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Influence of thermal effects on the breakup of thin films

of nanometric thickness
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We apply a previously developed asymptotic model [J. Fluid Mech. 915, A133 (2021)]
to study instabilities of free surface films of nanometric thickness on thermally conductive
substrates in two and three spatial dimensions. While the specific focus is on metal films
exposed to laser heating, the model itself applies to any setup involving films on the
nanoscale whose material parameters are temperature-dependent. For the particular case
of metal films heated from above, an important aspect is that the considered heating is
volumetric, since the absorption length of the applied laser pulse is comparable to the film
thickness. In such a setup, absorption of thermal energy and film evolution are closely
correlated and must be considered self-consistently. The asymptotic model allows for a
significant simplification, which is crucial from both modeling and computational points
of view, since it allows for asymptotically correct averaging of the temperature over the film
thickness. We find that the properties of the thermally conductive substrate—in particular,
its thickness and rate of heat loss—play a critical role in controlling the film temperature
and dynamics. The film evolution is simulated using efficient GPU-based simulations
which, when combined with the developed asymptotic model, allow for fully nonlinear
time-dependent simulations in large three-dimensional computational domains. In addition
to uncovering the role of the substrate and its properties in determining the film evolution,
one important finding is that, at least for the considered range of material parameters, strong
in-plane thermal diffusion in the film results in negligible spatial variations of temperature,
and the film evolution is predominantly influenced by temporal variation of film viscosity
and surface tension (dictated by average film temperature), as well as thermal conductivity
of the substrate.

DOI: 10.1103/PhysRevFluids.7.064001

I. INTRODUCTION

Thin film dynamics is a well-studied problem, which has been addressed extensively from
modeling, computational, experimental, and applications points of view, as described in excellent
review articles [1,2]. A particular challenge involves modeling external effects that couple to
the fluid dynamics of the film. Some examples include the influence of an electric field on film
dynamics [3–5], the competition between chemical instabilities in multi-mixture liquids and their
dewetting [6–10], or the effect of permeable underlying substrates [11,12]. Thermal effects have
received significant attention as well, in particular, regarding the temperature dependence of material
properties, as discussed further below. One setup where thermal effects are clearly very important
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involves dynamics of liquid metal films deposited on thermally conductive substrates [13–18], a
setup important in the context of nanotechnology [19], electronic coatings [20], and photovoltaics
[21], to name just a few examples. A number of experimental works have investigated the assem-
bly mechanism of droplets that result from liquified metal films, as described in recent reviews
[22–24]. While a number of modeling and computational studies have been carried out, theoretical
modeling of thermal effects coupled with evolution of a thin film whose material parameters
are temperature-dependent is a challenging problem, which still has not been fully addressed.
Development of such a model and of the efficient computational methods that are required for
carrying out the corresponding time-dependent simulations, is the main subject of the present
paper.

We proceed with a brief and necessarily incomplete review of relevant previous work; to put
this discussion in the context of the present paper we first discuss briefly our earlier work [25],
in which a model for a thin molten metal film evolving on a thin thermally conducting substrate
was proposed. Working within asymptotic long-wave theory (LWT), the most significant outcome
was the development of a self-consistent model for the coupled fluid/thermal dynamics in the case
of volumetric heating such that the energy absorbed depends on the local film thickness, whose
evolution is itself influenced by temperature (and therefore heat flow). A key finding was that to
leading order, film temperature is uniform across the (thin) film depth, with spatial and temporal
evolution governed by an in-plane diffusion equation with additional terms accounting for the laser
heating and heat loss to the substrate. Neglect of in-plane diffusion in the film (an approach taken
in some previous works [13,18,26]) was shown to lead potentially to inaccurate results for heat
transport, and to shorter liquid lifetimes. A second focus was the influence of temperature-dependent
surface tension and viscosity on the dewetting of the films. Regarding surface tension, it was
found that, at least for liquid metals, the spatial variation of surface tension (Marangoni effect)
did not influence the dynamics in any relevant manner. Temporal dependence of surface tension
(via average film temperature) was found to play a much more relevant role. Similarly, while it
was found that temperature-dependent viscosity is crucial for accurately simulating films that dewet
while in the liquid phase, once again temporal variation turned out to be much more relevant than
spatial variation. It should be pointed out that although the dynamics of the film was coupled
self-consistently to the thermal transport (in both substrate and film), the study was limited to
asymptotically thin substrates with constant thermal properties, and the influence of substrate
physical characteristics on film temperature and dynamics remains to be addressed, especially since
in practice, substrates may be much thicker than the film itself.

Other works have considered similar setups but with a different focus. Shklyaev et al. [27], for
example, used LWT to derive a model similar to that of Allaire et al. [25], but omitting laser heating,
and with the underlying substrate (due to the assumed difference in thermal conductivities of
substrate and film) modeled simply by a constant temperature gradient. Batson et al. [28] found that
self-consistently solving for substrate temperature is crucial for the development of oscillatory free
surface film instabilities, which have been previously observed (for example, when thermocapillary
effects are present in multilayer film configurations [29] and when the film is heated from below
by a substrate of sufficiently low thermal conductivity [27]). Atena and Khenner [14] proposed a
model for liquid metals that accounts for heat transport in the substrate as well as laser heating
in the film, but considers heat loss at the film surface to be relevant (see also Saeki et al. [15,16]
and Oron [30] in this context), leading to differences with our recent model [25]. In contrast, other
works (including ours) assume heat loss to the substrate to dominate over any free surface losses
[13,25,26]. A number of authors have also investigated the significance of temperature-dependent
material parameters, as discussed by Craster and Matar [2].

In the present paper, our focus is on investigation of the role that the underlying substrate has
on both the heating of the film and its free surface evolution. In particular, we focus on the role
of substrate thickness, heat loss through the lower substrate boundary, and nonlinear effects due
to temperature varying thermal conductivity. The thermal model developed in our earlier work
[25] (asymptotically thin substrates, constant thermal properties) is extended to account for thick
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substrates characterized by temperature-dependent thermal conductivity. The model development
is accompanied by novel GPU-based computations simulating dewetting of three-dimensional
evolving molten films. Similarly, temperature variation of surface tension and viscosity are included,
but Marangoni effects are neglected since these were demonstrated to be irrelevant in the present
context [25]. To summarize, the main novel aspects of the present work involve (i) extension of our
self-consistent model with volumetric heating to thick substrates, (ii) careful analysis of the role of
substrate properties on the film evolution, and (iii) consideration of film instabilities in both two and
three spatial dimensions.

The remainder of the paper is organized as follows. In Sec. II, we present the thin film equa-
tion governing the fluid dynamics and the extension of the thermal model developed previously
[25]. The main results are presented in Sec. III. In Sec. III A, we outline the numerical scheme used
to solve our models. In Sec. III B, we present results that highlight effects due to thermal transport
only, in the absence of film evolution (the film surface is held flat and static even when above melting
temperature); in particular, the correlation between peak film temperatures and substrate thickness,
as the heat loss from the substrate varies (via tuning the Biot number, Bi). In Sec. III C we consider
evolving 2D films and investigate the influence of thermal effects on the film dynamics. In Sec. III D,
we present large-scale 3D numerical results for both film evolution and heat conduction. The main
finding in both 2D and 3D is that the substrate heat loss, thickness, and thermal conductivity
temperature dependence may all influence the final solidified film configuration, and depending on
the relative strengths of these terms, films may either dewet fully or only partially by the time they
resolidify. In Sec. IV, we present our conclusions and directions for future work. Appendices A–G
provide additional information about material parameters, details of the model, and an extensive
overview of the computational methods implemented.

II. THE MODEL

Consider a free surface metal film of nanoscale thickness, H , and characteristic lateral length-
scale L (defined in terms of the wavelength of maximum growth; see Table II and [25]), which is
initially solid, with air above, and in contact below (at z = 0) with a thermally conductive solid SiO2

substrate of thickness Hs, which may be much larger than that of the film. The whole assembly is
placed upon another, thicker, slab of Si. The metal film is heated by a laser and may change phase
(solid to liquid and vice-versa). Figure 1 shows the basic setup. For later reference, Table I lists the
dimensionless parameters that will be used extensively in the paper, and the dimensional material
parameters and other quantities of interest are specified in Appendix A, Table II.

We define the aspect ratio of the film to be ε = H/L � 1. For clarity we list a number of
underlying assumptions, which will be discussed and where appropriate justified in the text that
follows:

(i) the metal film evolves only when melted;
(ii) inertial effects are negligible;
(iii) phase change (melting, solidification) is fast and the associated energy gain/loss can be

ignored;
(iv) liquid-solid interactions are relevant and can be modeled by a disjoining pressure;
(v) the laser energy is absorbed volumetrically in the film, but absorption in the substrate is

neglected;
(vi) the film is in perfect thermal contact with the SiO2 substrate at z = 0;
(vii) heat loss in the film is only through the substrate and not through radiative losses;
(viii) the Si slab underneath the SiO2 is a perfect conductor and remains at ambient temperature

(this is reasonable since its thermal conductivity is much larger than that of SiO2) but there is contact
resistance at the interface z = −Hs;

(ix) the surface tension and viscosity of the film, as well as the thermal conductivity of the
substrate, may vary with temperature; and

(x) the film does not evaporate.
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FIG. 1. Schematic of a three-dimensional (3D) film with free surface z = h(x, y, t ), deposited on a substrate
that may be much thicker than the film and is in contact with an even thicker Si slab underneath.

With respect to the in-plane and out-of-plane length scales, L and H (respectively), we define
in-plane coordinates x, y and the out-of-plane coordinate z. Following Allaire et al. [25], we choose
the in-plane velocity scale U = ε3γf/(3μf ) (where γf and μf are surface tension and viscosity at
melting temperature, T̃melt) so that the timescale, L/U , is comparable to the duration of the laser
pulse, but the model also retains surface tension effects to leading order in ε. Subsequently, we
choose εU , T̃melt, μfU/(ε2L) and γf as the out-of-plane velocity, temperature, pressure, and surface
tension scales, respectively. We take the dimensionless domain length/width to be 2Pπ , where P is
a positive integer.

