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However, surprisingly little spatially explicit information is available on 
the evolution of urban and rural road networks over extended periods of 
time, which is crucial to fully understand the evolution of transportation 
infrastructure, enabling more informed urban and regional planning 
(Levinson, 2005). 

However, data even on the geometric properties of road networks 
prior to the 1980s are scarce. The few existing quantitative, long-term 
studies revolving around transport infrastructure evolution typically 
rely on manually vectorized road network data (Casali & Heinimann, 
2019; El Gouj & Lagesse, 2021; Kaim, Szwagrzyk, & Ostafin, 2020; 
Masucci, Stanilov, & Batty, 2013; Masucci, Stanilov, & Batty, 2014; 
Strano, Nicosia, Latora, Porta, & Barthélemy, 2012; Cirunay, Soriano, & 
Batac, 2019; Wang et al., 2019) or railroad network data (Donaldson & 
Hornbeck, 2016; Thévenin, Schwartz, & Sapet, 2013), from multi-modal 
data sources, often involving labor-intensive manual digitization work. 

Consequently, long-term studies on the evolution of road networks 
over large spatial extents and at fine spatial grain are scarce. The few 
existing approaches use ancillary data such as historical housing counts 
at the census tract level (Boeing, 2020), building construction date in
formation at the cadastral parcel level (Barrington-Leigh & Millard-Ball, 
2015), as well as multi-temporal gridded settlement surfaces derived 
from parcel-level records (Burghardt, Uhl, Lerman, & Leyk, 2021; 
Millard-Ball, 2021) or from remote sensing observations (Barrington- 
Leigh & Millard-Ball, 2020). These approaches infer the age of roads 
based on the age of nearby buildings or based on the development period 
of the surrounding areas and are typically constrained to local roads 
within developed land, omitting roads in undeveloped, rural areas. 

To overcome this lack of historical road network data, researchers 
dedicated to the field of topographic map processing (Chiang, Leyk, & 
Knoblock, 2014; Liu, Xu, & Zhang, 2019) have developed methods for 
the extraction of road network features (or their components, such as 
road intersections) from historical maps, and from topographic maps in 
general, using image processing, template matching, classification, and 
image segmentation techniques. 

For example, Bin and Cheong (1998) use connected component 
analysis and a vectorization technique, whereas Callier and Saito (2011) 
use linear feature detection in combination with a region growing al
gorithm to extract road geometries from scanned maps. Itonaga, Mat
suda, Yoneyama, & Ito, 2003 use a stochastic relaxation algorithm and a 
thinning operator, while Chiang, Knoblock, and Chen (2005) employ 
histogram-based segmentation and parallel pattern tracing for the same 
purpose. Similar approaches use color clustering (Chiang & Knoblock, 
2009) or morphological operations (Chiang & Knoblock, 2008) to 
extract road features and road intersections. Despite being unsupervised 
approaches, most of these methods require some user interaction, e.g., to 
determine which cluster represents road features. Other examples are 
supervised and are based on localized template matching (Chiang, 
Knoblock, Shahabi, & Chen, 2009) or on Hough transform in combina
tion with an edge matching algorithm (Chiang & Knoblock, 2013). 

More recently, scholars have applied deep learning methods such as 
convolutional neural networks (CNNs) to extract geometric and se
mantic transportation network characteristics from historical maps. 
These approaches include linear road feature extraction based on a U- 
Net CNN (Ekim, Sertel, & Kabadayı, 2021; Jiao, Heitzler, & Hurni, 
2021), extraction of road network intersections using an 
Inception-ResNet CNN (Saeedimoghaddam & Stepinski, 2020), or road 
type recognition from cartographic road symbols using a U-Net CNN 
(Can, Gerrits, & Kabadayi, 2021). Similarly, researchers have proposed 
deep learning based methods for the extraction of railroad networks 
(Chiang, Duan, Leyk, Uhl, & Knoblock, 2020a; Hosseini, McDonough, 
van Strien, Vane, & Wilson, 2021; Hosseini, Wilson, Beelen, & McDo
nough, 2021) from historical maps. These deep-learning based methods 
are resource-intensive and require large amounts of typically manually 
labelled training data or templates. Jiao, Heitzler, and Hurni (2021) 
provide a detailed overview of these methods. 

We propose an alternative, fully automated approach, making use of 

abundantly available, contemporary geometric road network data, in 
combination with image processing and unsupervised classification 
techniques applied to digital historical maps. This approach is based on 
the assumption that road networks typically expand over time (rather 
than shrink or experience other types of changes), and thus, the 
contemporary road network represents the superset of all roads being 
depicted in the historical maps. The proposed method aims to separate 
contemporary road network vector data in two classes: those roads that 
exist in an underlying historical map (i.e., historical roads) and those 
that do not exist in that map (i.e., more recent roads). This separation is 
done in an unsupervised manner, and thus, no labelled training data is 
required. Moreover, in contrast to most existing map processing ap
proaches, we do not use the pixels of the scanned map image as 
analytical units, but rather the contemporary (vector) road segments, 
typically representing the center line of the roads. Hence, our approach 
filters the already topologically cleaned, contemporary road vector data 
based on signals extracted from the color information harvested from 
historical maps, and thus, avoids the complex, and potentially error- 
prone recognition (e.g., Chiang et al., 2020a) and vectorization (e.g., 
Chen et al., 2021) of cartographic content in historical maps (i.e., road 
symbols). It thus enables spatial, spatio-temporal, and network-based 
retrospective analyses using the contemporary road segments as 
analytical units. 

