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Road networks represent a key component of human settlements, such as cities, towns, and villages, that mediate
pollution and congestion, as well as economic development. However, little is known about the long-term
development trajectories of road networks in rural and urban settings. We leverage novel spatial data sources
to reconstruct and analyze road networks in more than 850 US cities and over 2500 US counties since 1900. Our
analysis reveals significant variations in the structure of roads both within cities and across the conterminous US.

Despite differences in the evolution of these networks, there are commonalities and strong geographic patterns.
These results persist across the rural-urban continuum and are therefore not just a product of accelerated urban
growth. These findings refine and extend existing knowledge and illuminate the need for policies for urban and
rural planning including the critical assessment of new development trends.

1. Introduction

Road networks are critical to local and (inter)national transportation
and provide significant benefits to the economy, while also incurring
significant construction and maintenance costs (in the hundreds of bil-
lions of US dollars) (Allen & Arkolakis, 2019; Fraser & Chester, 2016;
Jaworski & Kitchens, 2019). The costs, however, can be mitigated by
well-planned and maintained road networks (Allen & Arkolakis, 2019;
Boeing, 2019; Cervero & Kockelman, 1997; Fraser & Chester, 2016). The
benefits of well-built road networks include greater walkability (Boeing,
2019; Cervero & Kockelman, 1997; Gori, Nigro, & Petrelli, 2014), which
reduces environmental impacts, relieves public transport, increases
transportation equity (Santos, Antunes, & Miller, 2008), reduces travel
time (Merchan, Winkenbach, & Snoeck, 2020), and ultimately, improves
city sustainability (Rao, Zhang, Xu, & Wang, 2018). It is therefore
crucial to both public health and the economy to understand how the
road infrastructure has evolved, so as to learn about the effectiveness of
past policies based on historical data. However, historical road network
data is scarce, impeding our quantitative knowledge about the past of
road networks. Thus, researchers studying the longer-term evolution of
road infrastructure typically rely on manually digitized road networks
based on historical maps, which is labour-intensive and thus, often

constrained to one or a few places (Casali & Heinimann, 2019; Kaim,
Szwagrzyk, & Ostafin, 2020; Masucci, Stanilov, & Batty, 2013, 2014,
Turner, 2021; Wang et al.,, 2019). Only in recent years, larger-scale
geospatial data integration efforts, and advances in GIS enabled the
modeling and the empirical analysis of historical road networks over
larger spatial and temporal extents (Barrington-Leigh & Millard-Ball,
2015, 2020; Boeing, 2020b, Xie & Levinson, 2009). Moreover, recent
work leverages large amounts of (contemporary) road network data and
applies advanced statistical and network-analytic methods to study the
road network characteristics of cities and other spatial entities (Badh-
rudeen, Derrible, Verma, Kermanshah, & Furno, 2022; Barrington-Leigh
& Millard-Ball, 2019; Boeing, 2019, 2020a; Xue et al., 2022). Specif-
ically, researchers have studied how roads change over time using
photography (Irwin & Bockstael, 2007), integrating contemporary road
network data with remote-sensing-derived data (Barrington-Leigh &
Millard-Ball, 2020), with historical census tract data including infor-
mation on residential structures (Boeing, 2020b), building construction
year information (Fraser & Chester, 2016), as well as cadastral parcel
data containing building age information (Barrington Leigh &
Millard-Ball, 2015). Such efforts are also facilitated by the availability
and accessibility of detailed, and highly complete contemporary road
network data for many regions of the world, such as from
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OpenStreetMap (Barrington-Leigh & Millard-Ball, 2017; Boeing, 2017).
Alternatively, recent advances in computer vision and image processing
enable the efficient automated extraction of historical road networks
and other transportation infrastructure from historical maps, over large
spatial extents (Hosseini, Wilson, Beelen, & McDonough, 2021; Jiao,
Heitzler, & Hurni, 2021; Saeedimoghaddam, 2020; Uhl, Leyk, Chiang, &
Knoblock, 2022). These efforts contribute to an increasing availability of
data on past road networks, enabling quantitative, multi-temporal an-
alyses of road network change over large spatial extents. In this vein,
some recent work has explored the evolution of road networks in the
United States (Barrington-Leigh & Millard-Ball, 2015; Boeing, 2020b),
and at the global scale (Barrington-Leigh & Millard-Ball, 2020), typically
by analyzing topology-based network statistics constrained to portions
of the contemporary road network attributed with a specific age esti-
mate. These network statistics include measures of heterogeneity, con-
nectivity, accessibility, and interconnectivity (see Xie & Levinson, 2007
for an overview). . While these efforts provide unprecedented insight on
the long-term trends of urban road networks during the 20th century in
the context of urban sprawl (Barrington-Leigh & Millard-Ball, 2015) and
highlight recent national-level trends (Boeing, 2020b), there are a few
limitations, that this study aims to address. For example, the study of
(Barrington-Leigh & Millard-Ball, 2015) focuses on connectivity-related
aspects of road networks, and their analyses are limited to the urbanized
parts of the U.S. (1990-2013), and to a subset of 10% of U.S. counties
(1920-2015), respectively. The work of (Boeing, 2020b) is spatially
exhaustive, but has a focus on the griddedness of road networks, giving
less attention to other aspects of road networks and their change over
time. Thus, existing approaches on road network evolution in the U.S.
are either limited in their temporal range or geographic coverage, do not
account for regional variation when performing longitudinal analysis,
focus on specific aspects of road networks only, and do not address scale
effects, manifested in the modifiable areal unit problem (MAUP)
(Masucci, Arcaute, Hatna, Stanilov, & Batty, 2015; Openshaw & Taylor,
1979).

