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Abstract

The evolutionary consequences of quorum sensing in regulating bacterial cooperation
are not fully understood. In this study, we reveal unexpected effects of regulating public
good production through quorum sensing on bacterial population dynamics, showing
that quorum sensing can be a collectively harmful alternative to unregulated production.
We analyze a birth-death model of bacterial population dynamics accounting for public
good production and the presence of non-producing cheaters. Our model demonstrates
that when demographic noise is a factor, the consequences of controlling public good
production according to quorum sensing depend on the cost of public good production
and the growth rate of populations in the absence of public goods. When public good
production is inexpensive, quorum sensing is a destructive alternative to unconditional
production, in terms of the mean population extinction time. When costs are higher,
quorum sensing becomes a constructive strategy for the producing strain, both
stabilizing cooperation and decreasing the risk of population extinction.

Author summary

Quorum sensing is a process through which bacteria can regulate gene expression
according to their population density. The reasons for why bacteria use quorum sensing
to regulate production of “public goods”, biochemical products that benefit nearby
bacteria, are not entirely clear. We use mathematical modeling to explore how quorum
sensing compares to other strategies for controlling production of public goods, namely
unconditional production independent on population density, in small populations of
bacteria where the random nature of growth is significant. Our model captures both
how likely “cheater” strains, which do not produce public goods but benefit from them,
are to take over a population and how long on average the population will last before
going extinct. We find that depending on how expensive public good production is and
how critical public goods are for growth, quorum sensing can decrease or increase the
mean time to extinction compared with unconditional production, while always
reducing the likelihood of cheaters taking over. Our results could have important
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implications for the growth of bacterial infections, for example Pseudomonas aeruginosa
infections of the lungs of cystic fibrosis patients.

Introduction 1

Cooperative behavior is widespread in bacteria [1], including coordinated swarming and 2

public good production. These behaviors are often regulated through quorum sensing 3

(QS) [2], in which individual bacteria produce and export small molecules called 4

autoinducers (AI). When AI molecules accumulate to a sufficiently high concentration 5

in the environment, and consequently within the bacteria producing them, they activate 6

operons controlling the expression of genes critical for cooperation. While the 7

biochemistry of some QS systems is well understood [2], QS is sensitive to a number of 8

factors [3–5] and there are many proposed biological functions of QS which have been 9

the subject of debate [6–9]. 10

Evolutionary questions concerning QS function have largely focused on the ability of 11

QS-controlled cooperation to combat invasion by non-cooperating cheaters in bacterial 12

populations [10,11]. The question of how cooperation can evolve and be maintained in 13

populations is a general problem in evolutionary biology [12], and the role of QS in the 14

evolution of bacterial cooperation is of great interest in understanding bacterial social 15

interactions. A number of possible resolutions to the problem of social cheaters in 16

bacterial public good production include punishment of cheaters [13], dispersal into 17

subpopulations [14], and the use of QS to regulate cooperation [1, 8, 15]. Regulation of 18

public good production through QS has been shown to reduce the ability of cheaters to 19

invade a population of producers [16]. 20

The role of QS in maximizing population growth in the absence of cheaters has also 21

been investigated as a rationale for QS-control of public good production [17]. Because 22

public goods produced by bacteria can have density-dependent fitness benefits [18], 23

regulation of public good production based on population density can be seen as an 24

optimal control solution to maintaining a maximal population size balancing metabolic 25

costs and benefits [19, 20]. By maintaining a maximal population size, a population also 26

maximizes its mean time to extinction, which is especially important with the 27

possibility of unpredictable environmental changes. 28

Considering the threat of both cheater invasion and the onset of harmful 29

environmental conditions that could lead to population extinction, there is a tension in 30

the degree to which public good production is regulated. Unconditional public good 31

production appears to be a self-defeating strategy, where non-producing cheaters will 32

arise by mutation and reap all the benefits of public goods without experiencing any of 33

the associated production costs. At the other extreme, a strategy where no public goods 34

are produced (which could be a result of a successful cheater invasion of a cooperating 35

population) should be vulnerable to extinction when the public goods are essential for 36

growth or reducing the likelihood of death. The idea that quorum sensing is a moderate 37

strategy between these two extremes has been explored previously [21]. However, to our 38

knowledge, a full analysis of this tension explicitly considering both cheater fixation 39

probability and mean population extinction time has not been carried out. What are 40

the effects of QS-mediated regulation of public good production in terms of cheater 41

suppression and overall population robustness? Does QS always protect against cheaters 42

while also increasing long-term viability of the population? 43

In this work, we explore the effects of QS on cheater fixation and mean population 44

extinction time in a simple birth-death model of mixed producer-cheater populations. 45

Our model sacrifices much of the complexity of QS [3–5] in order to provide more 46

general insight into how QS strategies influence the eco-evolutionary dynamics of 47

bacterial colonies. We compare the QS strategy of public good production with an 48
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“always on” (AO) strategy, meaning that each producer cell unconditionally produces 49

public goods at the maximum rate. Our models reflect bacterial populations where 50

demographic stochasticity is an important factor in population dynamics. The role of 51

demographic stochasticity in bacterial populations has been explored in past 52

work [22–25], and is particularly important when populations are divided into 53

subpopulations. 54

An important example of subdivided populations is Pseudomonas aeruginosa 55

infections in the lungs of cystic fibrosis (CF) patients [26]. Bacteria often form small, 56

dense biofilm aggregates in infections [27]. In CF lung infections, P. aeruginosa forms 57

aggregates of at most ∼ 1, 000 cells [28], suggesting that demographic noise is an 58

important factor. While biofilms are known to protect bacteria from the effects of 59

antibiotics [29], the possibility of “stochastic clearance” where relatively small bacterial 60

populations go extinct at sub-minimum inhibitory concentrations of antibiotics [24,30] 61

suggests that extinction is a real possibility faced by P. aeruginosa aggregates in the 62

presence of stressors such as antibiotics. Furthermore, while in vitro experimental 63

evidence suggests that QS induction can occur within these aggregates [31], QS 64

induction is unlikely to occur between distinct aggregates [32]. This evidence provides 65

justification for our focus on single well-mixed sites in QS, an important first step 66

towards a more realistic model incorporating interactions between separate aggregates 67

and accounting for heterogeneity within single aggregates. We use the QS system 68

controlling production of proteases by P. aeruginosa as inspiration for our model, where 69

public goods increase the growth rate of all individuals while leaving death rates 70

unaffected. Without the ability to produce proteases, P. aeruginosa starves when 71

proteins are the sole source of carbon and nitrogen [33]. However, with the ability to 72