The existing supervised and unsupervised road extraction methods 
typically require a considerable degree of user interaction (e.g., manual 
labelling of training data, or parameter tweaking), and most of the 
methods have only been tested on individual map sheets. Thus, it re
mains unclear how these methods perform on large, potentially het
erogeneous map collections. Moreover, existing approaches do not 
incorporate contemporary road network data to guide the extraction. 
Thus, our proposed method makes the following contributions: (a) it is a 
fully automated approach to extract road networks from historical maps, 
(b) it is the first approach using vector-raster data integration (i.e., 
combining contemporary road network data and scanned historical 
maps), and (c) it has been tested over several, large study areas, and for 
different time periods. Furthermore, the proposed approach requires 
very few parameters to be set by the user, and the results are largely 
invariant to the choice of these parameters, as we will show herein. 

This effort is motivated by the growing availability of systematically 
scanned, georeferenced, and catalogued historical map archives, 
increasingly available as public and open data (Fishburn, Davis, & 
Allord, 2017, Library of Congress, 2020, National Library of Scotland, 
2020, Swisstopo, 2020, Stanford University Library, 2020, Biszak, Bis
zak, Timár, Nagy, & Molnár, 2017, Old Maps Online, 2020, see Uhl & 
Duan, 2021, McDonough, 2022). At the time of writing, the number of 
scanned and/or georeferenced historical maps from national map ar
chives available online is expected to exceed 1,000,000 (McDonough, 
2022), and unlocking the unique, historical-spatial information con
tained in these map archives (i.e., extracting map content and convert
ing it into analysis-ready spatial data structures) constitutes the overall 
goal of topographic map processing (Chiang et al., 2014). Moreover, 
there is an increasing demand of historical spatial data for numerous 
applications in urban studies and planning (Dunne, Skelton, Diamond, 
Meirelles, & Martino, 2016), as well as in the digital humanities (Chiang, 
Duan, Leyk, Uhl, & Knoblock, 2020b; Gregory & Healey, 2007; Hosseini 
et al., 2021). 

Herein, we apply our method to a range of historical topographic 
maps from the United States (Section 2.1) and present the details of this 
method (Section 2.2). We implemented several strategies for validation, 
cross-comparison, and plausibility testing to evaluate our results (Sec
tion 2.3). We show the results of our analyses in Section 3, we discuss 
them in Section 4, and conclude with a critical reflection and an outlook 
on future work (Section 5). 
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2. Data & methods 

Herein, we describe a method that estimates for each contemporary 
road network segment whether a corresponding road symbol exists in a 
given scanned and georeferenced historical map of the same area. This is 
done by (a) using an image processing-based, continuous metric that 
indicates the likelihood that such a road symbol exists, and (b) 
employing a discretization method to convert this continuous metric 
into a binary metric indicating the presence or absence of a road symbol 
at the corresponding location on a given historical map. 

In this section, we describe the acquisition of historical maps for 
three study areas, located in the US, and four different points in time, 
ranging from 1895 to 1950 (Section 2.1). We then detail the charac
teristics of the contemporary road network vector data, which we ac
quired and processed for these study areas (Section 2.2) and present a 
manual and an automatic strategy to generate validation data in order to 
evaluate our approach (Section 2.3). We then describe the image pro
cessing pipeline to generate continuous estimates of historical road ex
istence (Section 2.4), and the subsequent discretization step to extract 
historical road segments from the pool of the entire contemporary road 
network (Section 2.5). Finally, we present four different strategies that 
we employed to test the performance of the proposed method and the 
plausibility of the results (Section 2.6). 

2.1. Historical map acquisition 

We obtained historical maps from the United States Geological Sur
vey (USGS) historical topographic map collection (HTMC), which is a 
digital archive of more than 190,000 scanned and georeferenced topo
graphic maps created between 1884 and 2006 (Allord, Fishburn, & 
Walter, 2014). Specifically, we used metadata for the HTMC (available 
from https://thor-f5.er.usgs.gov/ngtoc/metadata/misc/) to generate 
the geographic footprints of each map sheet contained in the archive, 
and obtained historical map sheets for a range of U.S. metropolitan 
areas, by automatically downloading them from the Amazon Web Ser
vices (AWS) S3 archive where the HTMC is hosted (USGS, 2021). We 
then inspected the temporal and geographic coverage of the maps in 
each metropolitan area, examining the two largest map scales (i.e., 
1:24,000 and 1:62,500) and chose three metropolitan areas with com
plete coverage for one or more (up to three) early time periods. The 
maps from different areas often exhibit different cartographic styles 
representing various geographic settings. We discarded the 1:24,000 
scale maps, as they tend to be more recent than the 1:62,500 maps (see 
Uhl, Leyk, Chiang, Duan, & Knoblock, 2018). The study areas are 
Greater Albany (New York), for the approximate years 1900, 1930, and 
1950, consisting of six map quadrangles (Fig. 1 a-c), 10 map quadrangles 
for the San Francisco Bay area (California) in approximately 1900 and 
1950 (Fig. 1 d,e), and a study area covering four map quadrangles in the 
Mobile Bay (Alabama) in approximately 1920. Henceforth, we call these 
combinations of study areas and time periods NY-1900, NY-1930, NY- 
1950, CA-1900, CA-1950, and AL-1920, respectively. In total, we used 
42 different map sheets, covering a range of color tones and contrast 
levels, as well as different printing techniques (e.g., black and white 
print in the AL-1920 study area, 5-color print in the CA-1950 study 
area). For each study area, we used an automated procedure to (a) 
remove the map collars, and (b) generate seamless mosaicked layers. 
This procedure has been developed for a previous project focusing on the 
extraction of urban areas and is described in detail in Uhl et al. (2021)1. 