This leaves a few important gaps in our knowledge: How have U.S.
road networks evolved at fine spatial scales across an extensive time
window? How do these evolution patterns vary regionally, between
cities, and within cities? And how do different aspects of road networks
change in relation to each other? Importantly, are the trends of road
network evolution stationary across the rural-urban continuum, or are
these trends dependent on the degree of urbanization? The latter point
addresses the general tendency for urban planning literature to focus on
urban areas at the expense of understanding rural and sub-urban set-
tlements and development (Frank & Reiss, 2014). This lack of attention
is unfortunate because accessibility is crucial to transportation policies,
yet a focus on cities means limited knowledge of low-accessibility areas
such as in periurban and rural settlements. Improving transportation
equity and reducing financial hardships and pollution requires knowl-
edge of all transportation regions including in rural settings.

We aim to address these knowledge gaps with a nearly-exhaustive
exploration of road network evolution across the conterminous U.S.
(CONUS) since 1900. We explore the evolution of these networks from
the fine-scale intra-city level up to the inter-metropolitan level through
methods such as time series clustering and feature embedding. These
methods provide insights into where changes in road network charac-
teristics occurred and how factors such as topographic constraints or
heavy population increase may impact these changes. Such associations
remained hidden in previous, more aggregated analysis. We find that
rural and urban areas experience similar patterns, which has not been
fully appreciated in earlier work, including a reduction in the gridiron
structure of newer road networks, a structure associated with more
walkable neighborhoods (Boeing, 2019; Cervero & Kockelman, 1997).
These results suggest common trends, such as the popularity of the
automobile, contributed to this evolution. Moreover, significant differ-
ences in evolution also arise across the U.S., possibly due to differences
in topography (e.g., mountainous and flat regions) or urban planning
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schools of thought.

Specifically, we analyze road network data from the 2018 National
Transportation Dataset (U.S. Geological Survey, National Geospatial
Technical Operations Center, 2018), integrated with novel, spatial data
layers containing historical built-up areas and building densities since
approximately 1900 (Leyk & Uhl, 2018; Uhl & Leyk, 2020b). We
reconstructed historical road networks under plausible assumptions that
roads were built at roughly the same time as the oldest nearby houses
(see Section 2.2) (Barrington-Leigh & Millard-Ball, 2015; Boeing,
2020b). This integrated dataset enables us to study settlements and their
changes through a road network lens at unprecedented temporal gran-
ularity and spatial resolution (Leyk et al., 2020; Uhl & Leyk, 2020a).
From these networks, containing in total over nine million nodes and
over fifteen million road segments, we extract several road network
statistics, such as the mean degree (the number of roads at each inter-
section), road density (the kilometers of road per unit area), a local
griddedness metric, and the orientation entropy of road segments
(Boeing, 2019, 2022), among others. These statistics can be used to
quantify key characteristics of development within spatial units of
different granularity (e.g., metropolitan areas, counties, grid cells).

2. Data and methods
2.1. Data

Herein, we use geospatial vector data from the United States
Geological Survey (USGS) National Transportation Dataset (U.S.
Geological Survey, National Geospatial Technical Operations Center,
2018), representing the US road network in approximately 2018. We
model retrospective extents of built-up land with the Historical Settle-
ment Data Compilation for the U.S. (HISDAC-US; (HISDAC-US; (Leyk &
Uhl, 2018, Uhl & Leyk, 2020Db)), which are derived from parcel-level
built-year information contained in Zillow’s Transaction and Assess-
ment Database (ZTRAX; (Zillow Inc., 2016)). More specifically, we use
historical built-up areas (BUA) which are available in 5-year intervals
from 1810 to 2016 as a series of binary, gridded surfaces at a resolution
of 250 m ((Uhl & Leyk, 2020a), Figs. 1 & 2a). Likewise, we use historical
estimates of the number of buildings per grid cell (built-up property
locations; BUPL, Fig. 1 & 2b) (Uhl & Leyk, 2020b), as well as the First
built-up year (FBUY), mapping the earliest year of development per grid
cell (Leyk & Uhl, 2018, Uhl & Leyk, 2020b) (See Fig. 1). While HISDAC-
US data coverage is sparse in some rural areas of the US, geographic
coverage and temporal information is largely complete in urban regions
(Uhl & Leyk, 2020b), which we discuss in more detail in Section 3.4.
Moreover, the accuracy of the built-up extents layer increases over time
(Leyk & Uhl, 2018, Uhl & Leyk, 2020Db), reaching acceptable levels after
1900 (Uhl & Leyk, 2020b). Thus, we constrain our analysis to the time
period from 1900 to 2010. To measure road network characteristics for
individual cities, we use the metropolitan statistical areas (MSAs) and
micropolitan statistical areas (uSAs), defined by the US Office of Man-
agement and Budget, which allows results to be compared against pre-
vious work (Barrington-Leigh & Millard-Ball, 2015, Boeing, 2020b).
Collectively, these are known as Core-Based Statistical Areas (CBSAs)
and roughly delineate cities based on the commuting patterns in their
surroundings (Census Bureau, 2015). MSA and uSA boundaries are
shown in Supplementary Fig. §1. CBSAs nest within US county bound-
aries (Census Bureau, 2021). Counties are also employed in this study to
model road network trends across the rural-urban continuum, using
county-level rural-urban continuum codes (RUCC) provided by the US
Department of Agriculture (USDA, 2021), classifying each county into
one of nine levels of “rurality” (Supplementary Fig. S1).

2.2, Methods

Based on the various datasets, we develop a three-part analysis,
aiming to assess long-term road network evolution at three different
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Fig. 1. Input datasets and workflow of the three analytical components of this analysis at the CBSA, county, and grid-cell level.

levels of spatial granularity including the analysis of (a) urban road
networks at the city level, within CBSA boundaries, (b) road networks in
urban, peri-urban and rural settings at the county-level, grouping them
into strata of “rurality” by means of the county-level RUCC, and (c)
intra-urban, local road network characteristics at the grid-cell level
within CBSA boundaries.