We treat the film as an incompressible Newtonian fluid, assume that the viscosity and surface
tension may vary in time through the average film temperature (details to be specified below; in
Appendix F we consider spatial dependence as well), but fix material density and heat capacity at
their melting temperature values. Since our focus is on substrate effects we also assume the film
thermal conductivity is fixed at the melting temperature value. However, for thick substrates, large
temperature gradients could lead to significant differences in thermal conductivity across the depth.
Therefore, we allow thermal conductivity of the substrate to vary with temperature and use its value
at ambient temperature, κs, as the thermal conductivity scale. For what follows we use Tf and Ts to
denote the temperatures of the film and substrate, respectively. As will be discussed further below, to

TABLE I. Dimensionless parameters based on material parameters in Table II.

Dimensionless numbers Notation Value Expression

Aspect ratio ε 0.347 H/L

Film Peclet number Pef 1.42×10−3 (ρc)fUL/κf

Substrate Peclet number Pes 2.17×10−2 (ρc)sUεH/κs

Biot number Bi 10−3 − 103 αsH/κs

Thermal conductivity ratio K 0.034 κs/(ε2κf )
Range of dimensionless viscosity M 0.028 − 1 μ/μf

Marangoni number Ma 0.35 3γTT̃melt/(2γf )
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leading order (with respect to ε � 1), Tf (x, y, t ) is independent of the out-of-plane coordinate z [25].
We assume that the dimensionless surface tension � depends linearly on average film temperature,
to leading order, and is given by

� = 1 +
2Ma

3
(Tavg − 1), (1)

where the Marangoni number Ma and average free surface temperature, Tavg(t ), are given by

Ma =
3γTT̃melt

2γf
, Tavg(t ) =

1

(2Pπ )2

∫ Pπ

−Pπ

∫ Pπ

−Pπ

Tf (x, y, t ) dxdy. (2)

Here, γT = (γf/T̃melt )dγ /dTavg|Tavg=1 is the change in surface tension with temperature when the
film (on average) is at melting temperature, Tavg = 1. For the remainder of the text we omit the
argument of Tavg(t ) with the understanding that it is time-dependent. More general expressions for
surface tension exist that account for spatial variation of temperature (Marangoni effect); it has been
shown, however, that this has little influence on film evolution in the present context due to small
spatial temperature variations [25], and thus we omit spatial dependence of � despite a Marangoni
number that is not small (see Table I).

We follow the long-wave theory approach [2] adopted in our earlier work [25], which reduces
conservation of mass and momentum to a fourth-order nonlinear PDE for film thickness, h, written
in the general form ∂t h + ∇2 · (hu) = 0, where ∇2 = (∂x, ∂y) is the in-plane gradient, and u = (u, v)
is the depth-averaged in-plane fluid velocity, related to the pressure gradient. For the remaining
text, vector quantities are in bold and scalar quantities are not. We assume that the pressure at the
interface, z = h, obeys a modified Laplace-Young type boundary condition, which includes both
free surface curvature and also liquid-solid interactions, modeled by a disjoining pressure 
(h).
While various forms of 
(h) have been proposed (see Ref. [24] for a review of this topic), we here
use


(h) = �

[(

h∗

h

)n

−
(

h∗

h

)m]

, � =
AHL

6πεγfh3
∗H3

. (3)

In Eq. (3) the terms on the right-hand side represent the repulsive and attractive components of
the liquid-solid interactions, h∗ is the equilibrium film thickness where the attraction and repulsion
balance, AH is the Hamaker constant, and n > m are positive exponents; in the present work, we use
(n, m) = (3, 2) following Gonzalez et al. [31]. We note that the form of disjoining pressure specified
by Eq. (3) allows for specification of the equilibrium contact angle. Since for metals on SiO2 contact
angles may be rather large (∼70◦ for Cu, with some volume dependence [31]), one may wonder
whether it is appropriate to use the long-wave theory. This question was discussed extensively in
previous works, see, e.g., Mahady et al. [32] where it was shown that the difference in the results
obtained by the long-wave theory and full numerical simulations of the Navier-Stokes equations are
not significant even for such large contact angles. For the parameters used in the present work (see
Table II, the equilibrium contact angle is 50◦, therefore smaller than for Cu films in the experiments;
this difference may influence the shape of the drops that form after film breakup. Since such details
are not of interest in the present work, we focus on the long-wave-theory-based model, which allows
for a tractable and computationally feasible formulation including careful consideration of thermal
effects.

Continuing with our derivation, with disjoining pressure as specified by Eq. (3) the governing
equation for film height h can then be written as

∂t h + ∇2

(

1

M

{

h3∇2
[

�∇2
2 h + 
(h)

]}

)

= 0, (4)
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where M = μ/μf is the dimensionless viscosity, assumed to vary exponentially with average
temperature via an Arrhenius law,

M(t ) = exp

[

E

RT̃melt

(

1

Tavg
− 1

)]

, (5)

where R = 8.314 JK−1mol−1 is the universal gas constant, and E is the activation energy [33]. Other
approaches have been used to implement temperature dependence of viscosity; see, e.g., Kaptay [34]
for a comparison of Arrhenius and statistical mechanics approaches, or Oron et al. [1] for derivation
of an analog of Eq. (4) that includes z-dependence of viscosity. We follow the approach of Seric
et al. [18] in utilizing Eq. (5), but we use average film temperature and thus omit spatial dependence
of viscosity (shown to be irrelevant in this context [25]).

Equation (4) describes the evolution of the nanoscale thin film, which is coupled to its tem-
perature. To determine the temperature we use an approach similar to our previous work [25],
which assumed a thin substrate to allow an asymptotic reduction of the heat flow problem in both
film and substrate regions. We assume (repeating some of the previously listed assumptions for a
self-contained presentation): (i) the film is heated volumetrically by a laser, but the SiO2 substrate
is transparent (an approximation justified by earlier results showing that most of the laser energy
is absorbed in the metal film, see Supplemental Material of Ref. [35]), (ii) heat conduction in the
film is much faster than the evolution of the film, (iii) substrate heat conduction and film evolution
occur on similar timescales, and (iv) film heat loss is only through the SiO2 substrate, which is
in perfect thermal contact with the film, and itself loses heat to an underlying Si slab of much
higher thermal conductivity. To extend our previous work, we present a formulation that includes
temperature-varying thermal conductivity in the substrate, κ (Ts) (made dimensionless by scaling
with κs, the substrate thermal conductivity at the ambient temperature, Ta). Furthermore, we now
allow the substrate to be thick, but assume negligible in-plane diffusion (an assumption shown to be
valid in Appendix B). The leading order film temperature is found to be independent of z and the
model describing the transport of heat in the film/substrate system is then [25]

hPef∂t Tf = ∇2 · (h∇2Tf ) − K(κ (Ts)∂zTs)|z=0 + hQ, for z ∈ (0, h), (6)

Pes∂t Ts = ∂z(κ (Ts)∂zTs), for z ∈ (−Hs, 0), (7)

Tf = Ts, on z = 0, (8)

κ (Ts)∂zTs = Bi(Ts − Ta ), on z = −Hs, (9)

∂xTf = 0, on x = ±Pπ, (10)

∂yTf = 0, on y = ±Pπ, (11)

where the dimensionless parameters defined by

Pef = (ρc)fUL

κf
, Pes = (ρc)sUεH

κs
, K = κs

κf
ε−2, Bi = αsH

κs

are the film and substrate Peclet numbers, the substrate-to-film scaled thermal conductivity ratio,
and the Biot number governing heat loss from the SiO2 substrate to the Si slab below, respectively.
Values for each of these parameters, as well as the film aspect ratio ε and the dimensionless
viscosity M, are given in Table I. On the right-hand side of Eq. (6) the terms, from left to right,
represent lateral diffusion, film heat loss due to contact with the substrate, and the laser heat source,
respectively. Equation (7) reflects the assumption that heat flow in the substrate is affected by
out-of-plane diffusion only. Since the substrate thickness may actually be comparable in size to
the domain length, dropping lateral substrate diffusion is not necessarily a consequence of the
leading order approximation of heat conduction in ε, but rather an assumption, justified later in
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Appendix B by showing that in-plane derivatives of substrate temperature are orders of magnitude
smaller than those in the out-of-plane direction. Furthermore, note that Ts still retains the dependence
on x and y due to Eq. (8), which represents continuity of film/substrate temperatures. Equation (9)
represents heat loss from the SiO2 substrate to the underlying Si slab, assumed to be at ambient
temperature, Ta.

Values of the heat transfer coefficient, αs, in the definition of Bi are difficult to find in the
literature so in this work we consider Bi to be a variable parameter within the range given in Table I.
The lateral boundaries are thermally insulated, Eqs. (10) and (11). The above model assumes that
radiative losses are negligible relative to heat loss to the substrate. By a simple energy argument, we
find that the timescale on which radiative losses would be relevant is on the order of milliseconds,
orders of magnitude longer than the timescales of the laser pulse and consequent flow considered
here; see Appendix D for more details. In the present work we do not consider the details of the
phase change process: we assume it to be instantaneous, following Seric et al. [18], and in particular
we ignore the contribution of latent heat to the energy balance. A simple argument justifying this is
a back-of-the-envelope comparison of the latent energy of melting and the total energy supplied by
the laser. For our considered system, the latter is nearly 40 times larger. We note that the effects of
latent heat were considered in a similar context recently by Trice et al. [13], who found consistently
that the latent heat is negligible.

Next, we assume the film-averaged heat source, Q in Eq. (6), representing external volumetric
heating due to the laser at normal incidence, is given by [13,18]

Q =
1

h

∫ h

0
F (t )[1 − R(h)] exp [−αf (h − z)]dz,

F (t ) = C exp[−(t − tp)2/(2σ 2)], C =
E0αfL

2

√
2πσ tsHκf T̃melt

, (12)

where C is a dimensionless constant proportional to the laser fluence E0, α−1
f is the (scaled)

absorption length for laser radiation in the film, and F (t ) describes the temporal shape of the laser,
taken to be Gaussian centered at tp and of width σ = tp/(2

√
2 ln 2). For the reflectivity of the film,

R(h), we use [13,18]

R(h) = r0[1 − exp (−αrh)],

where r0 and αr are dimensionless fitting parameters, specified in Table II in Appendix A.

