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Relational memory, the ability to make and remember associations between objects, is an essential component of mammalian

reasoning. In relational memory tasks, it has been shown that periods of offline processing, such as sleep, are critical to mak-

ing indirect associations. To understand biophysical mechanisms behind the role of sleep in improving relational memory,

we developed a model of the thalamocortical network to test how slow-wave sleep affects performance on an unordered rela-

tional memory task. First, the model was trained in the awake state on a paired associate inference task, in which the model

learned to recall direct associations. After a period of subsequent slow-wave sleep, the model developed the ability to recall

indirect associations. We found that replay, during sleep, of memory patterns learned in awake increased synaptic connectiv-

ity between neurons representing the item that was overlapping between tasks and neurons representing the unlinked items

of the different tasks; this forms an attractor that enables indirect memory recall. Our study predicts that overlapping items

between indirectly associated tasks are essential for relational memory, and sleep can reactivate pathways to and from over-

lapping items to the unlinked objects to strengthen these pathways and form new relational memories.

Key words: learning and memory; memory consolidation; relational memory; sleep; synaptic plasticity; transitive

inference

Significance Statement

Experimental studies have shown that some types of associative memory, such as transitive inference and relational memory,

can improve after sleep. Still, it remains unknown what specific mechanisms are responsible for these sleep-related changes.

In this new work, we addressed this problem by building a thalamocortical network model that can learn relational memory

tasks and that can be simulated in awake or sleep states. We found that memory traces learned in awake were replayed during

slow waves of NREM sleep and revealed that replay increased connections to and from overlapping memory items to form

new relational memories. Our work discovered specific mechanisms behind the role of sleep in associative memory and made

testable predictions about how sleep augments associative learning.

Introduction
The ability to form indirect associations between learned items
with overlapping elements highlights an important part of
abstract problem solving. This type of learning, known as transi-
tive inference, is a fundamental feature of relational memory
(DeVito et al., 2010). For example, one may watch a movie
(Object A) and experience a feeling of familiarity about a certain
actor (Object B), giving rise to the question of what movie that
actor has been in previously (Object C). This type of memory,
where the premises that “A goes with B” and “B goes with C” are

learned, represents a type of transitive inference where the indi-
rect association (that “A goes with C”) is not inherently learned
but is inferred by the subject. Despite the seeming complexity of
the task, it has been shown that rats, primates, and humans are
capable of performing transitive inference and relational mem-
ory tasks (Vasconcelos, 2008; DeVito et al., 2010). Importantly,
depending on the type of task, the ability to connect indirect
associations or inferences may not be explicitly acquired imme-
diately after training (Walker et al., 2002; Ellenbogen et al.,
2007).

Empirical studies suggest that offline processing, such as
during sleep, is important in forming indirect associations
(Ellenbogen et al., 2007; Werchan and Gómez, 2013). Sleep is a
principle component behind many types of memory consolida-
tion and plays an important role in learning (Maquet, 2001;
Walker and Stickgold, 2004; Ji and Wilson, 2007; Klinzing et al.,
2019). The role of non-rapid eye movement (NREM) sleep in
learning and memory has been shown to be significant, aiding
in consolidation of declarative memories and memories for
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complex motor learning tasks (Walker et al., 2003; Diekelmann
and Born, 2010; Miyamoto et al., 2016). A central hypothesis for
memory improvement during NREM sleep is that replay or reacti-
vation of learned synaptic memory traces during sleep oscillations
(spindles or slow waves) strengthens synaptic traces of these labile
memories (Wei et al., 2016, 2018; González et al., 2020). Sleep has
been shown to augment problem solving (Walker et al., 2002;
Wagner et al., 2004; Lau et al., 2011; Nieuwenhuis et al., 2013; Lewis
et al., 2018) and hypothesized to create cognitive schemata by
replaying memories with overlapping elements, strengthening the
connections between overlapping memories and leading to general-
ization of learned concepts (Lewis and Durrant, 2011; Lewis et al.,
2018).

Accumulating evidence suggests that sleep may play a critical
role in learning relational memory tasks (Ellenbogen et al., 2007;
Lau et al., 2010, 2011; Werchan and Gómez, 2013; Chatburn et
al., 2014; Studte et al., 2015). One study showed that duration of
slow-wave sleep (SWS) is significantly correlated with learning
indirect associations (Lau et al., 2010). Another study tested a
subject’s ability to relate abstract concepts through generaliza-
tion, and found improvements after a daytime nap (Lau et al.,
2011). It has also been shown that sleep can increase a subject’s
ability to perform hierarchical transitive inference, where A.B
and B.C are learned premises and A.C is a tested abstraction
(Ellenbogen et al., 2007).

Despite the progress made in understanding the role of sleep
in increasing relational memory performance, it remains
unknown what biophysical mechanisms account for this func-
tion. Here, using a biophysical model of the thalamocortical net-
work, we tested the role of NREM sleep on the network’s ability
to perform a relational memory task. We found that the network
can form indirect inferences, which were never trained directly,
following periods of SWS. We further revealed that sleep replay
increases connections to/from a shared conjunctive memory
unit, giving rise to an increase in performance during relational
memory tasks. Ultimately, a theoretical understanding of how
sleep aids with relational memory would guide development of
experiments, where these findings can be tested in vivo.

Materials and Methods
Thalamocortical network model

Network architecture. The base thalamocortical network used in this
new study has been described in our other works (Krishnan et al., 2016;
Wei et al., 2016, 2018; González et al., 2020). The network was composed
of two connected populations of neurons: thalamic and cortical.
Different from previous work, we constructed two layers (functional
regions) for both the thalamic and cortical components of the network,
and we did not rely on local connectivity but rather random connectivity
between neurons. The thalamic part of the network was broken down
into two populations (layers) and contained total 60 excitatory thalamo-
cortical relay neurons (TC cells) and 60 inhibitory reticular neurons (RE
cells). Layer 1 contained 40 TC neurons and 40 RE neurons, whereas
layer 2 contained 20 TC and RE neurons. The cortical part of the net-
work was also broken down into two layers, representing two function-
ally different cortical areas. In layer 1 (representing primary visual
cortex), there were 200 excitatory pyramidal neurons (PY cells) and 40
inhibitory interneurons (INs). In layer 2 (representing associative cor-
tex), there were 100 PY neurons and 20 IN cells. Connectivity was ran-
dom; excitatory connections were mediated by NMDA and AMPA
connections, while inhibitory connections were mediated by GABAA

and GABAB connections. All connections are summarized in Table 1
and described as follows.

To describe specific connections, starting in the thalamus, RE neu-
rons received AMPA connections from TC neurons and GABAA con-
nections from RE neurons as well as AMPA connections from PY

neurons in associated cortical layer. AMPA synapses between TC and
RE cells had connection probability 10% in layer 1 and 20% in layer 2.
RE cells were connected to each other through GABAA synapses within
the same layer with probability 6.25% in layer 1 and 12.5% in layer 2.
Finally, cortical PY neurons synapsed via AMPA connections onto RE
cells with connection probability 10% and 20% in layer 1 and layer 2,
respectively. TE cells received connections from RE cells through both
GABAA and GABAB synapses, as well as AMPA connections from PY
neurons in associated cortical layer. Each TC cell received a connection
from an RE cell with a 10%, and 20% probability in layer 1 and layer 2,
respectively. Each TC cell also received an AMPA synapse from cortical
PY neurons, with connection probability 12.5% and 25%, in layer 1 and
layer 2, respectively.

In the cortex, PY neurons received nonplastic AMPA connections
from TC cells, plastic and nonplastic AMPA connections from other PY
neurons, and GABAA connections from IN neurons in the same cortical
layer. The TC cells in layer 1 connected to PY neurons in layer 1 of cor-
tex with a connection probability of 10%. In layer 2, this connection
probability was increased to 20%. Thus, considering size difference
between layer 1 and layer 2, each PY neuron received about the same
number of TC inputs. In layer 1 of cortex, each PY neuron received feed-
back connections from layer 2 PY neurons with a connection probability
of 25%. In addition, each layer 1 PY neuron received two inhibitory
GABAA connections from INs in layer 1 of cortex. In layer 2, each neu-
ron received a feedforward plastic AMPA connection from layer 1 PY
neurons with probability 20%, and a recurrent plastic AMPA connection
from layer 2 PY neurons with probability 50%. Each plastic AMPA con-
nection in cortex was also accompanied by a nonplastic NMDA excita-
tory synapse. In addition, layer 2 PY neurons received 13 GABAA

connections from local INs.
Finally, each IN received nonplastic AMPA connections from TC

cells in thalamus, with connection probability 3.75% in layer 1 and 7.5%
in layer 2. In addition, all INs received nonplastic NMDA and AMPA
synapses from PY neurons in both layer 1 and layer 2 of cortex. Layer 1
PY to layer 1 and layer 2 IN AMPA and NMDA connections occurred
with a probability of 5% and 10%, respectively. Layer 2 PY to layer 1 and
layer 2 IN AMPA and NMDA connections occurred with a probability
of 5% and 50%, respectively. The latter 50% connections were much
weaker than other connections.

Wake-sleep transition. The transition between wake and sleep was
modeled after previous work which describes the role of neuromodula-
tors [acetylcholine (ACh), histamine (HA), and GABA] during the sleep
and waking state needed to observe sleep rhythms canonical of SWS
(Krishnan et al., 2016). ACh modulated potassium leak currents in all
neuron types and excitatory AMPA connections within cortex. HA
modulated the strength of the hyperpolarization-activated mixed cation
current in TC neurons and GABA modulated the strength of inhibitory
GABAergic synapses in both thalamus and cortex. The levels of ACh
and HA were reduced during Stage 3 (N3) SWS, while GABA levels
were increased compared with the awake state. The exact levels of each
neuromodulator were chosen by conducting a parameter sweep and

Table 1. Thalamocortical network connection architecture

Connection type Synapse type Connection probability (L1, L2)

TC–RE AMPA 10%, 20%

RE–TC GABAA, GABAB 10%, 20%

RE–RE GABAA 6.25%, 12.5%

PY–RE AMPA 10%, 20%

PY–TC AMPA 12.5%, 25%

TC–PY AMPA 10%, 20%

PY(L1)–PY(L2) AMPA (plastic), NMDA 20%

PY(L2)–PY(L2) AMPA (plastic), NMDA 50%

PY(L2)–PY(L1) AMPA 25%

IN–PY(L1) GABAA 2 connections

IN–PY(L2) GABAA 13 connections

PY(L1)–IN NMDA, AMPA 3.75%, 7.5%

PY(L2)–IN NMDA, AMPA 5%, 10%

TC–IN AMPA 5%, 50%
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observing which parameters resulted in the appearance of canonical
slow waves. In addition, to simulate Stage 2 (N2) sleep characterized by
spindles, neuromodulation parameters were determined by parameter
sweep looking for the local field potential (LFP) power in the spindle fre-
quency band (7-16Hz in our study). Parameters for N2 sleep were inter-
mediate between waking and N3 states.