2.2.1. Historical urban road network modeling

We make a reasonable assumption that road networks remain un-
changed in their geometry, once they are established (Scheer, 2001),
and that the evolution of road networks is largely characterized by
expansion over time, and, to a lesser degree, by densification, which is in
line with assumptions in previous work (Barrington-Leigh & Millard-
Ball, 2015; Boeing, 2020b; Meijer, Huijbregts, Schotten, & Schipper,
2018), due to the rarity of road network shrinkage. Changes in the
geometric structure (e.g., layout, orientation) of road networks, or
shrinkage are rare, and are assumed to be negligible in the case of the US
during our study period. Thus, multi-temporal spatial data measuring
the expansion of developed, or built-up land over time is commonly used
to spatially constrain contemporary road networks to their assumed
historical extents, under the assumption that the year of earliest settle-
ment roughly corresponds to the year when nearby roads have been
constructed (Barrington-Leigh & Millard-Ball, 2015, 2020; Boeing,
2020b; Fraser & Chester, 2016).

Based on the gridded surface series BUA and BUPL from the HISDAC-
US we develop an approach to generate spatially generalized urban
extents, consistent across different cities and over time. In a first step, we
generate a built-up density surface for each half-decade from 1900 to
2010, within each 2010 CBSA boundary. To do so, we use circular focal
windows of radius r = 1 kilometer, containing the proportion of built-up
area within the focal neighborhood, derived from the BUA surfaces
(Fig. 2a). We then select all grid cells with a focal built-up density
greater than 5%. This method has previously been employed to dis-
cretize the rural-urban continuum into high density (urban) and lower
density (peri-urban) strata (Leyk, Uhl, Balk, & Jones, 2018) and shows
high discriminative power between signals in remotely sensed spectral

responses in urban settings. For each CBSA and year, we then segment
the resulting contiguous groups (“patches™ of urban grid cells and
compute the sums of built-up area, and number of buildings per patch
(from the underlying BUPL surface, Fig. 2b). We then compute the
percentile ranks of the patches within a CBSA according to the number
of buildings they contain. We discard small patches containing less than
10 buildings, likely representing scattered peri-urban settlements. To do
so, we only retain patches that exceed the 90th percentile in the first
year when the density filtering yields at least one patch of built-up land
(which may be later than 1910 for late-developing cities). This way, we
ensure that urban areas are modeled based on consistent criteria across
space and time, and represented by smooth, contiguous, and largely gap-
free areas (Fig. 2¢). We then clip the NTD road vector data to the urban
delineations in each year, yielding sub-networks that can be uniquely
identified by the combination of CBSA and year. We therefore model the
intra-urban road networks for each CBSA and year, consisting of a total
of 8 million nodes and over 10 million edges within CBSAs, as a basis to
calculate a range of road network metrics (Section 2.2.4).

A detailed example of the reconstructed intra-urban road network is
shown in Figs. 2 & 3a-c. Besides these binary data, we also attribute the
road age estimate to each road network segment. The evolution of a
subsection of the metropolitan area can be seen in Fig. 3d, with lighter
colors denoting older roads, and darker colors representing newer ones.

2.2.2. CONUS-wide historical road network modeling

While the urban street networks we model in Section 2.2.1 allow us
to characterize road network trends for large cities (metropolitan areas)
and medium-size cities (micropolitan areas) over time, they do not cover
the full urban-rural continuum, and are based on cumulative rather than
incremental areal extents. To derive trends of road network character-
istics over time and across the rural-urban continuum, we use the 2018
NTD road network vector data (U.S. Geological Survey, National Geo-
spatial Technical Operations Center, 2018; USDA, 2021) and the first
built-up year dataset (FBUY), from the HISDAC-US data repository (Leyk
& Uhl, 2018; Uhl & Leyk, 2020b). We first identify grid cells developed
within moving temporal windows (i.e., time periods) of 40 years, shifted
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Fig. 2. Creating spatially generalized, temporally consistent urban extents based on historical building density estimates. (a) Built-up areas from HISDAC-US, (b)
Built-up property records (BUPL) as a proxy measure for built-up density, (c) density-based, spatially generalized urban extents, shown for Greater Denver (Colo-

rado), all shown in 1900, 1950, and 2015.

in steps of 20 years, e.g., developed prior to 1900, 1880-1920,
1900-1940, 1920-1960, etc., as shown in Fig. 4. This is done to generate
smooth trends avoiding abrupt changes in the extracted road network
metric time series. For each county in the CONUS, we then extract the
road network vector objects within the areas corresponding to each 40-
year development period and assign an individual identifier to each
contiguous group of developed grid cells (patches). We remove small,
spatially isolated patches of under 0.31 km? (corresponding to five 250
by 250 m grid cells), as well as elongated patches of less than 500 m
width, likely representing settlements along highways and thus not
relevant for characterizing road networks in cities, towns, or places (see
Fig. 1 and Supplementary Fig. S2). For the remaining patches, con-
taining over 27 million road segments, we calculate a range of road
network metrics (see Section 2.2.4), aggregated per county and year. We
analyze each of the network metrics in a bi-variate manner over time
and across the rural-urban continuum, stratified by US census region
(Census Bureau, 2018), where the rural-urban continuum is based on the
county-level rural-urban continuum codes (RUCC) provided by the US
Department of Agriculture (USDA, 2021), that classifies each county
into one of nine levels of “rurality.” In total, we analyze 9.2 million
nodes and 15.2 million edges across the rural-urban continuum. Both
CONUS-wide and CBSA level historical road networks are extracted

using ESRI ArcPy (ArcGIS, 2021) and Safe Software Feature Manipula-
tion Engine Desktop (Safe Software, 2021).