III. RESULTS

After outlining our numerical approach in Sec. III A, we consider 2D films with free surface
z = h(x, t ) in Secs. III B and III C, focusing on the influence of substrate thickness, Biot number,
and variable substrate thermal conductivity. In Sec. III D we expand our consideration to 3D films
with free surface z = h(x, y, t ).

A. Numerical schemes

In the 2D case, Eq. (4) for h(x, t ) is solved using the approach of our earlier work [25], with
spatial discretization commensurate with the equilibrium film thickness, x = h∗ = 0.1. Eq. (4)
can be rewritten as ∂t h + ∂xJ = 0 for some flux J , and a Crank-Nicolson scheme is used for the
time-stepping, turning Eq. (4) into a nonlinear system of algebraic equations

hi(t + t ) − hi(t )

t
=

1

2
Di(t + t ) +

1

2
Di(t ), i = 1, 2, . . . , N, (13)

where hi(t ) ≈ h(xi, t ), {xi} is a N-point spatial discretization, and Di is a discretization of ∂xJ , at
xi. Although any iterative method for solving nonlinear equations would suffice to solve Eq. (13),
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we use Newton’s method; since Eq. (13) must be solved at each time-step, the rapid quadratic
convergence ensures faster computing times. The initial condition takes the form of a small
perturbation to a flat film h = h0,

h(x, 0) = h0[1 + δ cos (x)], (14)

where h0δ is the perturbation amplitude (|δ| � 1), and the wavelength of the perturbation is equal
to the domain length, 2π (see Table II in Appendix A for the physical sizes). The no-flux boundary
conditions, hx = hxxx = 0, are applied at x = ±Pπ .

A similar approach is used to solve Eq. (7) for the substrate temperature Ts, while for the film
temperature Tf in Eq. (6) an implicit-explicit methodology is used (see the Appendix of Allaire et al.

[25] for more details). The film and substrate are initially fixed at room temperature,

Tf (x, 0) = Ts(x, z, 0) = Ta. (15)

During the initial laser heating both film and substrate temperatures are found by solving Eqs. (6)–
(7) with the film flat and static until it melts, which we deem to happen when the minimum
film temperature (over space) surpasses Tmelt = 1. Film evolution, film temperature, and substrate
temperature are then sequentially found at each time step. Once the minimum film temperature
decreases past Tmelt the film is considered solid. After this time, only film and substrate temperatures
are solved for; we no longer evolve the free surface, which is frozen in what we refer to as its final
configuration.

A successful time iteration requires that two criteria are met for both film evolution and heat
conduction: (i) the iterative method should converge to a relative error tolerance of 10−9 in fewer
than 10 iterations; and (ii) the relative truncation error should be less than 10−3. If either (i) or (ii)
are not satisfied, then the time step is decreased and the equations are integrated again. For more
details regarding the 2D numerical scheme see Appendix G 1.

For the 3D simulations, one needs to be careful with the choice of the initial condition, to produce
a surface h(x, y, 0) with perturbations that are uncorrelated (in the x and y directions) and that excite
a significant number of Fourier modes (note that using simply a sum or a product of sines and
cosines with random amplitudes produces noise that is not random). To create the initial condition
we follow Lam et al. [36], first taking a(qx, qy) to be a random variable, uniformly distributed on
[0,1] for each pair of wave numbers (qx, qy). Next, we define noise in Fourier space,

ζ̂ =
[

q2
x + q2

y

]−α/2
exp[2π ia(qx, qy)],

with α = 25x/(2π ), where x is the grid spacing. This value of α, which is independent of the
domain size and was used also by Lam et al. [36], was chosen so that ζ̂ decays sufficiently fast for
large wave numbers. We denote the inverse Fourier transform of ζ̂ by ζ (x, y), then we let η(x, y) be
a linear rescaling of ζ (x, y) (bounded to be less than one in absolute value) and finally define the
initial condition as

h(x, y, 0) = h0[1 + δη(x, y)], (16)

where δ = 0.01 as in the 2D case. The additional boundary conditions, hy = hyyy = 0 at y = ±Pπ

are applied in the 3D case.
Equation (4) is written as ∂t h + ∇2 · J = 0, with flux J, and solved for h(x, y, t ), via an

alternating-direction implicit (ADI) method combined with the Newton iterative method described
above (Di, hi in Eq. (13) are now replaced by Di, j, hi, j) [36]. Equation (6) is now solved using
an implicit-explicit ADI approach, which consists of a predictor and corrector step. Equation (7)
is solved similarly to the 2D case, except now Ts = Ts(x, y, z, t ). Due to the dependence on
three spatial variables, this equation alone amounts to a significant number of systems of dis-
crete nonlinear equations to be solved at each time-step. Similarly, Eqs. (4) and (6) lead to
large discrete systems, which present a daunting computational challenge. To enhance compu-
tational performance the equations are solved in parallel using the Compute Unified Device

064001-8



INFLUENCE OF THERMAL EFFECTS ON THE BREAKUP …

Architecture (CUDA) programming framework [37] developed by NVIDIA, which utilizes graph-
ics processing units (GPUs). In a similar context, Lam et al. [36] showed that GPUs offer
significant computational advantages over traditional (CPU) computing, especially when large
domains are considered. The parallel numerical schemes used for heat conduction are described in
Appendix G 2.

B. Flat film results—Influence of substrate thickness, Biot number, and thermal conductivity

In this section we suppress dewetting in the molten film and consider the static flat film
h = h0, focusing on the influence of substrate properties on film temperature. In particular, we
analyze the influence of (i) the substrate thickness, (ii) the substrate heat loss, and (iii) nonlinear
effects due to temperature-dependent thermal conductivity in the substrate (compared with constant
thermal conductivity, κ = 1). For more details on the model used for the thermal conductivity, see
Appendix C. In the following discussion we focus on two quantities: peak film temperature, Tpeak

(the maximum spatially averaged film temperature attained by the film over the duration of the
simulation), and the liquid lifetime (LL) of the film, defined as the time interval during which the
average film temperature remains above melting (Tavg > 1).

Figures 2(a) and 2(b) show phase plane plots of Tpeak and LL, respectively, for various values
of substrate thickness Hs and Biot numbers, Bi; see Eq. (9). A zero Biot number corresponds to a
perfectly insulated substrate that loses no heat to the underlying Si slab, while Bi → ∞ corresponds
to a poorly insulated substrate in contact with a Si slab at ambient temperature, Ta [in Eq. (9) this
corresponds to a Dirichlet boundary condition, Tf = Ta]. In Fig. 2(a) we see that films on well-
insulated substrates (Bi � 1) retain more heat and reach higher peak temperatures than those on
their poorly insulated counterparts (Bi � 1). In Fig. 2(b) this corresponds to longer LLs for Bi � 1.
Note that here the LL scale is nonuniform and the LL varies with substrate thickness, even for Bi <

10−1. Furthermore, we see little variation in Tpeak for Bi ∈ [1, 103], which manifests in Fig. 2(b) as
near-horizontal constant LL contour lines in this range, compared to those in the remaining range
of Bi where LL varies significantly. Between Bi = 10−1 and Bi = 1 there is a sharp transition in
peak temperature and LL. This is primarily due to the changing balance between the heating of
the film-plus-substrate and the heat loss from the substrate (there is perfect thermal contact at the
film–substrate interface, and since radiative losses are neglected no heat is lost at the film’s free
surface). For substrates perfectly insulated from below, heat is retained in the substrate (and thus the
film, due to the perfect thermal contact) more so than in the poorly insulated case, where the film
rapidly loses heat to a near-room-temperature substrate.

The influence of substrate thickness is also significant, and depends strongly on the value of Bi.
For well-insulated substrates (Bi � 1), peak average film temperature decreases with increasing Hs,
while for poorly insulated substrates (Bi � 1) peak temperature increases with Hs. This is again due
to the competition between the absorption of heat in the substrate and the heat loss to the underlying
slab at its lower boundary, z = −Hs. For Bi � 1, the thicker the substrate the more thermal energy
it absorbs (due to the greater volume) and retains (due to the insulated lower boundary), leaving
less heat in the film (see movie 1 of Supplemental Material [38], for the associated heat conduction
animation). For Bi � 1, substrate heat loss is rapid and the farther the interface at z = −Hs is from
the molten film, the less heat is lost from the film (see movie 2 of Supplemental Material [38] for
the associated heat conduction animation). Therefore, in this case thicker substrates yield higher
film peak temperatures. Liquid lifetime is, in general, positively correlated with peak temperature,
despite differences in cooling. Furthermore, peak temperatures are similar for substrates thicker
than Hs = 20 (beyond this value the substrate effectively behaves as one of infinite depth). The
exact solution for a flat film on an infinite substrate Hs → ∞ can be found in the literature [13,18];
in Appendix E we demonstrate the convergence of our numerical results to this analytical solution
as Hs increases.

Figures 2(c) and 2(d) show peak average film temperatures and LL for the substrate whose
thermal conductivity varies with temperature according to Eq. (C1). The trend of peak temperature
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FIG. 2. Phase plane plots of the film peak temperature, Tpeak and liquid lifetime (LL). Here surface tension
and viscosity are fixed at the melting temperature values, � = M = 1. (a), (c) Tpeak for thermal conductivity
fixed at room temperature (κ = 1), or temperature-dependent, κ = κ (Ts). (b), (d) Corresponding results for LL.
Log base 10 is used on the horizontal axes and the color bars for panels (b), (d) are nonuniform.

and LL is similar to the κ = 1 results shown in Figs. 2(a) and 2(b), although the temperatures
are much lower and thus the LL is shortened for given (Bi, Hs) pairs. For the entire simulation
κ (Ts) � 1, so that substrate diffusion occurs more rapidly, and heat is then transferred faster
away from the film, compared with the κ = 1 case. This becomes increasingly important when
considering films that evolve, since viscosity may depend strongly on temperature [25]. Finally, it
should be noted that some temperatures in Fig. 2 surpass the boiling point of the film (Tboil ≈ 2.088),
while our model neglects possible evaporation. Although models that account for evaporation exist
(see, e.g., Ref. [1] for a review), in practice the laser fluence is often adjusted to the system of
interest so that no significant mass is lost to evaporation. These results, therefore, can serve as a
guideline for such fluence adjustments.
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FIG. 3. (a) Evolution of film thickness at x = 0 for Bi = 0.1 (red, dash-dotted), 0.2 (blue, dash-dotted),
0.5 (green dashed), 1.0 (magenta dashed); and equilibrium film thickness h = h∗ (orange dash-dotted).
(b) Average film temperature corresponding to the cases shown in (a). The material parameters are variable,
� = �(t ),M = M(t ), κ = κ (Ts), substrate thickness is fixed, Hs = 10, and melting temperature, Tmelt = 1
(orange dash-dotted).