Intrinsic currents. All neurons were modeled with Hodgkin-Huxley
kinetics, and equations can be found in previous works (Wei et al., 2018;
González et al., 2020). In cortex, PY and IN neurons possessed dendritic
and axo-somatic compartments (Wei et al., 2018). Membrane potential
dynamics were modeled by the following dynamical equations:

Cm

dVD

dt
¼ �INaD � INaPD � IKmD � IKCaD � AChgklI

KL
D � IHVAD � ILD

� g VD � VSð Þ � Isyn;

g VD � VSð Þ ¼ �INaS � INaPS � IKS ;

where Cm is membrane capacitance, VD and VS are the dendritic or axo-

somatic membrane voltages, respectively, INa is the fast sodium (Na1)

current, INaP is the persistent sodium current, IKm is the slow voltage-de-

pendent noninactivating potassium (K1) current, IKCa is the slow cal-

cium (Ca21)-dependent K1 current, AChgkl is the change in K1 leak

current IKL which depends on the level of ACh which changes during

wake and sleep states, IHVA is the high-threshold Ca21 current, IL is the

chloride (Cl–) leak current, g is the conductance between dendritic and

axo-somatic compartments, and Isyn is the synaptic current input to the

neuron (as described in the next section). INs contained all the above

intrinsic currents with the exception of the persistent sodium current.

All intrinsic ionic currents (Ij) were modeled based on the Hodgkin and

Huxley (1952) equations as follows:

Ij ¼ gjm
MhN V � Ejð Þ;

where gj is the maximal conductance,m (activation) and h (inactivation)
are the gating variables, V is the voltage of the compartment, and Ej is
the reversal potential of the current. Gating variable dynamics were
described as follows:

dx

dt
¼ �

x� x1

t x

;

t x ¼
1= ax 1 b xð Þ
� �

QT

;

x1 ¼
ax

ax 1 b xð Þ
;

where¼ m or h, t is the time constant, QT is the temperature related
term, QT ¼ QððT�23Þ=10Þ ¼ 2:9529, withQ ¼ 2:3 and T ¼ 36:

In the thalamus region of the model, TC and RE neurons were mod-
eled by single compartment neurons with the following dynamical
equation:

Cm

dVD

dt
¼ �INa � IK � AChgklI

KL � IT � Ih � IL � Isyn;

where INa is the fast Na1 current, IK is the fast K1 current, IKL is the K1

leak current, IT is the low-threshold Ca21 current, Ih is the hyperpolariza-

tion-activated mixed cation current, IL is the Cl– leak current, and Isyn is the

total synaptic current input to the neurons (described in next section). The

hyperpolarization-activated mixed cation current Ih was not expressed in

RE neurons. In addition, HA exerted its influence on Ih in TC cells by shift-

ing the activation curve ofHAgh as described by the following:

m1 ¼
1

11 exp
V1 751HAgh

5:5

� � :

Our previous work gives a more detailed description of the individ-
ual currents (Krishnan et al., 2016; Wei et al., 2018).

Synaptic currents and spike-timing dependent plasticity (STDP).
Here, we describe the synaptic currents which were composed of
AMPA, NMDA, GABAA, and GABAB synapses as well as the STDP
rules (for more details on the specific synaptic currents, see Krishnan et
al., 2016; Wei et al., 2018). The effect of ACh on AMPA and GABAA

synaptic currents was described by the following equations:

IAMPA
syn ¼ AChAMPAgsyn O½ � V � Esynð Þ;

IGABAsyn ¼ gGABAA
gsyn O½ � V � Esynð Þ;

where gsyn is the maximal conductance, O½ � is the fraction of open chan-
nels, and Esyn is the reversal potential of the channel (EGABA-A =
�70mV, EAMPA = 0mV, and ENMDA = 0 mv). AChAMPA describes the
influence of ACh levels on AMPA synaptic currents for PY-PY, TC-PY,
and TC-IN connections. gGABAA

modulated the GABA synaptic currents
for inhibitory IN-PY, RE-RE, and RE-TC connections. These values
were changed between sleep and wake states. The influence of GABA
was increased during sleep so that gGABAA

was increased, whereas ACh
was decreased during sleep so that AChAMPA was reduced. During Stage
3 (N3) sleep, the model generated periodic transitions between Up and
Down states. As in our previous studies, Down-to-Up transitions were
mediated by spontaneous miniature excitatory transmitter release from
PY-PY and PY-IN synapses, while Up-to-Down transitions depended
on synaptic depression and intrinsic current, such as IK(Ca) (Timofeev et
al., 2000).

STDP controlled long-term potentiation and depression of synaptic
weights between PY neurons. The change in the synaptic strength
(gAMPA) and amplitude of miniature EPSPs (AmEPSP) were described
previously (Wei et al., 2018) as follows:

gAMPA  gAMPA 1 gmaxF Dtð Þ;

AmEPSP  AmEPSP 1 fAPY�PYF Dtð Þ;

where gmax is the maximal conductance of gAMPA, and f = 0.01 represents
the lower effect of STDP on AmEPSP compared with gAMPA; F represents
the STDP function and depends on the relative timing of presynaptic
and postsynaptic spikes as defined by the following:

F Dtð Þ ¼
A1e

�jDtj=t1 ; if Dt. 0
�A�e

�jDtj=t� ; if Dt, 0

�

whereA1;� set the maximum amplitude of synaptic change (A1;� ¼ 0:002,
t1;� ¼ 20 ms). A-, the synaptic depotentiation term, was reduced to 0.001
during training to reflect the effect of ACh during focused learning
(Sugisaki et al., 2016).

Heterosynaptic plasticity. Heterosynaptic plasticity was imple-
mented in some simulations. To mimic heterosynaptic plasticity
properties observed in vivo (Chistiakova et al., 2014; Volgushev et al.,
2016), after each STDP event in which a synaptic weight was modi-
fied, we also modified the weights of remaining synapses into the
same neuron to hold the total synaptic input per neuron constant.

Thus, if si ¼
Xn

j¼1
wij is the total synaptic input to neuron i from

neurons j = 1:n, then this quantity was maintained constant through-
out the simulation. Thus, any increase of a single synaptic weight
would result in a corresponding decrease of the other weights con-
necting to the same neuron i. To implement this property, we com-
puted the total synaptic input for each neuron i after supervised
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training was completed. Then, during associative training, after each
STDP event, the new conductances for all presynaptic neurons j were

computed by setting wij ¼ wij � s
supervisedTR
i =sti , where s

supervisedTR
i is the

synaptic input to neuron i after supervised training and sti is the cur-

rent total synaptic input to neuron i at time t of the STDP event.
Memory training and testing. Training and testing of associative

memories were modeled after behavioral works (Lau et al., 2010). After
creating a two-layer cortical architecture, we selected the groups of neu-
rons in each layer that correspond to each stimulus. Neuron IDs were
mapped to a stimulus label as shown in Table 2. The first training phase
was the supervised learning. Here, an individual item was stimulated in
layer 1 followed, with 5ms delay, stimulation of that item in layer 2.
This phase created a feedforward pathway through the network that rep-
resents an individual stimulus. Each feedforward pathway stimulation
(e.g., A-A9) included 40 trials with a 500ms gap between trials. The total
length of supervised training was therefore 120 s for all 6 feedforward
pathways.

Following supervised training, we implemented an unsupervised
associative training phase, where pairs of stimuli were presented simulta-
neously. This occurred by stimulating pairs of input items together (e.g.,
A1B, B1C, etc) in layer 1. These pairs of items were stimulated
sequentially every 500ms with a 2 s gap between same-pair stimulations.
The exact duration of associative training varied by experiment, but if
associative training time was 135s/pair, then each pair was stimulated
270 times.

Finally, there was a sleep phase. During sleep, the levels of neuromo-
dulators were changed to induce spindles (N2) or slow oscillations (N3),
and there was no external stimulation provided. Each sleep phase was
followed by a testing phase, where each of the six groups was stimulated
in layer 1, and the response of layer 2 neurons was measured.
Stimulation was provided every 500ms, and each group was stimulated
8 times. Performance was measured as the network’s ability to recall
both the direct and indirect associated item (e.g., on stimulation of A,
can the network recall both B9 and C9?). In Figure 9B, we performed
additional tests where Groups A, C, X, and Z were stimulated and neu-
ron Groups B9 and Y9 were hyperpolarized to prevent activation. In
another experiment, we hyperpolarized neurons from linking Groups B/
B9 and Y/Y9 during sleep to simulate experiments with optogenetic
inactivation.

Experimental design and statistical analyses
All analyses were performed within standard Python functions and libra-
ries. Data are presented as mean 6 SD unless otherwise stated. Each
experiment was repeated with 10 network stimulations from different
network initializations and random seeds for purposes of statistical anal-
yses, using standard two-sided or one-sided t tests.

Relational memory performance metrics. Here, we describe the asso-
ciation matrices shown in Figure 3 as well as the conversion from these
matrices to an association score. To build an association matrix, individ-
ual neuronal groups were stimulated in layer 1 (e.g., item A was stimu-
lated), and we measured the number of spikes in each of the six layer 2
groups (A9, B9, C9, X9, Y9, Z9). This number was averaged over the 10
different (initialization) network simulations and 8 testing trials within
each network simulation. We only considered spikes that occur within
150ms of stimulation to the layer 1 groups. To compute an association
score based on the association matrix, we built a binary 6� 6 mask with
1’s in the upper left and lower right 3� 3 grids and �1’s everywhere
else. This mask depicts what an ideal associative matrix should look like,

where activity in the top left and bottom right grids is acceptable and ac-
tivity in the top right and bottom left grids is spurious. After element-
wise multiplication of the mask and the associative matrix, the resultant
matrix was summed up across both rows and columns. To normalize
this final score, we divided the final sum by the maximum element in
the association matrix multiplied by 18 (here, 18 is the number of ele-
ments that should be positive, e.g., number of groups� number of items
in each group, or 6 � 3, where 6 is number of groups (A-B-C, X-Y-Z)
and 3 is the number of items in each group). The final number was on a
scale from�1 to 1, where a score of�1 occurs when the association ma-
trix is the opposite of what it should be after successful learning (e.g.,
stimulating Group A activates X9, Y9, and Z9), an association score of 0
is true for a random matrix, and an association score of 1 indicates per-
fect performance on the task (e.g., stimulating Group A equally stimu-
lates A9, B9, C9).