2.2.3. Gridded surfaces of road network metrics

The road networks we extract in Sections 2.2.1 and 2.2.2 allow for
the derivation of multi-temporal, road network statistics aggregated to
the CBSA- and county-level. While these aggregation levels are expected
to facilitate the quantification of trends across regional strata, or strata
of different levels of rurality, they may ignore fine-grained spatial var-
iations of road network characteristics within urban areas. Thus, we use
grid cells of 1 x 1 kilometer as a third analytical unit for this study.

Using the FBUY gridded surface from HISDAC-US (Leyk & Uhl, 2018;
Uhl et al., 2021), we calculate the average settlement age within 1 x 1
kilometer grid cells located within the 2015 urban delineations derived
from the density-based delineation method described above using
GeoPandas (Jordahl et al., 2020) and SciPy (Virtanen et al., 2020))
Python modules. The aggregation to 1 x 1 kilometer grid cells aims to
avoid small sample sizes of road segments and intersections per grid cell,
and thus, ensures the statistical support for the network statistics
calculated per grid cell. We then identify all network nodes within a grid
cell, as well as the centroids of all road segments (i.e., network edges)
per grid cell. We calculate road network statistics for each grid cell based
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Fig. 3. Growth of urban road networks over time. Denver metropolitan area in (a) 1900, (b) 1950, and (c¢) 2015; (d) Estimated road ages in a peri-urban setting near
Boulder (Colorado) with street ages color-coded from light (1900) to dark (2015).
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Fig. 4. Spatial data layers generated to model historical road networks at the county level for different development periods. (a) the first built-up year (FBUY) surface
from the HISDAC-US, indicating settlement age at the grid cell level, and (b) — (h) extracted areas developed within moving intervals of 40 years, with an overlap of
20 years, shown for Denver, Colorado. White lines in (a) represent county boundaries used as the spatial aggregation units. Historical road networks per county and
development period are modeled by clipping the contemporary road network to the areas developed in each time period.
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on the network statistics attributed to each node and to each edge (see
Section 2.2.4). For consistency with the aggregated CBSA-level analysis,
we calculate these grid-cell level statistics within the density-based
generalized urban area from 2015 only (see Section 2.2.1).

2.2.4. Road network metrics

For the historical road networks extracted per CBSA and year (Sec-
tion 2.2.1) per county and development period (Section 2.2.2), and per
1 x 1km grid cell within CBSAs, we calculate a range of road network
metrics (Table 1). These metrics include the mean degree (the number of
roads at each intersection), road density (the kilometers of road per unit
area), measures of road network orientation (orientation entropy, azi-
muth variety), and several aggregated statistics, such as node density,
nodes per km road, total road distance, the dead end rate, as well as a
novel local griddedness metric. Many of these statistics are based on
topology, but because the majority of junctions are straight there is less
need to focus on non-trivial paths between intersections. This should not
affect most metrics except entropy (which could be affected by non-
trivial interactions with degree-two intersections) or griddedness
metric, as we explain below. We use 1 km square grids to capture these
statistics because less than 0.01% of roads within CBSA boundaries are
longer than 1 km.

Griddedness has become critical to understanding walkability and
related problems for cities in the US but measuring it has been difficult
until recently. Namely, grid-like road networks appear to enhance
walkability and lower relative vehicular travel in a city (Boeing, 2020b;
Cervero & Kockelman, 1997). Griddedness (and related urban sprawl)
metrics have been defined and implemented on several recent occasions
(Barrington-Leigh & Millard-Ball, 2019, 2020; Boeing, 2020b). The
methods to derive such metrics are sophisticated (Boeing, 2020b) and
sometimes computationally expensive (Barrington-Leigh & Millard-Ball,
2019, 2020). However, we aim for a simple, intersection-level measure
to extend on previous work.

We develop the local griddedness metric, a spatial complement to the
clustering coefficient often used in network analysis (Boeing, 2020a,
2022; Watts & Strogatz, 1998). The local clustering coefficient of a node
is defined as the proportion of triangles that exist whose vertex includes

Table 1
Road network metrics used in this study.

Road network Unit Aggregated Description
metric analytical unit
Degree Node grid cell, county, Number of roads touching a
CBSA (average) node
Local Node grid cell, CBSA Number of quadrilaterals
griddedness (average) touching a node divided by its
degree
Road density Edge Grid cell, county, km road per km built-up area
CBSA
Orientation Edge County, CBSA Entropy of edge orientation
entropy angles, diseretized into bins of
5
Azimuth variety Edge Grid cell Number of unique edge
orientation angles, discretized
into bins of 5°
Dead end rate Node Grid cell Percentage of nodes of degree 1
Nodes per km Node/ Grid cell Number of nodes per km road
road edge within spatial unit
Node density Node Grid cell Number of nodes within spatial
unit
Percentage Neode CBSA Percentage of nodes with degree
degree 4+ 4 or higher
Road distance Edge CBSA Total km road within spatial
(total km unit
road)
Straight road Street County Percentage of streets (i.e., edges

rate with the same street identifier)
with a edge orientation
standard deviation <10°
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that node relative to the total number of possible triangles that could
exist for a node of that degree. Unlike, e.g., social networks, road net-
works tend to be quadrilaterals, and more uniquely still, these cycles
tend to be planar, meaning they all lie on a two-dimensional plane.

These constraints offer guidance to a unique spatial clustering coef-
ficient, local griddedness, which is the proportion of four-cycles con-
taining that vertex relative to the total number of planar four-cycles for a
node with that degree. Degree one, two, and three nodes are common
and special cases for intersections, however. If a node is the end of a
dead-end road, we define the local griddedness to be zero. We do not
analyze nodes of degree two, because these nodes represent the
continuation of a road, rather than an intersection. We show examples of
this and explain our justification in more detail in the Supplementary
Fig. S3. Finally, it is unlikely for a three-road intersection to have three
city blocks meet there, but more likely is that it ends in a “T”. The
maximum number of city blocks is therefore defined as two and is
otherwise the degree. While in most cases, local griddedness is between
0 and 1, we allow for rare instances in which, for example, degree-three
nodes have a value up to 3/2 (a “super gridded” node), for the T inter-
section to have a natural griddedness value of 1.0. This also means that
roads that violate this planar assumption (e.g., those with bridges) may
be greater than 1, but such instances are rare. Using this measure, any
node can have its griddedness value rapidly calculated, allowing for
extremely fine-grained analysis of road network spatial statistics.

