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A B S T R A C T   

To better understand the dynamics of human settlements, thorough knowledge of the uncertainty in geospatial 
built-up surface datasets is critical. While frameworks for localized accuracy assessments of categorical gridded 
data have been proposed to account for the spatial non-stationarity of classification accuracy, such approaches 
have not been applied to (binary) built-up land data. Such data differs from other data such as land cover data, 
due to considerable variations of built-up surface density across the rural-urban continuum resulting in switches 
of class imbalance, causing sparsely populated confusion matrices based on small underlying sample sizes. In this 
paper, we aim to fill this gap by testing common agreement measures for their suitability and plausibility to 
measure the localized accuracy of built-up surface data. We examine the sensitivity of localized accuracy to the 
assessment support, as well as to the unit of analysis, and analyze the relationships between local accuracy and 
density / structure-related properties of built-up areas, across rural-urban trajectories and over time. Our ex
periments are based on the multi-temporal Global Human Settlement Layer (GHSL) and a reference database for 
the state of Massachusetts (USA). We find strong variation of suitability among commonly used agreement 
measures, and varying levels of sensitivity to the assessment support. We then apply our framework to assess 
localized GHSL data accuracy over time from 1975 to 2014. Besides increasing accuracy along the rural-urban 
gradient, we find that accuracy generally increases over time, mainly driven by peri-urban densification pro
cesses in our study area. Moreover, we find that localized densification measures derived from the GHSL tend to 
overestimate peri-urban densification processes that occurred between 1975 and 2014, due to higher levels of 
omission errors in the GHSL epoch 1975.   

1. Introduction 

Understanding the regional and local patterns of human settlements 
on Earth requires not only reliable geospatial data at sufficiently high 
spatial resolution, but also thorough knowledge about the uncertainty in 
the data used to analyze settlement processes (e.g., suburbanization and 
conurbation processes), including the spatial (and temporal) variability 
of the uncertainty inherent in built-up land data. Ignoring or over
simplifying the uncertainty of such data may seriously bias the inter
pretation of analytical results, and thus, frameworks for the accuracy 
assessment of such data products are required to take into account the 
peculiarities of built-up land data. This includes the accuracy estimation 
at suitable analytical extents and within meaningful spatial strata. 
Moreover, local processes of human settlement (e.g., densification, 

expansion, or infilling processes) can only be modeled and understood 
objectively if the underlying local uncertainty structure is known. 

Uncertainty in geospatial categorical data such as remote-sensing 
derived land cover data is often quantified by statistical measures ob
tained through accuracy assessments that are based on map comparison 
techniques. In such assessments the examined data are compared to an 
independently compiled reference dataset of presumed higher accuracy 
(FGDC, 1998). Common map comparison approaches include the use of 
confusion matrices to derive accuracy metrics that quantify the agree
ment between the test data and reference data within the study area 
(Fielding and Bell, 1997). In a traditional accuracy assessment, a global 
accuracy measure is computed for the whole study area ignoring spatial 
variation of the level of agreement between the two data sources (Foody, 
2007). In recent years, geospatial research has established an improved 
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understanding of uncertainty in spatial data as a spatially varying phe
nomenon (e.g., Leyk and Zimmermann, 2004; Foody, 2007; Wickham 
et al., 2018). This spatial variation can be driven by differences in 
quality of underlying source data between rural and urban regions, 
ambiguous spectral responses of different land cover categories, or ob
structions due to clouds, to mention some examples. 

Based on this recent research, it is known that overly aggregated 
accuracy measures might misrepresent the inherent uncertainty in the 
data under test and ignore its spatial structure. Furthermore, it has been 
shown that classification accuracy metrics can be sensitive to the sample 
size (e.g., Bujang and Baharum, 2017; Champagne et al., 2014; Sim and 
Wright, 2005) and severely biased if the proportional sizes of individual 
classes are heavily imbalanced (see Rosenfield and Melley, 1980; 
Wickham et al., 2010; Akosa, 2017; Shao et al., 2019; Radoux et al., 
2020; Stehman and Wickham, 2020). To reduce these effects, different 
approaches have been proposed including stratified sampling (e.g., 
Congalton, 1991), spatially constrained (localized) confusion matrices 
(Leyk and Zimmermann, 2004; Foody, 2007), predictive uncertainty 
modelling using ancillary variables (e.g., Smith et al., 2003; Leyk and 
Zimmermann, 2007; van Oort et al., 2004; Zhang and Mei, 2016; 
Wickham et al., 2018; Mei et al., 2019) and spatial / geostatistical 
interpolation methods (Steele et al., 1998; Kyriakidis and Dungan, 2001; 
Comber et al., 2012; Tsutsumida and Comber, 2015). Localized accuracy 
assessments typically involve the creation of continuous accuracy sur
faces and are sometimes referred to as spatially explicit accuracy as
sessments (Löw et al., 2013; Khatami et al., 2017; Waldner et al., 2017; 
Mitchell et al., 2018). 

According to Foody (2002), accuracy estimates may vary consider
ably for different analytical scales, and depend strongly on the sample 
used to establish the confusion matrix, which ideally is representative 
for the conditions found within the study area (see also Stehman and 
Foody, 2019). Accordingly, different efforts have proposed and applied 
accuracy assessment frameworks using different analytical units (Pon
tius Jr., 2002; Pontius Jr. and Suedmeyer, 2004; Pontius Jr et al., 2004; 
Pontius Jr. and Cheuk, 2006; Pontius et al., 2008b; Pontius Jr et al., 
2011; Stehman and Wickham, 2011; Zhu et al., 2013; Yan et al., 2014; 
Ye et al., 2018; Marconcini et al., 2020a), for different sample sizes (e.g., 
Congalton, 1988; Hashemian et al., 2004; Foody, 2009) but also across 
different geographic extents (Wardlow and Callahan, 2014; Ariza-López 
et al., 2018), and different levels of semantic aggregation (Pontius and 
Malizia, 2004). The geographic extent (sometimes called geographic 
scale, cf. Smith, 2000) used to draw a sample of analytical units to 
establish the confusion matrix is the spatial support, or assessment unit 
(Stehman, 2009), and will be called assessment support in this work. 