produce and export proteases into their environment, P. aeruginosa can grow using the 73

oligopeptides that proteases produce by cleaving exogenous proteins. 74

We find that while QS decreases cheater fixation probability for all examined public 75

good costs and constitutive growth rates (growth rate in the absence of public goods), 76

the population mean extinction time is only increased by QS for a well-defined set of 77

cost-growth rate pairs. When mean extinction time is decreased by QS, there is an 78

increased risk of stochastic clearance. By “stochastic clearance”, we refer to the 79

phenomenon where a population with a non-negative mean net-growth rate has a finite 80

time to extinction, due to stochastic copy number fluctuations. The cases where QS 81

decreases mean extinction time as compared with an unconditional AO strategy is an 82

example of a weak form of “evolutionary suicide” [34], where QS increases the relative 83

fitness of the cheater strain while the entire population of both producers and cheaters 84

is made more vulnerable to extinction. We call this situation destructive cheater 85

suppression. Only when both the cost of public good production and the constitutive 86

growth rate are large enough is QS a constructive strategy for the producers, in that 87

both cheater fixation probability is reduced and mean extinction time is increased. 88

Results 89

We first briefly introduce the notation used throughout the remainder of this article. 90

The number of producers in the population is written as n while the number of cheaters 91

is m. When n = m = 0, the population of bacteria has gone extinct. The cost of public 92

good production is c and the per-capita constitutive growth rate (in the absence of 93

public goods) is λ0. The per-capita death rate for all individuals is µ0. The birth rates 94

given n and m are λPr
n,m and λCh

n,m while the death rates are µPr
n,m and µCh

n,m, for the 95

producers and cheaters, respectively (Fig. 1A). We write the cheater fixation probability 96

as πCh, the mean time to cheater fixation as τCh, and the mean time to population 97

extinction as T . The model is fully described in the Materials and Methods section. 98
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Fig 1. Overview of birth-death model and main results. A) Diagram of the
two-dimensional birth-death process describing the dynamics of a bacterial population
consisting of public good producers and cheaters. As an example, the population is
shown with two producers and two cheaters. All possible subsequent states of the
population are indicated, where a single producer or cheater can either arise through
binary fission (with state-dependent rates λPr and λCh, respectively) or can die (with
state-dependent rates µPr and µCh). See Eqs. 1-4 for the full forms of the birth and
death rates. B) Phase diagram describing the fitness gains of quorum sensing (QS) over
always on (AO) producers, as a function of constitutive growth rate (λ0) and public
good production cost (c). For each pair (λ0, c) we calculated the mean extinction time
for all (n,m) pairs satisfying n ≥ 0, m ≥ 0, and n+m ≤ 100 with the QS and AO
strategies. The reported number is the fraction of these (n,m) pairs for which the mean
extinction time for QS is greater than for AO (T QS

n,m > T AO
n,m). In the bottom right-hand

region (dark blue) regulating public good production through QS decreases mean
extinction time for all (n,m) pairs, meaning that the AO strategy decreases the risk of
population extinction. Here, QS is a destructive strategy. The upper region (yellow) is
where QS increases the mean extinction time for all (n,m), a constructive strategy for
the producers. The region labeled “mixed” indicates that QS increases mean extinction
time for some (n,m) pairs while decreasing it for others.

The phase diagram in Fig. 1B shows the fraction of (n,m) pairs in the set 99

{(n,m) ∈ Z2 | n,m > 0, n+m ≤ 100} in which the mean extinction time of a 100

population regulating public good production through QS is larger than that using the 101

AO strategy, as a function of the constitutive per capita growth rate, λ0 ≥ 0, and the 102

cost of public good production, 0 ≤ c ≤ 1, representing the fraction of growth rate 103

benefit provided by public goods alone. We first examine two points of interest on this 104

phase diagram, c = 0.1, λ0 = 0 and c = 0.15, λ0 = 0.2 as marked in Fig. 1B, and then 105

discuss the general features of the phase diagram. 106

Quorum sensing is a destructive strategy in the absence of 107

alternative nutrition sources 108

In agreement with previous work [16,35], we find that in the absence of alternate sources 109

of nutrition (λ0 = 0), QS reduces the probability of cheater fixation for a wide range of 110

starting population compositions (Fig. 2). We calculate the probability of cheaters 111

fixing (Eq. 9) in a small population with starting compositions satisfying 0 < n, 0 < m, 112

and n+m ≤ 100. We compare cases where no public good is produced (NP), where 113
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public good production is QS-controlled, and where public good production is always on 114

(AO). The NP strategy corresponds to a cheater strain that produces autoinducer. 115

Because there is no constitutive growth rate (λ0 = 0), if the NP strategy is used there is 116

no (n,m) pair for which the net population growth rate is non-negative. On the other 117

hand, for the QS and AO populations, the white lines in Fig. 2 represent the total 118

population zero expected net growth contour. Because these lines represent the zero 119

expected net growth rate contours of the entire population, they are not fixed points of 120

the underlying deterministic behavior of the system, which only exist at the origin and 121

at the intersection of the zero expected net growth contours with the producer axis. 122

Thus, there can not be a long-lived population with a non-zero number of cheaters. 123

Fig 2. Quorum sensing is a destructive strategy for producers when no alternate energy
source is present (λ0 = 0) and when public good cost is moderate (c = 0.1). Row 1:
Cheater fixation probability from an initial population of n producers and m cheaters
for A) no production (NP), B) quorum sensing (QS), and C) always on (AO) strategies.
Row 2: Conditional mean first passage time to cheater fixation from initial population
structure for D) no production, E) quorum sensing, and F) always on strategies. Row 3:
Mean extinction time from initial population structure for G) no production, H) quorum
sensing, and I) always on strategies. White traces: zero expected net total population
growth contours. Inset plots in B), E), and H) show cheater fixation probability, cheater
mean first passage time to fixation, and mean extinction time, respectively, for an initial
population with one cheater and n producers. See Table S1 for parameter values.