Because this metric is based on the road network topology, a limi-
tation of this technique is that some nodes can be misidentified as having
a high griddedness value, although this is rare from visual inspection.
Topology is useful both because it appears reasonable and is very fast,
which partly motivates its use in, e.g., Caldarelli, Pastor-Satorras, &
Vespignani, 2004; Figueiredo & Amorim, 2007. Our method differs from
previous work because it is node-centered, instead of edge-centered
(Figueiredo & Amorim, 2007), and is normalized such that values
near 1.0 are irongrid-like, while some similar metrics are not as easy to
interpret (Caldarelli et al., 2004).

In addition to this metric, we separately calculate azimuth variety
and orientation entropy by binning the angles between road in-
tersections into six-degree wide bins. Changing the width of the bins
does not qualitatively change our findings but can change the absolute
value of entropy (which can be as high as the log of the number of bins)
as well as the azimuth variety.

Finally, we quantify the proportion of cul-de-sacs (i.e., the dead end
rate). This metric requires that end points of the road vector lines that
are introduced by the clipping are recorded and excluded from subse-
quent node analysis because these nodes represent artificial cul-de-sacs
introduced by the data processing that would yield inflated dead end
rate values. The road network metrics at CBSA and grid cell level are
computed using NetworkX, and the statistics per development period
and county are obtained using Safe Software Feature Manipulation
Engine.

Fig. 5 demonstrates how these statistics reveal interesting differences
in road network structure between, as well as within, metropolitan
areas. For example, azimuth variety (i.e., the variety of unique road
orientation angles) is high (representing very irregularly oriented roads)
in the Baltimore Washington area and low (regular roads) in the pe-
riphery of the Denver and Los Angeles metropolitan areas. Similarly,
strong variations can be seen for the local griddedness metric. We
observe in Fig. 5 low local griddedness (fewer square blocks) and low
edge density (spaced out roads)in some areas of the metropolitan areas
of Los Angeles, Washington DC, and Denver where newer roads were
built.

2.2.5. Metropolitan-level historical road network statistical analysis

To construct CBSA-level analyses of the road networks, we group the
patches constructed in Section 2.2.1 into CBSA regions. If a patch is on
the border of a CBSA region, we cut it off at the boundary, and edges that
reach the boundary are removed; this is not common but is a reasonable
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Fig. 5. Gridded (1 x 1 kilometer) road network statistics within cities. Columns, left to right: inferred date of road construction, mean degree (number of roads at
each intersection), road density (kilometers of road per square kilometer), local griddedness (degree to which an intersection is part of a grid topology), and azimuth
variety (variety of road orientations, discretized to 10° bins). Rows represent from top to bottom: Los Angeles, Denver, and Baltimore-Washington metropolitan areas.

way of defining patches associated with only one metropolitan or
micropolitan area. At ten-year intervals between 1900 and 2010, as well
as for 2015, we construct the road network topology using the Python
library NetworkX, and remove nodes with degree two from the analysis,
which we explain in more detail in Section 2.2.3 and Supplementary Fig.
S3. For each CBSA, we record the total road length, area, degree, pro-
portion dead ends and degree greater than or equal to four, as well as
orientation entropy and local griddedness. These raw statistics are used
to construct combined measures, e.g., the distance per unit area to be
able to quantify the road length distance within all patch areas (which
are a small proportion of the total CBSA area).

2.2.6. Grid-cell-level correlation analysis and time series clustering

In total, we calculate seven grid cell-level network statistics (cf.
Table 1). Due to potentially small sample sizes within grid cells, we
replace the orientation entropy by the variety of unique azimuth values
per grid cell, calculated after discretizing the road segment azimuth into
bins of ten angular degrees. Based on the gridded surface indicating the
average age per grid cell, and corresponding cell-level network statistics
within each CBSA, we extract cell-by-cell pairs of settlement age and
road network statistics for each city. These vectors enable us to calculate
correlations between age and network characteristics, for each city,
considering the local, fine-grained variability of settlement age as it is
associated with the characteristics of the road network. Moreover, we
generate time series of each network characteristic for each city. To
characterize the relative relationship between age and network char-
acteristics, we discretize the age surface per CBSA into deciles. Thus, the
resulting time series consists of the same number of observations (i.e.,
ten) and are independent from the absolute age of the cities. For each of
the network characteristics, we conduct time series-based cluster anal-
ysis separately for MSAs and uSA. We use the time-series k-means

algorithm, TSK-means (Huang et al., 2016), in conjunction with the
Dynamic Time Warping (Miiller, 2007) similarity metric to characterize
the dissimilarity between time series, implemented in the tslearn Python
module (Tavenard et al., 2020). In order to identify the optimum
number of clusters k, we calculate the cluster inertia based on DTW
similarity as a measure of separation between time series clusters for a
range of k from two to twenty and use the popular elbow method
(Syakur, Khotimah, Rochman, & Satoto, 2018) to identify the approxi-
mate number of clusters for each scenario. We normalize the cluster
inertia of each clustering scenario into the range (0,1) to compare the
cluster quality across the different network statistics. Moreover, we
assess the agreement of the CBSA clusters identified for different road
network metrics using Normalized Mutual Information (NMI) (Forbes,
1995).