Latency and rate analysis. In Figure 4, we show the spiking rates and
latency of neurons in layer 2. To compute the latency of response, after
applying a pulse of stimulation during testing, we analyzed the next
200ms window of activity in layer 2. The latency, for each layer 2 neu-
ron, was determined by taking the time of activation of a neuron in layer
2 and subtracting the time of stimulation in layer 1. If a neuron does not
spike in the 200ms time window, its latency was ignored from the com-
putation. The firing rate was computed by calculating the total number
of spikes that occur in the 200ms window. We considered four different
types of memories: direct memories (e.g., activation of neuron Group
A9/C9 when B9 is stimulated), indirect memories (e.g., activation of neu-
ron Group A9/C9 when C/A is stimulated, respectively) and incorrect
memories (e.g., activation of neuron group X9/Z9 when A is stimulated).
For each type of memory, latencies and rates were averaged across all
pairs of that type (e.g., direct memories = A-B9, B-A9, B-C9, indirect
memories = A-C9, C-A9, incorrect memories = A-X9, A-Z9, C-X9, C-Z9
for the ABC triplet). We should note that this metric likely overestimated
latency for the incorrect memories since it did not consider the fact that
if a neuron does not fire, its latency is ignored from the computation.
Thus, for example, if only one incorrect neuron fired with a latency of
,50ms, then the average latency would indeed be ,50ms. This was
rarely the case; nevertheless, the drop in latency of the incorrect memo-
ries was likely because of this phenomenon since the rate of firing (three
spikes/stimulation) is quite low already.

Weight analysis. In Figures 5 and 6A–D, we explored the synaptic
connectivity matrices. Figure 5 was obtained by recording the synaptic
weights between neurons for each type of connection (feedforward or
recurrent). To evaluate the synaptic input to each neuron i, we computed

the following equation: si ¼

X

w ijf g, where j is any neuron that meets

the criteria (e.g., direct, indirect, or incorrect memories) and w ijf g is the

weight connecting form neuron j to neuron i. If a synapse does not exist
between two neurons i and j, then the weight is ignored. In Figure 6A–
D, we built a graph of all neurons in layer 2. A node in the graph depicts
10 individual neurons from layer 2. An edge was created between nodes
if there existed a weight that exceeds 80% of the maximum weight value
at that given time point. For example, if the maximum weight at time t is
Wt

max, then the threshold is defined as Wth ¼ 0:8 �Wt
max. For any

weight, in the weight matrix, an edge was created between two nodes if
there existed a weight value that exceeds the valueWth and the thickness

of the edge depicts how many such weights meet the criteria.
Modularity analysis. Community detection algorithm was used to

describe brain network changes during task learning (Alexander-Bloch
et al., 2010; Mucha et al., 2010; Bassett et al., 2015). Modularity refers to
the formation of cliques in a network, or series of intraconnected nodes
with limited connections to other cliques (Alexander-Bloch et al., 2010).
Time-dependent communities can be analyzed by measuring the struc-
ture of multislice networks, which can be thought of as a combination of
individual networks that are composed of nodes that are linked in time
to past and future versions of that network (Mucha et al., 2010). To per-
form community detection (Fig. 6E,F), we used existing community
detection algorithm (Jeub et al., 2020). First, the Leicht-Newman modu-
larity matrix for ordered and directed layers was computed (Leicht and
Newman, 2008). This algorithm finds a partition that maximizes the

Table 2. Neuron indices in cortical architecture

Neuron groups Layer 1 region Layer 2 region

A,A9 Neurons 10-29 10-19 (neurons 210-219)

B,B9 Neurons 40-59 20-29 (neurons 220-229)

C,C9 Neurons 70-89 30-39 (neurons 230-239)

X,X9 Neurons 110-129 50-59 (neurons 250-259)

Y,Y9 Neurons 140-159 60-69 (neurons 260-269)

Z,Z9 Neurons 170-189 70-79 (neurons 270-279)
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modularity of the matrix. After this partition
was computed, the generalized Louvain
method for community detection was
applied (De Meo et al., 2011; Jeub et al.,
2020). As a result of applying these algo-
rithms, a network partition and community
assignment graph was returned as a function
of time. The algorithms aim to find a com-
munity assignment partition that maximizes
the resulting modularity of the network. Two
parameters were tuned to aid in this process:
the coupling between temporal layers (v =
1.0) and the intralayer resolution (g = 1.75).

Replay analysis. To analyze memory replay,
we adopted a method from González et al.
(2020). First, the LFP during sleep was com-
puted by evaluating the average membrane
potential across all pyramidal neurons in the
cortex. A threshold for crossing from Up to
Down state and vice versa of the slow oscilla-
tions was computed by taking the resting mem-
brane potential (�63mV) and subtracting the
mean sleep membrane potential. After the
threshold was computed, we filtered the LFP
using a second-order Butterworth filter with a
Nyquist frequency of 500Hz and passband and
stopband frequencies of 0 and 3Hz, respectively.
Next, we applied the threshold to find the Up to
Down state and Down to Up state transition
times. Activity above the threshold was denoted
as an Up state.

Once the Up and Down states were identi-
fied, we analyzed the activity within each indi-
vidual Up state to calculate replay events. A
spiking event was considered a replay event
when a presynaptic and a postsynaptic neuron
fired within a given time window (,200ms).
The order of firing (pre-post, or post-pre) was
used to determine the direction of replay and
to compute a directional graph between neu-
rons, where each edge stores the number of
replay events going in that direction (for
details, see González et al., 2020).

Results
Thalamocortical model of relational
memory
In this work, we used a minimal thala-
mocortical network model to test the role
of sleep in learning an unordered rela-
tional memory task (Fig. 1A,B). Cortex
was modeled with a network consisting
of two layers, each representing a distinct
functional area of the cortex, and each
including excitatory PY cells and inhibi-
tory interneurons (INs). A two-layer
cortical model was motivated by visual
associative learning in the primate brain.
Prior work suggests that associations are
learned by recurrent synaptic connec-
tions in the parietal associative cortex
(Fitzgerald et al., 2011, 2013; Aminoff and Tarr, 2015; Bjeki�c
et al., 2019). This area of cortex receives input from primary
visual cortex (Galletti et al., 2001), which shows a mostly
stereotyped response on presentation of visual stimuli
(Deitch et al., 2021). Thus, we constructed our model with

two populations of cortical neurons (which we call layers
here, when we refer to the model): the first representing vis-
ual cortex with a mostly stereotyped population response to
specific stimuli, and the second representing associative cor-
tex, with recurrent connectivity to promote associative mem-
ory learning.

A B

C

D

E F

Figure 1. Thalamocortical model of relational memory simulates transitions between awake and sleep states. A, Basic task

setup. During associative training (left), pairs of items are presented simultaneously (A1 B, B1 C). The relational memory

task (right) tests the ability of the network to retrieve direct (B) and indirect (C) items, when presented with item A. B, Basic

network architecture: PY, excitatory pyramidal cells; IN, inhibitory interneurons; TC, thalamocortical neurons; RE, inhibitory tha-

lamic reticular neurons. Excitatory connections terminate in a dot, whereas inhibitory connections terminate in a line. Arrows

indicate the direction of connections. C, Baseline network dynamics of the 200 PY neurons and 100 INs during wake and SWS.

Each row represents membrane potential over time of a single neuron. D, Zoom-in of baseline network dynamics in awake

state before sleep (left), during sleep (middle; one Up state is shown), and in awake state after sleep (right). Network dynamics

before and after sleep are shown for layer 2 neurons. During sleep, a canonical slow wave pattern is seen across both layers. E,

Weight connectivity matrix for feedforward connections from layer 1 to layer 2 in cortex (left) and recurrent connections within

layer 2 (right). Connection probability is 30% for feedforward connections and 50% for recurrent connections. White dot repre-

sents that a connection exists between two neurons. F, Two-layer cortical network architecture. There are plastic feedforward

connections from layer 1 to layer 2 and plastic recurrent connections within layer 2. A subset of neurons in each layer is trained

to represent individual items (e.g., neurons 10-29 [denoted neuron Group A in the text] in layer 1 represent item A, and neu-

rons 210-219 [denoted neuron Group A9] represent item A in the second layer).
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Thalamus was modeled by two populations of neurons,
each including excitatory thalamocortical (TC) neurons and
inhibitory reticular (RE) neurons, with bidirectional con-
nections to its respective cortical areas (for details, see
Materials and Methods). Indeed, neuroanatomical studies
suggest that different subdivisions of thalamus project to
different areas of cortex, with primary areas of thalamus,
such as LGN projecting bidirectionally to primary visual
cortex (Briggs et al., 2007), and other subdivisions, such as
the lateral posterior nucleus, connecting bidirectionally to parie-
tal cortex (Lyamzin and Benucci, 2019). All neurons were simulated
with Hodgkin-Huxley dynamics and are based on previous work
(Krishnan et al., 2016; Wei et al., 2016, 2018).

Using this model, we were able to simulate three distinct
states of the network: awake, Stage 2 (N2) sleep and Stage 3 (N3)
sleep, by changing the level of neuromodulators (Vanini et al.,
2012; Krishnan et al., 2016). Awake state was characterized by
random asynchronous firing of cortical neurons, N2 sleep was
characterized by spindles with occasional Down states, and N3
sleep (or SWS) was characterized by canonical slow oscillations
between Up (active) and Down (silent) states (Blake and Gerard,
1937; Steriade et al., 1993; Steriade, 2006) (Fig. 1B,C; see also Fig.
8A). The thalamic component of the network primarily served
the function of driving and modulating oscillations during sleep,
specifically to increase synchrony of sleep slow oscillations in N3
(Lemieux et al., 2014) and to generate spindles in N2, while
learning-related plasticity occurred in the cortical neuronal pop-
ulations. Synaptic plasticity was implemented in AMPA recep-
tors, occurring in feedforward connections between layer 1 and
layer 2 cortical pyramidal cell populations, as well as recurrent
connections between layer 2 pyramidal neurons (Fig. 1F; for
details, see Materials and Methods).

To test relational memory in the model, we built two triplets
of relational memory items (ABC, XYZ). During associative

training, each of the four direct object pairs
(A-B, B-C, X-Y, Y-Z) was presented to the
network, as described below (Fig. 1A, left).
During testing, a single item from each pair
was presented (e.g., item A) and the ability of
the network to recall each of the relevant
associative items (items B and C) was meas-
ured (Fig. 1A, right). Each of the six distinct
items (A, B, C, X, Y, Z; Fig. 1F) was repre-
sented by distinct groups of neurons in the
first layer of the network.

