is a process through which bacteria can regulate gene expression
according to their population density. The reasons for why bacteria use quorum sensing
to regulate production of “public goods”, biochemical products that benefit nearby
bacteria, are not entirely clear. We use mathematical modeling to explore how quorum
sensing compares to other strategies for controlling production of public goods, namely
unconditional production independent on population density, in small populations of
bacteria where the random nature of growth is significant. Our model captures both
how likely “cheater” strains, which do not produce public goods but benefit from them,
are to take over a population and how long on average the population will last before
going extinct. We find that depending on how expensive public good production is and
how critical public goods are for growth, quorum sensing can decrease or increase the
mean time to extinction compared with unconditional production, while always
reducing the likelihood of cheaters taking over. Our results could have important
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implications for the growth of bacterial infections, for example Pseudomonas aeruginosa
infections of the lungs of cystic fibrosis patients.

Introduction

Cooperative behavior is widespread in bacteria [1], including coordinated swarming and
public good production. These behaviors are often regulated through quorum sensing
(QS) [2], in which individual bacteria produce and export small molecules called
autoinducers (AI). When AI molecules accumulate to a sufficiently high concentration
in the environment, and consequently within the bacteria producing them, they activate
operons controlling the expression of genes critical for cooperation. While the
biochemistry of some QS systems is well understood [2], QS is sensitive to a number of
factors |3H5] and there are many proposed biological functions of QS which have been
the subject of debate [6HI).

Evolutionary questions concerning QS function have largely focused on the ability of
QS-controlled cooperation to combat invasion by non-cooperating cheaters in bacterial
populations [10,/11]. The question of how cooperation can evolve and be maintained in
populations is a general problem in evolutionary biology [12], and the role of QS in the
evolution of bacterial cooperation is of great interest in understanding bacterial social
interactions. A number of possible resolutions to the problem of social cheaters in
bacterial public good production include punishment of cheaters [13], dispersal into
subpopulations [14], and the use of QS to regulate cooperation [1,/8,/15]. Regulation of
public good production through QS has been shown to reduce the ability of cheaters to
invade a population of producers [16].

The role of QS in maximizing population growth in the absence of cheaters has also
been investigated as a rationale for QS-control of public good production [17]. Because
public goods produced by bacteria can have density-dependent fitness benefits [18],
regulation of public good production based on population density can be seen as an
optimal control solution to maintaining a maximal population size balancing metabolic
costs and benefits [19L[20]. By maintaining a maximal population size, a population also
maximizes its mean time to extinction, which is especially important with the
possibility of unpredictable environmental changes.

Considering the threat of both cheater invasion and the onset of harmful
environmental conditions that could lead to population extinction, there is a tension in
the degree to which public good production is regulated. Unconditional public good
production appears to be a self-defeating strategy, where non-producing cheaters will
arise by mutation and reap all the benefits of public goods without experiencing any of
the associated production costs. At the other extreme, a strategy where no public goods
are produced (which could be a result of a successful cheater invasion of a cooperating
population) should be vulnerable to extinction when the public goods are essential for
growth or reducing the likelihood of death. The idea that quorum sensing is a moderate
strategy between these two extremes has been explored previously |21]. However, to our
knowledge, a full analysis of this tension explicitly considering both cheater fixation
probability and mean population extinction time has not been carried out. What are
the effects of QS-mediated regulation of public good production in terms of cheater
suppression and overall population robustness? Does QS always protect against cheaters
while also increasing long-term viability of the population?

In this work, we explore the effects of QS on cheater fixation and mean population
extinction time in a simple birth-death model of mixed producer-cheater populations.
Our model sacrifices much of the complexity of QS [3H5] in order to provide more
general insight into how QS strategies influence the eco-evolutionary dynamics of
bacterial colonies. We compare the QS strategy of public good production with an
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“always on” (AO) strategy, meaning that each producer cell unconditionally produces
public goods at the maximum rate. Our models reflect bacterial populations where
demographic stochasticity is an important factor in population dynamics. The role of
demographic stochasticity in bacterial populations has been explored in past

work [22H25], and is particularly important when populations are divided into
subpopulations.

An important example of subdivided populations is Pseudomonas aeruginosa
infections in the lungs of cystic fibrosis (CF) patients [26]. Bacteria often form small,
dense biofilm aggregates in infections [27]. In CF lung infections, P. aeruginosa forms
aggregates of at most ~ 1,000 cells |28], suggesting that demographic noise is an
important factor. While biofilms are known to protect bacteria from the effects of
antibiotics [29], the possibility of “stochastic clearance” where relatively small bacterial
populations go extinct at sub-minimum inhibitory concentrations of antibiotics [24,/30]
suggests that extinction is a real possibility faced by P. aeruginosa aggregates in the
presence of stressors such as antibiotics. Furthermore, while in vitro experimental
evidence suggests that QS induction can occur within these aggregates [31], QS
induction is unlikely to occur between distinct aggregates [32]. This evidence provides
justification for our focus on single well-mixed sites in QS, an important first step
towards a more realistic model incorporating interactions between separate aggregates
and accounting for heterogeneity within single aggregates. We use the QS system
controlling production of proteases by P. aeruginosa as inspiration for our model, where
public goods increase the growth rate of all individuals while leaving death rates
unaffected. Without the ability to produce proteases, P. aeruginosa starves when
proteins are the sole source of carbon and nitrogen [33]. However, with the ability to
produce and export proteases into their environment, P. aeruginosa can grow using the
oligopeptides that proteases produce by cleaving exogenous proteins.