3. Results

We carry out longitudinal and cross-sectional studies of the evolution
of the US road networks since 1900, at spatial scales ranging from the
grid cell level to the CONUS. Firstly, we present regional trends of urban
road network evolution (Section 3.1), and identify types of city-level
road network evolution (Section 3.2). Finally, we present the county-
level trends of road network evolution across different development
periods and across the rural-urban continuum (Section 3.3).

We begin our analysis on CBSA-level trends.

3.1. Regional trends of road network evolution

At the national level, Fig. 6 reveals broad trends in how road density
varies across U.S. census regions ((Census Bureau, 2018); henceforth
referred to as regions). We find relatively low road density in the
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Fig. 6. Variations in road network statistics across the CONUS. (a) statistical distributions for road density, mean degree, orientation entropy (Boeing, 2019), and
local griddedness, split by region. (b) Road statistics for each CBSA. (c) Changes in road network statistics between 1900 and 2015.

Midwest as well as the Northeast although the distribution in the
Northeast shows a pronounced broad tail due in large part to the New
York City MSA (Fig. 6a). The mean degree (i.e., mean number of roads
per intersection) of networks, in contrast, is typically higher in the
Midwest and lowest in the more mountainous regions (e.g., the Appa-
lachian Mountains) near the East coast (Fig. 3b). In agreement with
these statistics, we find that orientation entropy, a proxy of the road
network’s regularity, is lowest (most regular) in the Midwest and highest
(least regular) in the South and Appalachia. Complementing these

Azimuth variety
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observations, local griddedness and mean degree are highest in the
Midwest and lowest in the South and mountainous regions in the West.
Our temporal analysis, meanwhile, reveals that across 115 years some
regions, such as the South and West, have seen great changes in their
road networks, while the Northeast has been relatively stable due to
limited additions of new roads in an already developed region (see
Fig. 6c and Supplementary Fig. S4). In general, however, newer road
networks tend to be less grid-like and less densely packed as they
expanded into suburban areas (Fig. 3).
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Fig. 7. Grid-cell level correlation and time series clustering. (a) Distributions of CBSA-level Spearman correlation between network statistics and settlement age.
(b—c) maps of Spearman correlation between age and azimuth variety and local griddedness, respectively, for CBSAs. (d) Normalized mutual information (NMI)
between time series k-means-based clusters for each network statistic. (e-f) Spatial distributions of k-means-based time series clusters with k = 4 for azimuth variety

and local griddedness in MSAs. (g-h) The time series of the clusters found in (e-f).






K. Burghardt et al

3.2. The evolution of road networks at the city-level

Fig. 7 illustrates the evolution of road networks within metropolitan
areas based on network statistics extracted for each 1 x 1 kilometer grid
cell, since the first recorded building was constructed. For this analysis,
we use several metrics including the ratio of dead end roads, the number
of intersections per kilometer of road, the number of nodes, and length
of road per area unit, and mean degree. We assess correlation of these
metrics with the age of each grid cell, as shown in Fig. 7a (temporal
correlations for all metrics are shown in Supplementary Figs. S5 & $6).
Broadly speaking, density and griddedness-related metrics decrease over
time, while azimuth variety shows mixed trends during the study period,
and the dead end rate increases with road network age. These trends are
similar for large cities (MSAs) and smaller cities (4SAs; see Supple-
mentary Fig. 86). Fig. 7b—c shows the spatial distributions of correlation
coefficients between age and the two metrics azimuth variety and local
griddedness, respectively, revealing strong spatial patterns. We try
capturing this spatial variation by computing k-means clusters of tem-
poral patterns in these statistics (Huang et al., 2016). We measure
similarity between the time series of the CBSAs using the Dynamic Time
Warping (DTW) distance metric (Miiller, 2007). This metric yields large
distances for time series that differ considerably in their trend, shape,
and/or timing. We find the data series can be grouped well into just 3
clusters (for MSAs), and 4 clusters (for uSAs), as indicated by the
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“elbow” in the DTW-based cluster inertia in Supplementary Fig. S8. We
separately analyze MSAs and uSAs to understand how their evolution is
affected by the size of the urban area, as CBSAs of similar age can evolve
very differently. The agreement of these CBSA clusters based on indi-
vidual road network metrics (measured by the Normalized Mutual In-
formation (NMI) (Forbes, 1995) varies between metrics, but is consistent
across MSAs and uSAs (Fig. 7d). High NMI values as observed for pairs of
metrics such as mean degree and local griddedness indicate that CBSAs
are separated into clusters in a similar manner, indicating that the
temporal trajectories of the road network griddedness and mean degree
follow similar evolution types. When mapping the computed clusters as
shown in Fig. 7e—f, we find that the identified “types” of road network
evolution at the city level follow strong spatial patterns. For example, we
find that nearby cities in the Appalachian region or in the Northeast
have similar trends in their azimuth variety. These results reveal a
Simpson’s paradox (Simpson, 1951) in that the trends in disaggregated
data differ from the overall trends shown in Supplementary Fig. S7 and
in previous work (Barrington-Leigh & Millard-Ball, 2015; Boeing,
2020b). Griddedness trajectories for MSAs, however, are distinct be-
tween the East and the West. The temporal patterns for these clusters are
shown in Fig. 7g-h, where azimuth variety grows fast in MSAs of clusters
1,2, and 3, and decreases for cluster 4 (roughly covering Appalachia and
the Northeast) where starting values were highest. In contrast, gridd-
edness in MSAs decreases most in cluster 4 (West, Midwest) where
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Fig. 8. Road network statistics at the CBSA-level over time. (a) UMAP plot of cities embedded into seven road network statistics for each US region. Radar charts are
road network statistics for example MSAs whose outer ring corresponds to the largest value of each network statistic. (b) Distributions of road density, mean degree,
entropy, and mean griddedness per CBSA over time. (c) A closer inspection of the UMAP plots in (a), color-coded by cumulative distribution of mean city statistics
from 0% (low values compared to other cities) to 100% (higher than 100% of other cities). These figures reveal network statistics vary strongly, such that cities in the
upper left-hand corner of each plot have many roads built per year and have high entropy. Networks in the lower left-hand corner have higher local griddedness, road

density, % degree 4+, and average degree, as well as lower % dead ends.
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values are highest and slower elsewhere (including the coastal regions).
The clustering results for all seven grid-cell level statistics are shown in
Supplementary Fig. S8.