Training and testing stimulation protocol
The network stimulation included three dis-
tinct phases: supervising training, associative
training, and sleep (Fig. 2A). The first phase
in training was to build connections between
neurons representing item A in the first layer
(neuron Group A) and “higher-level” neu-
rons representing the item in the second layer
(neuron Group A9) (Fig. 2B). Since all con-
nections in the model were initially random,
before training there were equal connections
from neuron Group A to all the neuron
groups in the second layer (A9-Z9). Thus, to
create distinct pathways through the cortex
that represent each of the six distinct items,
we incorporated the supervised training
phase. During supervised training, neurons
in each group of layer 1 (e.g., Group A) were

stimulated and then neurons in corresponding layer 2 group
(group A9) were stimulated with a 5ms time delay. Through
STDP, this stimulation paradigm strengthened feedforward con-
nections between A and A9 and led to the formation of a pathway
through the network representing each of the six distinct items.
After supervised training, there was a testing phase where each of
the six neuron groups in layer 1 was stimulated and the activity of
neurons in associative layer 2 was measured. During testing, plas-
ticity was turned off so spiking activity did not lead to STDP
events.

Following supervised training, we simulated associative
learning phase. Items A1B, B1C, X1Y, Y1Z were pre-
sented simultaneously to the network by stimulating
Groups A and B together or B and C together, etc. (Fig. 2C).
Because of the preceding supervised training, neurons in
the second layer responded to the stimulation in the first
layer, such that, for instance, when neuron Groups A and B
were stimulated, neuron Groups A9 and B9 fired without
any direct stimulation. After a period of associative train-
ing, there was another testing phase.

During the associative training phase, we also tested two plas-
ticity schemes: In the first scheme, STDP was used as a sole
learning rule to increase synaptic connectivity between neurons
with correlated firing activity and decrease synaptic connectivity
between those neurons with uncorrelated firing activity. In the
second scheme, STDP was used along with heterosynaptic plas-
ticity (Chen et al., 2013; Chistiakova et al., 2014). Heterosynaptic
plasticity can induce plastic changes at synapses that are not
active during the induction. It has been postulated since early
theoretical studies which used normalization to prevent runaway
dynamics of synaptic weights and introduce synaptic competi-
tion to the model systems with Hebbian-type learning (von der
Malsburg, 1973; Miller, 1996). Any synapse to a cell may express

A

B

Figure 2. Training and testing protocol include supervised and associative training in awake state and spontaneous ac-

tivity during SWS. A, Overall network dynamics for the three phases: supervised training (purple), associative training

(green), and sleep (cyan). Each phase is followed by a testing phase (T1, T2, and T3). B, During supervised training, neu-

ron Groups A, B, C, X, Y, Z are stimulated in layer 1 and neuron Groups A9, B9, C9, X9, Y9, Z9, respectively, are stimulated

in layer 2 with a 5 ms time delay. Left, Example stimulations of C and C9 and X and X9. During testing, a single neuron

group in layer 1 is stimulated (e.g., neuron group Z on the right), and the response of neurons in layer 2 is measured.

Red bars are shown to accentuate neuron groups that are stimulated during training phase. C, During associative train-

ing, neuron groups A1 B, B1 C, X1 Y, Y1 Z are stimulated simultaneously. Each pair is stimulated with a 500 ms

delay after previous group stimulation. No stimulation is provided in layer 2. After associative training, another testing

phase is performed. D, During sleep, neuromodulator levels are altered to simulate deep Stage 3 (N3) sleep activity char-

acterized by spontaneous slow waves across cortex. After sleep, another testing phase is performed.
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heterosynaptic changes after episodes of strong postsynaptic ac-
tivity leading to a sufficient rise of intracellular calcium (for
review, see Chistiakova et al., 2014, 2015). Thus, in the model
including heterosynaptic plasticity, after each STDP event, indi-
vidual weights connecting to a neuron were modified so that the
total sum of synaptic inputs to the neuron remained constant.
This served to balance excitation in the network and prevent
runaway networks dynamics by ensuring that the overall level of
excitation remains constant during learning. Below we report
results for each of these conditions, and we discuss later possible
implications of heterosynaptic plasticity in associative learning.

Finally, we simulated sleep phase (Fig. 2D). Based on experi-
mental data, the improvement of indirect relational memory fol-
lowing sleep is most correlated with SWS (Lau et al., 2010); thus,
we primarily focused on testing the effect of SWS on relational
memory (differential role of spindles is discussed later in the pa-
per). We need to mention that we did not explicitly model hip-
pocampus and associated ripple events; instead, we assumed that

coactivation of the cortical neurons (e.g., A1B) may be result of
direct sensory input or hippocampal input (as postulated by
“indexing” theory) (Teyler and DiScenna, 1986). Following SWS,
there was another testing phase. Overall, based on behavioral
work, we tested the hypothesis that, following sleep, the presenta-
tion of item A in the first layer will lead to a greater coactivation
in neuron Groups A9 and C9 (i.e., association between items A
and C would form) compared with the same group activation
before sleep.

Sleep improves associative memory performance both with
and without heterosynaptic plasticity
In Figure 3A, the strength of response in the layer 2 neuronal
subgroups (A9-Z9) is shown in response to stimulation of each of
the six layer 1 neuronal subgroups (A-Z) in the first cortical
layer. After supervised training, stimulation of a single group in
layer 1 (e.g., Group A) led to activity in its corresponding neuro-
nal subgroup in layer 2 (Group A9). Spurious activity in other

Figure 3. Sleep improves associative memory performance. A, C, Responses of layer 2 neuron groups after stimulating a neuron group in layer 1 during testing after supervised training

(left), associative training (middle), and sleep (right). A, Responses in the model without heterosynaptic plasticity (HSP). C, Responses in the model including heterosynaptic plasticity during

associative training phase. B, D, Conversion of association matrices shown in A–C to a single association performance score. B, Without heterosynaptic plasticity. D, With heterosynaptic plastic-

ity. E, F, Associative training duration versus sleep duration. E, The model without heterosynaptic plasticity. F, The model with heterosynaptic plasticity. The first number in each cell indicates

the association score before sleep, and the second number indicates the association score after sleep. Color represents the % change in association score from before to after sleep. G,

Improvement in association score as a function of number of slow waves (p= 2.45� 10�13, R2= 0.74) in the model including heterosynaptic plasticity. Each dot represents a different network

trial. Network trials are computed for 100, 300, and 500 s of sleep as well as different durations of associative training.
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layer 2 groups was usually minimal and based off the random
connectivity matrix, where some groups may be connected
(based on number of connections) more strongly than other
groups (Fig. 3A, left; materials for computing activity, see
Materials and Methods).

After associative training, an increase in direct relational
memory was observed. Here, stimulation of a neuron Group A
led to activity in neuron Groups A9 and B9, indicating that the
network has learned to make direct associations between Objects
A and B. Stimulation of the linking item (e.g., B or Y) led to ac-
tivity in all three of the items in the corresponding triplet (A9, B9,
C9 or X9, Y9, Z9). However, most notable is that stimulating A or
C alone did not lead to a strong response in the indirect rela-
tional item, C9 or A9, respectively (Fig. 3A, middle). After sleep
phase, this indirect relational memory was significantly strength-
ened, as stimulation of A or C (X or Z) led to a stronger response
in the indirect relational item, C9 or A9 (Z9 or X9), respectively
(Fig. 3A, right).

To quantify the changes in the association matrices, we used a
measure of how “diagonal” the matrix is in respect to four main
3� 3 blocks, which evaluated the extent to which the matrix
shows strong responses in the upper left and lower right 3� 3
blocks, and low responses in the top right and bottom left 3� 3
blocks (see Materials and Methods). (This measure would be
zero for uniform matrix; 1 for a matrix with the top left and bot-
tom right 3� 3 blocks all having the same values, with zero activ-
ity in the top right and bottom left 3� 3 blocks; and �1 for the
opposite case [activity in top right and bottom left blocks]). We
found that sleep leads to a significant improvement in relational
memory, based on simulating 10 random different network con-
figurations (Fig. 3B, p=0.0062, t(9) = 3.55, between relational
memory after sleep and after associative training, based on a
two-sided t test).

The extent of improvement after sleep was determined by
two factors: the length of associative training and length of sleep.
We observed that, if associative training was long, then indirect
associations can be learned without sleep (Fig. 3E, 50 s).
However, when associative training was shorter, then sleep had a
beneficial impact on improving relational memory (Fig. 3E, 20,
35 s). Given the model with no homeostatic mechanisms built in
to constrain synaptic weights, it was observed that long training
or long sleep periods could lead to runaway network dynamics,
where stimulating a single neuronal group in layer 1 leads to ac-
tivity across many neurons of the second layer, thus lowering
overall response specificity and performance.

Given the negative impact of the runaway network dynamics,
we next explored the use of biologically realistic heterosynaptic
plasticity mechanism to constrain synaptic weights. Thus, during
associative training, heterosynaptic plasticity was put in place,
such that the total sum of synaptic inputs to any neuron was con-
served over time. In this model, any event that leads to synaptic
potentiation between neurons would also lead to a correspond-
ing depotentiation of other connections to the same neuron to
keep net sum of all input weights constant (for details, see
Materials and Methods). In the model with heterosynaptic plas-
ticity, we observed less spurious activity after associative train-
ing (Fig. 3C, middle). In addition, activation of the indirect
memory after associative training was almost nonexistent.
Importantly, after sleep, the activity in the indirect memory
items was strong, with very little activity in neurons represent-
ing nonassociated items (Fig. 3C, right). Here, improvement af-
ter sleep was strongly significant (Fig. 3D, p= 3.78� 10ª�6,
t(9)= 13.04, based on two-sided t test). This suggests that, for

SWS to have a beneficial impact on the network’s ability to
recall indirectly associated items, the weights before sleep must
be sufficiently separated but not too strong overall, as it was
when heterosynaptic plasticity was applied during associative
training. In general, the best performance was observed when
sleep was incorporated into the network (Fig. 3F). Increasing
the training time beyond a certain duration did not always
increase the baseline performance; however, sleep applied even
after long associative training could still further improve per-
formance. We tested how associative memory performance
depends on the total number of slow waves, and we found a sig-
nificant positive correlation in a broad range of sleep durations
(Fig. 3G). This result is in agreement with previous experimen-
tal work that found a significant correlation between the SWS
length and relational memory learning (Lau et al., 2010).
Interestingly, very long sleep could have the opposite effect and
reduce performance (see, e.g., Tsleep = 700 s), suggesting the ex-
istence of an optimal sleep duration that could also depend on
the duration of preceding training sessions. For further analy-
ses, we used the heterosynaptic plasticity condition with Tsleep

= 300 s and Ttrain = 135 s.
Synaptic plasticity may also occur between cortical pyramidal

cells and interneurons, as well as between thalamus and neocor-
tex. Although we did not explicitly incorporate these types of
plasticity in our model, we tested effect of changes in the balance
of excitation and inhibition on post-sleep memory performance.
Thus, we modified the level of inhibition in the network by set-
ting it to 610% of the baseline value. We found no significant
difference in the associative score after sleep (t(10) =�0.8, p= 0.4,
one-sided t test). After associative training, performance was rel-
atively higher in the network with reduced baseline inhibition
(t(10)=2.4, p= 0.02, one-sided t test). In this case, there was still a
significant post-sleep improvement (t(10) = �4.96, p=0.0001).
The network with increased inhibition revealed slightly reduced
performance right after associative training but relatively higher
gain after sleep.