C. 2D evolving films

In this section the film surface is initially prescribed by Eq. (14), with δ = 0.01, on the spatial
domain x ∈ [−π, π ], and we investigate the influence of Bi and Hs on the film evolution. The
initially solid film is static until it melts, at which point it evolves according to Eq. (4). Once the film
re-solidifies, its evolution stops. To maintain generality, we allow the material parameters governing
surface tension, viscosity and thermal conductivity to vary with average film temperature, so that
� = �(t ) via Eq. (1) and M = M(t ) via Eq. (5). Similarly, the thermal conductivity of the substrate
is allowed to depend on substrate temperature, κ = κ (Ts) [see Eq. (C1) in Appendix C for the form
used].

Figures 3(a) and 3(b) show the evolution of the film midpoint (x = 0) and the average film
temperature, respectively, for various values of Bi and for fixed substrate thickness, Hs = 10. The
trend of shorter LL in Fig. 3 as Bi increases is consistent with Fig. 2(d). Consequently, the films
for Bi = 0.5 and Bi = 1.0 solidify prior to any significant evolution, whereas for Bi = 0.1 the film
dewets fully. For Bi = 0.2 the film mostly dewets, but solidifies just before its surface reaches
the equilibrium film thickness, h = h∗. This intricate balance between solidification and dewetting
highlights the importance of the value of Bi in determining whether full or partial dewetting
occurs.

Next, we consider the influence of substrate thickness. Similarly to Fig. 3, Figs. 4(a) and
4(b) show the midpoint film thickness and average film temperature, but for varying Hs: Hs =
5, 10, 15, 20, 25. Here the Biot number is fixed at Bi = 0.1. From Fig. 4(a), we see that increasing
substrate thickness increases the dewetting speed by only a small amount. Since in Fig. 4(b) films on
thinner substrates are seen to achieve higher temperatures, the film on the thinnest substrate, Hs = 5,
has lowest viscosity and dewets fastest in Fig. 4(a). The observed decrease in peak temperature with
substrate thickness, and the similar LLs for Bi = 0.1, are consistent with Figs. 2(c) and 2(d).

For completeness, Fig. 5 shows results analogous to Fig. 4 but for the case Bi = 0.2, showing
consistent findings. Figures 5(a) and 5(b) show the evolution of the film midpoint and average
temperatures, respectively, for the same five substrate thicknesses. Of the Hs cases considered, the
film for Hs = 5 shows the largest difference (similar to Fig. 4). In contrast to the Bi = 0.1 case,
however, here the film with Hs = 5 solidifies before full dewetting (h(0, t ) does not reach the
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FIG. 4. (a) Evolution of film thickness at x = 0 for Hs = 5 (black), 10 (red, dash-dotted), 15 (blue
dash-dotted), 20 (green dashed), 25 (magenta dashed), and the equilibrium film thickness h = h∗ (orange
dash-dotted). (b) Average film temperature corresponding to the Hs cases in (a) and melting temperature, Tmelt

(orange dash-dotted). The material parameters are variable, � = �(t ),M = M(t ), κ = κ (Ts), and Bi = 0.1.

equilibrium film thickness). We see in Fig. 5(b) that the liquid lifetimes vary more significantly
than for Bi = 0.1, but the effect of varying Hs is still small relative to that of varying Bi [compare
Fig. 3(a)]. Finally, note that despite the weak influence of Hs on film evolution, a small change in
LL may signal premature solidification of the film, as we see in 3D simulations (e.g., Fig. 9).

To summarize, varying substrate thickness (Hs) and heat loss from the lower surface (Bi) may
result in films that solidify prior to complete dewetting. We will see in Sec. III D that the substrate
thickness may play a significant role in determining the final configurations of the 3D films.
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FIG. 5. (a) Evolution of film thickness at x = 0 for Hs = 5 (black), Hs = 10 (red, dash-dotted), Hs = 15
(blue dash-dotted), Hs = 20 (green dashed), Hs = 25 (magenta dashed), and h = h∗ (orange dash-dotted).
(b) Average film temperature corresponding to the Hs cases in (a) and melting temperature, Tmelt (orange
dash-dotted). The material parameters are variable, � = �(t ),M = M(t ), κ = κ (Ts), and Bi = 0.2.
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FIG. 6. Initial film thickness h(x, y, 0) for 3D simulations, described by random noise perturbations to the
flat film h = 1, and given by Eq. (16). The domain has length 16π in both x and y directions.

D. 3D evolving films

Next, we consider the role of the temperature-dependent material parameters, the substrate
thickness, Hs, and the Biot number, Bi, in the pattern formation for 3D films, with free surface
z = h(x, y, t ). For this section, we consider randomly perturbed films with the initial free surface
disturbance specified by Eq. (16) (shown in Fig. 6), and follow the same melting/solidification
procedure described in Sec. III C. In all cases, the domain is a square of linear dimension 16π ,
surface tension is a function of average film temperature via Eq. (1) and, except where otherwise
specified, the Biot number is fixed at Bi = 0.1. We consider both constant viscosity M = 1
and (average) temperature-dependent viscosity M(t ) [see Eq. (5)], and κ = 1, κ (Ts) for substrate
thermal conductivity. To maintain generality we only consider the case �(t ) (and not � = 1) since
temporal variation of surface-tension was found in Ref. [25] to only slightly alter the results. We
note that even though the Marangoni number is not small, the Marangoni effect (spatial variation of
surface tension) is not relevant because of the small spatial temperature variations.

In earlier work [18,25], 2D simulations reveal that temperature-dependent viscosity is crucial for
modeling the correct dewetting speed of the films. We now confirm the importance of accounting
for temperature-dependent viscosity in 3D simulations.

1. Influence of viscosity

Figures 7(a) and 7(b) both show the final solidified film for temperature-dependent substrate
thermal conductivity κ = κ (Ts), but (a) corresponds to M = 1 (viscosity fixed at melting value)
and (b) to M = M(t ) [viscosity depends on average temperature as given by Eq. (5)]. The main
finding is that the variable-viscosity film in Fig. 7(b) has mostly dewetted and formed droplets prior
to resolidification, whereas the constant-viscosity film in Fig. 7(a) has barely evolved. Figure 7(c)
shows the average film temperature Tavg in both cases, along with the melting temperature, Tmelt; we
see that Tavg is nearly identical for the two cases, despite the very different fluid dynamics. Since
the final film structures are very different but the LLs are nearly identical, we conclude that the
variable viscosity is crucial for accurate modeling of dewetting within the liquid phase. The simplest
explanation of the influence of viscosity on the evolution of the film and surface instabilities is that
its value modifies the timescale of evolution, with a lower viscosity value leading to faster evolution
due to reduced effects of internal friction.
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FIG. 7. Final film thickness for (a) M = 1 and (b) M(t ). Average film temperatures are shown in (c), with
melting temperature, Tmelt . In (a) the film solidifies before significant evolution occurs, whereas in (b) further
dewetting occurs with some droplet formation. Both films are initialized with the same random noise [Eq. (16),
shown in Fig. 6]. The LLs are approximately 4.35 and 4.15 for panels (a) and (b), respectively, and in both
cases Bi = 0.1 and Hs = 10. See movie 3 of Supplemental Material [38] for an animation of film evolution.

Note that the spatially varying form of viscosity, M(x, t ), given by Allaire et al. [25], which
replaces Tavg by Tf in Eq. (5), produces essentially identical results to Fig. 7(b), due to the weak
in-plane spatial variation of film temperature. Detailed results are presented in Appendix F.

2. Influence of thermal conductivity

Next, we consider the influence of temperature-dependent substrate thermal conductivity on
film dewetting behavior. Figure 8 shows final solidified film thickness for (a) constant, and (b)
temperature-varying [κ (Ts)], substrate thermal conductivity, each with temperature-dependent vis-
cosity M = M(t ). Figure 8(c) shows the average film temperature over time for both cases. The
decreased LL and lower peak temperature for κ (Ts) are consistent with the flat film results in
Figs. 2(c) and 2(d), although the difference is not dramatic. Despite this, dewetting has clearly
proceeded further in Fig. 8(a) than in Fig. 8(b), as evidenced by the differences in film heights:
dewetting in case (b) is slower due to the higher film viscosity resulting from lower temperatures.
Coarsening is also more advanced in case (a) at solidification, with generally larger droplets than
case (b), due to both premature solidification in case (b) and to different values of the surface tension
parameter �, known to alter instability wavelengths [25].

3. Influence of substrate thickness

Figures 9–11 illustrate the role of Hs on the dewetting process for small (Bi = 0.1) and large
(Bi = 103) values of the Biot number. Figure 9(a) shows average film temperatures for a well-
insulated substrate, Bi = 0.1, and Hs = 10, 15, 20, and 25, where both film viscosity and substrate
thermal conductivity are temperature-dependent, M = M(t ) and κ = κ (Ts). The similar LLs and
small variations in peak temperature observed are nearly identical to those for the 2D film in
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FIG. 8. Final film thickness for (a) κ = 1 and (b) κ (Ts). Average film temperatures are shown in (c), with
melting temperature, Tmelt. Here, M = M(t ), (b) is identical to Fig. 7(b) and the LL for (a) is approximately
4.82. In both cases Bi = 0.1 and Hs = 10. See movie 4 of Supplemental Material [38] for an animation of film
evolution.

Fig. 4(b). Nevertheless, the small deviations in peak temperature as Hs varies are important because
of the strong temperature dependence of viscosity, which changes the dewetting speed.