While these univariate trends provide interesting insight, how do
metrics for each city vary over time? The multivariate trajectories of
CBSA-level network statistics over time are visualized in Fig. 8a, where
we embed statistics for each city into two dimensions using UMAP
(McInnes, Healy, Saul, & GroBberger, 2018). UMAP is a more nuanced
version of PCA embedding, where in this lower-dimensional space the
relative position of datapoints are approximately preserved. The em-
beddings are based on seven statistics computed for each CBSA and
smoothed over time: the proportion of dead ends, mean degree, road
distance per area, log of road distance, local griddedness and entropy
(Boeing, 2019), and proportion of intersections with four or more roads
(details on data smoothing are seen in Supplementary Figs. §9 & §10).
The changes in statistics are highlighted by radar charts computed for
the Chicago, Washington, DC, Boston, and Denver MSAs (Fig. 8a). In
Fig. 8c, we also show how these statistics vary across the UMAP pro-
jection, thus providing insight into the trends of individual cities, in a
way similar to Badhrudeen et al., (Badhrudeen et al., 2022). Our results
demonstrate broad similarities but also considerable variation in city-
level trends over time. Cities across but also within regions differ in
their routes to their final statistics, yet again pointing to Simpson’s
paradox in our data: trajectories, disaggregated to the level of a
metropolitan region can differ, sometimes substantially, from any
assumed overall trend, regionally or nationally. Nonetheless, we see
some trends are consistent across cities, as shown in Fig. 8b, such as
lower road density, fewer roads per intersection, and statistics consistent
with less gridiron-like roads (although orientation entropy has recently
started to decrease, possibly implying more regular angles between in-
tersections). Results are robust to data cleaning (Supplementary Fig. S7).
These plots illustrate the heterogeneity in the evolution of cities that
resulted in today’s urban areas of the US.

Fig. 8b, meanwhile, reveals changes in road network statistics over
time. There are general trends of increasing entropy and decreasing road
density and griddedness across the CONUS. We observe significant
variance in the computed statistics across cities in early times, especially
with road density and local griddedness. However, there are also notable
commonalities, such as a tendency for newer regions to have lower
griddedness and higher entropy (although entropy’s trend is non-linear).
The trends for mean degree and mean griddedness reveal decreasingly
grid-like networks over time (statistical significance of results are shown
in Supplementary Fig. S11). While scholars have argued that grid
structures enable efficient traffic flows and thus, may contribute to
reduce emissions, congestion, and to increase the use of alternative,
environmentally friendly transportation methods (Boeing, 2019, 2020b;
Cervero & Kockelman, 1997; Gao, Wang, Gao, & Liu, 2013; Sharifi,
2019), more recently developed road networks appear to be less effec-
tive in that regard. But why? Some trends may be due to urbanization
expanding into hilly topographies, such as in the mountains north of
downtown Los Angeles or the Piedmont region of western Maryland (see
Fig. 2), where grid-like road networks and high road densities are not
feasible. Residential development in these topographically more com-
plex areas but also altered development patterns in periurban areas may
help explain the decline in urban densities (Angel, Parent, Civco, & Blei,
2017; Gao et al., 2013), but future work needs to analyze these hy-
potheses in greater detail.

3.3. Road networks across the rural-urban continuum

Finally, we analyzed and compared trends along the full rural-urban
continuum (including counties outside of the CBSAs), using county-level
rural-urban classes (USDA, 2021), stratified by regions (rural-urban
continuum values for each county are shown in Supplementary Fig. S1).
While significant insight has been gleaned from analysis of urban road
network growth (Barrington-Leigh & Millard-Ball, 2015; Boeing,
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2020Db), Fig. 9 reveals its complement, road network growth in peri-
urban and rural settlements. These results demonstrate that our findings
generalize to rural areas. Namely, the mean degree, road density, and
straight road rate in developed areas within rural and urban settings are
all decreasing from 1900 to 2015 across all regions within the CONUS.
Differences in statistics across the rural-urban continuum are often,
however, statistically significant (Supplementary Fig. S11 & S$12).
Trends vary most for orientation entropy, which tends to increase in
urban settlements, but is stagnant and low in rural settlements.
Comparing the road networks established in a fixed time across the
rural-urban continuum, we observe high levels of persistence, indicating
similar road construction trends in urban and rural places in a given time
period. One notable exception are rural settlements in the Midwest,
which initially have a higher road density than urban settlements, but
this reverses for roads built in more recent time periods, and therefore
looks more like the rest of the US.

While we focus on rural and urban trends in this section, the
observed trends are also consistent when split by MSA or uSA, region, or
year of city’s maximum development (see relation between maximum
development year and regions in Supplementary Fig. $13), with some
minor differences, as shown in Supplementary Fig. §14.

3.4. Uncertainty, validation and sensitivity analysis

While the HISDAC-US data provides accurate building ages across
the US, these data are incomplete. More specifically, many buildings are
missing their build year (temporal incompleteness) and some are
missing from the dataset entirely (incomplete geographic coverage). We
quantified the geographic coverage by comparing the buildings found
against the Microsoft Building Footprint dataset (Microsoft, 2020), and
the temporal completeness by quantifying the availability of YearBuilt
in ZTRAX (Supplementary Figs. S15 & S16). We also assessed the
sensitivity of our main results to different levels of completeness, by
systematically excluding CBSAs of lower completeness levels. Our
findings are robust to such variations in data quality (see Supplementary
Figs. §17, & S18).