We find that while QS decreases cheater fixation probability for all examined public
good costs and constitutive growth rates (growth rate in the absence of public goods),
the population mean extinction time is only increased by QS for a well-defined set of
cost-growth rate pairs. When mean extinction time is decreased by QS, there is an
increased risk of stochastic clearance. By “stochastic clearance”, we refer to the
phenomenon where a population with a non-negative mean net-growth rate has a finite
time to extinction, due to stochastic copy number fluctuations. The cases where QS
decreases mean extinction time as compared with an unconditional AO strategy is an
example of a weak form of “evolutionary suicide” [|34], where QS increases the relative
fitness of the cheater strain while the entire population of both producers and cheaters
is made more vulnerable to extinction. We call this situation destructive cheater
suppression. Only when both the cost of public good production and the constitutive
growth rate are large enough is QS a constructive strategy for the producers, in that
both cheater fixation probability is reduced and mean extinction time is increased.

Results

We first briefly introduce the notation used throughout the remainder of this article.
The number of producers in the population is written as n while the number of cheaters
is m. When n = m = 0, the population of bacteria has gone extinct. The cost of public
good production is ¢ and the per-capita constitutive growth rate (in the absence of
public goods) is A\g. The per-capita death rate for all individuals is po. The birth rates
given n and m are )\S’Ym and )\g}}n while the death rates are ,ugfm and M,CL’};W for the
producers and cheaters, respectively (Fig. ) We write the cheater fixation probability
as 7°1, the mean time to cheater fixation as 7", and the mean time to population
extinction as 7. The model is fully described in the Materials and Methods section.
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Fig 1. Overview of birth-death model and main results. A) Diagram of the
two-dimensional birth-death process describing the dynamics of a bacterial population
consisting of public good producers and cheaters. As an example, the population is
shown with two producers and two cheaters. All possible subsequent states of the
population are indicated, where a single producer or cheater can either arise through
binary fission (with state-dependent rates A" and A“", respectively) or can die (with
state-dependent rates uF* and p“"). See Egs. for the full forms of the birth and
death rates. B) Phase diagram describing the fitness gains of quorum sensing (QS) over
always on (AO) producers, as a function of constitutive growth rate (A\g) and public
good production cost (¢). For each pair (Ag, ¢) we calculated the mean extinction time
for all (n, m) pairs satisfying n > 0, m > 0, and n + m < 100 with the QS and AO
strategies. The reported number is the fraction of these (n,m) pairs for which the mean
extinction time for QS is greater than for AO (7,25 > T,A0). In the bottom right-hand
region (dark blue) regulating public good production through QS decreases mean
extinction time for all (n,m) pairs, meaning that the AO strategy decreases the risk of
population extinction. Here, QS is a destructive strategy. The upper region (yellow) is
where QS increases the mean extinction time for all (n,m), a constructive strategy for
the producers. The region labeled “mixed” indicates that QS increases mean extinction
time for some (n, m) pairs while decreasing it for others.

The phase diagram in Fig. shows the fraction of (n,m) pairs in the set
{(n,m) € Z*> | n,m >0, n+m < 100} in which the mean extinction time of a
population regulating public good production through QS is larger than that using the
AO strategy, as a function of the constitutive per capita growth rate, Ay > 0, and the
cost of public good production, 0 < ¢ < 1, representing the fraction of growth rate
benefit provided by public goods alone. We first examine two points of interest on this
phase diagram, ¢ = 0.1, Ao = 0 and ¢ = 0.15, A\g = 0.2 as marked in Fig. [[[B, and then
discuss the general features of the phase diagram.

Quorum sensing is a destructive strategy in the absence of
alternative nutrition sources

In agreement with previous work , we find that in the absence of alternate sources
of nutrition (Ag = 0), QS reduces the probability of cheater fixation for a wide range of
starting population compositions (Fig. . We calculate the probability of cheaters
fixing (Eq. E[) in a small population with starting compositions satisfying 0 < n, 0 < m,
and n +m < 100. We compare cases where no public good is produced (NP), where
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public good production is QS-controlled, and where public good production is always on
(AO). The NP strategy corresponds to a cheater strain that produces autoinducer.
Because there is no constitutive growth rate (Ag = 0), if the NP strategy is used there is
no (n,m) pair for which the net population growth rate is non-negative. On the other
hand, for the QS and AO populations, the white lines in Fig. [2] represent the total
population zero expected net growth contour. Because these lines represent the zero
expected net growth rate contours of the entire population, they are not fixed points of
the underlying deterministic behavior of the system, which only exist at the origin and
at the intersection of the zero expected net growth contours with the producer axis.
Thus, there can not be a long-lived population with a non-zero number of cheaters.
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Fig 2. Quorum sensing is a destructive strategy for producers when no alternate energy
source is present (A\g = 0) and when public good cost is moderate (¢ = 0.1). Row 1:
Cheater fixation probability from an initial population of n producers and m cheaters

for A) no production (NP), B) quorum sensing (QS), and C) always on (AO) strategies.

Row 2: Conditional mean first passage time to cheater fixation from initial population
structure for D) no production, E) quorum sensing, and F) always on strategies. Row 3:
Mean extinction time from initial population structure for G) no production, H) quorum
sensing, and I) always on strategies. White traces: zero expected net total population

growth contours. Inset plots in B), E), and H) show cheater fixation probability, cheater
mean first passage time to fixation, and mean extinction time, respectively, for an initial
population with one cheater and n producers. See Table [S1| for parameter values.

With a moderate cost to public good production (10% of the maximum growth rate
benefit imparted by public goods), a QS strategy (Fig. [2B) increases cheater fixation
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probability as compared with an NP strategy (Fig. [2]A) while decreasing cheater fixation
probability as compared with an AO strategy (Fig). This can be clearly seen in an
invasion scenario with a single cheater present in the population (Fig. inset). For
any public good production strategy, without any elaborate solutions such as

policing [36] it is unavoidable that cheaters will become more likely to fix in a
population. However, QS mitigates this possibility as compared with an AO strategy.
Both the QS and AO strategies increase the mean time to cheater fixation (Fig. [2E-F)
and the mean time to extinction (Fig. 2H-I) as compared with the NP strategy

(Figs. & , respectively) for starting compositions with few cheaters and many
producers. Our results match well with stochastic simulations (Figs. & .