Figure 9(b) similarly shows average film temperature for the same substrate thicknesses as in
Fig. 9(a) but for a poorly insulated substrate, Bi = 103. The significantly decreased temperatures
and shorter LLs for thinner substrates are consistent with Fig. 2(c). Note, in particular, the reversal
of the trend between Figs. 9(a) and 9(b), with peak temperature decreasing with Hs in Fig. 9(a), and

FIG. 9. Average film temperatures, Tavg, for (a) Bi = 0.1 and (b) Bi = 103, when deposited on substrates
of thickness Hs = 10 (red dash-dotted line), Hs = 15 (blue dash-dotted line), Hs = 20 (green dashed line), and
Hs = 25 (magenta dash-dotted line). The melting temperature is given by the black dash-dotted line.

064001-15



ALLAIRE, CUMMINGS, AND KONDIC

FIG. 10. Final film thickness for Bi = 0.1, and on substrates of thickness (a) Hs = 10, (b) Hs = 15,
(c) Hs = 20, and (d) Hs = 25, with temperature-dependent material parameters, �(t ), M(t ), and κ (Ts). Films
on thicker substrates dewet slower due to the lower temperatures (and higher viscosity), see Fig. 9(a). Here,
panel (a) is the same as Fig. 7(b) and the LLs are (a) t = 4.15, (b) t = 4.31, (c) t = 4.19, and (d) t = 3.95. See
movie 5 of Supplemental Material [38] for an animation of film evolution.

increasing with Hs in Fig. 9(b). In Fig. 9(b), the peak temperatures are generally lower and the LLs
much shorter, which (we now show) may lead to different final solidified film configurations.

Figure 10 shows the final solid film configurations for (a) Hs = 10, (b) Hs = 15, (c) Hs = 20,

and (d) Hs = 25, for Bi = 0.1 [corresponding to Fig. 9(a)]. Since average peak temperature Tpeak

decreases with Hs, the dewetting speed decreases from Figs. 10(a) to 10(d) due to the viscosity
increase. This is to some degree surprising, since the influence of Hs was not readily apparent in
the 2D case. The proposed explanation is that, in our 3D simulations, we prescribe a random initial
condition, and therefore it takes time for the fastest growing mode of instability to develop. This
surplus time slows the dewetting sufficiently for the thicker substrates that it is still incomplete at
resolidification.

Figure 11 shows the final solid film configurations for (a) Hs = 10, (b) Hs = 15, (c) Hs = 20 and
(d) Hs = 25 for the poorly insulating substrate, Bi = 103, corresponding to Fig. 9(b). Since Tpeak

now increases with substrate thickness, viscosity decreases and dewetting speed increases from
Figs. 9(a) to 9(d). In this case, none of the simulations [Figs. 9(a)–9(d)] fully dewet [recall the
lower peak temperatures in Fig. 9(b) compared with Fig. 9(a) leading to earlier resolidification in
Fig. 11 compared with Fig. 10]. The films in Figs. 11(c) and 11(d) begin to form holes, but those in
Figs. 11(a) and 11(b) barely evolve. Collectively, Figs. 10 and 11 indicate that the final configuration
of the resolidified film depends on both Hs and Bi in a nontrivial way.
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FIG. 11. Final film thickness on poorly insulated substrates, Bi = 103, of thickness (a) Hs = 10,
(b) Hs = 15, (c) Hs = 20, and (d) Hs = 25, with temperature-dependent material parameters, �(t ), M(t ),
and κ (Ts). Films on thicker substrates dewet faster due to the higher temperatures (and lower viscosity), see
Fig. 9(b). The LLs are (a) t = 1.46, (b) t = 2.57, (c) t = 3.16, and (d) t = 3.52. See movie 6 of Supplemental
Material [38] for an animation of film evolution.

IV. CONCLUSIONS

We have modeled and simulated the evolution of pulsed laser irradiated nanoscale metal films
that are deposited on thick substrates. In particular, we have focused on the role that the underlying
substrate plays in determining both the temperature of the film and its corresponding evolution. With
regards to material parameters, our model accounts for temperature dependence of both surface
tension and viscosity of the film. Our 3D simulations indicate that if temperature dependence of
viscosity is not included, the film evolution is significantly slower, leading in some cases to partial
dewetting only.

The film liquid lifetime (LL) and spatially averaged peak temperature (Tpeak) are found to depend
on the substrate heat loss (as characterized by a Biot number, Bi, governing heat loss at the lower
surface), substrate thickness Hs, and the thermal conductivity model used (specifically, whether it is
taken to be constant, or varying with temperature). Tpeak is found to vary strongly with Bi, but less
so with Hs. In particular, we find that the correlation between Hs and Tpeak changes from negative to
positive according to whether the substrate is well-insulated (Bi � 1) or poorly insulated (Bi � 1).
The choice of well- or poorly insulated substrates can lead to significantly different final solidified
film configurations. Including temperature-varying thermal conductivity, in general, increases the
heat loss from the film to the substrate, decreasing Tpeak and therefore liquid lifetimes. The decreased
film temperatures observed with temperature-varying thermal conductivity lead to a much larger
film viscosity, which reduces the speed of dewetting. Our 3D simulations show that this can lead
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to films that solidify prematurely, although the effect is not as dramatic as that of changing Hs.
Interestingly, we find that varying Hs does not appear to alter significantly the LL of the films;
however, a small but significant change in Tpeak results, which again alters viscosity and thus the
final configuration of the film. It should be noted that including a finite-thickness substrate is crucial
since its absorption of the energy alters the heating and cooling of the film in a way that cannot be
captured by simple boundary conditions.

Our model omits a number of effects, the possible relevance of which we briefly discuss. First,
we neglected temperature-dependent thermal conductivity of the metal film. Although this could
be added to the model, with notable added complexity to the numerical schemes described in
Appendices G 1 and G 2, the modest changes to thermal conductivity [39] would be inconsequential
on the fast timescale of heat transfer across the film. Second, our simulations assume that phase
change occurs instantaneously. In practice, partial melting and solidification may occur, in different
parts of the film. The current model could be altered to include such effects, most readily by
modifying the form of Eq. (5) to account for spatial variations in film temperature, and viscosities
that increase dramatically when the film temperature drops below Tmelt. Radiative heat losses and
evaporation are also neglected in the modeling; both effects may become important for certain
choices of film materials. Finally, in-plane diffusion is neglected in the substrate. These additional
effects should be considered in future work.
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APPENDIX A: VALUES OF PARAMETERS

Here we present the parameter values used in the simulations. Table II shows the values (or range
of values) specific to a liquid Cu film and SiO2 substrate. Note that the expression for the wavelength
of maximum growth, λm, is explicit since �/L2 is independent of L, and the form given in row three
is for (m, n) = (2, 3). The interested reader is referred to [25] for the general (m, n) form of λm.1

1The definition of λm is consistent with the one in [25] which had a minor typo (the H3 term should be H4).

TABLE II. Parameters used for liquid Cu film and SiO2 substrate.

Parameter Notation Value Unit

Viscosity at melting temperature μf [26] 4.3×10−3 Pa s

Surface tension at melting temperature γf [26] 1.303 J m−2

Wavelength of maximum growth λm = 2π/
√

�h2
∗/(2L2h4

0 )[2h0 − 3h∗] [25] 180.84 nm

Vertical length scale H 10 nm

Horizontal length scale L = λm/(2π ) 28.78 nm

Timescale ts = 3Lμf/(ε3γf ) 6.79 ns

Temperature scale/melting temperature T̃melt 1358 K
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TABLE II. (Continued.)

Parameter Notation Value Unit

Film density ρf [26] 8000 kg m−3

SiO2 density ρs [26] 2200 kg m−3

Film specific heat capacity cf [26] 495 J kg−1 K−1

SiO2 specific heat capacity cs [26] 937 J kg−1 K−1

Film heat conductivity κf [26] 340 W m−1 K−1

SiO2 heat conductivity κs [26] 1.4 W m−1 K−1

Film absorption length α−1
f H [26] 11.09 nm

Temp. coeff. of surf. tens. γT [26] −0.23×10−3 J m−2 K−1

Hamaker constant AH [31] 3.49×10−17 J

Reflective coefficient r0 [26] 0.3655 1

Film reflective length α−1
r H [26] 12.0 nm

Laser energy density E0 [31] 1400 J m−2

Gaussian pulse peak time tpts [31] 18 ns

Equilibrium film thickness h∗H 1 nm

Mean film thickness h0H 10 nm

SiO2 thickness HsH 50 − 250 nm

Room temperature TaT̃melt 300 K

SiO2 heat transfer coefficient αs 105 − 1011 W m−2 K−1

Characteristic velocity U 4.237 m s−1

Activation energy E 30.5 kJ mol−1

Latent heat Lf [33] 204.89 kJ kg−1

APPENDIX B: MODEL VALIDITY: NEGLECTING IN-PLANE HEAT DIFFUSION

IN THE SUBSTRATE

For brevity, we denote the asymptotically reduced model described by Eqs. (6)–(11) as model
(A). In our previous work on this system [25], it was assumed that the film is placed upon a
substrate sufficiently thin that neglecting in-plane diffusion in the substrate is asymptotically valid.
In Sec. II of the present work, we allow the underlying substrate to be thick relative to the film,
so the neglect of terms representing in-plane diffusion in the substrate requires further justification.
For this purpose, we consider a model, denoted (FA) (here, “F” indicates that a “full” (2D) model
is used for heat flow in the substrate, while “A” denotes the “asymptotically” reduced model that
applies to heat transport in the film), which includes Eq. (6) and Eqs. (8)–(11), but replaces Eq. (7)
with a full 2D heat transport model in the substrate,

Pes∂t Ts = ε2∂2
x Ts + ∂2

z Ts. (B1)

Figure 12 shows the evolution of the film thickness at the midpoint x = 0 (a) and average film
temperature (b) for 2D films on substrates of thicknesses Hs = 10, 50, and 100. In Fig. 12(a), the
film is initially given by Eq. (14) and h(0, t ) is determined by solving Eq. (4) with � = M = κ = 1
and Bi ≈ 4.3×10−2. The heat conduction is solved using both models (A) and (FA). We find good
agreement between model (A) (the thermal model used in the main text) and model (FA). This
indicates that including lateral diffusion in the substrate does not influence the film (neither evolution
nor heating) and can be neglected.
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FIG. 12. (a) Film thickness at the midpoint, x = 0, and (b) average film temperature for model (A)
[Eqs. (6)–(11)] and model (FA) [where Eq. (7) is replaced by Eq. (B1)]. Models (A) and (FA) agree for
substrate thicknesses Hs = 10, 50, and 100. For both panels (a) and (b) the parameters were held constant,
� = M = κ = 1 and Bi ≈ 4.3×10−2. Note that the temperature range here differs from that in other plots.