In contrast to these differences in general map appearance, the way 
how roads are depicted appears to be fairly homogeneous across time 
periods and cartographic styles. As can be seen in Fig. 2, all study areas 
use parallel black lines to depict streets, in some cases generalized to the 
street blocks, or merged with building blocks or individual building 

outlines. In the 1950 maps, dense urban areas are depicted using red 
dots (NY-1950, Fig. 2c) or in a pink color signature (CA-1950, Fig. 2e) 
underlying the road symbols. 

2.2. Road network data preprocessing 

In addition to the historical maps from the HTMC, we used the Na
tional Transportation Dataset (NTD, v2019, USGS, 2019) from the USGS 
as contemporary road network data. The NTD is available as geospatial 
vector data, containing several feature classes on road and railroad 
networks, per state. The road network feature classes are generally to
pologically clean, i.e., an individual line feature represents a straight or 
a curved road (i.e., the road centerline) between two intersections, or 
between a dead-end and an intersection. Herein, we refer to these linear 
features as “road segments”. An actual street, as defined by a street 
name, may consist of multiple road segments. We clipped the road 
network vector data to the extents of the three study areas shown in 
Fig. 1. As we expect our results to vary across rural-urban gradients, we 
stratify the NTD road segments into two classes, assuming that short 
road segments are likely to occur in dense, urban areas, and long road 
segments typically occur in sparsely settled rural areas. Thus, we stratify 
the road segments into short (“urban”) roads and long (“rural”) roads, 
based on the 90th percentile of the road segment length distributions per 
study area as the threshold. This threshold corresponds to absolute 
values ranging between 345 m and 469 m across study areas (Table 1). 
The effect of this stratification is shown in Fig. 3a,b; see Appendix Fig. 
A1 for a visual evaluation of this stratification against building density 
estimates. Table 1 shows some basic statistics on the road networks in 
each of the three study areas. 

2.3. Validation data generation 

To our knowledge, there is no vector-based, multi-temporal road 
network data covering the study periods used herein that would be (a) 
compiled independently from the data under test, (b) presumably of the 
same or higher levels of accuracy, and (c) represent a large enough 
sample to generate accuracy estimates of high statistical power (Con
galton & Green, 2019), and thus could be used as reference data. To 
overcome this issue, we used a two-fold strategy to generate reference 
data as follows. 

2.3.1. Manually labelled patch-level validation data 
First, we took a stratified random sample (N = 100) of rural and 

urban roads per study area and year, summing up to a total of 1200 road 
segments. For each road segment, we cropped the historical maps within 
a patch of 500 m × 500 m around the segment centroid, and manually 
annotated these patches; we assigned a binary label indicating the 
presence or absence of a road symbol in the approximate center of the 
map patch. The random sampling yielded a relatively balanced dataset, 
i.e., 58% positive (road present), 42% negative (no road present) labels. 

2.3.2. Automatically created building-based validation data 
As the sample of N = 1200 only covers 0.2% of the overall set of 

627,909 observations (i.e., road segments per study area and time 
period, see Table 1), we also implemented a procedure that annotates 
each road segment with a reference label. This procedure is based on the 
assumption that if there is a road at a given location in a historical map it 
is likely that one or more buildings would have existed somewhere in 
proximity along the road segment. While the co-evolution of roads and 
buildings is little studied (Achibet, Balev, Dutot, & Olivier, 2014), we 
assume that this expectation is reasonable for most roads in urban set
tings, and for a fair amount of roads in rural settings. 

We use historical built-up area (BUA, Uhl & Leyk, 2020) surfaces 
from the Historical Settlement Data Compilation for the US (HISDAC- 
US, Leyk & Uhl, 2018, Uhl et al., 2021), which are available in 5-year 
intervals for the time period from 1810 to 2016 and are derived from 1 Code available from https://github.com/johannesuhl/mapprocessor. 
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then stack these horizontal lines vertically in their order of appearance 
along the road axis. Thus, for each road segment, we generate a pseudo- 
spatial axial image, with the y-direction corresponding to the road axis, 
and the x-axis corresponding to the directions perpendicular to the road 
axis. This way, we arrange the color information collected along a road 
axis of arbitrary shape (which may be curved) in a Cartesian, two- 
dimensional space (see Fig. 6, left column for some examples). 