In order to explore the ecological consequences of public good production for the
whole bacterial population, we calculated the mean time to extinction of the population
given an initial composition of producers and cheaters. The mean extinction time has
been proposed as a measure of bacterial tolerance to antibiotics [30], representing the
ability of bacterial populations to persist when confronted with stressors. While QS
reduces the probability of cheater fixation as compared to AO, the mean extinction time
with QS (Fig. ) is greatly reduced as compared to AO (Fig. ) This suggests that
with no alternate sources of nutrition, QS increases the relative fitness of producers
while decreasing the overall population fitness as compared with AO. This scenario,
which we call destructive cheater suppression, could be an example of evolutionary
suicide [34] (see Discussion), though in a weak sense because the population becomes
more likely to go extinct through fluctuations rather than a non-zero equilibrium
population size disappearing [37]. For most, but not all, (n,m) pairs, the mean
extinction time for QS is larger than for AO. This places the system in the “mixed”
region of the phase diagram (Fig. [IB).

The qualitative differences in cheater fixation probabilities and mean extinction
times between QS and AO were preserved for systems with carrying capacities of 200
(Fig. , twice the size considered in Figs. [2] (see Tables [S1| & for the parameters
used). While this does not guarantee that the destructive nature of QS in these
conditions is independent of populations size, it does demonstrate insensitivity to the
overall population size. Given that our model is not parameterized by experimental
results, the population sizes we consider do not directly correspond to population sizes
in real bacterial colonies. Instead, our model aims to capture key aspects of bacterial
population dynamics when demographic noise plays a role, as discussed in the
Introduction. The degree of demographic noise is related to the size of a population
through the law of large numbers, where the standard deviation in the population size
over the mean number of individuals is inversely proportional to the square root of the
population size. For this reason we focus on small populations, where demographic
noise is relatively large.

Alternative sources of nutrition enable constructive suppression
through QS

Bacterial populations need not rely solely on the growth benefits of a public good. In
some cases they may use alternative sources of nutrition which are not directly
influenced by public good production. We consider the case in which the constitutive
growth rate for individuals with zero public goods present is non-zero but small (20% of
the maximal growth rate benefit provided by public goods alone). This non-zero
constitutive growth rate allows for a small carrying capacity to appear in the NP case,
indicated by the white line in the leftmost column of Fig. [3]| With the QS and AO
strategies, the zero expected net growth contour reflects the NP carrying capacity when
the number of producers is low, but increases markedly with more producers.
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Additionally, more cheaters can be accommodated with more producers present because

of the public nature of the fitness benefits provided by producers. As in Fig. [2] the only

fixed points of the underlying deterministic dynamics are the origin and the
intersections of the zero expected net growth contour with the axes.
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Fig 3. Quorum sensing is a constructive strategy for producers when an alternate
energy source is present (A\g = 0.2) and when public good cost is moderate (¢ = 0.15).
Row 1: Cheater fixation probability from an initial population of n producers and m
cheaters for A) no production (NP), B) quorum sensing (QS), and C) always on
strategies (AO). Row 2: Conditional mean first passage time to cheater fixation from
initial population structure for D) no production, E) quorum sensing, and F) always on
strategies. Row 3: Mean extinction time from initial population structure for G) no
production, H) quorum sensing, and I) always on strategies. White traces: zero
expected net total population growth contour. Inset plots in B), E), and H) show
cheater fixation probability, cheater mean first passage time to fixation, and mean
extinction time, respectively, for an initial population with a single cheater and n
producers. See Table @ for parameter values.

As in the case of zero constitutive growth, QS (Fig. ) decreases the probability of
cheater fixation over AO (Fig. ) for a wide range of starting population compositions,
while increasing the fixation probability compared to NP (Fig. ) The improvement of
QS over AO can be clearly seen in the cheater invasion scenario in the inset of Fig. [3B.

However, with non-zero constitutive growth the mean time to cheater fixation for NP
(Fig. ) and QS (Fig. ) are comparable, while cheaters fix more quickly for AO

(Fig. 3]

). Again, our results match well with simulations (Figs. [S4] & [S5).
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The presence of an alternative source of nutrition renders QS a beneficial strategy
for producers (Fig. [3) at a moderate public good production cost (15%). QS increases
the mean extinction time of the population for all starting population compositions with
at least one cheater and one producer over AO (Fig. —I). Both QS and AO increase
the mean extinction time over NP (Fig. ) From comparison with (Fig. , it appears
that the degree to which growth depends on alternative nutrition sources influences
whether QS at moderate costs is destructive or constructive.

As when there is no constitutive growth, the qualitative differences between QS and
AO were preserved for systems with carrying capacities of 200 as shown in Fig. (see
Tables [S1] & [S2| for parameters).

Trade-offs between cheater suppression and mean extinction
time

We next examine how varying the parameters controlling public good growth benefit
and production affect whether QS is destructive or constructive. Fig. [l] shows the

effects of different K, hy, K,, and h, values on the main results of Figs. [2] & [3| QS is
always destructive with the A\ and ¢ values of Fig. [2| (¢ = 0.1 and Ao = 0), while QS

could be either constructive or destructive in the case of Fig. |3| (¢ = 0.15 and Ay = 0.2).

None of the parameter sets we examined for either (¢, Ag) pair fell into the region of
cheater promotion, where QS would increase the cheater fixation probability over AO.