With a moderate cost to public good production (10% of the maximum growth rate 124

benefit imparted by public goods), a QS strategy (Fig. 2B) increases cheater fixation 125
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probability as compared with an NP strategy (Fig. 2A) while decreasing cheater fixation 126

probability as compared with an AO strategy (Fig. 2C). This can be clearly seen in an 127

invasion scenario with a single cheater present in the population (Fig. 2C inset). For 128

any public good production strategy, without any elaborate solutions such as 129

policing [36] it is unavoidable that cheaters will become more likely to fix in a 130

population. However, QS mitigates this possibility as compared with an AO strategy. 131

Both the QS and AO strategies increase the mean time to cheater fixation (Fig. 2E-F) 132

and the mean time to extinction (Fig. 2H-I) as compared with the NP strategy 133

(Figs. 2D & 2G, respectively) for starting compositions with few cheaters and many 134

producers. Our results match well with stochastic simulations (Figs. S1 & S2). 135

In order to explore the ecological consequences of public good production for the 136

whole bacterial population, we calculated the mean time to extinction of the population 137

given an initial composition of producers and cheaters. The mean extinction time has 138

been proposed as a measure of bacterial tolerance to antibiotics [30], representing the 139

ability of bacterial populations to persist when confronted with stressors. While QS 140

reduces the probability of cheater fixation as compared to AO, the mean extinction time 141

with QS (Fig. 2H) is greatly reduced as compared to AO (Fig. 2I). This suggests that 142

with no alternate sources of nutrition, QS increases the relative fitness of producers 143

while decreasing the overall population fitness as compared with AO. This scenario, 144

which we call destructive cheater suppression, could be an example of evolutionary 145

suicide [34] (see Discussion), though in a weak sense because the population becomes 146

more likely to go extinct through fluctuations rather than a non-zero equilibrium 147

population size disappearing [37]. For most, but not all, (n,m) pairs, the mean 148

extinction time for QS is larger than for AO. This places the system in the “mixed” 149

region of the phase diagram (Fig. 1B). 150

The qualitative differences in cheater fixation probabilities and mean extinction 151

times between QS and AO were preserved for systems with carrying capacities of 200 152

(Fig. S3), twice the size considered in Figs. 2 (see Tables S1 & S2 for the parameters 153

used). While this does not guarantee that the destructive nature of QS in these 154

conditions is independent of populations size, it does demonstrate insensitivity to the 155

overall population size. Given that our model is not parameterized by experimental 156

results, the population sizes we consider do not directly correspond to population sizes 157

in real bacterial colonies. Instead, our model aims to capture key aspects of bacterial 158

population dynamics when demographic noise plays a role, as discussed in the 159

Introduction. The degree of demographic noise is related to the size of a population 160

through the law of large numbers, where the standard deviation in the population size 161

over the mean number of individuals is inversely proportional to the square root of the 162

population size. For this reason we focus on small populations, where demographic 163

noise is relatively large. 164

Alternative sources of nutrition enable constructive suppression 165

through QS 166

Bacterial populations need not rely solely on the growth benefits of a public good. In 167

some cases they may use alternative sources of nutrition which are not directly 168

influenced by public good production. We consider the case in which the constitutive 169

growth rate for individuals with zero public goods present is non-zero but small (20% of 170

the maximal growth rate benefit provided by public goods alone). This non-zero 171

constitutive growth rate allows for a small carrying capacity to appear in the NP case, 172

indicated by the white line in the leftmost column of Fig. 3. With the QS and AO 173

strategies, the zero expected net growth contour reflects the NP carrying capacity when 174

the number of producers is low, but increases markedly with more producers. 175
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Additionally, more cheaters can be accommodated with more producers present because 176

of the public nature of the fitness benefits provided by producers. As in Fig. 2, the only 177

fixed points of the underlying deterministic dynamics are the origin and the 178

intersections of the zero expected net growth contour with the axes. 179

Fig 3. Quorum sensing is a constructive strategy for producers when an alternate
energy source is present (λ0 = 0.2) and when public good cost is moderate (c = 0.15).
Row 1: Cheater fixation probability from an initial population of n producers and m
cheaters for A) no production (NP), B) quorum sensing (QS), and C) always on
strategies (AO). Row 2: Conditional mean first passage time to cheater fixation from
initial population structure for D) no production, E) quorum sensing, and F) always on
strategies. Row 3: Mean extinction time from initial population structure for G) no
production, H) quorum sensing, and I) always on strategies. White traces: zero
expected net total population growth contour. Inset plots in B), E), and H) show
cheater fixation probability, cheater mean first passage time to fixation, and mean
extinction time, respectively, for an initial population with a single cheater and n
producers. See Table S1 for parameter values.

As in the case of zero constitutive growth, QS (Fig. 3B) decreases the probability of 180

cheater fixation over AO (Fig. 3C) for a wide range of starting population compositions, 181

while increasing the fixation probability compared to NP (Fig. 3A). The improvement of 182

QS over AO can be clearly seen in the cheater invasion scenario in the inset of Fig. 3B. 183

However, with non-zero constitutive growth the mean time to cheater fixation for NP 184

(Fig. 5D) and QS (Fig. 3E) are comparable, while cheaters fix more quickly for AO 185

(Fig. 3F). Again, our results match well with simulations (Figs. S4 & S5). 186
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The presence of an alternative source of nutrition renders QS a beneficial strategy 187

for producers (Fig. 3) at a moderate public good production cost (15%). QS increases 188

the mean extinction time of the population for all starting population compositions with 189

at least one cheater and one producer over AO (Fig. 3H-I). Both QS and AO increase 190

the mean extinction time over NP (Fig. 3G). From comparison with (Fig. 2), it appears 191

that the degree to which growth depends on alternative nutrition sources influences 192

whether QS at moderate costs is destructive or constructive. 193

As when there is no constitutive growth, the qualitative differences between QS and 194

AO were preserved for systems with carrying capacities of 200 as shown in Fig. S6 (see 195

Tables S1 & S2 for parameters). 196

Trade-offs between cheater suppression and mean extinction 197

time 198

We next examine how varying the parameters controlling public good growth benefit 199

and production affect whether QS is destructive or constructive. Fig. 4 shows the 200

effects of different Kg, hg,Ka, and ha values on the main results of Figs. 2 & 3. QS is 201

always destructive with the λ0 and c values of Fig. 2 (c = 0.1 and λ0 = 0), while QS 202

could be either constructive or destructive in the case of Fig. 3 (c = 0.15 and λ0 = 0.2). 203

None of the parameter sets we examined for either (c, λ0) pair fell into the region of 204

cheater promotion, where QS would increase the cheater fixation probability over AO. 205

Fig 4. The results of Fig. 2 are insensitive to changes in parameters describing public
good growth benefit and QS activation (left plot), while the result of Fig. 3 are robust
to the same parameters, but can be reversed depending on the parameter values (right
plot). We calculated the log-ratio of mean extinction times, log(Tn⋆,1:QS/Tn⋆,1:AO), and
the log-ratio of cheater fixation probabilities, log(πCh

n⋆,1:QS/π
Ch
n⋆,1:AO), for all 625 different

combinations of Kg,Ka ∈ {10, 15, 20, 25, 30} and ha, hg ∈ {1, 2, 3, 4, 5}. Each point on
the plot represents the results for one of the 625 parameter combinations. The mean
extinction times and cheater fixation probabilities were calculated for

n⋆ = round
(︂

λ0+g−c
µ

)︂
producers and m = 1 cheater, the relevant initial population

composition for the case of a single cheater arising by mutation in a population or
producers. The highlighted points show how varying Ka alone affects the results
(Ka = 15, used in Figs. 2 & 3, is indicated by a star), with Kg, hg, and ha fixed as in
Figs. 2 & 3.