The sensitivity of a spatial variable to the size and shape of an 
imposed zoning unit used for aggregation is a well-known phenomenon 
in geographic information science and the social sciences (i.e., the 
modifiable areal unit problem, MAUP; Openshaw, 1984, see Nelson and 
Brewer, 2017 for a recent in-depth study). Hence, it is particularly sur
prising that only few studies have analyzed the sensitivity of accuracy 
measures to their constraining geometry or assessment support, 
considering that the elements of the confusion matrix computed for a 
given areal extent consist of the sums of agreement-disagreement com
binations within that extent and thus, can be conceptualized as a 
spatially aggregated geographic variable that propagates the inherent 
uncertainties of the selected analytical scales. 

With recent technological advances in geospatial data acquisition, 
processing, cloud-based dissemination and analysis infrastructure, there 
is an increasing amount of novel geospatial datasets available, 
measuring the spatio-temporal distribution of human settlements and 
land cover in general, over large extents and at unprecedented spatial 
granularity. These datasets include the different built-up surface layers 
from the Global Human Settlement Layer project (GHSL, Pesaresi et al., 
2013, Corbane et al., 2019a, Corbane et al., 2019b, Corbane et al., 
2021), Global Urban Footprint (Esch et al., 2013), High-Resolution 
Settlement Layer (Facebook Connectivity Lab and Center for 

International Earth Science Information Network - CIESIN - Columbia 
University, 2016), and the World Settlement Footprint (Marconcini 
et al., 2020a, 2020b), as well as the FROM-GLC10 (Gong et al., 2019), 
and the Global artificial impervious areas product (GAIA, Gong et al., 
2020). While such datasets greatly facilitate the study of urbanization, of 
human-natural systems and of related geographic-environmental pro
cesses at unseen levels of detail, little research has been done on the 
accuracy of such datasets and how accuracy trajectories can be char
acterized across the rural-urban continuum, often due to the lack of 
reliable reference data over sufficiently large spatial (and temporal) 
extents. For example, previous work has revealed varying levels of ac
curacy among different settlement datasets (Klotz et al., 2016), 
increasing accuracy levels over time in case of the multi-temporal Global 
Human Settlement Layer (Leyk et al., 2018), and increases in accuracy 
from rural towards urban areas (Uhl and Leyk, 2017; Uhl et al., 2018; Liu 
et al., 2020). However, these general trends are based on coarse, 
regional stratification of the studied area and thus, possibly neglect local 
accuracy variations. 

High-resolution built-up land data, discriminating between built-up 
and not built-up land in a binary fashion, exhibit some significant dif
ferences compared to multi-class land use / land cover (LULC) data, that 
is, they can be severely imbalanced, and this imbalance can shift be
tween rural and urban areas. Furthermore, measures derived from 
localized confusion matrices can be void due to zero instances in one of 
the matrix fields. Thus, a framework for localized accuracy assessment 
of built-up land data needs to account for extreme, bi-directional class 
imbalance, as well as small sample sizes underlying a spatially con
strained confusion matrix, and the absence of instances of one or more 
confusion matrix elements. This study has the goal to develop such a 
framework guided by the following research questions:  

- Are commonly used accuracy measures suitable for assessing the 
local accuracy of binary, gridded built-up surface datasets?  

- How does local accuracy relate to the underlying density of built-up 
area and to population density, and how generalizable are these re
lationships across the rural-urban continuum, and over time?  

- How does the assessment support and analytical unit influence local 
accuracy estimates and their trends across the rural-urban 
continuum? 

Thus, this study has four contributions: (a) we identify suitable ac
curacy measures for localized uncertainty assessment of built-up land 
data, (b) we reveal novel, fine-grained insights of the local, spatio- 
temporal uncertainty inherent in the multitemporal, Landsat-based 
Global Human Settlement Layer, and (c) we assess the scale- 
dependency of localized accuracy measures. To shed light on these 
questions, we analyzed the mathematical definition and behavior of 
commonly used accuracy and agreement measures with respect to small 
sample sizes and sparsely populated confusion matrices, and we con
ducted an exemplary, spatially explicit accuracy assessment of built-up 
area derived from the GHSL against a large reference database derived 
from cadastral parcel and building footprint records. We generated large 
amounts (N > 100,000,000) of spatially constrained confusion matrices, 
using (a) external enumeration boundaries to define zones, and (b) 
moving focal windows as constraining geometry, both at various levels 
of spatial granularity. We computed a variety of commonly used accu
racy measures for these zonal and focal constraining regions, to assess 
their sensitivity to the assessment support, and examined relationships 
between these local accuracy measures and structure / density of built- 
up area, as well as population density. Finally, we applied our frame
work to the multi-temporal settlement data from the GHSL, and assessed 
temporal trajectories of localized accuracy across space and along the 
rural-urban continuum. Herein, we will use the term “built-up density” 
when referring to the density of built-up surface within a given areal 
reference unit. Moreover, we will use the term “local / localized accu
racy” for focal and zonal accuracy estimates, describing the data 
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accuracy within a local spatial unit. The term “accuracy” refers to both, 
estimates of thematic and quantity agreement (see Section 2.2.3). 