Ky, K, € {10,15,20,25,30}; g, ha € {1,2,3,4,5}
Fig. 2 (c = 0.1, 19 = 0.0) Fig. 3 (¢ =0.15,29 = 0.2)

10 Constructive cheater suppression Constructive 10 Constructive cheater suppressiol iConslruclive
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3101 @ cmmesi® "\ %10 !
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§D 201 @ ewemes ol' o promotion é‘) -20 i promotion K, =20
o "(’ i he =2
| o =4
Destructive che«ner suppression Destructive cheater suppression !
-30 : —30 : ‘ :
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log (). Qs/” 1:40) log(m'1.9s/ T 1:40)

Fig 4. The results of Fig. l are insensitive to changes in parameters describing public
good growth benefit and QS activation (left plot), while the result of Fig. [3[ are robust
to the same parameters, but can be reversed depending on the parameter values (right
plot). We calculated the log-ratio of mean extinction times, log(’ﬁb* 1:Qs/Tn> ,1:00), and
the log-ratio of cheater fixation probabilities, log(w$! ;. qg/Tor 1.40), for all 625 different
combinations of K,, K, € {10,15,20,25,30} and ha,h e {1, 2 3,4,5}. Each point on
the plot represents the results for one of the 625 parameter combinations. The mean
extinction times and cheater fixation probabilities were calculated for

n* = round(%) producers and m = 1 cheater, the relevant initial population

composition for the case of a single cheater arising by mutation in a population or
producers. The highlighted points show how varying K, alone affects the results
(K, = 15, used in Figs. & is indicated by a star), with K, hg, and h, fixed as in

Figs. P| &

The effects of K, on the success of a single producer in colonizing a habitat and on
the probability of a single cheater leading to fixation of cheaters in an established
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population of producers are shown in Figs. & respectively. This demonstrates
the opposing factors in determining the optimal value of K,. Lower values of K, are
beneficial to the growth of pure producer populations, balancing the costs and benefits
of public good production, while large K, values reduce the probability of cheater
fixation. This trade-off is reflected in Figs. [4] & by the highlighted points on the
plots, again demonstrating that the risk of stochastic clearance increases as the risk of
cheater fixation decreases for QS compared to AO.

Autoinducer production by cheaters is a destructive strategy

To this point, we have assumed that cheaters produce neither public goods nor
autoinducer. What are the consequences of cheaters producing autoinducer while still
not producing public goods? We performed the same analysis as in the previous
sections using the growth rates in Eqs. [§| & [6] which reflect equal autoinducer production
by producers and cheaters. We compared these results to those presented in Fig. [3]
where an alternative nutrition source exists and cheaters do not produce autoinducer.
Cheater signaling increases the probability of cheater fixation while decreasing the mean
time to cheater fixation and the mean extinction time (Fig. . From the perspective of
the cheater population, autoinducer production is a destructive strategy. Even though
cheater signaling decreases mean extinction time, this result suggests that signaling
cheaters are more likely to be observed in nature than non-signaling cheaters, provided
that signaling cheater mutations are at least as likely to occur in a population as
non-signaling cheater mutations.

100 A 100

60

40

Producers (n)
Producers (n)

Producers (n)
765 :S / 765 :NS

20

0
0O 20 40 60 80 100

0
0 20 40 60 80 100

Cheaters (m) Cheaters (m) Cheaters (m)

0 20 40 60

80 100

Fig 5. Cheater autoinducer production is destructive in the presence of an alternative
source of nutrition (Ag = 0.2). The ratio of A) cheater fixation probability, B) cheater
mean fixation time, and C) mean extinction time between QS populations where
cheaters signal (indicated by S) to where cheaters do not signal (indicated by NS). The
non-signaling results used in the denominators are the same as those in Fig. |3} See
Table [S1| for parameter values.

Producer advantage in the benefits of public goods reduces the
advantages of QS

The role of the spatial structure of populations and the diffusive properties of their
environments has recently been acknowledged as a possible explanation for why cheaters
do not always fix in a population of producers [8]. Essentially, if producers are more
likely to be close to other producers, and the benefits of the public good are spatially
confined to an area close to a producer, cheaters will be unlikely to benefit from public
goods. We examine how this type of advantage to producers effects our results by
adding a non-zero constant a to the g parameter in the producer growth rate (Eq. ,
which reflects the possibility that producers benefit more than cheaters from public
goods because of their spatial arrangement. We look at how the results of Fig. [2| change
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with increasing a (Fig. 7 finding that larger a values decrease the benefits of QS as
compared with AO both in terms of cheater fixation probability and mean extinction
time. With large a, there is a permanent growth advantage for producers when public
goods are present, so delaying production of public goods also delays the advantage. For
a = 0.2, QS is not only destructive in that it reduces mean extinction time, but with
some initial population compositions it actually increases cheater fixation probability
over AO. The results for Fig. |3| change in a similar way with a (Fig. , except that the
relative cheater fixation probabilities are less noticeably altered by a. Altogether,
producer advantage, whether due to co-localization of producers or other mechanisms,
shifts QS towards being destructive with respect to AO.

The destructive or constructive nature of QS depends on cost
and constitutive growth

The phase diagram in Fig. demonstrates the role of both public good production
cost and constitutive growth rate in determining the nature of QS outcomes. At low
constitutive growth rates, public good production is essential to the survival of the
population. With low A\g, QS regulation of public good production moves to the “mixed”
region of the phase diagram at relatively low public good costs. This means that
whether QS is beneficial to the population depends on the initial composition of the
population. For low constitutive growth rates below A = 0.1, all values of public good
cost investigated lead to a mix of destructive and constructive cheater suppression.
With larger constitutive growth rates the transition from destructiveness to
constructiveness with increasing cost ¢ occurs gradually with the transition to
constructiveness completing at ¢ = 0.1 to ¢ = 0.15, depending on A\g. For all (¢, \p) pairs
with ¢ > 0, the cheater fixation probability is reduced in QS as compared with AO [S9]

We show the ratio Tgs/Tao for all (n,m) pairs for two sequences of (¢, Ag) pairs in
Figs. and With fixed ¢ = 0.2, the ratio Tgs/Tao is always highest with
intermediate mixtures of producers and cheaters (Fig. [S10)). When X\p & 0.1, there is a
transition from the mixed region to the constructive region, where (n,m) pairs with few
cheaters appear to be slower to change to constructiveness with increasing A\g. With
fixed A\g = 0.2, there is a gradual transition from destructiveness at low ¢ to
constructiveness at high ¢ (Fig. . At moderate costs below ¢ = 0.1, QS is
destructive, with Tgs < Tao for all (n,m) pairs. However, once the cost reaches 0.15,
QS is no longer destructive, as the mean extinction time increases with respect to AO.
In the transition range from ¢ = 0.1 to ¢ = 0.15, the ratio 7gs/7Tao is highest when the
number of producers is low, suggesting that QS is most beneficial with those initial
population structures. The QS gain in mean extinction time over AQO is further
increased by QS at a cost of 0.2, again most drastically when n is small.