The effects of Ka on the success of a single producer in colonizing a habitat and on 206

the probability of a single cheater leading to fixation of cheaters in an established 207
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population of producers are shown in Figs. S14 & S15, respectively. This demonstrates 208

the opposing factors in determining the optimal value of Ka. Lower values of Ka are 209

beneficial to the growth of pure producer populations, balancing the costs and benefits 210

of public good production, while large Ka values reduce the probability of cheater 211

fixation. This trade-off is reflected in Figs. 4 & S16 by the highlighted points on the 212

plots, again demonstrating that the risk of stochastic clearance increases as the risk of 213

cheater fixation decreases for QS compared to AO. 214

Autoinducer production by cheaters is a destructive strategy 215

To this point, we have assumed that cheaters produce neither public goods nor 216

autoinducer. What are the consequences of cheaters producing autoinducer while still 217

not producing public goods? We performed the same analysis as in the previous 218

sections using the growth rates in Eqs. 5 & 6 which reflect equal autoinducer production 219

by producers and cheaters. We compared these results to those presented in Fig. 3, 220

where an alternative nutrition source exists and cheaters do not produce autoinducer. 221

Cheater signaling increases the probability of cheater fixation while decreasing the mean 222

time to cheater fixation and the mean extinction time (Fig. 5). From the perspective of 223

the cheater population, autoinducer production is a destructive strategy. Even though 224

cheater signaling decreases mean extinction time, this result suggests that signaling 225

cheaters are more likely to be observed in nature than non-signaling cheaters, provided 226

that signaling cheater mutations are at least as likely to occur in a population as 227

non-signaling cheater mutations. 228

Fig 5. Cheater autoinducer production is destructive in the presence of an alternative
source of nutrition (λ0 = 0.2). The ratio of A) cheater fixation probability, B) cheater
mean fixation time, and C) mean extinction time between QS populations where
cheaters signal (indicated by S) to where cheaters do not signal (indicated by NS). The
non-signaling results used in the denominators are the same as those in Fig. 3. See
Table S1 for parameter values.

Producer advantage in the benefits of public goods reduces the 229

advantages of QS 230

The role of the spatial structure of populations and the diffusive properties of their 231

environments has recently been acknowledged as a possible explanation for why cheaters 232

do not always fix in a population of producers [8]. Essentially, if producers are more 233

likely to be close to other producers, and the benefits of the public good are spatially 234

confined to an area close to a producer, cheaters will be unlikely to benefit from public 235

goods. We examine how this type of advantage to producers effects our results by 236

adding a non-zero constant a to the g parameter in the producer growth rate (Eq. 1), 237

which reflects the possibility that producers benefit more than cheaters from public 238

goods because of their spatial arrangement. We look at how the results of Fig. 2 change 239
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with increasing a (Fig. S7), finding that larger a values decrease the benefits of QS as 240

compared with AO both in terms of cheater fixation probability and mean extinction 241

time. With large a, there is a permanent growth advantage for producers when public 242

goods are present, so delaying production of public goods also delays the advantage. For 243

a = 0.2, QS is not only destructive in that it reduces mean extinction time, but with 244

some initial population compositions it actually increases cheater fixation probability 245

over AO. The results for Fig. 3 change in a similar way with a (Fig. S8), except that the 246

relative cheater fixation probabilities are less noticeably altered by a. Altogether, 247

producer advantage, whether due to co-localization of producers or other mechanisms, 248

shifts QS towards being destructive with respect to AO. 249

The destructive or constructive nature of QS depends on cost 250

and constitutive growth 251

The phase diagram in Fig. 1B demonstrates the role of both public good production 252

cost and constitutive growth rate in determining the nature of QS outcomes. At low 253

constitutive growth rates, public good production is essential to the survival of the 254

population. With low λ0, QS regulation of public good production moves to the “mixed” 255

region of the phase diagram at relatively low public good costs. This means that 256

whether QS is beneficial to the population depends on the initial composition of the 257

population. For low constitutive growth rates below λ0 = 0.1, all values of public good 258

cost investigated lead to a mix of destructive and constructive cheater suppression. 259

With larger constitutive growth rates the transition from destructiveness to 260

constructiveness with increasing cost c occurs gradually with the transition to 261

constructiveness completing at c = 0.1 to c = 0.15, depending on λ0. For all (c, λ0) pairs 262

with c > 0, the cheater fixation probability is reduced in QS as compared with AO S9. 263

We show the ratio TQS/TAO for all (n,m) pairs for two sequences of (c, λ0) pairs in 264

Figs. S10 and S11. With fixed c = 0.2, the ratio TQS/TAO is always highest with 265

intermediate mixtures of producers and cheaters (Fig. S10). When λ0 ≈ 0.1, there is a 266

transition from the mixed region to the constructive region, where (n,m) pairs with few 267

cheaters appear to be slower to change to constructiveness with increasing λ0. With 268

fixed λ0 = 0.2, there is a gradual transition from destructiveness at low c to 269

constructiveness at high c (Fig. S11). At moderate costs below c = 0.1, QS is 270

destructive, with TQS < TAO for all (n,m) pairs. However, once the cost reaches 0.15, 271

QS is no longer destructive, as the mean extinction time increases with respect to AO. 272

In the transition range from c = 0.1 to c = 0.15, the ratio TQS/TAO is highest when the 273

number of producers is low, suggesting that QS is most beneficial with those initial 274

population structures. The QS gain in mean extinction time over AO is further 275

increased by QS at a cost of 0.2, again most drastically when n is small. 276

The phase diagram displays some non-monotonic behavior in c and λ0, especially in 277

the low λ0, high c region (Fig. 1B). This is a result of calculating the fraction of (n,m) 278

pairs where TQS > TAO, so that the phase diagram is a superimposition of results for 279

each (n,m) pair. If we instead look at the fraction of (n,m) pairs where 280

log(TQS > TAO) > δ for a tolerance parameter δ, we can see that the non-monotonic 281

behavior of the low λ0, high c region disappears with small, positive δ (Fig. S12). This 282

indicates that in this region, the mean extinction times are relatively similar. On the 283

other hand, with negative δ the destructive region with low c remains, indicating that 284