2. Data and methods 

This study consists of two major analytical parts: First, we analyzed 
accuracy measures of GHSL-derived built-up areas within spatial units 
defined by zoning data derived from administrative boundaries and U.S. 
census enumeration units of various granularities (i.e., zonal accuracy 
estimates). Second, we assessed accuracy measures within moving 
windows of varying size (i.e., focal accuracy estimates). The former 
allowed for examining relationships of zonal accuracy estimates to 
population density, whereas the latter allowed for generating a contin
uous space of assessment support, independently of underlying admin
istrative zones or population distributions. In both cases, we employed a 
highly accurate reference database of built-up areas derived from 
cadastral parcel and building footprint data and analyzed these localized 
accuracy measures in various ways for the state of Massachusetts, USA, 
which extends across an area of over 27,000 km2 and contains highly 
urbanized regions, such as Boston, but also extensive rural areas. 

2.1. Data 

This study is based on binary built-up / not built-up raster layers 
extracted from the GHSL (Fig. 1a,b). Specifically, we employed built-up 
areas in 1975, 1990, 2000 and 2014 extracted from the GHSL Landsat 
edition (GHS-BUILT R2018A, Florczyk et al., 2019, file name: 
GHS_BUILT_LDSMT_GLOBE_R2018A_3857_30_V2_0). While finer- 
grained, contemporary built-up land depictions have been released in 
the GHSL effort (e.g. Corbane et al., 2021), the GHS-BUILT R2018A is, to 
date, the most recent, and fine-grained global settlement dataset 
covering such a long time period. The GHSL estimates the presence and 
distribution of human settlements on the planet at a spatial resolution of 
30 m and for different points in time (1975, 1990, 2000, and 2014), 
based on multi-temporal Landsat data and a machine learning approach 
(Pesaresi et al., 2015, 2016). We used the GHS-BUILT R2018A, as it 
extends farthest back in time among the multi-temporal global built-up 
surface datasets (i.e., to 1975, as opposed to the WSF-evolution data 
product dating back to 1985, Marconcini et al., 2020b). Moreover, the 

GHSL dataset has been used for different data production efforts, such as 
the GHS-POP population dataset or the GHS-SMOD rural-urban classi
fication (Florczyk et al., 2019). The GHS-BUILT R2018A or derived 
products have been used in a wide range of scientific studies (see Ehrlich 
et al., 2021 for an overview). Thus, understanding the uncertainty in this 
data product enables a more reflected use of the data or derived datasets 
in applied studies. 

The extracted built-up presence surfaces represent the data under 
test, and were compared to a reference database of multi-temporal built- 
up areas in the U.S. that has been created by the authors through inte
grating publicly available cadastral, tax assessment and building foot
print data and allows for accuracy assessments of built-up land data at 
fine spatial resolution, covering over 30 U.S. counties (i.e., >40,000km2, 
more than 6,000,000 cadastral parcels). Parcel geometries which 
include built-year information were spatially refined to the extent of 
building outlines and rasterized using the GHSL grid properties (Fig. 1c, 
d). This multi-temporal reference database has been applied for vali
dation purposes in previous work (see Uhl and Leyk, 2017; Leyk et al., 
2018; Uhl et al., 2018; Leyk and Uhl, 2018; Uhl et al., 2021). We call this 
database the Multi-Temporal Building Footprint dataset (MTBF-33) as 
it covers 33 U.S. counties and made this database publicly available (Uhl 
and Leyk, 2022). This valuable data source can be used to create unique 
snapshots of built-up land (Uhl and Leyk, 2020) suitable as reference 
surfaces for developed or built-up land classes at arbitrary points in time 
since 1900. We assessed the plausibility of this integrated data product 
by cross-comparing building and parcel information and excluded 
discrepant areas from the analysis (e.g., parcels without associated 
building footprint but indicating the presence of a building, making up 
approximately 16% of the study area), which increases the reliability of 
the reference data (see Leyk et al., 2018 for details). The state of Mas
sachusetts represents the largest contiguous area covered in MTBF-33 
and thus, is used as study area herein. 

We derived the zoning data from administrative boundaries (i.e., 
state, county and township boundaries; MassGIS, 2016) and U.S. census 
enumeration units, (i.e., census tracts, block groups and blocks; U.S. 
Census Bureau, 2017). Census tracts generally have a population size 
between 1200 and 8000 people, block groups contain between 600 and 
3000 people and census blocks represent single city blocks in urban 
areas, and may encompass large areas in rural regions (U.S. Census 

Fig. 1. Data used in this study: Built-up areas (a) from the GHS_BUILT_LDSMT_GLOBE_R2018A product in 1975 and 2014, and (b) from the reference database, at a 
spatial resolution of 30mx30m, for Massachusetts (USA). Panel (c) shows the data for a part of the city of Worcester, Massachusetts. 
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Bureau, 2017). In 2010, the state of Massachusetts contains 14 counties, 
351 townships, 1475 census tracts, 4982 block groups, and 157,508 
census blocks. The delineation of census enumeration boundaries is 
heavily influenced by the underlying spatial population distribution, 
and it can be expected that large-scale spatio-temporal patterns of 
population are related to those of built-up area. Therefore, using census 
enumeration units is an inherently meaningful way to spatially constrain 
the confusion matrices for substantive evaluation of underlying accu
racy associations. The levels of granularity of these spatial units 
constitute different levels of assessment support. The use of census data 
from 2010 and GHSL built-up areas from 2014 ensured that temporal 
discrepancies between zoning and test data were kept to a minimum. 

2.2. Methods 

In a first step, we projected and rasterized the built-up areas derived 
from the reference database in 2014 (i.e., polygonal vector data) to the 
spatial reference system and spatial resolution used in GHSL version 
2018. During this process, the definition of the abstract class “built-up 
area” (i.e., a grid cell is considered built-up if at least one built-up 
structure overlaps the grid cell; see Pesaresi et al., 2016) was applied 
to the reference data to ensure spatial and thematic compatibility 
(Fig. 2a). 