While the width w of these axial images is given by the number of 
cross-sectional sampling locations (i.e., 20), the height h is defined by 
the number of cross-sections and thus, is a direct function of the road 
segment length. For simplified data processing, we regularize these axial 
images into a common target shape of 20 × 20 pixels. This regularization 
consists of (a) random sampling (N = 20) the rows of the image if h > 20; 
this occurs if road segments are longer than 20*25 m = 500 m (Fig. 6a). 
Conversely, if h < 20, the road segment is short and we transform the 
image into the target shape, by using a reflection padding strategy to 
impute the missing values in the target grid of 20 × 20 pixels (Fig. 6b). In 
addition to that, we convert the RGB information into grayscale. The 
second column from the left in Fig. 6 shows a few examples of the 
regularized, grayscale axial images. 

If a road from the pool of contemporary vector roads existed in a 
given historical map, we assume spatial coincidence or that road vector 
axis and road symbol run in parallel. Thus, we calculate the west-east 
image gradients within each axial image. As shown in Fig. 6 (third 
column from the left), these gradient maps are sensitive to the existence 
of a linear symbol in the map, parallel to the road vector axis. In order to 
quantify this sensitivity, we plot the north-south sums of the west-east 
gradients for each column and calculate the area under this aggre
gated gradient curve (Fig. 6, right column). This area under the curve is 
our road overlap indicator metric, which we call Road Overlap Indicator 
(ROI). As can be seen in the negative example (no road symbol in map, 
Fig. 6d), the ROI is expected to be low if no parallel linear feature exists 
in the historical map, and high, if otherwise. Moreover, the peak in the 
North-south sum curve indicates where the linear feature is located 
relative to the road axis. Here, it is worth noting that the magnitude of 
the ROI depends on the axial image dimensions, given by the chosen 
target shape, as well as on the contrast level in underlying map image. 
Hence, the ROI is a metric that is directly comparable for road segments 
within but not across map sheets. This method is expected to be sensitive 
to any linear map symbol, parallel or coinciding with a contemporary 
road, such as railroads or contour lines (see Fig. 6e), which may result in 
misclassifications (see Section 3). 

2.4.4. Extraction of the historical road network through discretization 
While the continuous ROI can be interpreted as a measure of likeli

hood that a road segment existed in a given historical map, many ap
plications require binary estimates (i.e., road existed vs. road did not 
exist). Thus, in this last step, we discretize the continuous ROI into two 
classes, using ck-means (Wang & Song, 2011) clustering. Ck-means is a 
variant of the k-means clustering algorithm, tailored to one-dimensional 
clustering problems. We preferred ck-means over other methods, as it 
allows to specify the desired number of clusters (i.e., 2), and it does not 
require the specification of data-specific parameters, nor does it make 
assumptions about density variations in the data, as opposed to methods 
such as DBScan (Schubert, Sander, Ester, Kriegel, & Xu, 2017). More
over, as ck-means has been developed for 1-dimensional data, it makes 
use of sorting functions and is expected to be highly performant. 

After this clustering step, we calculate the average ROI per cluster, 
and assume that the cluster with higher average ROI represents the 
cluster of historical roads (i.e., that exist in the historical map). As 
previously discussed, the magnitude of the ROI depends on the pre
dominant contrast level of a scanned map sheet, and thus, ck-means 
clustering is conducted separately for the road segments within each 
map sheet and compared to a “global” clustering strategy (i.e., across all 
map sheets of a study area – year combination. 

2.4.5. Sensitivity analysis 
The ROI measure is based on color information collected along cross- 

sectional lines perpendicular to the road center lines (Fig. 5a,b), and 
derived from axial images constructed from the cross-sectional color 
information (Fig. 6). The geometric properties of the cross-sections (i.e., 
cross-section length CSL and distance between cross-sections CSD) and 
the dimensions of the axial windows (i.e., width w and height h) 
potentially affect the magnitude of the ROI metric and thus, may affect 
the extracted road networks. For a subset of the NY study area (i.e., the 
1895 map for the city of Amsterdam, NY) we systematically varied these 
four parameters and visually compared the ROI and the resulting clus
tering results for a range of scenarios (see Section 3.6). 

2.5. Validation, cross-comparison, and plausibility checks 

We carried out different types of diagnostic analyses to evaluate the 
quality of the ROI and of the extracted, historical road networks. These 
diagnostics include (a) visual assessments, (b) quantitative comparison 
against the two sets of reference data, including manually labelled 
reference data, and automatically created reference data based on his
torical building distributions from the HISDAC-US (see Section 2.3), as 
well as (c) temporal plausibility checks. 

2.5.1. Visual assessment 
We visualized the ROI across two domains: 1.) in geographic space at 

the road segment level; and 2.) at the image patch level. For the second 
assessment, we classified the road segments into deciles based on the 
ROI distributions within each study area and year. We drew a random 
sample of N = 9 segments per decile class, per study area, and year, and 
extracted the historical map content within a patch of size 500 m × 500 
m around the segment centroid. We arranged the extracted map patches 
for visual assessment (Fig. 11). The results of this visual assessment are 
shown in Section 3.1. 