Sleep increases amplitude and decreases latency of indirect
memory response
Since sleep increases the association score, we next asked
whether sleep can improve the latency of group activation by
reducing time delay between responses of stimulated and indi-
rectly recalled groups. To test this, we analyzed the raw neuronal
traces after supervising training, after associative training, and af-
ter sleep (Fig. 4A–C). As mentioned before, heterosynaptic plas-
ticity was in place in all these simulations. During testing, each
group (A-C, X-Z) was simulated 8 times every 500ms in layer 1
and the response in layer 2 was measured. We next converted
these firing patterns into an LFP for each of the six groups of
neurons in the second layer and averaged across eight simula-
tions. Results are shown when X is stimulated in the first layer
(Fig. 4D). After supervised training, stimulating X led to a strong
response in X9 (Fig. 4D, left). After associative training, the
strength of the response of Y9 was increased and there was a
small, sustained response in Z9 (Fig. 4D, middle). Finally, after
sleep the response profiles of Y9 and Z9 nearly become overlap-
ping, suggesting that the network has used its knowledge of an
association between Z9 and Y9 to correctly infer the indirect asso-
ciation between Z9 and X9 (Fig. 4D, right).

We measured response latency as a time delay from layer 1
stimulation to the first action potential in each layer 2 neuronal
group’s response, and we measured response intensity as total
number of spikes per stimulation of each layer 2 neuronal group.
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After supervised training, the average la-
tency of direct memories (A-B9, which
have not been learned yet), indirect
memories (A-C9), and incorrect memo-
ries (A-X9) were all similar at ;200 ms
(Fig. 4E, left group). In addition, the rate
of response was very low and similar
across all three types of memories (Fig.
4F, left group). After associative training,
the latency of the direct memory recall
was substantially reduced and the inten-
sity of response was increased (Fig. 4E,F,
middle group). The latency and the re-
sponse amplitude of the indirect memory
were also improved, but the latency was
not significantly different from that of
response for incorrect memories, and the
amplitude was not as strong as for direct
memory. Importantly, after sleep, the la-
tency of the indirect memory recall was
significantly reduced compared with the
incorrect one (Fig. 4E, right group, t(1,163) =
24.27, p=3.039� 10�100, two-sided t test)
and the intensity of response was signifi-
cantly increased (Fig. 4F, right group,
t(319) = �9.64, p = 2.41� 10�19). This
behavioral change in the network response
dynamics highlights the increase in
strength of the indirect memory fol-
lowing SWS.

Sleep increases modularity of each
triplet in layer 2 recurrent connections
To determine which network changes
were responsible for improving indirect
relational memories after sleep, we ana-
lyzed the changes in synaptic weights.
There were two types of plastic connec-
tions in the model: feedforward connec-
tions between layer 1 and layer 2, and
recurrent connections within layer 2. In
the feedforward connectivity matrices, we
observed that sleep leads to a significant
increase in the synaptic input coming
from both indirect (Fig. 5A, right, e.g.,
connection A to C9, t = �6.98, p=1.39�
10�95, two-sided t test) and direct neuro-
nal groups (Fig. 5A, right, e.g., connection
A to B9, t = �5.66, p=5.29� 10�79, two-
sided t test). Importantly, the incorrect
memory weights (e.g., X to A9) were not
significantly greater than their pretraining values (indeed, they
were smaller than their pretraining values, p, 1� 10�100, one-
sided t test), suggesting that sleep does not just increase all the
connections but only connections related to associated memory
items. In the recurrent weights (Fig. 5B), a similar effect was
observed where synaptic input from direct and indirect memory
groups was significantly increased to specific neurons after sleep
(p=6.18� 10�62, p=7.67� 10�88 for both groups [direct and
indirect, respectively], two-sided t test). Interestingly (also see
Discussion below), synaptic input from a neuronal group to its
indirect triplet pair (e.g., A9 to C9) in the second layer became
even larger than the synaptic input from an indirect group in the

first layer (e.g., A to C9, p = 0.02, two-sided t test, average
feedforward synaptic input = 2.08, average recurrent synap-
tic input = 2.75).

To better quantify changes in the recurrent connections in
layer 2, we built and analyzed a graph of 10 nodes, where each
node represents a group of 10 neurons (i.e., Group A9 = 11-20,
B9 = 21-30, ..., Z9 = 71-80) (Fig. 6A–D). We created an edge
between two groups if there were any strong enough weights
(i.e., exceeding a threshold) between these groups (the weight
threshold was set at 80% of the maximum weight value, so it was dif-
ferent at different time points, e.g., threshold before training=0.0218,
threshold after supervised training=0.1295, threshold after asso-
ciative training=0.1857, threshold after sleep=0.1913). On the

Figure 4. Sleep increases amplitude and decreases latency of indirect memory response. A–C, Raw network response traces

during testing phase of stimulating A, B, C, X, Y, Z (from left to right) after supervised training (A), associative training (B), and

sleep (C). Note increase in response and decrease in latency after sleep. D, Averaged (across 8 trials) and smoothed, through a

bandpass filter at 0.1 and 20 Hz, LFP computed separately for the three neuron groups in layer 2 (X9, Y9, Z9 are shown) in

response to stimulation of a neuron group X in layer 1. LFPs are shown during testing phase after supervised training (left),

associative training (middle), and sleep (right). E, Average response latency for direct memories (black, e.g., latency of neuron

Group B9 when A is stimulated), indirect memories (pink, e.g., latency of neuron group C9 when A is stimulated), and incorrect

memories (cyan, e.g., latency of neuron group X9 when A is stimulated). F, Average firing rate of neurons in layer 2 for each

type of memory (direct, indirect, and incorrect) during testing phase.
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graph, the thickness of the edge depicts how many such weights
existed between the two nodes. After supervised training, recur-
rent weights within trained groups (e.g., between all the neurons
from Group A9) increased, but weights between groups
remained weak and the graph was essentially disconnected (Fig.
6B). After associative training, relatively weak connections were
formed between the linking Group B9 (or Y9) and the other rel-
evant groups, A9 and C9 (or X9 and Z9) (Fig. 6C). In addition,

the self-connections (recurrent connections
within a group) were magnified. Finally, af-
ter sleep, the overall connectivity between
the group triplets was increased, with weak
connections between direct memory pairs
becoming stronger (e.g., X9-Y9) and new
connections forming between indirect memo-
ries (e.g., X9-Z9) (Fig. 6D). Overall, these
changes suggest that items in each triplet
(e.g., X9-Y9-Z9) become strongly connected to
the other items in that triplet so that activa-
tion of any one group can lead to activation
of the other groups. Thus, after sleep, all the
neurons in the second layer associated with
the items belonging to the same relational
memory triplet formed an attractor in synap-
tic weight space.

To further test this idea, we performed
modularity analysis on the time-dependent
recurrent weight matrix to determine how
clusters of neurons change over the course of
training and sleep (for details, see Materials
and Methods). We used a time-dependent
community detection algorithm to assign
each of the 100 neurons in layer 2 to a com-
munity (where community assignment can
change over time) based on the synaptic con-
nectivity matrix (Leicht and Newman, 2008;
Jeub et al., 2020). Figure 6E illustrates how
the community assignment changed during

supervised training, associative training, and sleep. During
supervised training, each of the 6 subgroups was put into a com-
munity with itself, as the neurons within these groups became
strongly interconnected. During associative training, there was
some mixing between these six subgroups, as observed, for
example, in the merging of communities representing Y9 and Z9
(Fig. 6E, orange group). Finally, during sleep, we observed

Figure 5. Synaptic weight dynamics explains improvements in relational memory after sleep. A, B, Left, Feedforward (A) and recurrent (B) synaptic weight matrices after supervised training,

associative training, and sleep. Right, Synaptic input to the neurons of each memory type in layer 2 (the sum of all the weights connecting to those neurons) for self-memories (A-A9), direct

memories (A-B9), indirect memories (A-C9), and incorrect memories (A-X9) after supervised training, associative training, and sleep.

Figure 6. Sleep increases modularity for each triplet of items (A9B9C9 and X9Y9Z9) in layer 2 recurrent connections.

A-D, Graphs of layer 2 connectivity matrices. Each dot represents a group of 10 neurons: red dots represent A9, B9, C9;

blue dots represent X9, Y9, Z9). A line is drawn between two dots if there is a weight between groups that exceeds a

given threshold (75% of the maximal weight). The thickness of the line represents the number of such connections: (A)

before any training, (B) after supervised training, (C) after associative training, and (D) after sleep. Threshold is calcu-

lated for each state separately; so, for example, before training many connections exceed the threshold defined by initial

weak connections. E, Community assignment for layer 2 neurons over time during each training/sleep phase: ST, super-

vised training; AT, associative training, and sleep. Neurons were assigned the same color (at any given time) if those

neurons belonged to the same community. F, The number of communities over time. Data are averaged across 10 net-

work trials. Error bars indicate SD across trials.
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merging of each of the three subgroups from each triplet into
larger community. We found that the number of communities in
the network started out high but was further reduced mostly dur-
ing associative training (Fig. 6F). Together, these results suggest
that sleep altered the connectivity matrix to enable formation of
a large community of related neurons who all shared similar stim-
ulus-response profiles, leading to formation of indirect memories.
Thus, sleep altered the community structure by building a strong
attractor among members of each of the memory triplets.

Replay during sleep drives synaptic weight changes
Given that during sleep synaptic weights are restructured to sup-
port formation of indirect associative memory, the question
remains of what it is specifically about sleep that leads to these
changes. Based on our previous work (Wei et al., 2016, 2018;
González et al., 2020), we hypothesized that replay during sleep
of synaptic traces formed during training leads to a strengthen-
ing of these synaptic traces and thus an improvement in memory
(Ji and Wilson, 2007; Lewis and Durrant, 2011). Importantly, in
our model indirect connections (e.g., from A to C9 or A9 to C9)

are never explicitly activated during training, however, these
pathways may become active during SWS, which could explain
the weight changes illustrated above.