2.2.1. Generating zonal accuracy measures 
First, we generated agreement category surfaces, i.e., encoding true 

positives (TP), true negatives (TN), false positives (FP), and false nega
tives (FN) based on map comparison (i.e., pixel-wise agreement / 
disagreement) between built-up areas in 2014 derived from GHSL and 
the rasterized reference data (Fig. 2b), using an exhaustive sampling 

scheme, excluding grid cells within parcels that are considered unreli
able. These surfaces use one-hot encoding (e.g., TP = 1, other cells = 0). 
For each agreement category, we computed the zonal sums of the 
respective categories within each (vector) zoning geometry at all six 
assessment support levels (i.e., state, county, township, tract, block 
group, block), yielding the confusion matrix for each individual zoning 
geometry (Fig. 2c). We calculated a range of accuracy measures (Section 
2.2.3), derived from these confusion matrices and appended them as 
attributes to the respective zoning geometries. We linked each of the 
>150,000 census blocks to all zoning geometries that spatially con
tained the respective census block, in order to establish links between all 
zoning geometries across the assessment support domain. This method 
allows for extracting accuracy measures at each individual zoning ge
ometry defining the assessment support, as well as the accuracy trajec
tories for a given location across all support levels for visualization and 
analysis (see Section 3.4). 

2.2.2. Generating focal accuracy measures 
The second data processing effort conducted in this study yielded a 

set of surfaces of localized accuracy measures within focal (moving) 
windows, of varying size, and thus, independent from external zoning 
data (Fig. 2d). More specifically, we used quadratic focal windows of 
size sxs, with s ϵ (1 km, 2.5 km, 5 km, 10 km), representing four levels of 
focal assessment support. In a first step, for each focal support level, we 
computed the focal sum of the instances of each agreement type (TP, TN, 
FP, FN, see Fig. 2e). For example, the focal sum of TP instances for 
support s = 1000 m (i.e., TP1000) represents the TP elements of the 
corresponding localized confusion matrices CM1000. We stacked these 
four surfaces into a 4-band composite, representing a spatialized version 
of localized confusion matrices. We generated such a confusion matrix 

Fig. 2. Workflow of the conducted data processing steps: (a) Binary input surfaces indicating the presence and absence of built-up areas, (b) agreement surfaces for 
each agreement type (TP, TN, FP, FN) obtained by cell-by-cell map comparison, (c) zonal accuracy measure creation, (d) analytical steps for the focal accuracy 
analysis, shown for two of four levels of assessment support, (e) aggregated agreement surfaces, (f) resulting focal confusion matrix composites, (g) exemplary output 
surfaces generated from the confusion matrix composites, and (h) exemplary focal landscape metrics (i.e., number of patches, NP) derived for two levels of 
assessment support. Surfaces are shown for Worcester, Massachusetts. 
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composite for each of the four support levels. The TP, FP, and FN bands 
of these composites are shown in Fig. 2f using RGB color-coding, 
exemplarily for s = 1 km and s = 2.5 km. 

For each of the four levels of focal assessment support, we drew a 
stratified random subsample of N = 1,000,000 locations from the >6.6 
million grid cells within Massachusetts that have at least one GHSL or 
reference built-up instance within their focal neighborhood. In order to 
obtain a representative sample across the rural-urban continuum 
covering both GHSL and reference data, we stratified the data by deciles 
of reference built-up area density (i.e., 100,000 locations per decile 
stratum). All subsequent computations are based on these compositional 
data structures, allowing for efficient retrieval of localized confusion 
matrix components at any location and support level, and the fast 
computation of accuracy surfaces for a range of accuracy measures (see 
Fig. 2g for an example, see also Section 2.2.3) and built-up area density 
surfaces (Fig. 2g, Section 2.2.4). 

2.2.3. Agreement measures 
The agreement measures examined herein are based on a binary 

contingency table, representing the confusion matrix CM: 

CM =

[
TN FP
FN TP

]

(1)  

with TN: true negatives, FN: false negatives, FP: false positives, and TP: 
true positives as counts resulting from cross-tabulation of the reference 
and test data records, where “positive” refers to the entities of interest (i. 
e., built-up). Then the overall accuracy, or percentage of correctly 
classified (PCC) is defined as 

PCC =
TP+ TN

n
(2)  

where n is the sum of all elements of CM (Michie et al., 1994). Producer's 
accuracy (PA, also known as recall, sensitivity, or true positive rate) 
indicates the probability of a reference element being classified 
correctly, and is complementary to the omission error OE (error of 
exclusion, or type II error), whereas User's accuracy (UA, also known as 
precision) indicates the probability of a classified object being correct, 
and is complementary to the commission error CE (error of inclusion, or 
type I error) (Story and Congalton, 1986): 

PA = recall =
TP

TP+ FN
= 1 − OE (3)  

and 

UA = precision =
TP

TP+ FP
= 1 − CE (4) 

Note that in the remainder of this analysis, we use the terms “pre
cision” and “recall”. The F-measure is defined as the harmonic mean of 
precision and recall (van Rijsbergen, 1974): 

F =
2⋅TP

2⋅TP+ FP+ FN
=

2⋅precision⋅recall
precision+ recall

(5)  

and represents a specific case of the generalized Fβ measure for β = 1 
(Maratea et al., 2014). The Fβ measure is defined as: 

Fβ =
(
1 + β2)⋅

precision⋅recall
(
β2⋅precision

)
+ recall

(6)  

and allows for assigning higher weights to precision (0 < β < 1) or to 
recall (β > 1) and is particularly useful to evaluate binary classification 
scenarios when precision or recall should be emphasized, e.g., in the 
case of heavily imbalanced data. Some commonly used Fβ measures are 
the F2 score (i.e., β = 2, favoring recall), and the F0.5 score, (i.e., β = 0.5, 
favoring precision) (Van Rijsbergen, 1979). 