2.5.2. Validation against manually annotated reference data 
We analyzed the ROI distributions and conducted Receiver-operator- 

characteristic (ROC) analysis (Green and Swets, 1966) based on the 
manually annotated reference data, using the annotations (road pres
ence/absence) as a binary variable, and the ROI as a continuous vari
able. In order to evaluate the quality of the extracted historical road 
network (i.e., after discretizing the ROI using ck-means, see Section 
2.4.4), we report accuracy metrics such as precision, recall, and F1-score 
for different clustering scenarios. We report both instance-based accu
racy metrics (i.e., based on the number of road segments in each 
agreement class: true positives TP, false positives FP, and false negatives 
FN), as well as road-length based accuracy metrics (see Heipke, Mayer, 
Wiedemann, & Jamet, 1997), which weighs the confusion matrices by 
the total length L of road segments in each agreement class (Table 2). 
Such length-based accuracy metrics account for the irregular length of 
the segments which may bias the instance-based accuracy metrics. 
Moreover, such length-based accuracy metrics give a more realistic es
timate of the uncertainty propagated into road length statistics derived 
from the extracted network. For example, if a few short roads are mis
classified, their bias effect on the total historical road length is smaller 

Table 2 
Instance and length-based accuracy metrics.   

Precision Recall F1-score 

Instance- 
based 

Pi =
TP

(TP + FP)
Ri =

TP
(TP + FN)

F1i =

2
Pi∙Ri

(Pi + Ri)

Length-based 
PL =

∑
LTP

(
∑

LTP +
∑

LFP)

RL =

∑
LTP

(
∑

LTP +
∑

LFN)

F1L =

2
Pi∙Ri

(Pi + Ri)
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than it would be for long, misclassified road segments (Section 3.3). 

2.5.3. Comparison to historical built-up areas from HISDAC-US 
Based on the strategy described in Section 2.3.2, we annotated each 

of the 300,000+ road segments with the proportion of built-up area in 
the proximity of the road, as modeled by a buffer polygon around each 
road segment. This strategy yields a much larger sample than the 
manually collected reference data (Section 2.3.1) and thus, allows for 
more robust accuracy quantification. As discussed, we assume the 
presence of buildings to be indicative for the presence of a road. How
ever, it is unknown what proportion of land in proximity of a road needs 
to be built-up to be confident about the presence of a road and thus, the 
choice of a specific threshold is difficult. Hence, we define a range of 
thresholds applied to the built-up area fraction associated with each 
road segment to create different sets of binary variables. We then 
compare these binary variables to the continuous ROI, using ROC 
analysis. ROC analysis is commonly used to evaluate the agreement in 
binary classification problems between a binary reference variable and 
continuous probability scores when the optimum threshold (that maxi
mizes the true positive rate while minimizing the false positive rate) to 
be applied to the continuous variable is unknown. Here, we assume 
there is an ROI threshold that maximizes the binary agreement to the 
reference labels derived from the built-up area fractions. We conduct 
ROC analysis for each study area and year, and for a range of thresholds 
applied to the built-up area fractions, and visualize these ROC curves. 
Moreover, we analyze the distributions of the area-under-the-curve 
(AUC) (Fawcett, 2006), of the maximum F1-score (F1MAX), and of the 
ROI threshold associated with the F1MAX. The ROC analysis results are 
presented in Section 3.2. 

2.5.4. Temporal plausibility analysis 
Finally, we assess the plausibility of our results over time. Here, we 

assume that road networks grow (i.e., expand or densify) over time. 
Thus, a road detected in a map of year T needs to be detected in a later 
year T + x as well. We test this hypothesis by visually comparing the ROI 
for a given road segment in T and T + x, and by calculating the change in 
total road network length over time, which is assumed to be positive. 
Moreover, we compare the extracted road networks of subsequent years 
in a binary fashion, by calculating the transitions of a given road 
segment over time (e.g., road detected in T, but not in T + x) (Section 
3.4). 

Fig. 7 summarizes the datasets and data processing steps used for the 
historical road extraction (left part), and the analytical steps performed 
for the different validation efforts (right part). 

2.6. Data processing and analysis tools 

We collected HTMC historical maps using Python 3.7, and used 
GDAL/OGR2 for automated map collar removal. We used the ESRI 
ArcPy3 Python package to preprocess the NTD road network vector data, 
and GDAL/OGR Python package to generate cross-sectional sampling 
locations. We then used GDAL for vector-raster data integration, and 
NumPy4 Python package for image processing and establishing the road 
overlap indicator metric. Cluster analysis was done using a Python ck- 
means implementation,5 patch-based validation data was extracted 
using GeoPandas6 and OpenCV7 Python packages. The evaluation and 
validation experiments were conducted using Scikit-learn8 Python 

package. Data visualization was done in ESRI ArcMap 10.8,9 as well as 
using Matplotlib,10 GeoPandas, and Seaborn11 Python packages. We call 
our Python-based historical road network extraction pipeline the "His
torical Road Network Extractor" (HIRONEX) and make the source code, 
as well as some sample data, available on GitHub (https://github.com/ 
johannesuhl/hironex). 

3. Results 

In this section, we present the different results of the analyses con
ducted herein. First, we carried out a visual assessment: We map the ROI 
associated with each road segment in geographic space, and visualize a 
random sample of map patches collected at road segments in a contin
uum of the ROI obtained for each segment (Section 3.1). Second, we 
present the ROC analysis results from comparing the ROI against 
manually collected reference labels (i.e., road presence / absence) at the 
map patch level (Section 3.2). Third, we discuss the ROC analysis results 
from comparing the ROI against the built-up area fractions calculated 
from the HISDAC-US for each road segment (Section 3.3). Forth, we 
compare the extracted historical road networks (i.e., after binarizing the 
continuous ROI into two classes) against both, the manually collected, 
patch-level reference labels and the automatically created built-up area 
fractions (Section 3.4). Finally, we assess the plausibility of our results 
over time, in three analytical parts: (a) by comparing the ROI for a given 
road segment over time, (b) by assessing road network growth over time, 
and (c) by tracking the binary classes assigned to the road segments (i.e., 
historical versus more recent road) over time (Section 3.5). 