TQS is notably smaller than TAO there. We can see the same patterns by looking at 285

log(TQS > TAO) over λ0 and c for a selection of (n,m) pairs (Fig. S13). This further 286

reinforces that QS is most constructive with large λ0 and c. 287

August 28, 2022 10/22



Discussion 288

Our model of competitive growth between bacterial producers and cheaters reveals a 289

number of previously unexplored consequences of quorum sensing. We investigate the 290

case of isolated, single subpopulations of bacteria as a first step towards understanding 291

the impact of QS on bacterial eco-evolutionary dynamics. When public good production 292

allows for metabolism of otherwise inaccessible sources of nutrients, we demonstrate the 293

important role of both the availability of alternative, public good-independent nutrients 294

and the cost of public good production in determining the consequences of quorum 295

sensing. With no alternative nutrients, quorum sensing by producers withholds the only 296

source of nutrients from the whole population, which harms both producers and 297

cheaters in terms of the total population’s mean extinction time. We identify this result 298

as a possible example of demographically stochastic evolutionary suicide [37], as quorum 299

sensing increases the relative fitness of producers while decreasing the mean extinction 300

time of the entire population. If instead there is an alternate energy source, then 301

regulating public good production via quorum sensing reduces the probability of cheater 302

fixation, while in some cases increasing the mean extinction time of the population over 303

the always on strategy and in other cases decreasing the mean extinction time, 304

depending on the public good production cost. 305

The destructive region in Fig. 1 can be understood heuristically by considering that, 306

if the cost of public good production is low, QS-mediated regulation of public good 307

production withholds the fitness benefits of the public good while achieving minimal 308

metabolic savings for the producers. In addition, large alternate sources of nutrition can 309

help to offset the costs of public good production, reducing loss in relative producer 310

fitness due to costs. On the other hand, when public good production is costly, 311

QS-mediated production balances costs and benefits by delaying public good production 312

until the population of producers is large enough to benefit. Thus both public good 313

production cost and constitutive growth rate play an important role in determining the 314

eco-evolutionary consequences of QS-based regulation. 315

Because we have not explicitly modeled the evolution of the QS strategy, our 316

suggestion that destructive QS is an example of evolutionary suicide requires further 317

analysis. Specifically, the suggestion that QS could evolve when it falls in the 318

destructive phase of Fig. 1B is based only on the fact that QS results in lower cheater 319

fixation probability, and hence in larger relative fitness as compared with cheaters, than 320

the AO strategy. Additional work, including explicit modeling of QS evolution, is 321

needed to confirm the connection with evolutionary suicide and would be an interesting 322

direction for future research. 323

Future experimental work is needed to test the predictions of our model. 324

Experimental techniques such as those used by Coates et al. [24] together with genetic 325

manipulation of QS circuitry could provide an avenue for testing our predictions, and 326

would provide invaluable insight into the role of QS in small bacterial populations. 327

Further theoretical work could explore the impact of mutation, migration, and 328

horizontal gene transfer on our results, where a stable heterogeneous steady state could 329

be achieved. The effects of QS signaling heterogeneity [38–41] on our results could also 330

be explored, whether due to stochastic gene expression, low diffusivity within biofilms, 331

or other causes. Finally, further details concerning the complex nature of QS could be 332

incorporated into the model, including the effects of nutrient levels on QS [5]. 333
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Materials and Methods 334

Model overview 335

We consider well-mixed populations of bacteria growing according to birth-death models 336

with no mutation or migration (Fig. 1A). Public goods are modeled implicitly through 337

their costs and benefits as reflected in the birth rates. We write the birth rates as λPr
n,m 338

and λCh
n,m for producers and cheaters, respectively. The subscript n and m are the 339

number of producers and cheaters present, reflecting the dependence of the rates on the 340

population state. The death rates are µPr
n,m and µCh

n,m. See Eqs. 1-4 for full forms of the 341

birth and death rates. 342

Our model accounts for AI and public good production and degradation as well as 343

density-dependent fitness benefits of public goods directly in the birth rates. This 344

simplification rests on several assumptions. We assume that the timescales associated 345

with AI and public good production and degradation are much faster than those of 346

births and deaths. Under this assumption, the AI and public good concentrations 347

quickly reach a steady state upon a bacterial birth or death, so that the effects of both 348

concentrations on the birth rates is only a function of the state of the population. 349

Similarly, the growth benefits of public goods are assumed to be a function of the 350

current population state, namely a non-decreasing, saturating function of n. Another 351

assumption is that all individuals within a given strain (producer or cheater) exhibit 352

exactly the same birth and death rates. In reality, the stochasticity of subcellular events 353

and diffusion of extracellular molecules leads to heterogeneous growth rates even in 354

clonal populations [41]. Our approach simplifies analysis while providing a description 355

of mean birth and death rates. 356

In order to evaluate the long-term eco-evolutionary fates of mixed producer-cheater 357

populations, we calculate the cheater fixation probability (πCh), mean first passage time 358

to cheater fixation (τCh), and mean population extinction time (T ) for all pairs of n 359

producers and m cheaters where n+m ≤ N . We define N as a maximal population size 360

large enough that the line n+m ≤ N effectively acts as a reflecting boundary. An 361

appropriate choice of N then depends on the birth and death rates used. Solutions of 362

all three quantities of interest come from solving backward Kolmogorov equations, as 363

detailed in the Materials and Methods section. We validate the results from these 364

solutions through stochastic simulations [42,43]. 365

Birth and death rates 366

We use birth-death models to describe the population dynamics of a bacterial colony 367

with both public good producers and cheaters. We assume the timescales of both 368

autoinducer and public good production and degradation are much shorter than those 369

of population growth. Consequently, we write per capita birth and death rates solely as 370

a function of the number of producers and cheaters in the population. We also assume 371

that QS is sensitive to population density. While a number of other explanations for the 372

function of QS exist, as noted in the Introduction, all of them depend to some degree on 373

population density. 374

The birth and death rates in our models take into account the costs and benefits of 375

public good production. We use λ to denote birth rates and µ to denote death rates, 376

with the superscript Pr for producers and Ch for cheaters. Let n be the number of 377

producers in the population and m be the number of cheaters. Let λ0 be the birth rate 378

due to an alternative energy source that does not require proteases for bacteria to 379

utilize, and let µ0 be the constant death rate. We assume that the per-capita death rate 380

increases linearly with the total population size through some density-dependent 381

mechanism such as the production of toxic byproducts. We denote the maximal birth 382
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rate due to nutrients derived from protease activity as g and the additional birth rate 383

gained by producers if they have preferential access to public goods (due to, for 384

example, slow diffusion) as a. We denote the maximal cost of protease production, in 385

terms of growth rate, as c. Parameters Kg and Ka control the number of producers for 386

which protease-derived growth rate and protease production are half-maximal, 387

respectively. Finally, hg and ha control the shape of the protease-derived growth rate 388

and protease production rate functions. The full birth and death rates are 389

λPr
n,m = max

(︄[︃
λ0 +

(︃
(g + a)