The geometric mean (G-mean, Kubat and Matwin, 1997) is defined 
as the geometric mean of specificity (i.e., the recall of the negative class) 
and sensitivity (i.e., recall of the positive class): 

G =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
TN

TN + FP
⋅

TP
FN + TP

√

(7) 

Maratea et al. (2014) combine the concepts of the Fβ measure and the 
G-mean and developed the adjusted F-measure (FADJ), which is defined 
as: 

FADJ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
F2⋅inv(F0.5)

√
(8)  

and represents the geometric mean of the F2 measure and inv.(F0.5), 
where inv.(F0.5) denominates the F0.5 measure after inverting the posi
tive and negative class labels, in order to account for the class imbalance 
bias. Moreover, the Jaccard Index (Jaccard, 1902) sometimes referred to 
as “figure of merit” (e.g., Pontius et al., 2008a), or Intersection-over- 
Union (IoU) is defined as: 

IoU =
TP

TP+ FP+ FN
(9) 

Cohen's Kappa index (Cohen, 1960) in case of a binary classification 
is defined as 

κ =
p0 − pc
1 − pc

(10)  

with p0 being the observed overall agreement corresponding to PCC and 
pc being chance agreement, estimated as: 

pc =

(
TP+ FN

n

) (
TP+ FP

n

)

+

(
TN + FN

n

) (
TN + FP

n

)

(11) 

Moreover, Matthews Correlation Coefficient (MCC, Matthews, 
1975), defined as: 

MCC =
TP⋅TN − FP⋅FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP)⋅(TP+ FN)⋅(TN + FP)⋅(TN + FN)

√ (12)  

is increasingly used as an accuracy measure in land cover classifications 
(e.g., Herfort et al., 2019; Longépé et al., 2019; Vasilakos et al., 2020). 
Finally, the Normalized Mutual Information score (NMI, Forbes, 1995) is 
obtained based on the entropy H of the predicted class labels p, the 
entropy of the reference class labels r and the entropy of both reference 
and predicted class labels as: 

NMI = 1 −
H(r, p) − H(p)

H(r)
(13)  

which equals in the case of a binary classification problem to:   

Herein, we divided uncertainty into thematic agreement and quan
tity agreement. A similar separation has been proposed by Pontius Jr 
and Millones (2011) and has proven to provide interesting insights into 

NMI = 1 −
− TPln(TP) − FP ln(FP) − FN ln(FN) − TN ln(TN) + (TP+ FP)ln(TP+ FP) + (FN + TN)ln(FN + TN)

n ln(n) − [(TP+ FN)ln(TP+ FN) + (FP+ TN)ln(FP+ TN) ]
(14)   
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model uncertainty (e.g., Pickard et al., 2017), but also into data uncer
tainty while reducing influences of spatial offsets between test and 
reference data (see Section 2.2.5). 

The quantity agreement measures used herein are the absolute error 
(AE), obtained as: 

AE = (TP+ FP) − (TP+FN) = FP − FN (15)  

and the relative error (RE), which is the AE in relation to the built-up 
quantity reported in the reference data, is calculated as: 

RE =
AE

(TP+ FN)
=

(FP − FN)
(TP+ FN)

(16) 

Moreover, we separate the absolute error (Eq. 15) into over
estimation (OE) and underestimation (UE) components as follows: 

OE =

{
AE,AE > 0
0,AE ≤ 0 (17)  

UE =

{
0,AE > 0

abs(AE),AE ≤ 0 (18) 

This will allow for a statistical analysis of the relationships of over- 
and underestimation components across the rural-urban continuum 
(Section 2.2.5). 

At this point, it is worth noting that, despite being widely used for 
classification and map accuracy assessments, several of the presented 
accuracy and agreement measures have been subject to criticisms 
regarding their suitability for unbiased quantification of classification 
accuracy. For example, Pontius Jr and Millones (2011) as well as Foody 
(2020) discourage the community from using the Kappa index, and Shao 
et al. (2019) and Stehman and Wickham (2020) point out that PCC may 
be severely biased in case of class imbalance. Conversely, the F-measure 
and G-mean are known for being less sensitive to imbalance effects 
(Fawcett, 2006), and the MCC has recently been recommended to be 
preferable over Kappa (Delgado and Tibau, 2019), and over the F- 
measure (Chicco and Jurman, 2020), see also Luque et al. (2019). 
Despite these criticisms, these metrics have been widely used for map 
comparison and for the evaluation of (binary) classification problems (e. 
g., Kappa). We include them into our suitability analysis (Section 3.1) to 
raise further awareness of the potential bias in these metrics (i.e., Kappa 
and PCC). See Table A1 for an overview of these metrics. 

2.2.4. Modelling the rural-urban continuum 
Quantitative modelling of the rural-urban continuum, i.e., the 

gradual transition between highly populated urban areas to sparsely 
populated rural places, represents an important analytical component of 
this work. While there are numerous global and national data products 
enabling the high-resolution modelling of the rural-urban continuum 
based on a variety of input data (e.g., Waldorf and Kim, 2018; Florczyk 
et al., 2019), these datasets use spatial units that are not directly 
compatible with the assessment support provided by the described 
localized confusion matrices. Thus, we stratified the study area by 
varying levels of development intensity, modelled by the built-up den
sity found in the reference data as well as in the GHSL, allowing for 
stratification across the rural-urban continuum, consistent to the 
assessment support of the localized accuracy estimates. The reference 
built-up density (in %) at a given location and for a (quadratic) assess
ment support s (in m) can be derived from the reference built-up grid cell 
counts in the confusion matrix composite directly as: 

BUDENSREF,s[%] = 100⋅302⋅
(TP+ FN)

s2 (19) 

The GHSL-based built-up density is obtained as: 

BUDENSGHSL,s[%] = 100⋅302⋅
(TP+ FP)

s2 (20) 

for a spatial resolution of 30 m. An example of the resulting focal 
built-up density surfaces is shown in Fig. 2g. 