3.1. ROI visualization 

We calculated the road overlap indicator (ROI) metric for each of the 
300,000+ road segments, for all points in time, and visualized the ROI 
attributed to each road segment of the contemporary road network. We 
expect regions of high ROI values in the historical centers of dense, 
urban areas, that grow over time. Across all three study areas, the results 
are largely plausible, i.e., we observe high ROI values in densely settled 
urban centers, and these areas of high ROI levels generally expand over 
time (Fig. 8, Fig. 9). Visual comparison of the ROI values for roads in the 
historical Albany city center (Fig. 8c,d) indicates high levels of sensi
tivity of the ROI, in particular in dense urban areas, and the magnitude 
of the ROI in these urban areas appears to increase over time. Moreover, 
we observe that most rural roads in the Greater Albany area (Fig. 8a) 
already existed in the 1890s, whereas most roads in dense, urban roads 
did not exist yet by the 1950s. 

Similar observations can be made for the California study area 
(Fig. 9) where the spatial distributions of the ROI illustrate the overall 
growth patterns in the Bay area (Fig. 9a). In the Santa Clara enlarge
ments (Fig. 9b), we observe that the ROI magnitude appears to decrease 
over time, which is due to the higher levels of contrast in the 1890 maps 
as compared to the 1950 maps where urban road networks are depicted 
based on pink colors (Fig. 9b,c). Worth noting are also the large amounts 
of contemporary roads with low ROI, neither existing in the 1890s nor 
the 1950s. These patterns impressively illustrate the extreme urban 
growth that the Bay area has experienced since the 1950s (Fig. 9b). 

The Mobile study area represents the most challenging study area, as 
the map is a rather coarse, unspecific black-and-white print. Here we 
observe a slightly different picture (Fig. 10). While large parts of the 
contemporary road network, attributed with low ROI values, did not 
exist in the 1920s, we observe that even for maps of this cartographic 
style, the ROI is sensitive to the dense urban street network that co
incides or runs in parallel to the contemporary road network data 

2 https://gdal.org/api/python.html  
3 https://pro.arcgis.com/en/pro-app/latest/arcpy  
4 https://doi.org/10.1038/s41586-020-2649-2  
5 https://github.com/llimllib/ckmeans  
6 https://doi.org/10.5281/zenodo.3946761  
7 https://docs.opencv.org  
8 https://scikit-learn.org/ 

9 https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources  
10 https://matplotlib.org/  
11 https://seaborn.pydata.org/ 
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efficient without affecting the results. 
Despite the observed, high levels of agreement with a manually 

labelled reference database, as well as acceptable agreement with his
torical built-up areas, there are a few shortcomings of the proposed 
approach. (A) Our method is based on the contemporary road network 
as the analysis universe, and allows for measuring road network growth 
over time, but not the shrinkage of road networks (i.e., roads that have 
disappeared over time). While shrinkage of transportation infrastructure 
is common in the case of railroad networks in the US (Levinson, 2005), 
road network shrinkage is not common and typically neglected in sci
entific studies (e.g., Meijer, Huijbregts, Schotten, & Schipper, 2018). (B) 
Our method is not capable to discriminate between roads and other 
linear features depicted in historical maps, such as railroads, contour 
lines, map graticule, or administrative borders. Future work could make 
use of additional color information, or of a supervised classification 
approach to tackle this problem. Future work will also include testing 
alternative clustering techniques (e.g., Liu, Ting, & Zhou, 2008; Schu
bert et al., 2017) and binarization strategies for the continuous ROI 
measure (e.g., Otsu, 1979; Sabo, Scitovski, & Vazler, 2013), or a-pos
teriori refinement strategies, such as topological assessments to identify 
disconnected road segments. Moreover, the proposed method could be 
employed as a labelled data generator for the automated training data 
generation by sampling from both sides of the ROI distributions. These 
training data could then be input to computer-vision based road 
recognition models using convolutional neural networks or similar ap
proaches (Can et al., 2021; Ekim et al., 2021; Saeedimoghaddam & 
Stepinski, 2020; Jiao et al., 2021). Such a two-staged approach would 
also overcome the shortcoming of ignoring road network shrinkage. 
Furthermore, we will test the applicability of the presented approach to 
multi-temporal remote sensing data, or historical aerial imagery instead 
of historical maps. 

The availability of spatially explicit, historical road network data 
over large geographic (and temporal) extents will enhance a variety of 
research directions, such as road network scaling (e.g., Strano et al., 
2017), urban growth simulation (e.g., Zhao, Sun, Wu, & Gao, 2014; 
Zhao, Wu, Sun, Gao, & Liu, 2016), economic studies related to the road 
network (e.g., Iacono & Levinson, 2016; Miatto, Schandl, Wiedenhofer, 
Krausmann, & Tanikawa, 2017) and studies on the co-evolution of road 
networks and other components of the built environment (Achibet et al., 
2014). As our approach does not extract historical road geometries from 
raster maps directly, but annotates contemporary vector data, the re
sults, once topologically cleaned, could be directly input to topology- 
and graph based systems for change analysis (e.g., Lohfink, McPhee, & 
Ware, 2010; Shbita et al., 2020). 