To further justify dropping lateral diffusion in the substrate, we compare in-plane to out-of-plane
diffusion in the full heat conduction model (FA) used in Fig. 12 [which uses Eq. (6) and Eq. (B1)].
Figure 13 shows the largest value in magnitude of both in-plane diffusion, maxx,t |ε2Txx| (blue),
and out-of-plane diffusion, maxx,t |Tzz| (black), as a function of z, for Hs = 10 [Figs. 13(a) and
13(b)], Hs = 50 [Figs. 13(c) and 13(d)], and Hs = 100 [Figs. 13(e) and 13(f)]. In all cases, the term
representing in-plane diffusion in the substrate is at least 10 times smaller than that representing
out-of-plane diffusion. The former, then, can be dropped without significant loss of accuracy.

APPENDIX C: TEMPERATURE-VARYING THERMAL CONDUCTIVITY

The dimensionless substrate thermal conductivity, given by κ (Ts), depends on the local values
of the substrate temperature Ts. Limited data exist on SiO2 thermal conductivity values at high
temperatures (e.g., higher than film melting temperature) and the wide range of temperatures
observed during film heating presents a modeling challenge. To determine the appropriate functional
dependence for κ (Ts) we follow the approach of Combis et al. [40], which utilizes both the annealing
temperature, Tanneal, and the softening temperature, Tsoften. The values we use are based on changes
in the thermal expansion coefficient [40], although in practice these temperatures are measured by a
sudden change in various material properties (such as viscosity), which could occur in such a wide
range of temperatures considered. For more general information regarding Tanneal and Tsoften see, e.g.,
Callister [41] or Petrie [42]. Based on the data provided by the manufacturer (Silica Suprasil 312
Type 2 [43]), we use Tanneal = 1.03 and Tsoften = 1.40, respectively (all temperatures are normalized
by the film melting temperature used in our simulations and thermal conductivity is normalized by
the value at melting temperature, κs). Figure 14 shows the data provided (black squares) by the
manufacturer [43], the piecewise linear fit used by Combis et al. [40] (blue dashes), and the form of
κ (Ts) we use (black solid line). Instead of using a piecewise linear profile, we use a cubic polynomial
smoothed with sigmoid functions, in the following form:

κ (Ts) =
1

1 + exp (β1Ts − β2)

(

a + bTs + cT 2
s + dT 3

s

)

+
1

1 + exp (β2 − β1Ts)
κsoften, (C1)

where a, b, c, d, β2 are fitting parameters, β1 is a scaling factor, and κsoften is the thermal conductivity
at softening temperature, all of which are given in Table III. This form captures the thermal
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FIG. 13. Maximum magnitude of in-plane diffusion over all x and t , maxx,t |ε2Txx|, for (a) Hs = 10,
(b) Hs = 50, (c) Hs = 100; and maximum out-of-plane diffusion, maxx,t |Tzz| similarly for panels (b), (d), and
(f). Out-of-plane diffusion is orders of magnitude larger than in-plane diffusion. The parameters are the same
as Fig. 12 and the full heat conduction model (FA) is used.

FIG. 14. Manufacturer data of thermal conductivity at various temperatures (black �), extrapolated values
at annealing temperature (red ) and softening temperature (red ∇), the fit of substrate thermal conductivity
to temperature Ts used in this manuscript (black solid line), and the fit used by Combis et al. [40] (blue dashed
line). Note that Ts is in units of T̃melt, so that the leftmost point on the horizontal axis corresponds to the ambient
temperature, where κ = 1).
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TABLE III. Table of parameters used for the fit of temperature-dependent thermal conductivity, given by
Eq. (C1).

Parameter Notation Value

Fitting Parameter a −1.23×10−4

Fitting Parameter b 2.06×10−1

Fitting Parameter c −59.89
Fitting Parameter d 3.22×104

Scaling Factor β1 30.12
Fitting Parameter β2 40.0
SiO2 Thermal conductivity at Tsoften κsoften 1.43
SiO2 Annealing Temperature Tanneal 1.03
SiO2 Softening temperature Tsoften 1.40

conductivity at low, annealing, and softening temperatures reasonably well and provides a large
range of values for use in simulations. Note that above the softening temperature the thermal
conductivity is nearly constant, a simplifying assumption made due to lack of reliable data in this
regime.

APPENDIX D: RELEVANCE OF RADIATIVE LOSSES

Here we briefly consider the relevance of radiative heat losses at the film surface, z = h. For
simplicity we consider a simple energy argument. Consider the case of a flat film h = 1, which
is at melting temperature. The total internal thermal energy of the system is then ρf cf T̃meltL

2H .
The rate of energy loss at the boundary z = h due to radiation is proportional to the fourth power
of temperature and is given by σSBεr T̃ 4

melt(1 − T 4
a )L2, where σSB = 5.67×10−8Wm−2K−4 is the

Stefan-Boltzmann constant and εr ≈ 0.14 is the thermal emissivity [33]. In time interval t then,
the ratio of the energy lost to free surface radiation and the internal thermal energy is

rrad =
tσSBεr T̃ 4

melt

(

1 − T 4
a

)

Hρf cf T̃melt
. (D1)

For the parameter values in our problem, the timescale t on which these two energies become
comparable, rrad = O(1), is found to be t ≈ 2×10−3s, a millisecond time interval, which is five
orders of magnitude longer than the laser pulse and dewetting timescales of interest in this work.
Therefore, radiative losses can be safely neglected.

APPENDIX E: CONVERGENCE RESULTS

Here we show that Tavg from our model converges to the analytical solution [13,18] in the limit
Hs, Bi → ∞ and for a uniform flat film, h = h0. Figure 15 plots average film temperature for
Hs = 5, 10, 20, 30, 40, 50 as well as the analytical solution. As substrate thickness is increased,
the average film temperatures converge to the analytical result, as expected.

APPENDIX F: INFLUENCE OF SPATIALLY VARYING VISCOSITY IN 3D

Here we briefly consider the effect of spatially varying viscosity, where Tavg(t ) is replaced by
Tf (x, y, t ) in the viscosity law, Eq. (5). Figures 16(a) and 16(b) show film thickness and film
temperature at the final solidification time in the case where viscosity depends only on average
film temperature, M = M(t ) [Fig. 16(a) is identical to Fig. 7(b)]. Figures 16(c) and 16(d) show the
corresponding film thickness and temperature for the spatially varying viscosity case, M(x, y, t ).
There is no noticeable difference between the film thicknesses in Figs. 16(a) and 16(c), nor between
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FIG. 15. Average film temperature, Tavg, for varying substrate thickness; and the analytical solution, see
text, in the limit Hs, Bi → ∞. In each simulation, Bi = 108.

FIG. 16. Final film thickness and film temperature, Tf for M(t ) (a) and (b) and M(x, y, t ) (c) and (d). Tf

is plotted at the time of solidification. Here � = 1, thermal conductivity is variable κ = κ (Ts), and Bi = 0.1.
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(a) (b)

FIG. 17. (a) Visual example of the cell-centered spatial grid in the x direction for N = 7. The nodes are
spaced by x, except the the first and last grid point, which are spaced x/2 from the boundaries x0 and xmax,
respectively. (b) Example of the nonuniform grid in the z direction for p = 5. Here, the spacing between grid
points increases by a factor of 1.5 at each increment.

the temperatures in Figs. 16(b) and 16(d). Note that the spatial variation of temperature is small in
Figs. 16(b) and 16(d). Consequently, Tavg(t ) is a good approximation of Tf (x, y, t ) in Eq. (5).

APPENDIX G: NUMERICAL SCHEMES

1. 2D numerical schemes including temperature-dependent thermal conductivity

Here, we describe the numerical schemes used to solve for the film height, h, temperature, Tf ,
and substrate temperature, Ts. First, we describe the spatial discretization, and then the solution
mechanism for Ts and Tf . We conclude with the numerical scheme used to compute h. For notational
simplicity, we drop the arguments (x, y, z, t ) remembering that the dependent variables are space-
and time-dependent.

We define the cell-centered spatial grid in the x direction, used for both film and substrate:

xi = x0 + x(i − 1/2), i = 1, . . . , N, x =
(xmax − x0)

N
, (G1)

where N is the number of grid points in the x direction, and the lateral boundaries are x0 = −π

and xmax = π . An example of the spatial grid is given in Figure 17(a), when N = 7. Similarly,
let p be the number of grid points in the z direction (relevant only in the substrate). To reduce the
computational expense, we use a nonuniform grid in the substrate, with grid points {zk} and variable
step sizes {zk}, k = 0, 1, . . . , p − 1, where the step sizes are taken to be geometric, with ratio r,

zk+1 = rzk, k = 1, . . . , p − 1. (G2)

Figure 17(b) shows an example when p = 5 and r = 1.5 (the value of r used in all results). The point
z0 = 0 is always fixed at the liquid-solid interface, z = 0, and zp−1 is the final grid point, which lies
a distance zp/2 above z = −Hs. We then fix the first (minimum) step size, zmin = z1 to ensure
that {zk}, k = 1, 2, . . . , p − 1, gives the desired geometric partition of [−Hs, 0],

zmin = Hs

(

p−1
∑

k=1

rk−1 +
1

2
r p−1

)−1

. (G3)

064001-24



INFLUENCE OF THERMAL EFFECTS ON THE BREAKUP …

With zmin defined, we can consistently define the sequence of step sizes and grid:

zk = zminrk−1, k = 1, . . . , p, (G4)

zk = zk−1 − zk, k = 1, . . . , p − 1. (G5)