Moreover, we calculated selected landscape metrics quantifying the 
segregation of the built-up areas. These landscape metrics include the 
number of built-up patches (NP) and the Largest Patch Index (LPI) 
(McGarigal et al., 2012). This is motivated by previous work suggesting 
that particularly the size of patches affects the classification accuracy 
(Smith et al., 2002, 2003; Klotz et al., 2016; Mück et al., 2017). We 
calculated the focal NP and LPI, consistent to the focal accuracy and 
density surfaces, for each level of assessment support (Fig. 2h). 

2.2.5. Assessing the effects of positional uncertainty in reference and GHSL 
data 

The Landsat-based multispectral data used as input for the GHS-BUILT 
data has an approximate positional accuracy of 12-23 m (Zanter, 2017). In 
addition to that, the geodetic datum transformation applied when 
reprojecting the data into the target reference system can be expected to 
ingest additional positional uncertainty in the range of few meters. The 
building footprint data obtained from cadastral data sources, used to 
generate the reference surfaces are expected to have high positional ac
curacy, but may be affected by a spatial tolerance of up to 12 m (Craig and 
Wahl, 2003). Thus, the thematic accuracy estimates obtained from the 
gridded surfaces at the original resolution of 30 m may be biased by 
misalignments due to the positional uncertainty in the underlying data
sets (Congalton, 2007). In order to mitigate this effect, we carried out 
some of our analyses based on 3 × 3 pixel blocks as assessment unit (e.g., 
Gu and Congalton, 2020; Gu and Congalton, 2021; Marconcini et al., 
2020a) and analyzed how these results differ from the analyses carried out 
using individual grid cells for map comparison (Sections 3.5 and 3.6). 

2.2.6. Analytical framework 
Based on the generated data structures and surfaces (Fig. 2), we carried 

out the subsequent analyses. Spatial data processing was done using Python 
3.6, ESRI ArcPy Python package (ESRI, 2020) and Geospatial Data 
Abstraction Library (GDAL; GDAL/OGR contributors, 2020). The analytical 
steps are as follows: We examined the relationships of various (thematic and 
quantity) agreement measures characterizing zonal accuracy (Section 2.2.1) 
and focal accuracy (Section 2.2.2) with population density and built-up 
density across the rural-urban continuum (Section 3.1). Moreover, we con
ducted a theoretical suitability assessment of commonly used accuracy 
measures for small sample sizes and extreme class imbalance, and their 
plausibility with respect to theoretical expectations (i.e., the assumed in
crease of accuracy from rural towards urban settings) (Section 3.1). 

Based on this assessment, we identified a set of suitable agreement 
metrics, for which the remainder of this analysis was carried out. We 
analyzed the interactions between omission and commission errors across 
the rural-urban continuum (Section 3.2) and examined the relationships 
between localized accuracy estimates and structural characteristics of 
built-up areas (Section 3.3). We then analyzed the sensitivity of zonal and 
focal localized accuracy estimates to the assessment support (Section 3.4). 
Subsequently, we tested the robustness of our analyses to the effects of 
positional uncertainty in reference and GHSL data, by applying selected 
analytical steps based on agreement metrics derived from the aggregated 
3 × 3 pixel blocks (Section 3.5). 

Finally, we applied our framework and integrated focal accuracy 
surfaces derived for the different GHSL epochs (i.e., 1975, 1990, 2000 
and 2014) in order to assess how the localized GHSL accuracy varies 
over time (Section 3.6). 

3. Results 

3.1. Suitability of agreement measures for localized accuracy estimation 
across the rural-urban continuum 

The the generated (focal) accuracy surfaces (Section 2.2.2) allow for 
a visual comparison of the measures under test. These surfaces are 
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shown for the Greater Worcester area in Fig. 3. As can be seen in 
Figs. 3a) and b), built-up areas are well detected in densely developed 
areas of the urban core, whereas peri-urban settlements are less well 
detected in GHSL. This trend has been observed in previous work (Leyk 
et al., 2018; Uhl et al., 2018) and constitutes important domain 

knowledge for the evaluation of these accuracy surfaces. The quantity 
agreement measures (Fig. 3n and o) confirm this trend, reporting 
overestimation in urban areas, and underestimation in rural areas (Liu 
et al., 2020). Among the tested thematic agreement measures, this trend 
of increasing accuracy from rural towards more urban settings is only 

Fig. 3. Input data, derived focal density and accuracy surfaces for the agreement measures used herein, computed at spatial resolution of 30 m, using an assessment 
support (i.e., focal window) of 1x1 km: (a) Reference built-up grid cells, (b) GHSL 2014 built-up grid cells, (c) localized built-up density derived from the reference 
data, and surfaces of (d) Precision, (e) Recall, (f) F-measure, (g) Adjusted F-measure, (h) Intersection-over-union, (i) Percentage correctly classified, (j) G-mean, (k) 
Kappa, (l) Matthews correlation coefficient, (m) Normalized mutual information, and focal quantity agreement surfaces (n) relative error, and (o) absolute error. 

Table 1 
Numerical robustness table of the agreement measures used in this study. Each line represents a unique combination of presence / absence of the four agreement 
categories. The four blocks show different combinations of presence / absence of positive instances (i.e., TP and TN). Check marks indicate valid numerical values, 
hyphens denominate undefined instances. Values of 0.0 and 1.0 (and − 1.0 for MCC) are indicated explicitly.  