The phase diagram displays some non-monotonic behavior in ¢ and \g, especially in
the low Ao, high ¢ region (Fig. [IB). This is a result of calculating the fraction of (n,m)
pairs where Tqs > Tao, so that the phase diagram is a superimposition of results for
each (n,m) pair. If we instead look at the fraction of (n,m) pairs where
1og(TQS > ﬂo) > ¢ for a tolerance parameter J, we can see that the non-monotonic
behavior of the low \g, high ¢ region disappears with small, positive § (Fig. [S12). This
indicates that in this region, the mean extinction times are relatively similar. On the
other hand, with negative ¢ the destructive region with low ¢ remains, indicating that
Tqs is notably smaller than Tao there. We can see the same patterns by looking at
log(Tqs > Tao) over A and ¢ for a selection of (n,m) pairs (Fig. [S13). This further
reinforces that QS is most constructive with large A\g and c.
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Discussion

Our model of competitive growth between bacterial producers and cheaters reveals a
number of previously unexplored consequences of quorum sensing. We investigate the
case of isolated, single subpopulations of bacteria as a first step towards understanding
the impact of QS on bacterial eco-evolutionary dynamics. When public good production
allows for metabolism of otherwise inaccessible sources of nutrients, we demonstrate the
important role of both the availability of alternative, public good-independent nutrients
and the cost of public good production in determining the consequences of quorum
sensing. With no alternative nutrients, quorum sensing by producers withholds the only
source of nutrients from the whole population, which harms both producers and
cheaters in terms of the total population’s mean extinction time. We identify this result
as a possible example of demographically stochastic evolutionary suicide [37], as quorum
sensing increases the relative fitness of producers while decreasing the mean extinction
time of the entire population. If instead there is an alternate energy source, then
regulating public good production via quorum sensing reduces the probability of cheater
fixation, while in some cases increasing the mean extinction time of the population over
the always on strategy and in other cases decreasing the mean extinction time,
depending on the public good production cost.

The destructive region in Fig. [I] can be understood heuristically by considering that,
if the cost of public good production is low, QS-mediated regulation of public good
production withholds the fitness benefits of the public good while achieving minimal
metabolic savings for the producers. In addition, large alternate sources of nutrition can
help to offset the costs of public good production, reducing loss in relative producer
fitness due to costs. On the other hand, when public good production is costly,
QS-mediated production balances costs and benefits by delaying public good production
until the population of producers is large enough to benefit. Thus both public good
production cost and constitutive growth rate play an important role in determining the
eco-evolutionary consequences of QS-based regulation.

Because we have not explicitly modeled the evolution of the QS strategy, our
suggestion that destructive QS is an example of evolutionary suicide requires further
analysis. Specifically, the suggestion that QS could evolve when it falls in the
destructive phase of Fig. is based only on the fact that QS results in lower cheater
fixation probability, and hence in larger relative fitness as compared with cheaters, than
the AO strategy. Additional work, including explicit modeling of QS evolution, is
needed to confirm the connection with evolutionary suicide and would be an interesting
direction for future research.

Future experimental work is needed to test the predictions of our model.
Experimental techniques such as those used by Coates et al. [24] together with genetic
manipulation of QS circuitry could provide an avenue for testing our predictions, and
would provide invaluable insight into the role of QS in small bacterial populations.
Further theoretical work could explore the impact of mutation, migration, and
horizontal gene transfer on our results, where a stable heterogeneous steady state could
be achieved. The effects of QS signaling heterogeneity |38H41] on our results could also
be explored, whether due to stochastic gene expression, low diffusivity within biofilms,
or other causes. Finally, further details concerning the complex nature of QS could be
incorporated into the model, including the effects of nutrient levels on QS [5].

August 28, 2022

112

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332



Materials and Methods

Model overview

We consider well-mixed populations of bacteria growing according to birth-death models
with no mutation or migration (Fig. [[]A). Public goods are modeled implicitly through
their costs and benefits as reflected in the birth rates. We write the birth rates as /\Efm
and /\Sf;n for producers and cheaters, respectively. The subscript n and m are the
number of producers and cheaters present, reflecting the dependence of the rates on the
population state. The death rates are ugfm and MS}}". See Eqgs. for full forms of the
birth and death rates.

Our model accounts for Al and public good production and degradation as well as
density-dependent fitness benefits of public goods directly in the birth rates. This
simplification rests on several assumptions. We assume that the timescales associated
with AT and public good production and degradation are much faster than those of
births and deaths. Under this assumption, the Al and public good concentrations
quickly reach a steady state upon a bacterial birth or death, so that the effects of both
concentrations on the birth rates is only a function of the state of the population.
Similarly, the growth benefits of public goods are assumed to be a function of the
current population state, namely a non-decreasing, saturating function of n. Another
assumption is that all individuals within a given strain (producer or cheater) exhibit
exactly the same birth and death rates. In reality, the stochasticity of subcellular events
and diffusion of extracellular molecules leads to heterogeneous growth rates even in
clonal populations [41]. Our approach simplifies analysis while providing a description
of mean birth and death rates.

In order to evaluate the long-term eco-evolutionary fates of mixed producer-cheater
populations, we calculate the cheater fixation probability (7°"), mean first passage time
to cheater fixation (7°"), and mean population extinction time (7°) for all pairs of n
producers and m cheaters where n+m < N. We define N as a maximal population size
large enough that the line n +m < N effectively acts as a reflecting boundary. An
appropriate choice of N then depends on the birth and death rates used. Solutions of
all three quantities of interest come from solving backward Kolmogorov equations, as
detailed in the Materials and Methods section. We validate the results from these
solutions through stochastic simulations [42]43].