We next proceed with the solution methods for the underlying equations. For simplicity, we begin
with the solution scheme for Eq. (7). We define

Sn
i,k ≈ Ts(xi, zk, tn), i = 1, 2, . . . , N, k = 0, 1, . . . , p − 1, (G6)

to be a discrete approximation of substrate temperature, Ts, on the spatial grid given above. First,
we apply a Crank-Nicolson time-stepping scheme, which takes the discrete form

Sn+1
i,k

− Sn
i,k

t
=

1

2
f n+1
i,k +

1

2
f n
i,k, i = 1, . . . , N, k = 1, . . . , p − 1, (G7)

where fi,k (Si,k−1, Si,k, Si,k+1) ≈ Pe−1
s ∂z(κ (Ts)∂zTs)|(x,z)=(xi,zk ) is a nonlinear function of Si,k−1, Si,k ,

and Si,k+1. For the remainder of the section, we suppress the subscript i on Si,k and fi,k , for simplicity.
For completeness, we note that fk can be approximated as follows:

∂z[κ (Ts)∂zTs] = κ (Ts)∂2
z Ts + κ ′(Ts)(∂zTs)2, (G8)

∂z[κ (Ts)∂zTs]|z=zk
≈ AkSk−1 + BkSk + CkSk+1 + Dk (Sk−1 − Sk+1)2, (G9)

Ak =
2κ (Sk )

zk (zk + zk+1)
, Bk =

−2κ (Sk )

zkzk+1
, (G10)

Ck =
2κ (Sk )

zk+1(zk + zk+1)
, Dk =

κ ′(Sk )

(zk + zk+1)2 , (G11)

where each equation is applied for a fixed i, κ ′(Sk ) = dκ (Sk )/dSk , and k = 1, 2, . . . , p − 1.
The cases k = 1 and k = p − 1 in Eq. (G9) involve unknowns S0 and Sp, which are determined

by discretizing the boundary condition at z = 0 [Eq. (8)] and at z = −Hs [Eq. (9)], respectively.
Since z0 = 0, S0 is simply set to the film temperature, S0 = T n

i ≈ Tf (xi, tn) for each i. The boundary
condition given by Eq. (9) is discretized as

κ

(Sp−1 + Sp

2

)

(

Sp−1 − Sp

zp

)

= Bi
(Sp−1 + Sp

2
− Ta

)

, (G12)

which is a nonlinear equation for the unknown Sp to be solved at each node xi. To solve Eq. (G12),
we use a Newton method, although any convergent iterative method would suffice.

Next, we assume that the substrate temperature at time tn+1 can be written as

Sn+1
k = S∗

k + wk, (G13)

where S∗
k is the guess to the solution at time tn+1 and wk is a correction to that guess, which we call

a Newton correction in what follows to avoid confusion. Then, f is linearized around the guess:

f n+1
k = fk

(

Sn+1
k

)

= fk (S∗
k + wk ) ≈ fk (S∗

k ) + w j

∂ fk

∂S j

|S j=S∗
j
, (G14)

where k = 1, . . . , p − 1, and ∂ fk/∂S j |S j=S∗
j

are the components of the Jacobian, denoted Fk, j =
∂ fk/∂S j |S j=S∗

j
, evaluated at the guess for the next temperature S∗

j . Equation (G7) is then linearized
by plugging in Eqs. (G13) and (G14), leading to a linear system of equations for the correction wk ,
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where S∗
k and Sn

k are both known (S∗
k is to be iterated):

p−1
∑

j=1

(

δk, j −
1

2
tFk, j

)

w j = Rk, k = 1, . . . , p − 1, (G15)

where δk, j is the Kronecker δ, and the right-hand side is

Rk = Sn
k − S∗

k + 1
2t fk (S∗

k ) + 1
2t fk (Sn

k ), k = 1, . . . , p − 1. (G16)

For simplicity, we abbreviate Eq. (G15) as (Aw = R)i with the understanding that each (p − 1) ×
(p − 1) linear system is to be solved for each xi. Solving Eq. (G15) completes one step of the
iteration. Next, we check that |wk/S∗

k | < tol for all k. If yes, then the iteration is finished, and S∗
k +

wk becomes the substrate temperature at time tn+1 for each k = 1, 2, . . . , p − 1, namely, Sn+1
k

=
S∗

k + wk . If not, then the iteration is completed until the specified convergence criterion is reached.
We use tol = 10−9.

Next we describe the solution mechanism for film temperature, Eq. (6). First, we define the
approximation for film temperature and thickness by

T n
i ≈ Tf (xi, tn), hn

i ≈ h(xi, tn), i = 1, . . . , N. (G17)

Next, for compactness, we define the following expressions:

�n
i =

1

Pef

[

δ2
x T n

i +
(

δxhn
i

hn
i

)

δxT n
i

]

, (G18)

Gn
i = −

K

Pef h
n
i

[

κ
(

Sn
0

)

δ+
z

(

Sn
0

)]

i
, (G19)

where [κ (Sn
0 )δ+

z (Sn
0 )]i ≈ κ (Ts)∂Ts/∂z|(x,z,t )=(xi,0,tn ) is an approximation of the heat flux along the

liquid-solid interface, z = 0, at node xi and time tn, which we define as

κ
(

Sn
0

)

δ+
z

(

Sn
0

)

= κ
(

Sn
0

)(

a0Sn
0 + b0Sn

1 + c0Sn
2

)

, (G20)

a0 =
2z1 + z2

z1(z1 + z2)
, b0 = −

(

1

z1
+

1

z2

)

, c0 =
z1

z2(z1 + z2)
. (G21)

The second-order central difference approximations of ∂x, ∂
2
x are defined as δx and δ2

x , respectively,
and are given by

δxTi =
Ti+1 − Ti−1

2x
, δ2

x Ti =
Ti+1 − 2Ti + Ti−1

x2
, i = 1, . . . , N,

where T0, TN+1 can be written in terms of T1 and TN , respectively, by solving discretized versions of
Eq. (10) at the lateral boundaries, x = ±π ,

∂x(Tf )|x=−π ≈
T1 − T0

x
= 0, ∂x(Tf )|x=π ≈

TN+1 − TN

x
= 0. (G22)

Figure 18 shows the spatial grid in the x direction. The red nodes represent ghost points with
temperatures T0, TN+1. By solving Eq. (G22), we obtain T1 = T0 and TN+1 = TN .

Now, to solve Eqs. (6) and (7) for Tf and Ts, we use a predictor-corrector Runge-Kutta/Crank-
Nicolson scheme combined with a Newton method as described above. In what follows, hatted
quantities denote those found in the predictor phase, whereas those without hats are determined in
the corrector phase. In the predictor phase, one finds intermediate “predicted” film and substrate
temperatures (T̂ n+1

i , Ŝn+1
k

). In the corrector phase, one uses the intermediate variables to find
corrected film and substrate temperatures (T n+1

i , Sn+1
k

). In both cases, the substrate temperature
is found by solving the linear systems given by Eq. (G15) for ŵ or w. In the former case, the
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FIG. 18. Depiction of the discretized film temperature adjacent to the lateral boundaries, x = ±π (black,
vertical bars). The blue nodes represent the grid x1, x2, . . . , xN with spacing x. The film temperature at the
first and last interior grid points, near x = −π, π , are T1, TN , and T0, TN+1 represent ghost points, located at
x = ±(π + x/2) (red nodes).

nonlinear system that is linearized is Eq. (G7) with Ŝn+1
k

in place of Sn+1
k

and with f n+1
k

replaced by
f̂ n+1
k

(Ŝn+1
k−1, Ŝn+1

k
, Ŝn+1

k+1 ). In the predictor phase, we use a forward-Euler scheme to deal with Gn
i :

T̂ n+1
i − T n

i

t
=

1

2

[

�̂n+1
i + �n

i

]

+ Gn
i + Q

n+1/2
i , i = 1, . . . , N, (G23)

(Âŵ = R̂)i, i = 1, . . . , N, (G24)

where Q
n+1/2
i = (Q

n

i + Q
n+1
i )/2, and �̂n+1

i is found by substituting T̂ n+1
i in place of T n+1

i in
Eq. (G18). Similarly, the components of ŵ are related to the predicted substrate temperature, Ŝn+1

k
,

via Eq. (G13) with appropriate substitution.
Solving Eq. (G23) provides the predicted temperature T̂ n+1

i . The linearized system given by
Eq. (G24) [where Â, R̂ are found using Ŝ∗

k , the guess to Ŝn+1
k

and Ŝn
k in Eqs. (G15) and (G16)] is

solved iteratively for ŵ and each i. The predictor phase amounts to solving one linear system of size
N for the film and N linear systems of size p − 1 for the substrate. More importantly, the solution
to Eq. (G24) in the predictor phase gives us an approximation of substrate temperature, Ŝn

i,k , so that
we can calculate a prediction to the heat flux at the liquid-solid interface, Ĝn

i . We then correct the
temperature predictions by using a second-order Runge-Kutta method on Gn

i using Ĝn
i :

T n+1
i − T n

i

t
=

1

2

[

�n+1
i + �n

i

]

+
1

2

(

Gn
i + Ĝn

i

)

+ Q
n+1/2
i , i = 1, . . . , N, (G25)

(Aw = R)i, i = 1, . . . , N. (G26)

Next we describe the numerical scheme for film thickness, h(x, t ). First, we use the Crank-
Nicolson scheme to discretize Eq. (4) in time. The resulting nonlinear system of equations is given
by Eq. (13), where Di(t ) = D[h(xi, tn)] ≈ Dn

i is a second-order accurate spatial discretization of the
derivative of flux,

D = −∂x

(

1

M
{h3∂x[�∂xxh + 
(h)]}

)

. (G27)

Following the procedure implemented for solving Eq. (G7) we apply a Newton method, first
linearizing the film thickness around a guess, h∗

i , and solving a resultant linear system for the Newton
correction to the guess,

hn+1
i = h∗

i + q∗
i , i = 1, . . . , N, (G28)

Ahq = Rh, (G29)

where (Ah)i, j = ∂Di/∂h j |h j=h∗
j

are the components of the Jacobian, q is the Newton correction
vector for h, and Rh is the remainder, whose components, (Rh)i, i = 1, 2, . . . , N , are analogous to
Eq. (G16):

(Rh)i = hn
i − h∗

i + 1
2tD∗

i + 1
2tDn

i , (G30)
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FIG. 19. Flowchart for the 2D numerical method used to solve for h(x, t ), Tf (x, t ), and Ts(x, z, t ).

and where D∗
i ≈ D(h∗

i ) is an approximation of the flux with the guess. For more details regarding
the 2D solution mechanism for h, we refer the reader to Kondic [44].