To detect possible replay events, we applied a procedure pre-
viously proposed by González et al. (2020). After detecting indi-
vidual Up states (using LFP thresholding; see Materials and
Methods; Fig. 7A), we identified, for each Up state, all spiking
events that could lead to STDP changes. Thus, if Neuron I fired
during an Up state and this was followed by Neuron II firing
(within a 200ms time window), then this pair was considered an
STDP event and the direction of replay (from Neuron I to
Neuron II) was recorded. We observed that the number of STDP
events within the trained region of the network, both in feedfor-
ward and recurrent connections, was significantly greater than
outside of the trained regions (Fig. 7B, p, 1e-5, for visualization
purposes, only pairs with number of replay events above a
threshold [top 75%] are shown). Importantly, we observed not
just more STDP events randomly distributed across all the neu-
ronal pairs in the trained region, but a higher number of events
in specific neuronal pairs (Fig. 7B; note red dots in the ROIs),

Figure 7. Replay during sleep drives synaptic weight changes. A, LFP during SWS (left) and “zoom-in” examples of slow waves (right). Beginning/end times of Up and Down states are com-

puted by setting a threshold for the transition from Down to Up state and vice versa. B, Number of replay events for feedforward (top) and recurrent (bottom) connections. Replay events

are selected by identifying sequential ordered firing events, within a specified time window. Replay events occur significantly more in the areas of interest (black grids) than in other areas

(p, 1e-4, based on shuffling replay matrix 10,000 times). C, Change in synaptic weights as a function of number of replay events between neurons for feedforward (top, R2= 0.61,

p= 1� 10�12) and recurrent (bottom, R2= 0.41, p= 1� 10�10) connections. D, Number of replay events between self, direct, indirect, and incorrect neuron groups for feedforward

(top) and recurrent (bottom) connections. For feedforward connections, there was a significantly higher number of replay events between self-connections than direct connections, direct

connections than indirect connections, and indirect connections than incorrect connections. For recurrent connections, indirect connections revealed the most replay events (p= 0.006

between wrong connections, and p= 3.28� 10�36 between direct connections).
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suggesting that those events reflect replay of the memory ele-
ments formed during associative training. In other words, during
an Up state, there was a significantly higher chance that the neu-
rons within the trained region would spike in a defined order
compared with the neurons outside of the trained region, indi-
cating that SWS does indeed reactivate synaptic memory traces
learned during the associative phase.

We next measured the extent to which replay is correlated
with synaptic connectivity changes. Thus, we plotted observed
synaptic weight change against the total number of replay
events per neuronal pair and discovered a significant correla-
tion between the number of replay events for a given connec-
tion and the amplitude of the weight change in this connection
(Fig. 7C). This was true for both feedforward and recurrent
connections (R2= 0.62, p= 1� 10�12 for feedforward and
R2= 0.41, p= 1� 10�10 for recurrent connections). These data
suggest that sleep replay can restructure weights to build the
communities underlying relational memory formation as
reported in Figure 6. We next separated replay events based on
the type of connection: self-connection (e.g., A-A9, or A9-A9),
direct connection (e.g., A-B9, A9-B9), indirect connection (e.g.,
A-C9, A9-C9), or incorrect connection (e.g., A-X9, A9-X9). In
feedforward connections, we observed that self-connections
had the largest number of replay events, followed by direct,
indirect, and incorrect connections, in order (Fig. 7D, top;
number of replay events is averaged across 10 trials and all the
connections in each of the four categories). This suggests that,
in feedforward connections, replay reflects the underlying
strength of the synaptic weights (compared Fig. 7D, top, and
Fig. 5A). Since self-connections were the strongest (Fig. 5A, t =
�3.99, p= 6.72� 10�5, two-sided t test), these connections
experienced the greatest number of replay events. However, in
the recurrent connections, there was a greater amount of replay
events in the indirect connections (Fig. 7D, bottom, t= 2.72, p =
0.006, two-sided t test). This type of replay can lead to the for-
mation of the communities (Fig. 6), responsible for formation
of indirect associative memories.

N3 sleep is uniquely responsible for post-sleep improvement,
although spindle-slow-wave nesting may be important
Behavioral studies suggest that duration of N3 sleep, but not N2
sleep, during a daytime nap is significantly correlated with asso-
ciative memory performance (Lau et al., 2010). We tested the
effect of N2 sleep by modifying level of neuromodulators in the
model, that was set in between their waking and N3 state levels
(Krishnan et al., 2016). In this regimen, the network generated
frequent spindle events interrupted by occasional slow waves
(Fig. 8A). We compared four conditions: 300 s of N3 sleep alone
(control, as in above simulations), 300 s of N2 sleep alone, 600 s
of N2 sleep alone, and 300 s of mixed sleep (200 s of N2 followed
by 100 s of N3). We found that N2 sleep alone was not sufficient
to significantly boost associative memory performance, for either
300 or 600 s of N2 sleep duration (t(9) = �1.56, p=0.13, one-
sided t test) (Fig. 8B, left). However, either 300 s of N3 sleep or
mixed N31N2 sleep did result in a significant improvement
(t(9) = �2.39, p = 0.028, one-sided t test) (Fig. 8B, right).
These results confirm behavioral evidence showing a unique
role for N3 sleep, as opposed to N2 sleep, in improving rela-
tional memory.

Other studies suggested that phase locking between slow
waves and spindles (frequency nesting) may be necessary
for memory consolidation (Latchoumane et al., 2017; Kim
et al., 2019). We tested this by measuring the power in

spindle frequency band (from 7 to 16 Hz) in three distinct
phases of the N3 slow oscillations: Down-to-Up transition,
Up-to-Down transition, and Random time windows during
the Up state. LFPs were computed, and the starts and ends
of each Up state were identified as done previously (see
Materials and Methods). We calculated the spindle power
in 100 ms time windows centered in each of the three
phases. We found significantly higher power in the spindle
frequency band near the Down-to-Up transition compared
with the two other phases tested (Fig. 8D). Additionally, we
found that this spindle power was significantly correlated
with associative memory improvement following sleep (Fig.
8C, R2 = 0.5, p = 0.03). These results predict that phase-lock-
ing between spindles and slow waves may be important in
relational memory.

Discussion
How does sleep give rise to relational memory? Our study sug-
gests the following conceptual model. First, for each “basic”
memory, there exists a feedforward pathway through the net-
work that is stable and robust, so a stimulus presentation,
namely, pattern activation in primary sensory area (e.g., neuron
Group A, Fig. 9A, left), leads to reliable and unique response in
associative cortex (activation of neuron Group A9). These path-
ways can possibly form during development, can be strength-
ened during subsequent training, and need to be robust for
associative learning to take place. These pathways represent sen-
sory “primitives” that have been once learned and do not need to
be changed in adult brain. Second, during associative learning,
events that have shared context are learned to be represented to-
gether. In the model, this occurred when inputs A and B are pre-
sented together, which leads to an overlapping representation in
associative cortex, where presentation of A or B alone leads to
firing and recollection of the other object (i.e., B9 or A9) (Fig. 9A,
middle). If different associative memories include a common
item (e.g., A-B and B-C), sleep aids in forming indirect associa-
tive memory between nonoverlapping items A9 and C9 by
strengthening the entire pathway A ! C9 (or C ! A9), both
through an increase in feedforward connections from A to B9
and C9 as well as community (or attractor) formation for the
entire A9-B9-C9 group in associative cortex (Fig. 9A, right). As
sleep replay takes place on a compressed timescale (Nádasdy et
al., 1999), the entire group (A9-B9-C9) can be activated within a
small enough window for connections to grow between A9 and
C9, taking advantage of STDP-type mechanisms. Indeed, inhibi-
ting the overlapping elements (B/B9 or Y/Y9) during sleep (or
during memory recall) prevents post-sleep improvement on this
associative memory task in our model (Fig. 9B), in line with in
vivo work, which showed that associations between a visual stim-
ulus and fear response could be blocked by optogenetic inhibi-
tion of neurons representing the visual stimulus during sleep
(Clawson et al., 2021).

Recent experiments suggest that learning rules may differ
between anesthetized and awake states and are biased toward
synaptic depression during Up states of Slow Oscillations (SOs)
in urethane-anesthetized mice (González-Rueda et al., 2018).
This result supports the synaptic homeostatic downscaling (SHY)
hypothesis, suggesting that during sleep synapses are downscaled
to free up synaptic resources for learning during the next wake
state (Tononi and Cirelli, 2014). The other view is that synaptic
potentiation (at least to selected subsets of synapses associated
with recently learned memories) occurs during NREM sleep to
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enable memory consolidation (Timofeev and Chauvette, 2018; for
review, see also Puentes-Mestril and Aton, 2017). In our new
study, based on a large scope of existing experimental data, we
used a symmetric STDP rule that is similar in both wake and
sleep states, and we observed strengthening of synaptic con-
nections to form new associative memories during sleep. This
model may need to be extended based on prevailing biological
views about plasticity rules in the waking and sleeping brain
as new data are accumulated. In addition, plasticity mecha-
nisms, such as heterosynaptic and homeostatic synaptic plas-
ticity, may affect learning; and their effects are different
between sleep and wake. Indeed, for example, the effect of het-
erosynaptic plasticity depends on neuromodulators (Bannon
et al., 2017) whose levels fluctuate during the sleep–wake
cycle. In our new study, we explicitly tested the effect of heter-
osynaptic plasticity on associative memory and found that it
helps to form associative memories. Because of the complexity
of the effects of neuromodulation, we, however, considered a

simplified model where heterosynaptic scaling operates simi-
larly during sleep and awake.