Birth and death rates

We use birth-death models to describe the population dynamics of a bacterial colony
with both public good producers and cheaters. We assume the timescales of both
autoinducer and public good production and degradation are much shorter than those
of population growth. Consequently, we write per capita birth and death rates solely as
a function of the number of producers and cheaters in the population. We also assume
that QS is sensitive to population density. While a number of other explanations for the
function of QS exist, as noted in the Introduction, all of them depend to some degree on
population density.

The birth and death rates in our models take into account the costs and benefits of
public good production. We use A to denote birth rates and p to denote death rates,
with the superscript Pr for producers and Ch for cheaters. Let n be the number of
producers in the population and m be the number of cheaters. Let Ay be the birth rate
due to an alternative energy source that does not require proteases for bacteria to
utilize, and let po be the constant death rate. We assume that the per-capita death rate
increases linearly with the total population size through some density-dependent
mechanism such as the production of toxic byproducts. We denote the maximal birth
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rate due to nutrients derived from protease activity as g and the additional birth rate
gained by producers if they have preferential access to public goods (due to, for
example, slow diffusion) as a. We denote the maximal cost of protease production, in
terms of growth rate, as c. Parameters K, and K, control the number of producers for
which protease-derived growth rate and protease production are half-maximal,
respectively. Finally, hy and h, control the shape of the protease-derived growth rate
and protease production rate functions. The full birth and death rates are

- (/K" (/)"
)‘E,m — max ([)\0 + ((g +a) 1+ (n/Kg)hs - C) 1+ (n/Ka)ha}mO) (1)

Frm = Ho(n+m)n (2)

(n/Eghs  (n/K.)" }
1+ (n/Kg)hs 1+ (n/K,)h=

/\S};n = [Ao +g

The Hill function forms of these rates are similar to those in previous work [44}[45].
The strategy taken by a particular strain in controlling public good production is
controlled by the parameters K, and h,. The parameter K, controls when public good
production is half-maximal, while h, controls the shape of the activation curve. For an
“always-on” strain, we take the limit K, — 0 so that public good production is always
maximal, independent of the producer population size. For a “no production” strain
(equivalent to a cheater that produces autoinducer), we take K, — oo so that the public
good is never produced.

We set the maximum birth rate due to public goods to g = 1 in all cases, so that all
other birth rate parameters can be considered to be in units of maximum public good
birth rate. In general we consider the parameters g, Kg, hg, ¢, and Ag to be properties
of the public good and environment which cannot be changed by bacterial strategy.
Similarly, we consider the parameter ug to be a joint property of the bacterial species
and the environment. As we have stated, K, and h, constitute the choice of public
good regulation strategy.

For the special case where cheaters produce autoinducer but not public goods, we
modify the birth rates to

APT = max (

. (n/Kg)hg . ((n—!—m)/Ka)ha n
AO*((QJF )1+(n/Kg)hg >1+((n+m)/Ka)ha] ’0> ?

(n/Kg)"= ((n+m)/Ka)h"‘

ot (n/Kg)" 1 4 ((n+m)/K.)"

(6)

Ch __
)‘n,m -

under the assumption that producers and cheaters contribute autoinducer equally.
The parameter values we have used are summarized in Table

Fixation probabilities and mean first passage times

The dynamics of the probability distribution over n and m at time ¢ given n’ and m’ at
an earlier time s (with s < t) is governed by the forward Kolmogorov equation
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%P(n,m,t | n',m',s) = A, P(n—1,m,t | n/,m/,s)
+ uE_ﬁ_LmP(n +1,m,t | n',m' s)
+ )\S};n_lP(n,m —1,t|n/,m,s)
+ MS%HP(WW +1,t | n',m,s)
— (AR R+ AT i) Pyt oy s)(T)

where n,m,n’,m’ € {0,1,2,...}. For birth and death rates linear in n and m, the
system of coupled differential equations represented by Eq.[7] can be solved exactly
using a generating function approach [46]. However, the birth and death rates required
for our purposes are nonlinear, and we adopt a computational approach.

The main quantities of interest in this work are the probability of cheater fixation
and the mean population extinction time. These quantities can be calculated from the
backward Kolmogorov equation

0
a—P(n,m,t | n',m/,s) = AT, (P(n,m,t | n'+1,m',s) — P(n,m,t | n',m',s))
s ,

+ ,ugﬁm, (P(n, m,t|n' —1,m' s)— P(n,m,t | n,m, s))
—I—)\S,}Tm, (P(n,m,t | n',m' +1,8) — P(n,m,t | n'7m’,s))
(

+,ug,}fm, (P n,m,t|n’,m' —1,8)— P(n,m,t| n',m’,s)).
(8)
We define a maximum pure producer or cheater population size N and construct an
(N +1)% x (N + 1)? matrix describing the transition rates between all states and use it
to solve for our quantities of interest. Given the birth and death rates we use, we
assume that the approximation introduced by considering a finite rate matrix is
reasonable when net growth rates are negative and have a large magnitude in all states

where m = N or n = N. For the probability that cheaters will fix in the population, we
solve [46]

)‘S,rm (Ws}il-l,m - ,/Tr(lj,};n) + H’E,rm (TrrCL:ELm - ,/TS,};n)
+ AS,};n (7TCh Ch ) + /1‘7(3,};71 (71'Ch ﬂ_Ch ) =0 (9)

nom+1 — Tnm nm—1" 'nm

with boundary conditions

Wg};nzl,fornzoand0<m§N (10)
7'('7(5’}6:0, for 0 <n < N and m =0. (11)

For the mean first passage time conditioned on cheater fixation, we solve

A (0520 = 058,) + 500 (052, 050
AT (0 — O55) + S5 055 — 0S8 = S )

n,m—1 n,m

with the condition

oSt =0, for n =0 or m =0, (13)

n,m

August 28, 2022

413

414

416

417

418

419

420

422

423

424

425

426

428



and then find the conditional mean first passage time to cheater fixation according to

cn _ O
Tn,m = 71-Ch . (14)