Figure 19 shows a flowchart of the solution process for finding film thickness, film temperature,
and substrate temperature. Red circles indicate the beginning and end of a time-step iteration. Gray
circles indicate the prediction step for heat conduction and the blue circles represent the correction
step. The green circles represent intermediate stages where the thermal flux into the substrate is
updated. First, h is found at time tn by solving Eq. (G29) for every spatial node xi. That value of h is
then used to solve Eq. (G23) for a prediction of the film temperature, T̂ n

i . That film temperature is
then used to solve for the predicted substrate temperature, Ŝn

i,k via Eq. (G24). The thermal flux at the
liquid-solid interface, Ĝn

i , is then updated using Ŝn
i,k in Eq. (G19). These temperature predictions are

then corrected using Eqs. (G25) and (G26). Surface tension, �, viscosity, M, and substrate thermal
conductivity at z = 0, κ (Sn

i,0), are then updated. Finally, until the desired end time is reached, time
is incremented, and Gn

i is updated using Sn
i,k in Eq. (G19).

2. 3D numerical schemes

Here, we consider the numerical scheme to solve the full 3D versions of Eqs. (4), (6), and (7),
where h = h(x, y, t ), Tf = Tf (x, y, t ), and Ts = Ts(x, y, z, t ). Since y-dependence is now included
(see Fig. 1), the complexity of the numerical problems are, as a minimum, increased by a factor
of N for each set of equations. This creates a computational challenge, which makes serial CPU
computing prohibitively slow. Parallel computing is a much more practical route.

For example, the finite-difference method discretization of PDEs often leads to tridiagonal linear
systems [such as Eq. (G24)]. In these cases, either the formation of the matrix/vector system, or
the solution method itself, can be parallelized. Parallelization of the matrix/vector system may be
done, for example, by defining the value of each element in parallel. Solving the tridiagonal linear
systems in parallel is less trivial since the Thomas Algorithm, typically used for such problems, is
naturally sequential. To compensate, parallel cyclic reduction methods have been proposed that trade
complexity for speed and prove superior to the traditional Thomas algorithm for many problems
[45]. We use a simpler approach, however, by solving each linear system in parallel rather than
parallelization of the solver (details following below).

Parallel computing with multinode systems and multicore processors is also used in scientific
computing but is resource-limited by the number of cores available per CPU. GPUs, however,
have thousands of “cores” available for computing and allow the programmer many more degrees
of freedom in parallelization [46]. Various CUDA algorithms have been developed for solving
pentadiagonal systems [36,47], for example, which often arise from fourth-order PDEs such as
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Eq. (4). Recent work [36] described a GPU-based code that can be used to solve thin film problems,
finding a near 150 times speed up over similar CPU-based code for certain domain sizes. The present
work uses an extension of that code, which also incorporates thermal effects with CUDA, described
below.

The remainder of the section is structured as follows. First, we define the 3D spatial grid. Then,
we describe the solution methodology for computing temperatures, both in the film and in the
substrate. Finally, we conclude with the solution mechanism for film thickness. We focus mainly
here on the aspects of the implementation that are specific to the 3D geometry.

The x component of the spatial grid is given by Eq. (G1) and the z component of the substrate
grid by Eq. (G5). We similarly introduce the y component of the spatial grid,

y j = y0 + y( j − 1/2), j = 1, . . . , M, y =
(ymax − y0)

M
, (G31)

where M is the number of grid points in the y direction. Therefore, the film grid consists of N × M

interior nodes {(xi, y j ), i = 1, 2, . . . , N, j = 1, 2, . . . , M}. In the substrate there are N × M × p

nodes (xi, y j, zk ).
Similarly to Appendix G 1, we define

T n
i, j ≈ Tf (xi, y j, tn), Sn

i, j,k ≈ Ts(xi, y j, zk, tn), hn
i, j ≈ h(xi, y j, tn), (G32)

as approximations to the film and substrate temperatures, and film thickness. The predictor/corrector
solution methodology from Appendix G 1 is applied once more, except Eq. (6) now requires
an alternating-direction implicit (ADI) method to achieve second-order accuracy. Similarly to
Appendix G 1, we begin with a predictor step to find ŵ and (T̂ n+1

i, j , Ŝn+1
i, j,k

):

T ∗
i, j − T n

i, j

t
=

1

2
X ∗

i, j +
1

2
Y n

i, j +
1

2
Gn

i, j +
1

2
Q

n+1/2
i, j , (G33)

T̂ n+1
i, j − T ∗

i, j

t
=

1

2
X ∗

i, j +
1

2
Ŷ n+1

i, j +
1

2
Gn

i, j +
1

2
Q

n+1/2
i, j , (G34)

(Âŵ = R̂)i, j, (G35)

where

Xi, j = Pe−1
f

[

δ2
x Ti, j +

(

δxhi, j

hi, j

)

δxTi, j

]

, (G36)

Yi, j = Pe−1
f

[

δ2
y Ti, j +

(

δyhi, j

hi, j

)

δyTi, j

]

, (G37)

Q
n+1/2
i, j =

Q
n

i, j + Q
n+1
i, j

2
, (G38)

Gn
i, j = −

K

Pefh
n
i, j

[

κ
(

Sn
0

)

δ+
z

(

Sn
0

)]

i, j
, (G39)

hn
i, j ≈ h(xi, y j, tn), i = 1, . . . , N , j = 1, . . . , M, and κ (Sn

0 )δ+
z (Sn

0 ) approximates the heat flux at the
interface z = 0 and is given in Appendix G 1. The term T ∗

i, j is the solution at an intermediate step

between times tn, tn+1, and Â, R̂ are defined as in Appendix G 1, but with the extra index j. The
solution for h is only found at times tn and tn+1, so we approximate h at the intermediate step as

h∗
i, j =

hn
i, j + hn+1

i, j

2
. (G40)

Equation (G33) yields M linear systems of equations of size N . Similarly, Eq. (G34) yields N linear
systems of equations of size M. Since the ADI method treats one variable explicitly and the other
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implicitly, both Eqs. (G33) and (G34) are solved in parallel for each j and each i, respectively (the
formation of the linear system is also parallelized; for example, T ∗

i, j − (t/2)X ∗
i, j for j fixed and i =

1, . . . , N are the components of the N×N matrix in Eq. (G33), which are all found simultaneously).
The 3D numerical code used here is freely available [48].

Equation (G35) is the 3D analog of Eq. (G24), but now there are N×M linear systems of
equations of size p − 1. Since Eq. (7) only involves z derivatives, Eq. (G35) is trivially parallelized
for each i and j. Since the solution of Eq. (G35) is iterative, careful consideration of the size of
domains and the relation to memory performance is crucial. In our computations, p is relatively
small in comparison to N and M so that for each i and j both the matrix and vector of the linear
system (of size p − 1) can fit on shared memory on the device (GPU), which is known to be
computationally advantageous over the use of global memory [46].

Next, we correct the predictor step using the Runge-Kutta method on Gi, j ,

T ∗
i, j − T n

i, j

t
=

1

2
X ∗

i, j +
1

2
Y n

i, j +
1

4

(

Gn
i, j + Ĝn

i, j

)

+
1

2
Q

n+1/2
i, j , (G41)

T n+1
i, j − T ∗

i, j

t
=

1

2
X ∗

i, j +
1

2
Y n+1

i, j +
1

4

(

Gn
i, j + Ĝn

i, j

)

+
1

2
Q

n+1/2
i, j , (G42)

(Aw = R)i, j, (G43)

where i = 1, . . . , N , and j = 1, . . . , M. We note that although the repetitive nature of the predictor-
corrector scheme may appear as a performance bottleneck, in our implementation the results from
the predictor phase are stored to global memory and imported into the corrector step to speed up the
computations.

Next, we briefly describe the solution mechanism for film thickness h. Now, h = h(xi, y j, tn) but
the approach is very similar to that of Appendix G 1. First we define the divergence of the flux

D = −∇2

(

1

M

{

h3∇2
[

�∇2
2 h + 
(h)

]}

)

, (G44)

and define Dn
i, j to be a second-order spatial discretization of D. Equation (4) can then be written as

hn+1
i, j − hn

i, j

t
=

1

2
Dn+1

i, j +
1

2
Dn

i, j, i = 1, . . . , N, j = 1, . . . , M. (G45)

Equation (G45) is linearized and a Newton’s method is used to iterate guesses to the film thickness
at time tn+1. In contrast to the 2D case, D now involves derivatives with respect to y as well as x.
Therefore, the Newton’s method is split into two separate linear systems of equations (one where
y-derivatives are treated implicitly in time and one similarly for x-derivatives), and solved iteratively.
The equations in general take the form

Ay,(l )wh = by,(l ), (G46)

Ax,(l )v = wh, (G47)

hn+1
(l+1) = hn+1

(l ) + v, (G48)

where (l ) represents iteration number, h represents the array of values hi, j , wh is an intermediate
step, v is an array of corrections to the guess hn+1

(l ) , Ay,(l ), Ax,(l ) are matrices whose components
are found using pure y- and x-derivative terms, respectively, and by,(l ) is a vector (containing flux
discretizations), which we omit for brevity. For details regarding these terms we refer the reader
to the work of Lam et al. [36]. Notably, Eqs. (G46) and (G47) are pentadiagonal systems, which
can be solved in parallel. In the former, N linear systems of equations of size M×M are solved
simultaneously, while in the latter, the same is done for M linear systems of size N×N .
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The film thickness is again coupled to film temperature through the material parameters, film
temperature is coupled to thickness via Eqs. (G36) and (G37), and substrate temperature to film
temperature via the interface z = 0. The solution order is identical to that of Appendix G 1, solving
first for h and then Tf and Ts using a predictor-corrector method.
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