Our work expands on computational models of relational
memory by providing a biophysically plausible account of learning
during waking and consolidation during sleep. Previous models
for relational memory include the temporal context model
(TCM) and retrieval based models (Kumaran, 2012; Kumaran
and McClelland, 2012). Our model adds to this literature by (1)
developing a biophysical account, based on STDP rules, that
explores the role of sleep replay on relational memory tasks;
and (2) suggesting a role for both the TCM and retrieval-based
models, based on different types of relational memory tasks.
TCM and retrieval-based models have been successful at dem-
onstrating performance on associative memory tasks (Kumaran
and McClelland, 2012). However, these models were con-
structed using preset weights between different regions of the
network, and sleep replay was implemented using artificial
stimulation. In contrast, in our work, we show that STDP rules

Figure 8. Stage 2 (N2) sleep has little effect on association score, although spindle/slow oscillation nesting during N3 sleep revealed significance. A, Network dynamics including both N2

and N3 sleep: supervised training (purple), associative training (green) and sleep, comprised of N2 (lime) and N3 sleep (cyan). Bottom row represents zoom-in of N2 sleep (two spindles are

shown) and N3 sleep (slow waves). B, Association scores following 300 s of N2 sleep (top left), 300 s of N3 sleep (top right), 600 s of N2 sleep (bottom left), and 300 s of mixed sleep (200 s

N2 and 100 s N3, bottom right). C, Association score improvement as a function of spindle power near Down-to-Up transition of N3 sleep suggests a significant correlation between spindle/

slow oscillation nesting and association score. Spindle power in 1000 s of mV2. D, Spindle power is significantly higher near Down-to-Up transition than near Up-to-Down transition or a ran-

dom time selected during the Up state of a slow wave. Power was calculated based on 100 ms time windows.
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can be used based on realistic task settings to learn relational
memories and synaptic replay, that is needed for formation of
indirect relational memories, occurs naturally during SWS and
does not require any additional stimulation. We found that,
during SWS, individual items were replayed spontaneously and
in a correct order to form a new relational memory.

Our model, which more closely aligns with TCM, may be
insufficient at explaining generalization on ordered relational
memory tasks (Ellenbogen et al., 2007; Werchan and Gómez,
2013). We showed that replay is as likely to occur in the forward
or backward directions (e.g., forward = A! B, backward = B!
A). In this simplified task, memory consolidation during sleep
occurs mainly in a recurrent layer, as neurons representing single
units become wired together based on a shared context and form
an attractor or community that enables indirect memory recall.
However, in an ordered relational memory task, where the hier-
archy of items needs to be learned, replay within a single attrac-
tor-based layer may be insufficient to correctly encode the order
of the task, and big-loop recurrency may be necessary.

Many studies explored the effect of sleep on relational mem-
ory without analyzing correlation between specific sleep stages
and performance improvement (Lau et al., 2011; Huguet et al.,
2019). Our work expands on these studies by suggesting a unique

role for SWS in improving relational memory. We further predict
that, while nesting spindles and slow waves may be important for
consolidation of relational memories, spindles alone are not suffi-
cient for consolidation. Our study predicts that the number of
slow waves observed during sleep is significantly correlated with
the subject’s ability to perform relational memory tasks, in line
with previous work that demonstrated a significant correlation
between the SWS length and relational memory learning (Lau et
al., 2010).

Our study also further supports evidence that mental health
disorders, such as schizophrenia, where SWS is disrupted may
experience deficits in relational memory (Titone et al., 2004;
Martin et al., 2005; Pritchett et al., 2012). Patients with schizo-
phrenia have shown a marked decrease compared with healthy
controls in their performance on transitive inference and rela-
tional memory tasks (Titone et al., 2004; Avery et al., 2021). One
of the deficits in sleep in schizophrenia subjects is a significant
decrease in the amount of SWS (Keshavan et al., 1990; Benca et
al., 1992; Yang and Winkelman, 2006; Manoach and Stickgold,
2009). Our model suggests that, if disrupted, SWS may be respon-
sible for deficiencies to learn transitive inference in schizophrenia;
then methods focusing on recovery the normal sleep patterns in
schizophrenia could lead to an improvement in associated cogni-
tive symptoms.

We should note the limitation of our work by ignoring the
explicit impact of the hippocampus on memory consolidation
and transitive inference. Previous studies have described the
importance of the hippocampus in transitive inference tasks,
where hippocampal activation is increased during the perform-
ance of transitive inference tasks, and damage to the hippocam-
pus decreases performance on such tasks (Heckers et al., 2004;
Zalesak and Heckers, 2009; DeVito et al., 2010; Wendelken and
Bunge, 2010). Recent studies revealed a complex bidirectional
model of the interaction between hippocampal and cortical net-
works (Rothschild et al., 2017; Helfrich et al., 2019). Our recent
modeling work (Sanda et al., 2021) found that hippocampal rip-
ples can coordinate large-scale spatiotemporal dynamics of
cortical slow waves. We address these concerns by noting the
similarity of the second layer in our model with hippocampal
regions, which rely on similar attractor dynamics (Colgin et al.,
2010). Thus, the same mechanisms we propose here may
explain relational memory improvement during sleep in cor-
tico-hippocampal system. Importantly, empirical and computa-
tional studies reported that hippocampal activation during
SWS is preceded by cortical input and follows a cortical-hippo-
campal-cortical pathway (Rothschild et al., 2017; Navarrete et
al., 2020; Sanda et al., 2021). In this scenario, the content of
replay may be introduced by cortical networks (layer 1 in our
model) and lead to the chosen content of replay in hippocampal
and other cortical networks (layer 2 in the model).

REM sleep is likely to be very critical in memory and learning,
but its specific role in formation of relational memories is
unknown. One study found that a fraction of time spent in REM
sleep during a 60 min nap was correlated with improvement on
A-C item pairs but also led to more forgetting of directly learned
(A-B) relations (Alger and Payne, 2016). In this work, however,
subjects who did not attain REM sleep during the 60 min period
also performed similarly to those who attained REM sleep. Thus,
it remains an open question how REM and NREM sleep can dif-
ferentially contribute to relational memory and to memory con-
solidation in general (see, however, Wei et al., 2018). It is also
likely that the cycling between REM and NREM sleep over the
course of a typical night (i.e., multiphasic sleep with specific

Figure 9. Proposed model of relational memory and main experimental predictions. A,

Summary of the changes to the model at different time points. During supervised training,

feedforward connections are formed between layers 1 and 2 to represent self-memories

(e.g., A-A9). During associative training, the network learns to associate items presented to-

gether (e.g., A with B and B with C). However, these connections are weak, and no indirect

associations are learned (e.g., A is not associated with C). After sleep, direct and indirect

memory connections are strengthened and one attractor is formed for entire triplet of items

(i.e., a community including A9, B9, and C9). B, Effect of inactivating different neuronal

groups during either sleep or testing on association score. Blue bars represent performance

after training. Orange bars represent performance after sleep. Silencing linking group in any

one layer only (B9 or B, Y9 or Y) during sleep still leads to significant post-sleep improvement

for associative memories (B9, Y9: t(10) = �4.91, p= 0.001; B, Y: t(10) = �2.03, p= 0.045,
one-sided t test, FDR correction). However, silencing linking groups in both layers (B/B9,

Y/Y9) during sleep prevents post-sleep improvement for these associative memory tasks

(t(10) = �0.59, p= 0.28). Inactivating linking groups in layer 2 alone (B9, Y9) during testing

was sufficient to significantly reduce associative memory performance.
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temporal structure) is important for sleep-dependent memory
consolidation.

In conclusion, we built a model of the thalamocortical system,
which suggests specific biophysical mechanisms that explain the
role of sleep in the formation of indirect associative memories.
This model predicts that inhibition of neuronal groups that rep-
resent common items that link associated items may decrease
performance on relational memory tasks (Clawson et al., 2021),
while artificial stimulation during sleep replay of nonassociated
items may lead to false memory formation (Diekelmann et al.,
2010). Our model can be extended to describe transitive infer-
ence tasks where there is an underlying hierarchy of items (e.g.,
A.B), which likely requires a third layer to account for big-
loop recurrency needed to perform ordered transitive inference.

References
Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F,

Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local
connectivity of brain functional networks in childhood-onset schizophre-
nia. Front Syst Neurosci 4:147.

Alger SE, Payne JD (2016) The differential effects of emotional salience on
direct associative and relational memory during a nap. Cogn Affect
Behav Neurosci 16:1150–1163.

Aminoff EM, Tarr MJ (2015) Associative processing is inherent in scene per-
ception. PLoS One 10:e0128840.

Avery SN, Armstrong K, McHugo M, Vandekar S, Blackford JU, Woodward
ND, Heckers S (2021) Relational memory in the early stage of psychosis:
a 2-year follow-up study. Schizophr Bull 47:75–86.

Bannon NM, Chistiakova M, Chen JY, Bazhenov M, Volgushev M (2017)
Adenosine shifts plasticity regimes between associative and homeostatic
by modulating heterosynaptic changes. J Neurosci 37:1439–1452.

Bassett DS, Yang M, Wymbs NF, Grafton ST (2015) Learning-induced
autonomy of sensorimotor systems. Nat Neurosci 18:744–751.

Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiat-
ric disorders: a meta-analysis. Arch Gen Psychiatry 49:651–668.

Bjeki�c J, �Coli�c MV, Živanovi�c M, Milanovi�c SD, Filipovi�c SR (2019)
Transcranial direct current stimulation (TDCS) over parietal cortex
improves associative memory. Neurobiol Learn Mem 157:114–120.

Blake H, Gerard RW (1937) Brain potentials during sleep. Am J Physiol
119:692–703.

Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral ge-
niculate nucleus and visual cortex in the macaque monkey. Journal of
Neuroscience 27:5431–5436.

Chatburn A, Lushington K, Kohler MJ (2014) Complex associative memory
processing and sleep: a systematic review and meta-analysis of behaviou-
ral evidence and underlying EEG mechanisms. Neurosci Biobehav Rev
47:646–655.

Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, Bazhenov M (2013)
Heterosynaptic plasticity prevents runaway synaptic dynamics. J
Neurosci 33:15915–15929.

Chistiakova M, Bannon NM, Bazhenov M, Volgushev M (2014)
Heterosynaptic plasticity: multiple mechanisms and multiple roles.
Neuroscientist 20:483–498.

Chistiakova M, Bannon N, Chen JY, Bazhenov M, Volgushev M (2015)
Homeostatic role of heterosynaptic plasticity: models and experiments.
Front Comput Neurosci 9:89.

Clawson BC, Pickup EJ, Ensing A, Geneseo L, Shaver J, Gonzalez-Amoretti J,
Zhao M, Kane York A, Roig Kuhn F, Swift K, Martinez JD, Wang L,
Jiang S, Aton SJ (2021) Causal role for sleep-dependent reactivation of
learning-activated sensory ensembles for fear memory consolidation. Nat
Commun 12:1200.

Colgin LL, Leutgeb S, Jezek K, Leutgeb JK, Moser EI, McNaughton BL,
Moser MB (2010) Attractor-map versus autoassociation based attractor
dynamics in the hippocampal network. J Neurophysiol 104:35–50.

Deitch D, Rubin A, Ziv Y (2021) Representational drift in the mouse visual
cortex. Current Biology 31:4327–4339.

De Meo P, Ferrara E, Fiumara G, Provetti A (2011) Generalized
Louvain method for community detection in large networks. 2011
11th International Conference on Intelligent Systems Design and
Applications, pp 88–93.