To further verify our results, we compare some of our findings to
previous work (Barrington-Leigh & Millard-Ball, 2015; Boeing, 2020a,
2020b). We compare differences in statistics between small and large
cities (Supplementary Fig. $19) and regional network statistics (Sup-
plementary Fig. $§20), as well as trends based on most statistics, such as
mean degree or dead-end rate (Supplementary Figs. S21), and all sta-
tistics in the present study broadly agree with previous research. How-
ever, in contrast with recent research (Barrington-Leigh & Millard-Ball,
2015, Boeing, 2020b), we did not find a significant increase in mean
degree or proportion of four-way intersections in the 21st century. Some
of these results are likely data-dependent (Barrington-Leigh & Millard-
Ball, 2015) but some observed differences may also be due to the
MAUP (Masucci et al., 2015; Openshaw & Taylor, 1979). Our large
dataset allows us to analyze historical road networks, which are
reconstructed based on the age information of nearby settlements, at
finer scales that do not depend on pre-defined boundaries at coarser
resolution, such as a census tract.

4, Conclusions

We demonstrate how integration of large spatio-temporal datasets
enables new detailed insights into long-term evolution of human set-
tlements through the lens of road networks across the rural-urban con-
tinuum in the US. We measure road network characteristics over time
within varying units of analysis and differentiate resulting trajectories
across geographical regions. This data-driven approach reveals regional
patterns that fill important knowledge gaps in our understanding of how
road networks have evolved, possible drivers of these changes, and what
kind of differences we find in these networks across cities and regions.
The continuous reduction in the proportion of gridiron roads is of
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Fig. 9. County-level network statistic trends across time, regions, and the rural-urban continuun. (a) Road network statistics for different time periods, as a function
of the urban-rural gradient (defined by county-level RUCCs) for each CONUS region. (b) Corresponding visualization of these decomposed trends over time,
aggregated by region. Solid lines are the median values of county-level statistics within the strata defined by RUCC, time period, and region.

particular importance as this reduction is associated with reduced
walkability of neighborhoods (Barrington-Leigh & Millard-Ball, 2015,
Boeing, 2020b), which contrasts with the popular New Urbanist school
of thought (Barrington-Leigh & Millard-Ball, 2015) that promotes
walkability of cities. Our findings notably reveal similar trends in rural
regions which have been neglected in previous research. This is some-
what unexpected due to the persistently low population density in rural
settings and suggests a reflection of existing policies and concepts is
needed to promote greater neighborhood walkability.

The presented findings can offer a new understanding of the
importance of various network characteristics over space and time and
thus shed light on the various forms of development during different
time periods and across regions. We specifically address under-explored
differences in growth patterns across and within urban areas, which
were hidden in aggregated data, and analyze the growth across the
rural-urban continuum. These results are analyzed across a larger time
span, from 1900 when automobiles were rare to 2015, when they were
ubiquitous and changed the urban infrastructure landscape. The pat-
terns, such as in Fig. 7 are distinct from those expected in aggregated
data, a property known as Simpson’s paradox. Finally, our insights could
help policymakers better understand the (un)intended impacts of
infrastructure development, both now and in the past, to inform future
planning efforts. For example, past work has discussed how many
highways were built at the expense of minority neighborhoods (Fitz-
patrick, 2000; Karas, 2015; Mohl, 2004), but there is relatively limited
work quantifying the effect this, and other infrastructure projects, had
on minority communities (Houston, Wu, Ong, & Winer, 2004). While
some previous research discussed pollution in rural neighborhoods
(Houston et al., 2004), understanding the potential pollution impact
long into the past has been lacking. Furthermore, the relative impact of
infrastructure on communities in different cities is still under-explored.
The development of road infrastructure can also offer economic benefits
that have yet to be fully quantified within urban areas (Jaworski &
Kitchens, 2019) as well as rural settings. Given the high priority of
infrastructure investment planning in the US, these insights are of
particular importance and need to be considered an integral part of
urban and rural planning.
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Our work can also help researchers uncover the mechanisms that
drive road evolution (Barthelemy, Bordin, Berestycki, & Gribaudi, 2013;
Barthélemy & Flammini, 2008; Bettencourt, Lobo, Helbing, Kiihnert, &
West, 2007; Masucci et al.,, 2014; Strano, Nicosia, Latora, Porta, &
Barthélemy, 2012; Zhao, Wu, Sun, et al., 2016) by comparing the spatial
statistics predicted in models to those seen in the data. These models
predict, for example, how the mean road network degree and degree
distribution varies as a function of city size, which can be tested with the
data produced herein. Our results already show how these models can be
further improved, such as by accounting for the regular grid pattern of
older cities, which is distinct from that expected by Barthelemy and
Flamini (Barthélemy & Flammini, 2008). These differences can help
researchers understand where their mechanistic assumptions differ from
data and improve our understanding of what drives urbanization, locally
and regionally. in future work, we will analyze how the long-term road
network evolution of cities relates to city size (e.g., Levinson, 2012) and
to their morphologic development (Uhl, Connor, Leyk and Braswell,
2021)

While our results point to significant variation as well as common-
alities in road network evolution, further analysis is needed to under-
stand the global evolution of these networks (Barrington-Leigh &
Millard-Ball, 2020), and their trends over extended periods of time.
Moreover, the presented study focuses on local roads within developed
areas. Thus, future work will also include highways that connect the
local road networks. Moreover, the data used herein only approximate
the road network existing at a given time, as our models focus on
network growth, and ignore network shrinkage (i.e., roads disappearing
over time). Future work needs to therefore explore the historical
network through, for example, automated analysis of historical maps
(Jiao et al., 2021; Saeedimoghaddam, 2020; Uhl et al., 2022) or other
records (Erath, Lichl, & Axhausen, 2009).
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