TP TN FP FN UA (Precision) PA (Recall) F-measure Adj. F-measure IoU PCC G-mean Kappa MCC NMI RE AE 

0 0 0 ✓ – 0.0 – – 0.0 0.0 – 0.0 – – ✓ ✓ 
0 0 ✓ 0 0.0 – – – 0.0 0.0 – – – – – ✓ 
0 0 ✓ ✓ 0.0 0.0 – – 0.0 0.0 0.0 ✓ − 1.0 – ✓ ✓ 
0 ✓ 0 0 – – – – – 1.0 – 1.0 – – – 0.0 
0 ✓ 0 ✓ – 0.0 – – 0.0 ✓ 0.0 ✓ – – ✓ ✓ 
0 ✓ ✓ 0 0.0 – – – 0.0 ✓ – ✓ – – – ✓ 
0 ✓ ✓ ✓ 0.0 0.0 – – 0.0 ✓ 0.0 ✓ ✓ – ✓ ✓ 
✓ 0 0 0 1.0 1.0 1.0 – 1.0 1.0 – – – – 0.0 0.0 
✓ 0 0 ✓ 1.0 ✓ ✓ – ✓ ✓ – 0.0 – – ✓ ✓ 
✓ 0 ✓ 0 ✓ 1.0 ✓ – ✓ ✓ 0.0 ✓ – – ✓ ✓ 
✓ 0 ✓ ✓ ✓ ✓ ✓ – ✓ ✓ 0.0 ✓ ✓ – ✓ ✓ 
✓ ✓ 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 – 0.0 0.0 
✓ ✓ 0 ✓ 1.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ 
✓ ✓ ✓ 0 ✓ 1.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
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visible for Precision, Recall, F-measure, and IoU, (Fig. 3d,e,f,h,l). The 
IoU exhibits the visually highest similarity to the reference built-up 
density surface (Fig. 3c). Among these four accuracy measures, Recall 
shows the least variation within the urban core, indicating consistently 
low levels of omission errors for most parts of the urban core. A reverse 
trend can be observed for PCC due to class imbalance caused by the 
dominant not built-up class in rural settings (Fig. 3i), whereas G-mean 
and Kappa (Fig. 3j and k, respectively) report low levels of agreement in 
the densely built-up urban core, caused by the absence of negative in
stances (i.e., non-built-up grid cells) and consequently, low proportions 
of “true negatives” (cf. Eqs. 7 and 11). NMI (Fig. 3m) as a conservative 
agreement measure exhibits low values, low levels of spatial variation, 
and is not defined in the urban core, where dense built-up grid cells in 
the reference data provoke the absence of false negatives. Similar effects 
are observed for the adjusted F-measure (Fig. 3g) and MCC (Fig. 3l). 
These observations indicate the need for agreement measures to char
acterize localized accuracy in more meaningful ways by being robust to 
class imbalance, insensitive to low values found in elements of the CM, 
and mathematically defined such that CM elements of value zero can be 
handled. 

Table 1 shows the numerical robustness of the examined agreement 
measures for systematic combinations of empty confusion matrix ele
ments. It is notable that both F-measure and G-mean are not defined in 
cases when the assessment support of a confusion matrix does not 
contain true positive instances. The desired output in such cases would 
be a value of 0. Additionally, the G-mean is not defined when false 
positive instances are absent. This is critical since both scenarios are 
common in sparsely built-up, and highly built-up areas, respectively. 
Also notable is that NMI is not defined if any element of the confusion 
matrix is zero. IoU yields valid outputs for 13 out of 14 cases, repre
senting a promising, robust measure for such agreement assessments. 
While this experiment considers strict mathematical definitions, some of 
these non-definition problems can be mitigated by identifying the 
problematic cases and setting the measures to 0 (Chicco and Jurman, 
2020). 

To examine the visually observed trends in Fig. 3 in a quantitative 
manner, we calculated Pearson's correlation coefficients for census 
tracts, block groups, and blocks between the localized accuracy esti
mates calculated for each of the >150,000 census enumeration units and 
the built-up density measures for each enumeration unit, as well as 
enumeration unit size and census 2010 population density, both 
reflecting the fine-grained population distributions (Table 3). General 
expectations, i.e., an unbiased agreement measure yielding high values 
in urban, and low values in rural areas, seems to be confirmed for the F- 
measure, IoU, Precision and Recall, yielding correlation coefficients of 
up to 0.95 for IoU, when compared to built-up density, and up to 0.60 
when compared to population density. This implies two things: First, 
several agreement measures such as NMI, PCC, G-mean, MCC, adjusted 
F-measure, and Kappa do not seem to produce plausible results when 
tested against theoretical expectations. Second, among the agreement 
measures yielding geographically plausible results (F-measure, IoU, 
Precision, Recall), the IoU exhibits strongest levels of association to 
built-up and population density. 

The quantity agreement measures AE and RE do not show such 
strong correlations. However, since AE and RE are composed of both 
omission and commission errors, we calculated separate correlation 
coefficients for the overestimation (OE) and the underestimation (UE) 
components for AE (Eqs. 17 and 18, respectively), as well as for the 
relative error RE (Eq. 16) (i.e., UEREL, OEREL). As shown in Table 2, as a 
result of this differentiation, correlation coefficients, in particular for the 
underestimation components, significantly increase as compared to AE 
and RE, respectively. These trends indicate that the degree of built-up 
quantity underestimation is negatively correlated with built-up density 
(i.e., GHSL is likely to underestimate built-up quantity in low built-up 
density areas, e.g., by omitting scattered rural settlements). In 
contrast, overestimation exhibits lower levels of correlation, and thus, Ta
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seems to occur more independently from built-up density, e.g., due to 
roads and impervious surfaces misclassified as built-up land, which may 
occur in both rural and urban regions. 