Similarly, for the mean extinction time we solve

)\Srm (7Tn+1,m - 7;z,m) + MSfm (771—1,771 - 7:1,771)
+ AS m (7;L,m+1 - n,m) + :US,};n (%,m—l - 7;L,m) =-1 (15)

with the condition

Tn,m =0, for n =0 and m = 0. (16)

Directly solving the linear system of equations represented by Eq.[15] can lead to
numerical instability when the mean extinction times are large. To account for these
numerical issues we also calculated the mean extinction time using the analytical
formula for pure producer or cheater populations with adjoint reflecting boundary
conditions at n = N and m = N [47-49]

n J_\Pr
7:170:Z< Z ! H)\Z+l 10) (17)

i=1 1, (] j=1 iU"LJrj 07=1 /’Lerl 1,0
m N— J
_ OH—l 1
Tom =2\ o Z ol | s (18)
Uo i =1 Mot 25y Hojiti-1

and direct calculations of fixation probabilities for each point along the pure
producer and cheater axes. We use the notation wf;?m and 71'2% to indicate the
probability that a population starting with n producers and m cheaters will have
producers fix with ¢ total producers and will have cheaters fix with j total cheaters,
respectively. We then estimate the mean extinction time according to

N N
" 0.
= § T m Ti0 + § 07 70,5 (19)
i=1 j=1

under the assumption that producers or cheaters will quickly fix followed by a much
longer period with a pure population before extinction.

Stochastic simulations

Stochastic simulations were performed using Gillespie’s algorithm [42L{43] implemented
in the Gillespy2 Python package |50]. Each simulation was run until population
extinction and was repeated 100 times in order to estimate fixation probabilities and
mean first passage times.

General methods

The figures in this article were created using Inkscape 0.92 and Matplotlib 3.1.1 [51] in
a Python 3.7 Jupyter Notebook [52]. All fixation probabilities and mean first passage
times were calculated using the linear system solver in the Python NumPy package [53]
and the sparse matrix module of the SciPy package [54].
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Fig S1. The cheater fixation probabilities from Fig [2] agree with simulation
results. The first row shows the cheater fixation probabilities for A) quorum
sensing (QS) and B) always on (AO) strategies, directly reproduced from Fig.
The second row shows cheater fixation probabilities calculated as a mean from 100
independent simulations for C) QS and D) AO strategies. Points above

n+m = 70 (above the zero-net growth contour) were not calculated. See Table
for parameter values.

Fig S2. The cheater mean first passage time to fixation from Fig [2| agree with
simulation results. The first row shows the cheater fixation mean first passage
times for A) quorum sensing (QS) and B) always on (AO) strategies, directly
reproduced from Fig. [2l The second row shows cheater fixation mean first passage
times calculated as a mean from 100 independent simulations for C) QS and D)
AO strategies. Points above n + m = 70 (above the zero-net growth contour) were
not calculated. See Table [S2| for parameter values.

Fig S3. The qualitative results from Fig. [2| are preserved with increased carrying
capacity, with no constitutive growth (Ag). The first row depicts cheater fixation
probability from an initial population structure of n producers and m cheaters for
A) quorum sensing (QS) and B) always on (AO) strategies. The second row
depicts cheater fixation probabilities calculated as a mean of 100 independent
simulations for C) QS and D) AO strategies. Points above n +m = 140 (above
the zero-net growth contour) were not calculated. The third row depicts mean
extinction time from initial population structure for E) QS and F) AO strategies,
calculated according to Eq. As with the results in Fig. [2 QS decreases
cheater fixation probability but also decreases mean extinction time as compared
with AO. See Table [S2| for parameter values.

Fig S4. The cheater fixation probabilities from Fig [3| agree with simulation
results. The first row shows the cheater fixation probabilities for A) quorum
sensing (QS) and B) always on (AO) strategies, directly reproduced from Fig.
The second row shows cheater fixation probabilities calculated as a mean from 100
independent simulations for C) QS and D) AO strategies. Points above

n+m = 70 (above the zero-net growth contour) were not calculated. See Table
for parameter values.

Fig S5. The cheater mean first passage time to fixation from Fig [3| agree with
simulation results. The first row shows the cheater fixation mean first passage
times for A) quorum sensing (QS) and B) always on (AO) strategies, directly
reproduced from Fig. [3l The second row shows cheater fixation mean first passage
times calculated as a mean from 100 independent simulations for C) QS and D)
AO strategies. Points above n + m = 70 (above the zero-net growth contour) were
not calculated. See Table [S2| for parameter values.
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Fig S6. The qualitative results from Fig. [3| are preserved with increased carrying
capacity, with constitutive growth (A9 = 0.2). The first row depicts cheater
fixation probability from an initial population structure of n producers and m
cheaters for A) quorum sensing (QS) and B) always on (AO) strategies. The
second row depicts cheater fixation probabilities calculated as a mean of 100
independent simulations for C) QS and D) AO strategies. Points above

n 4+ m = 140 (above the zero-net growth contour) were not calculated. The third
row depicts mean extinction time from initial population structure for E) QS and
F) AO strategies, calculated according to Eq. As with the results in Fig.
QS decreases cheater fixation probability while also increasing mean extinction
time as compared with AO. See Table [S2| for parameter values.

Fig S7. Producer advantage reduces the benefit of QS over AO with the
parameters from Fig. 2| A)-C) The cheater fixation probability with QS divided
by the cheater fixation probability with AO. D)-F) Logarithm of the ratio of mean
extinction time for QS with AO. The cheater fixation probability of QS relative to
AQ increases with a while the log-ratio of QS mean extinction time to AO mean
extinction time decreases with a.