Concluding, the presented method and results illustrate how the 

integration of multi-source geospatial data allows for the generation of 
enriched, novel data infrastructure, constituting a fundamental prereq
uisite to enhance our knowledge of the long-term evolution of contem
porary geographic phenomena. Ultimately, a thorough understanding of 
the long-term development of urban and rural transportation infra
structure will enable a more informed urban and regional planning, and 
make future transportation infrastructure more efficient, resilient, and 
sustainable. 
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Appendix A. Appendix  

Appendix Table A1 
Binary classification accuracy assessment of the ck-means clusters against manually created reference data and reference labels based on the built-up area fraction per 
road buffer, including urban and rural strata for each scenario (Prec = Precision, Rec = Recall).  

Referene data source: Reference labels from built-up fraction >0% Manually created reference labels 

Cluster analysis setup: Per study area Per map sheet Per study area Per map sheet 

Weighting scheme Study area Year Stratum Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 

Road length AL 1920 overall 0.12 0.43 0.19 0.17 0.43 0.24 0.67 0.50 0.58 0.69 0.36 0.48 
AL 1920 rural 0.07 0.54 0.12 0.11 0.54 0.19 0.70 0.59 0.64 0.77 0.39 0.52 
AL 1920 urban 0.30 0.36 0.33 0.28 0.36 0.31 0.58 0.30 0.40 0.53 0.30 0.38 
CA 1900 overall 0.42 0.73 0.53 0.40 0.57 0.47 0.52 0.68 0.59 0.58 0.62 0.60 
CA 1900 rural 0.36 0.88 0.51 0.29 0.47 0.36 0.41 0.81 0.54 0.48 0.63 0.54 

(continued on next page) 

J.H. Uhl et al.                                                                                                                                                                                                                                   



Computers, Environment and Urban Systems 94 (2022) 101794

20

Appendix Table A1 (continued ) 

Referene data source: Reference labels from built-up fraction >0% Manually created reference labels 

Cluster analysis setup: Per study area Per map sheet Per study area Per map sheet 

Weighting scheme Study area Year Stratum Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 

CA 1900 urban 0.51 0.61 0.56 0.52 0.64 0.57 0.68 0.59 0.63 0.69 0.62 0.65 
CA 1950 overall 0.74 0.58 0.65 0.79 0.57 0.66 0.89 0.67 0.77 0.83 0.57 0.67 
CA 1950 rural 0.65 0.63 0.64 0.79 0.64 0.70 0.91 0.82 0.87 0.77 0.58 0.66 
CA 1950 urban 0.78 0.57 0.66 0.79 0.54 0.64 0.88 0.60 0.72 0.86 0.56 0.68 
NY 1900 overall 0.63 0.64 0.63 0.67 0.64 0.65 0.75 0.77 0.76 0.80 0.77 0.79 
NY 1900 rural 0.63 0.72 0.67 0.66 0.72 0.69 0.81 0.84 0.83 0.85 0.84 0.84 
NY 1900 urban 0.62 0.49 0.55 0.70 0.49 0.58 0.60 0.60 0.60 0.68 0.61 0.64 
NY 1930 overall 0.83 0.72 0.77 0.84 0.72 0.77 0.84 0.93 0.89 0.84 0.93 0.88 
NY 1930 rural 0.80 0.73 0.76 0.80 0.73 0.76 0.84 1.00 0.91 0.84 1.00 0.91 
NY 1930 urban 0.90 0.69 0.78 0.93 0.70 0.80 0.85 0.82 0.83 0.84 0.79 0.82 
NY 1950 overall 0.77 0.78 0.78 0.76 0.73 0.74 0.97 0.93 0.95 0.97 0.88 0.92 
NY 1950 rural 0.70 0.93 0.80 0.67 0.83 0.74 0.97 0.97 0.97 0.97 0.89 0.93 
NY 1950 urban 0.92 0.63 0.75 0.92 0.63 0.75 0.97 0.85 0.90 0.96 0.85 0.90 