(n/Kg)
hg

1 + (n/Kg)hg
− c

)︃
(n/Ka)

ha

1 + (n/Ka)ha

]︃
n, 0

)︄
(1)

µPr
n,m = µ0(n+m)n (2)

λCh
n,m =

[︃
λ0 + g

(n/Kg)
hg

1 + (n/Kg)hg

(n/Ka)
ha

1 + (n/Ka)ha

]︃
m (3)

µCh
n,m = µ0(n+m)m. (4)

The Hill function forms of these rates are similar to those in previous work [44,45]. 390

The strategy taken by a particular strain in controlling public good production is 391

controlled by the parameters Ka and ha. The parameter Ka controls when public good 392

production is half-maximal, while ha controls the shape of the activation curve. For an 393

“always-on” strain, we take the limit Ka → 0 so that public good production is always 394

maximal, independent of the producer population size. For a “no production” strain 395

(equivalent to a cheater that produces autoinducer), we take Ka → ∞ so that the public 396

good is never produced. 397

We set the maximum birth rate due to public goods to g = 1 in all cases, so that all 398

other birth rate parameters can be considered to be in units of maximum public good 399

birth rate. In general we consider the parameters g, Kg, hg, c, and λ0 to be properties 400

of the public good and environment which cannot be changed by bacterial strategy. 401

Similarly, we consider the parameter µ0 to be a joint property of the bacterial species 402

and the environment. As we have stated, Ka and ha constitute the choice of public 403

good regulation strategy. 404

For the special case where cheaters produce autoinducer but not public goods, we 405

modify the birth rates to 406

λPr
n,m = max

(︄[︄
λ0 +

(︃
(g + a)

(︁
n/Kg)

hg

1 + (n/Kg)hg
− c

)︃ (︁
(n+m)/Ka

)︁ha

1 +
(︁
(n+m)/Ka

)︁ha

]︄
n, 0

)︄
(5)

λCh
n,m =

[︄
λ0 + g

(︁
n/Kg)

hg

1 + (n/Kg)hg

(︁
(n+m)/Ka

)︁ha

1 +
(︁
(n+m)/Ka

)︁ha

]︄
m (6)

under the assumption that producers and cheaters contribute autoinducer equally. 407

The parameter values we have used are summarized in Table S1. 408

Fixation probabilities and mean first passage times 409

The dynamics of the probability distribution over n and m at time t given n′ and m′ at 410

an earlier time s (with s < t) is governed by the forward Kolmogorov equation 411
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∂

∂t
P (n,m, t | n′,m′, s) = λPr

n−1,mP (n− 1,m, t | n′,m′, s)

+ µPr
n+1,mP (n+ 1,m, t | n′,m′, s)

+ λCh
n,m−1P (n,m− 1, t | n′,m′, s)

+ µCh
n,m+1P (n,m+ 1, t | n′,m′, s)

−
(︂
λPr
n,m + µPr

n,m + λCh
n,m + µCh

n,m

)︂
P (n,m, t | n′,m′, s) (7)

where n,m, n′,m′ ∈ {0, 1, 2, . . . }. For birth and death rates linear in n and m, the 412

system of coupled differential equations represented by Eq. 7 can be solved exactly 413

using a generating function approach [46]. However, the birth and death rates required 414

for our purposes are nonlinear, and we adopt a computational approach. 415

The main quantities of interest in this work are the probability of cheater fixation 416

and the mean population extinction time. These quantities can be calculated from the 417

backward Kolmogorov equation 418

∂

∂s
P (n,m, t | n′,m′, s) = λPr

n′,m′

(︂
P (n,m, t | n′ + 1,m′, s)− P (n,m, t | n′,m′, s)

)︂
+ µPr

n′,m′

(︂
P (n,m, t | n′ − 1,m′, s)− P (n,m, t | n′,m′, s)

)︂
+ λCh

n′,m′

(︂
P (n,m, t | n′,m′ + 1, s)− P (n,m, t | n′,m′, s)

)︂
+ µCh

n′,m′

(︂
P (n,m, t | n′,m′ − 1, s)− P (n,m, t | n′,m′, s)

)︂
.

(8)

We define a maximum pure producer or cheater population size N and construct an 419

(N + 1)2 × (N + 1)2 matrix describing the transition rates between all states and use it 420

to solve for our quantities of interest. Given the birth and death rates we use, we 421

assume that the approximation introduced by considering a finite rate matrix is 422

reasonable when net growth rates are negative and have a large magnitude in all states 423

where m = N or n = N . For the probability that cheaters will fix in the population, we 424

solve [46] 425

λPr
n,m

(︁
πCh
n+1,m − πCh

n,m

)︁
+ µPr

n,m

(︁
πCh
n−1,m − πCh

n,m

)︁
+ λCh

n,m

(︁
πCh
n,m+1 − πCh

n,m

)︁
+ µCh

n,m

(︁
πCh
n,m−1 − πCh

n,m

)︁
= 0 (9)

with boundary conditions 426

πCh
0,m = 1, for n = 0 and 0 < m ≤ N (10)

πCh
n,0 = 0, for 0 ≤ n ≤ N and m = 0. (11)

For the mean first passage time conditioned on cheater fixation, we solve 427

λPr
n,m

(︁
θCh
n+1,m − θCh

n,m

)︁
+ µPr

n,m

(︁
θCh
n−1,m − θCh

n,m

)︁
+ λCh

n,m

(︁
θCh
n,m+1 − θCh

n,m

)︁
+ µCh

n,m

(︁
θCh
n,m−1 − θCh

n,m

)︁
= −πCh

n,m (12)

with the condition 428

θCh
n,m = 0, for n = 0 or m = 0, (13)
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and then find the conditional mean first passage time to cheater fixation according to 429

τCh
n,m =

θCh
n,m

πCh
n,m

. (14)