DeVito LM, Kanter BR, Eichenbaum H (2010) The hippocampus contributes

to memory expression during transitive inference in mice. Hippocampus

20:208–217.

Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev

Neurosci 11:114–126.

Diekelmann S, Born J, Wagner U (2010) Sleep enhances false memories

depending on general memory performance. Behav Brain Res 208:425–

429.

Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP (2007) Human rela-

tional memory requires time and sleep. Proc Natl Acad Sci USA

104:7723–7728.

Fitzgerald JK, Freedman DJ, Assad JA (2011) Generalized associative repre-

sentations in parietal cortex. Nat Neurosci 14:1075–1079.

Fitzgerald JK, Freedman DJ, Fanini A, Bennur S, Gold JI, Assad JA (2013)

Biased associative representations in parietal cortex. Neuron 77:180–191.

Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001)

The cortical connections of area V6: an occipito-parietal network proc-

essing visual information. European Journal of Neuroscience 13:1572–

1588.

González OC, Sokolov Y, Krishnan GP, Delanois JE, Bazhenov M (2020)

Can sleep protect memories from catastrophic forgetting? Elife 9:e51005.

González-Rueda A, Pedrosa V, Feord RC, Clopath C, Paulsen O (2018)
Activity-dependent downscaling of subthreshold synaptic inputs during

slow-wave-sleep-like activity in vivo. Neuron 97:1244–1252.e5.

Heckers S, Zalesak M, Weiss AP, Ditman T, Titone D (2004) Hippocampal

activation during transitive inference in humans. Hippocampus 14:153–
162.

Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L,

Vadera S, Walker MP, Lin JJ, Knight RT (2019) Bidirectional prefrontal-

hippocampal dynamics organize information transfer during sleep in
humans. Nat Commun 10:3572.

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve. J Physiol

117:500–544.

Huguet M, Payne JD, Kim SY, Alger SE (2019) Overnight sleep benefits both

neutral and negative direct associative and relational memory. Cogn

Affect Behav Neurosci 19:1391–1403.

Jeub LG, Bazzi M, Jutla IS, Muncha PJ (2020) A generalized Louvain method

for community detection implemented in MATLAB, 2011-2017. Available

at https://github.com/GenLouvain/GenLouvain.

Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and

hippocampus during sleep. Nat Neurosci 10:100–107.

Keshavan MS, Reynolds CF, Kupfer DJ (1990) Electroencephalographic sleep

in schizophrenia: a critical review. Compr Psychiatry 31:34–47.

Kim J, Gulati T, Ganguly K (2019) Competing roles of slow oscillations and

delta waves in memory consolidation versus forgetting. Cell 179:514–526.

e13.

Klinzing JG, Niethard N, Born J (2019) Mechanisms of systems memory con-

solidation during sleep. Nat Neurosci 22:1598–1610.

Krishnan GP, Chauvette S, Shamie I, Soltani S, Timofeev I, Cash SS, Halgren

E, Bazhenov M (2016) Cellular and neurochemical basis of sleep stages in

the thalamocortical network. Elife 5:e18607.

Kumaran D (2012) What representations and computations underpin the
contribution of the hippocampus to generalization and inference? Front

Hum Neurosci 6:157.

Kumaran D, McClelland JL (2012) Generalization through the recurrent

interaction of episodic memories: a model of the hippocampal system.
Psychol Rev 119:573–616.

Latchoumane CF, Ngo HV, Born J, Shin HS (2017) Thalamic spindles pro-

mote memory formation during sleep through triple phase-locking of
cortical, thalamic, and hippocampal rhythms. Neuron 95:424–435.e6.

Lau H, Tucker MA, Fishbein W (2010) Daytime napping: effects on human

direct associative and relational memory. Neurobiol Learn Mem 93:554–

560.

Lau H, Alger SE, FishbeinW (2011) Relational memory: a daytime nap facili-

tates the abstraction of general concepts. PLoS One 6:e27139.

Leicht EA, Newman ME (2008) Community structure in directed networks.

Phys Rev Lett 100:118703.

Lemieux M, Chen JY, Lonjers P, Bazhenov M, Timofeev I (2014) The impact

of cortical deafferentation on the neocortical slow oscillation. J Neurosci

34:5689–5703.

5344 • J. Neurosci., July 6, 2022 • 42(27):5330–5345 Tadros and Bazhenov · Sleep and Formation of Relational Associative Memory



Lewis PA, Durrant SJ (2011) Overlapping memory replay during sleep builds
cognitive schemata. Trends Cogn Sci 15:343–351.

Lewis PA, Knoblich G, Poe G (2018) Howmemory replay in sleep boosts cre-
ative problem-solving. Trends Cogn Sci 22:491–503.

Lyamzin D, Benucci A (2019) The mouse posterior parietal cortex: anatomy
and functions. Neuroscience research 140:14–22.

Manoach DS, Stickgold R (2009) Does abnormal sleep impair memory con-
solidation in schizophrenia? Front Hum Neurosci 3:21.

Maquet P (2001) The role of sleep in learning and memory. Science
294:1048–1052.

Martin JL, Jeste DV, Ancoli-Israel S (2005) Older schizophrenia patients
have more disrupted sleep and circadian rhythms than age-matched
comparison subjects. J Psychiatr Res 39:251–259.

Miller KD (1996) Synaptic economics: competition and cooperation in syn-
aptic plasticity. Neuron 17:371–374.

Miyamoto D, Hirai D, Fung CC, Inutsuka A, Odagawa M, Suzuki T,
Boehringer R, Adaikkan C, Matsubara C, Matsuki N, Fukai T, McHugh
TJ, Yamanaka A, Murayama M (2016) Top-down cortical input during

NREM sleep consolidates perceptual memory. Science 352:1315–1318.

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010)
Community structure in time-dependent, multiscale, and multiplex net-
works. Science 328:876–878.

Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G (1999) Replay and
time compression of recurring spike sequences in the hippocampus. J
Neurosci 19:9497–9507.

Navarrete M, Valderrama M, Lewis PA (2020) The role of slow-wave sleep

rhythms in the cortical-hippocampal loop for memory consolidation.
Curr Opin Behav Sci 32:102–110.

Nieuwenhuis ILC, Folia V, Forkstam C, Jensen O, Petersson M (2013) Sleep
promotes the extraction of grammatical rules. PLoS One 8:e65046.

Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE, Harrison PJ,
Peirson SN, Foster RG (2012) Evaluating the links between schizophrenia
and sleep and circadian rhythm disruption. J Neural Transm (Vienna)
119:1061–1075.

Puentes-Mestril C, Aton SJ (2017) Linking network activity to synaptic plas-
ticity during sleep: hypotheses and recent data. Front Neural Circuits
11:61.

Rothschild G, Eban E, Frank LM (2017) A cortical–hippocampal–cortical
loop of information processing during memory consolidation. Nat
Neurosci 20:251–259.

Sanda P, Malerba P, Jiang X, Krishnan GP, Gonzalez-Martinez J, Halgren E,
Bazhenov M (2021) Bidirectional interaction of hippocampal ripples and
cortical slow waves leads to coordinated spiking activity during NREM
sleep. Cereb Cortex 31:324–340.

Steriade M (2006) Grouping of brain rhythms in corticothalamic systems.
Neuroscience 137:1087–1106.

Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscilla-

tions in the sleeping and aroused brain. Science 262:679–685.

Studte S, Bridger E, Mecklinger A (2015) Nap sleep preserves associative but
not itemmemory performance. Neurobiol Learn Mem 120:84–93.

Sugisaki E, Fukushima Y, Fujii S, Yamazaki Y, Aihara T (2016) The effect of
coactivation of muscarinic and nicotinic acetylcholine receptors on LTD
in the hippocampal CA1 network. Brain Res 1649:44–52.

Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory.
Behav Neurosci 100:147–154.

Timofeev I, Chauvette S (2018) Sleep, anesthesia, and plasticity. Neuron
97:1200–1202.

Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin
of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex
10:1185–1199.

Titone D, Ditman T, Holzman PS, Eichenbaum H, Levy DL (2004)
Transitive inference in schizophrenia: impairments in relational memory
organization. Schizophr Res 68:235–247.

Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic
and cellular homeostasis to memory consolidation and integration.
Neuron 81:12–34.

Vanini G, Lydic R, Baghdoyan HA (2012) GABA-to-ACh ratio in basal fore-
brain and cerebral cortex varies significantly during sleep. Sleep 35:1325–
1334.

Vasconcelos M (2008) Transitive inference in non-human animals: an empir-
ical and theoretical analysis. Behav Processes 78:313–334.

Volgushev M, Chen JY, Ilin V, Goz R, Chistiakova M, Bazhenov M (2016)
Partial breakdown of input specificity of STDP at individual synapses
promotes new learning. J Neurosci 36:8842–8855.

von der Malsburg C (1973) Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik 14:85–100.

Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight.
Nature 427:352–355.

Walker MP, Stickgold R (2004) Sleep-dependent learning and memory con-
solidation. Neuron 44:121–133.

Walker MP, Liston C, Hobson JA, Stickgold R (2002) Cognitive flexibility
across the sleep–wake cycle: REM-sleep enhancement of anagram prob-
lem solving. Brain Res Cogn Brain Res 14:317–324.

Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R
(2003) Sleep and the time course of motor skill learning. Learn Mem
10:275–284.

Wei Y, Krishnan GP, Bazhenov M (2016) Synaptic mechanisms of memory
consolidation during sleep slow oscillations. J Neurosci 36:4231–4247.

Wei Y, Krishnan GP, Komarov M, Bazhenov M (2018) Differential roles of
sleep spindles and sleep slow oscillations in memory consolidation. PLoS
Comput Biol 14:e1006322.

Wendelken C, Bunge SA (2010) Transitive inference: distinct contributions
of rostrolateral prefrontal cortex and the hippocampus. J Cogn Neurosci
22:837–847.

Werchan DM, Gómez RL (2013) Generalizing memories over time: sleep
and reinforcement facilitate transitive inference. Neurobiol Learn Mem
100:70–76.

Yang C, Winkelman JW (2006) Clinical significance of sleep EEG abnormal-
ities in chronic schizophrenia. Schizophr Res 82:251–260.

Zalesak M, Heckers S (2009) The role of the hippocampus in transitive infer-
ence. Psychiatry Res 172:24–30.

Tadros and Bazhenov · Sleep and Formation of Relational Associative Memory J. Neurosci., July 6, 2022 • 42(27):5330–5345 • 5345


	Role of Sleep in Formation of Relational Associative Memory
	Introduction
	Materials and Methods
	Results
	Discussion