Instance-based AL 1920 overall 0.19 0.36 0.24 0.22 0.36 0.27 0.67 0.39 0.49 0.61 0.30 0.41 
AL 1920 rural 0.09 0.50 0.15 0.14 0.50 0.22 0.73 0.53 0.62 0.71 0.33 0.45 
AL 1920 urban 0.25 0.33 0.29 0.25 0.33 0.29 0.63 0.32 0.43 0.56 0.29 0.38 
CA 1900 overall 0.48 0.70 0.57 0.50 0.70 0.58 0.63 0.58 0.60 0.65 0.58 0.62 
CA 1900 rural 0.44 0.88 0.58 0.45 0.63 0.53 0.38 0.86 0.52 0.45 0.71 0.56 
CA 1900 urban 0.49 0.67 0.57 0.51 0.71 0.59 0.69 0.56 0.62 0.68 0.57 0.62 
CA 1950 overall 0.76 0.61 0.68 0.77 0.61 0.68 0.86 0.62 0.72 0.84 0.59 0.69 
CA 1950 rural 0.70 0.58 0.64 0.80 0.67 0.73 0.90 0.75 0.82 0.80 0.67 0.73 
CA 1950 urban 0.77 0.61 0.68 0.77 0.60 0.67 0.85 0.60 0.71 0.84 0.59 0.69 
NY 1900 overall 0.70 0.60 0.65 0.73 0.61 0.67 0.78 0.72 0.75 0.81 0.74 0.77 
NY 1900 rural 0.60 0.82 0.69 0.64 0.82 0.72 0.73 0.92 0.81 0.79 0.92 0.85 
NY 1900 urban 0.73 0.56 0.63 0.76 0.58 0.65 0.80 0.68 0.73 0.82 0.70 0.76 
NY 1930 overall 0.85 0.71 0.77 0.86 0.72 0.78 0.89 0.83 0.86 0.89 0.83 0.86 
NY 1930 rural 0.76 0.81 0.79 0.76 0.81 0.79 0.88 1.00 0.94 0.88 1.00 0.94 
NY 1930 urban 0.87 0.69 0.77 0.89 0.70 0.78 0.89 0.79 0.84 0.89 0.79 0.84 
NY 1950 overall 0.86 0.66 0.75 0.84 0.65 0.73 0.97 0.84 0.90 0.96 0.83 0.89 
NY 1950 rural 0.71 0.92 0.80 0.69 0.85 0.76 0.94 0.94 0.94 0.94 0.88 0.91 
NY 1950 urban 0.90 0.62 0.73 0.89 0.62 0.73 0.98 0.82 0.89 0.97 0.82 0.89   

Appendix Table A2 
Multi-temporal road network statistics based on cross-tabulation of cluster labels across time, within strata of urban and rural roads, and for both clustering strategies.  

Clustering strategy Study 
area 

T1 T2 Stratum km road [%] of contemporary road length 

Not 
existent 

Persistent Newly 
built 

Disappeared Not 
existent 

Persistent Newly 
built 

Disappeared 

Clustering per 
study area 

NY 1900 1930 overall 3625 3756 2522 605 34.50 35.75 24.00 5.75 
NY 1900 1930 urban 2490 1747 1391 353 41.64 29.21 23.26 5.90 
NY 1900 1930 rural 1135 2009 1131 252 25.07 44.39 24.98 5.56 
NY 1930 1950 overall 3399 5664 825 613 32.36 53.94 7.86 5.84 
NY 1930 1950 urban 2312 2824 526 311 38.70 47.29 8.81 5.20 
NY 1930 1950 rural 1087 2840 299 303 24.01 62.71 6.60 6.69 
NY 1900 1950 overall 3379 3727 2762 633 32.18 35.49 26.31 6.03 
NY 1900 1950 urban 2272 1746 1605 350 38.05 29.23 26.87 5.85 
NY 1900 1950 rural 1107 1981 1157 283 24.44 43.75 25.56 6.25 
CA 1900 1950 overall 12,966 10,544 9253 4.578 34.72 28.24 24.78 12.26 
CA 1900 1950 urban 8397 5495 6080 2.588 37.22 24.36 26.95 11.47 
CA 1900 1950 rural 4569 5049 3173 1.990 30.91 34.16 21.47 13.46 

Clustering per map 
sheet 

NY 1900 1930 overall 3317 3772 2277 503 33.61 38.22 23.07 5.10 
NY 1900 1930 urban 2417 1720 1307 346 41.75 29.70 22.57 5.97 
NY 1900 1930 rural 900 2053 970 158 22.06 50.30 23.77 3.87 
NY 1930 1950 overall 3105 5572 716 477 31.46 56.45 7.25 4.84 
NY 1930 1950 urban 2234 2767 528 260 38.60 47.79 9.12 4.48 
NY 1930 1950 rural 871 2805 187 218 21.34 68.73 4.59 5.33 
NY 1900 1950 overall 3082 3775 2513 501 31.22 38.25 25.46 5.08 
NY 1900 1950 urban 2175 1746 1549 319 37.58 30.17 26.75 5.50 
NY 1900 1950 rural 906 2028 964 182 22.21 49.70 23.62 4.47 
CA 1900 1950 overall 13,026 10,142 8097 4.096 36.84 28.68 22.90 11.58 
CA 1900 1950 urban 8575 5880 5544 2.367 38.34 26.29 24.79 10.59 
CA 1900 1950 rural 4451 4262 2553 1.728 34.25 32.80 19.65 13.30       
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Supplementary material 

We made the source code of our Python-based historical road network extraction pipeline publicly available. This pipeline is called the "Historical 
Road Network Extractor" (HIRONEX) and is available at https://github.com/johannesuhl/hironex. 
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processes governing the evolution of road networks. Scientific Reports, 2(1), 1–8. 

Swisstopo. (2020). A journey through time—Maps. Available online: https://www.swiss 
topo.admin.ch/en/maps-data-online/maps-geodataonline/journey-through-time. 
html (accessed 01 January 2020). 

Tang, L., Huang, F., Zhang, X., & Xu, H. (2012). Road network change detection based on 
floating car data. Journal of Networks, 7(7), 1063. 
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