Fig S8. Producer advantage reduces the benefit of QS over AO with the
parameters from Fig. [3| A)-C) The cheater fixation probability with QS divided
by the cheater fixation probability with AO. D)-F) Logarithm of the ratio of mean
extinction time for QS with AO. The cheater fixation probability of QS relative to
AO increases with a, though less noticeably than in Fig. [S7] Because QS is
constructive in this case, the The log-ratio of QS mean extinction time to AO
mean extinction time is positive, but decreases with a.

Fig S9. Phase diagram describing the fitness gains of QS over AO as a function
of constitutive growth rate (\g) and public good production cost (¢). For each pair
(Mo, ¢) we calculated the cheater fixation probability for all (n,m) pairs satisfying
n >0, m >0, and n +m < 100 with the QS and AO strategies. The reported
number is the fraction of these (n, m) pairs where the cheater fixation probability
for QS is less than for AO (7%, < 7719,). For all (Ao, ¢) pairs except for when

¢ = 0, cheater fixation probability is reduced by QS for all initial population
compositions. When ¢ = 0, there are a small number of initial compositions where
7?3 > 149 which decreases as \g increases. See Table [S2| for parameter values.

n,m = ,m

Fig S10. Detailed analysis of the phase diagram from Fig. [I] with ¢ = 0.2 fixed
and with different Ay values. Top row: the red dots shown over the phase diagram
indicate the (¢, Ag) pairs that we examine in detail. Middle row: the ratio of QS
mean extinction time to AO mean extinction time (7gs/Tao) with the indicated
values of A\g. The fraction of (n,m) pairs where (Tgs > Tao0) is indicated as
f(Tos > Tao). Bottom row: the zero expected net growth contour contours for
QS producers (red), QS cheaters (orange), AO producers (black), and AO cheaters
(grey). For Ag = 0 the two QS zero expected net growth contour contours are
identical and the two AO zero expected net growth contour contours are also
identical. As \g is increased, the AO producer contour approaches the producer
axis faster than the QS producer contour. See Table [S2| for parameter values.

Fig S11. Detailed analysis of the phase diagram from Fig. [1| with Ay = 0.2 fixed
and with different ¢ values. Top row: the red dots shown over the phase diagram
indicate the (¢, Ag) pairs that we examine in detail. Middle row: the ratio of QS
mean extinction time to AO mean extinction time (7gs/Tao) with the indicated
values of ¢. The fraction of (n,m) pairs where (Tgs > Tao) is indicated as
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f(Tos > Tao). Bottom row: the zero expected net growth contour contours for
QS producers (red), QS cheaters (orange), AO producers (black), and AO cheaters
(grey). At Ao = 0.075 the diagonal zero expected net growth contour contour near
the origin appears for QS, and moves further from the origin as )\g increases from
there. See Table [S2] for parameter values

Fig S12. Analysis of the phase diagram in Fig. [Ib, with varied criteria for the
relative values of Tqg and Tao. We define a tolerance, §, so that the above plots
display the fraction of (n, m) pairs with log(7;.m:qs/Tn,m:a0) > 0. Fig.
corresponds to § = 0. With slightly larger 0, the region with higher fraction
around Ag = 0.05, ¢ > 0.2 rapidly disappears. This demonstrates that the QS
mean extinction times are only slightly larger in this region.

Fig S13. The log ratio of the QS mean extinction time to AO mean extinction
time with several initial population compositions, reflecting intermediate
calculations towards producing Fig. [Ip and Fig. [S12] At low ¢ values,

Tnm:Qs < Tnm:ao for all initial conditions, reflecting the destructive region of
Fig. . With large ¢ and Ao, Tn,m:Qs > Tn,m:a0 reflecting the constructive
region. All other combinations of ¢ and A\g lead to relatively minor differences
between Ty, m:qs and T, m:A0-

Fig S14. Mean extinction time 77 .qs in a colonization scenario as a function of
K,, with an initial n = 1 producer and m = 0 cheaters. The quantity 7; 0.qs
represents the ability of a single producer to succeed in establishing a persistent
colony in the absence of cheaters. The K, value that maximizes mean extinction
time is weakly dependent on A\g and increases with larger c, reflecting the larger
net benefit of delaying public good activation with higher costs until the public
good is more beneficial (determined by the K, and h, parameters). At ¢ =0, the
AO strategy maximizes the mean extinction time, as there is no cost whatsoever
to public good production. Dashed vertical line: optimal value of K, when

Ao = 0.25.

Fig S15. Cheater fixation probability in an invasion scenario as a function of K,

Aotg—c
w

with an initial n* = round( ) producers (approximate equilibrium value in

the absence of cheaters) and m = 1 cheater. With no cost of public good
production (¢ = 0), K, has no effect on cheater fixation probability. For all other
examined costs, the fixation probability monotonically decreases as a function of
K, for all examined )y values. This behavior suggests that the NP strategy,
characterized by K, — oo, minimizes the cheater fixation probability.

Fig S16. Trade-offs between suppressing cheaters and decreasing the time to
stochastic clearance of a pure producer population, as controlled by K, are
present for A\g > 0 but absent when Ag = 0. In the left figure, increasing K, has
no effect on mean extinction time, so that loss of public good production
altogether (K, — oo) minimizes cheater fixation probability compared with AO.
Here, we calculated the log-ratio of mean extinction times, log(71,0.qs/71,0:40);
and the log-ratio of cheater fixation probabilities, log(7$™ |.g/To 1.00), for all
625 different combinations of K, K, € {10, 15,20, 25,30} and

ha,hg € {1,2,3,4,5}. Each point on the plot represents the results for one of the
625 parameter combinations. We calculated mean extinction times for n =1
producers and m = 0 cheaters, corresponding to the case where a single producer
is colonizing an otherwise empty region of space. We calculated cheater fixation

Aotg—c

probabilities for n* = round( ) producers and m = 1 cheater, the relevant

initial population composition for the case of a single cheater arising by mutation
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in a population or producers. The highlighted points show how varying K, alone
affects the results (K, = 15, used in Figs. 2/ & [3] is indicated by a star), with K,
hg, and h, fixed as in Figs. 2 & [3]
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