Similarly, for the mean extinction time we solve 430

λPr
n,m

(︁
Tn+1,m − Tn,m

)︁
+ µPr

n,m

(︁
Tn−1,m − Tn,m

)︁
+ λCh

n,m

(︁
Tn,m+1 − Tn,m

)︁
+ µCh

n,m

(︁
Tn,m−1 − Tn,m

)︁
= −1 (15)

with the condition 431

Tn,m = 0, for n = 0 and m = 0. (16)

Directly solving the linear system of equations represented by Eq. 15 can lead to 432

numerical instability when the mean extinction times are large. To account for these 433

numerical issues we also calculated the mean extinction time using the analytical 434

formula for pure producer or cheater populations with adjoint reflecting boundary 435

conditions at n = N and m = N [47–49] 436

Tn,0 =

n∑︂
i=1

(︄
1

µPr
i,0

+

N−i∑︂
j=1

1

µPr
i+j,0

j∏︂
l=1

λPr
i+l−1,0

µPr
i+l−1,0

)︄
(17)

T0,m =

m∑︂
i=1

(︄
1

µCh
0,i

+

N−i∑︂
j=1

1

µCh
0,i+j

j∏︂
l=1

λCh
0,i+l−1

µCh
0,i+l−1

)︄
(18)

and direct calculations of fixation probabilities for each point along the pure 437

producer and cheater axes. We use the notation πi,0
n,m and π0,j

n,m to indicate the 438

probability that a population starting with n producers and m cheaters will have 439

producers fix with i total producers and will have cheaters fix with j total cheaters, 440

respectively. We then estimate the mean extinction time according to 441

Tn,m =

N∑︂
i=1

πi,0
n,mTi,0 +

N∑︂
j=1

π0,j
n,mT0,j , (19)

under the assumption that producers or cheaters will quickly fix followed by a much 442

longer period with a pure population before extinction. 443

Stochastic simulations 444

Stochastic simulations were performed using Gillespie’s algorithm [42,43] implemented 445

in the Gillespy2 Python package [50]. Each simulation was run until population 446

extinction and was repeated 100 times in order to estimate fixation probabilities and 447

mean first passage times. 448

General methods 449

The figures in this article were created using Inkscape 0.92 and Matplotlib 3.1.1 [51] in 450

a Python 3.7 Jupyter Notebook [52]. All fixation probabilities and mean first passage 451

times were calculated using the linear system solver in the Python NumPy package [53] 452

and the sparse matrix module of the SciPy package [54]. 453
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Fig S1. The cheater fixation probabilities from Fig 2 agree with simulation 463

results. The first row shows the cheater fixation probabilities for A) quorum 464

sensing (QS) and B) always on (AO) strategies, directly reproduced from Fig. 2. 465

The second row shows cheater fixation probabilities calculated as a mean from 100 466

independent simulations for C) QS and D) AO strategies. Points above 467

n+m = 70 (above the zero-net growth contour) were not calculated. See Table S2 468

for parameter values. 469

Fig S2. The cheater mean first passage time to fixation from Fig 2 agree with 470

simulation results. The first row shows the cheater fixation mean first passage 471

times for A) quorum sensing (QS) and B) always on (AO) strategies, directly 472

reproduced from Fig. 2. The second row shows cheater fixation mean first passage 473

times calculated as a mean from 100 independent simulations for C) QS and D) 474

AO strategies. Points above n+m = 70 (above the zero-net growth contour) were 475

not calculated. See Table S2 for parameter values. 476

Fig S3. The qualitative results from Fig. 2 are preserved with increased carrying 477

capacity, with no constitutive growth (λ0). The first row depicts cheater fixation 478

probability from an initial population structure of n producers and m cheaters for 479

A) quorum sensing (QS) and B) always on (AO) strategies. The second row 480

depicts cheater fixation probabilities calculated as a mean of 100 independent 481

simulations for C) QS and D) AO strategies. Points above n+m = 140 (above 482

the zero-net growth contour) were not calculated. The third row depicts mean 483

extinction time from initial population structure for E) QS and F) AO strategies, 484

calculated according to Eq. 19. As with the results in Fig. 2, QS decreases 485

cheater fixation probability but also decreases mean extinction time as compared 486

with AO. See Table S2 for parameter values. 487

Fig S4. The cheater fixation probabilities from Fig 3 agree with simulation 488

results. The first row shows the cheater fixation probabilities for A) quorum 489

sensing (QS) and B) always on (AO) strategies, directly reproduced from Fig. 3. 490

The second row shows cheater fixation probabilities calculated as a mean from 100 491

independent simulations for C) QS and D) AO strategies. Points above 492

n+m = 70 (above the zero-net growth contour) were not calculated. See Table S2 493

for parameter values. 494

Fig S5. The cheater mean first passage time to fixation from Fig 3 agree with 495

simulation results. The first row shows the cheater fixation mean first passage 496

times for A) quorum sensing (QS) and B) always on (AO) strategies, directly 497

reproduced from Fig. 3. The second row shows cheater fixation mean first passage 498

times calculated as a mean from 100 independent simulations for C) QS and D) 499

AO strategies. Points above n+m = 70 (above the zero-net growth contour) were 500

not calculated. See Table S2 for parameter values. 501
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Fig S6. The qualitative results from Fig. 3 are preserved with increased carrying 502

capacity, with constitutive growth (λ0 = 0.2). The first row depicts cheater 503

fixation probability from an initial population structure of n producers and m 504

cheaters for A) quorum sensing (QS) and B) always on (AO) strategies. The 505

second row depicts cheater fixation probabilities calculated as a mean of 100 506

independent simulations for C) QS and D) AO strategies. Points above 507

n+m = 140 (above the zero-net growth contour) were not calculated. The third 508

row depicts mean extinction time from initial population structure for E) QS and 509

F) AO strategies, calculated according to Eq. 19. As with the results in Fig. 3, 510

QS decreases cheater fixation probability while also increasing mean extinction 511

time as compared with AO. See Table S2 for parameter values. 512

Fig S7. Producer advantage reduces the benefit of QS over AO with the 513

parameters from Fig. 2. A)-C) The cheater fixation probability with QS divided 514

by the cheater fixation probability with AO. D)-F) Logarithm of the ratio of mean 515

extinction time for QS with AO. The cheater fixation probability of QS relative to 516

AO increases with a while the log-ratio of QS mean extinction time to AO mean 517

extinction time decreases with a. 518

Fig S8. Producer advantage reduces the benefit of QS over AO with the 519

parameters from Fig. 3. A)-C) The cheater fixation probability with QS divided 520

by the cheater fixation probability with AO. D)-F) Logarithm of the ratio of mean 521

extinction time for QS with AO. The cheater fixation probability of QS relative to 522

AO increases with a, though less noticeably than in Fig. S7. Because QS is 523

constructive in this case, the The log-ratio of QS mean extinction time to AO 524

mean extinction time is positive, but decreases with a. 525

Fig S9. Phase diagram describing the fitness gains of QS over AO as a function 526

of constitutive growth rate (λ0) and public good production cost (c). For each pair 527

(λ0, c) we calculated the cheater fixation probability for all (n,m) pairs satisfying 528

n ≥ 0, m ≥ 0, and n+m ≤ 100 with the QS and AO strategies. The reported 529

number is the fraction of these (n,m) pairs where the cheater fixation probability 530

for QS is less than for AO (πQS
n,m < πAO

n,m). For all (λ0, c) pairs except for when 531

c = 0, cheater fixation probability is reduced by QS for all initial population 532

compositions. When c = 0, there are a small number of initial compositions where 533

πQS
n,m ≥ πAO

n,m which decreases as λ0 increases. See Table S2 for parameter values. 534

Fig S10. Detailed analysis of the phase diagram from Fig. 1 with c = 0.2 fixed 535

and with different λ0 values. Top row: the red dots shown over the phase diagram 536

indicate the (c, λ0) pairs that we examine in detail. Middle row: the ratio of QS 537

mean extinction time to AO mean extinction time (TQS/TAO) with the indicated 538

values of λ0. The fraction of (n,m) pairs where (TQS > TAO) is indicated as 539

f(TQS > TAO). Bottom row: the zero expected net growth contour contours for 540

QS producers (red), QS cheaters (orange), AO producers (black), and AO cheaters 541

(grey). For λ0 = 0 the two QS zero expected net growth contour contours are 542

identical and the two AO zero expected net growth contour contours are also 543

identical. As λ0 is increased, the AO producer contour approaches the producer 544

axis faster than the QS producer contour. See Table S2 for parameter values. 545

Fig S11. Detailed analysis of the phase diagram from Fig. 1 with λ0 = 0.2 fixed 546

and with different c values. Top row: the red dots shown over the phase diagram 547

indicate the (c, λ0) pairs that we examine in detail. Middle row: the ratio of QS 548

mean extinction time to AO mean extinction time (TQS/TAO) with the indicated 549

values of c. The fraction of (n,m) pairs where (TQS > TAO) is indicated as 550
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f(TQS > TAO). Bottom row: the zero expected net growth contour contours for 551

QS producers (red), QS cheaters (orange), AO producers (black), and AO cheaters 552

(grey). At λ0 = 0.075 the diagonal zero expected net growth contour contour near 553

the origin appears for QS, and moves further from the origin as λ0 increases from 554

there. See Table S2 for parameter values 555

Fig S12. Analysis of the phase diagram in Fig. 1b, with varied criteria for the 556

relative values of TQS and TAO. We define a tolerance, δ, so that the above plots 557

display the fraction of (n,m) pairs with log(Tn,m:QS/Tn,m:AO) > δ. Fig. 1b 558

corresponds to δ = 0. With slightly larger δ, the region with higher fraction 559

around λ0 = 0.05, c > 0.2 rapidly disappears. This demonstrates that the QS 560

mean extinction times are only slightly larger in this region. 561

Fig S13. The log ratio of the QS mean extinction time to AO mean extinction 562

time with several initial population compositions, reflecting intermediate 563

calculations towards producing Fig. 1b and Fig. S12. At low c values, 564

Tn,m:QS < Tn,m:AO for all initial conditions, reflecting the destructive region of 565

Fig. 1b. With large c and λ0, Tn,m:QS > Tn,m:AO reflecting the constructive 566

region. All other combinations of c and λ0 lead to relatively minor differences 567

between Tn,m:QS and Tn,m:AO. 568

Fig S14. Mean extinction time T1,0:QS in a colonization scenario as a function of 569

Ka, with an initial n = 1 producer and m = 0 cheaters. The quantity T1,0:QS 570

represents the ability of a single producer to succeed in establishing a persistent 571

colony in the absence of cheaters. The Ka value that maximizes mean extinction 572

time is weakly dependent on λ0 and increases with larger c, reflecting the larger 573

net benefit of delaying public good activation with higher costs until the public 574

good is more beneficial (determined by the Kg and hg parameters). At c = 0, the 575

AO strategy maximizes the mean extinction time, as there is no cost whatsoever 576

to public good production. Dashed vertical line: optimal value of Ka when 577

λ0 = 0.25. 578

Fig S15. Cheater fixation probability in an invasion scenario as a function of Ka, 579

with an initial n⋆ = round
(︂

λ0+g−c
µ

)︂
producers (approximate equilibrium value in 580

the absence of cheaters) and m = 1 cheater. With no cost of public good 581

production (c = 0), Ka has no effect on cheater fixation probability. For all other 582

examined costs, the fixation probability monotonically decreases as a function of 583

Ka for all examined λ0 values. This behavior suggests that the NP strategy, 584

characterized by Ka → ∞, minimizes the cheater fixation probability. 585

Fig S16. Trade-offs between suppressing cheaters and decreasing the time to 586

stochastic clearance of a pure producer population, as controlled by Ka, are 587

present for λ0 > 0 but absent when λ0 = 0. In the left figure, increasing Ka has 588

no effect on mean extinction time, so that loss of public good production 589

altogether (Ka → ∞) minimizes cheater fixation probability compared with AO. 590

Here, we calculated the log-ratio of mean extinction times, log(T1,0:QS/T1,0:AO), 591

and the log-ratio of cheater fixation probabilities, log(πCh
n⋆,1:QS/π

Ch
n⋆,1:AO), for all 592

625 different combinations of Kg,Ka ∈ {10, 15, 20, 25, 30} and 593

ha, hg ∈ {1, 2, 3, 4, 5}. Each point on the plot represents the results for one of the 594

625 parameter combinations. We calculated mean extinction times for n = 1 595

producers and m = 0 cheaters, corresponding to the case where a single producer 596

is colonizing an otherwise empty region of space. We calculated cheater fixation 597

probabilities for n⋆ = round
(︂

λ0+g−c
µ

)︂
producers and m = 1 cheater, the relevant 598

initial population composition for the case of a single cheater arising by mutation 599
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in a population or producers. The highlighted points show how varying Ka alone 600

affects the results (Ka = 15, used in Figs. 2 & 3, is indicated by a star), with Kg, 601

hg, and ha fixed as in Figs. 2 & 3. 602
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