The census-based, zonal accuracy estimates underlying the correla
tion analysis reported in Table 2 may suffer from a sampling bias, since 
census enumeration units are designed in a way that each unit contains a 
minimum population count. Assuming that the built-up area reflects the 
population counts to some degree, the existence of census enumeration 
units containing very few or no built-up instances in the test data is 
unlikely. Therefore, we cross-compared the relationships between built- 
up density and localized accuracy estimates based on zonal and focal 
constraining geometries (Fig. 4). While illustrating the previously dis
cussed variety in the trajectories of different agreement measures across 
the rural-urban continuum, these scatterplots exhibit high degrees of 
similarity between zonal (Fig. 4a,b) and focal (Fig. 4c,d) accuracy esti
mates. This indicates that, despite the above-mentioned sampling bias in 
census-based zonal accuracy estimates, the relationships to built-up 
density are of generalizable nature. Importantly, the trajectories of the 
respective agreement measures across the rural-urban continuum using 
reference built-up density (Fig. 4a,c) and GHSL-based built-up density 
(Fig. 4b,d) are highly similar, in particular when zonal geometries are 
used to define the assessment support. Comparing the F-measure and 
IoU, which exhibit strongest levels of correlation overall, the shape of 
the point clouds indicates a steeper slope of the F-measure, indicating 
higher levels of conservativeness of the IoU in low-density regions. 

Based on results shown in Figs. 3 and 4, and Tables 1 and 2, we 
consider IoU the most suitable agreement measure for estimating the 
local accuracy variations of built-up land layers such as the GHSL, 
yielding geographically plausible and robust results, exhibiting strong 
associations with built-up density and population density. 

3.2. Interactions of omission and commission errors across the rural- 
urban continuum 

As the different patterns of precision and recall distributions against 
built-up density in Fig. 4 suggest, omission and commission errors 
appear to follow different trajectories across the rural-urban continuum. 
In order to test this, we used our 1,000,000 sample locations drawn from 
the confusion matrix composites (cf. Fig. 2f, Section 2.2.5). For each of 
these sample locations, we calculated the Fβ measure for a range of β =
0.5 to β = 2.0, in increments of 0.1. This allowed us to assess the vari
ations of the Fβ measure on a continuous scale between the F0.5 measure 

(favoring precision over recall) and the F2.0 measure (favoring recall 
over precision), within quintile-based strata of reference built-up den
sity (Fig. 5a). The median Fβ trends per density stratum reveal inter
esting details: In the low-density stratum, both extremely low precision 
and recall values seem to occur, resulting in a symmetric, slightly U- 
shaped curve of median Fβ across the β range. This is likely to be a su
perposed effect of highly precise built-up grid cells in GHSL, suffering 
from high omission errors, and a low-precision component induced by 
falsely labelled road grid cells. The effect of this low-precision compo
nent disappears in density stratum 2, where the median Fβ trend in
dicates low recall but high levels of precision. In the medium density 
stratum 3, precision and recall appear to be equilibrated. The trend is 
inverted in the high-density strata 4 and 5, where the Fβ measure de
creases with higher weight to precision, and increases if more weight is 
given to recall, reflecting high levels of commission errors (e.g., roads, 
impervious surfaces) and low levels of built-up area omission in the 
GHSL. The supplementary movie illustrates the effect of β on the rela
tionship of the Fβ measure and built-up density. 

Which Fβ measure best reflects the rural-urban gradient? We 
analyzed the correlations of the Fβ measure for a range of β ϵ [0.1,2.0], 
for all four levels of assessment support (Fig. 5b), indicating maxima of 
Pearson's correlation coefficient for β between 0.75 and approximately 
0.9, for all support levels, suggesting that an Fβ measure slightly favoring 
precision exhibits a stronger linear relationship across the rural-urban 
continuum than the unweighted F-measure. Here, it is worth noting 
that none of these correlation maxima exceeds the correlation between 
IoU and reference built-up density of 0.84 (Fig. 4c). 

This indicates that precision and recall follow different trajectories 
across the rural-urban continuum. Thus, we analyzed the relationship 
between precision and recall themselves (Fig. 5c), and found a much 
steeper increase of recall compared to precision. Fig. 5c shows most 
locations in rural areas (i.e., low built-up density) are found below the 
main diagonal of the plot (i.e., precision > recall), whereas in higher 
density regions, recall seems to be greater than precision (above the 
main diagonal). This asymmetric relationship between precision and 
recall is also reflected in the ternary plot shown in Fig. 5d, which is based 
on the relative proportions of TP, FP, and FN at each sample location. 
Fig. 5d also shows locations where precision equals recall, which we call 
“isometric” locations, which can be found for a wide range of TP, and 
throughout the rural-urban continuum, except in areas of high built-up 
density. These locations are particularly interesting, as the quantity 
error is 0, and thus, regardless the level of thematic disagreement, the 

Fig. 4. Scatterplots of localized accuracy estimates (y-axis) against built-up density (x-axis): (a) zonal support, using reference built-up density, (b) zonal support, 
using GHSL-based built-up density, (c) focal support, using reference built-up density, (d) focal support, using GHSL-based built-up density. Underlying focal ac
curacy surfaces have a spatial resolution of 30 m and are based on an assessment support of 1x1 km. Zonal accuracy measures are shown for census tracts, block 
groups and blocks together. Also shown are Pearson's correlation coefficients for each scatterplot. 
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GHSL provides correct estimates of total built-up area. Moreover, we 
identified locations where the relative difference between precision and 
recall does not exceed 10%, and 20%, respectively, and visualized the 
distribution of these “quasi-isometric” locations along the rural-urban 
continuum (Fig. 5e). These kernel density functions indicate that 
quasi-isometric locations are mainly found in rural regions with built-up 
densities of 5–15%, and this peak is more nuanced as assessment support 
increases. 

3.3. Interactions between localized accuracy estimates and density− / 
structure-related characteristics of built-up surfaces 

While built-up density represents a commonly used and computa
tionally inexpensive proxy variable to characterize the rural-urban 
continuum, structural measures describing the shape and spatial segre
gation of built-up areas may relate differently to localized accuracy es
timates. To explore this, we explicitly analyzed two landscape metrics 
and their relationship to built-up density, to the IoU as a thematic ac
curacy measure, as well as to the absolute error (AE) as a measure of 
quantity agreement. These landscape metrics include the number of 
contiguous built-up area patches (NP) and the largest patch index (LPI, 
reflecting area proportion of the largest built-up patch), computed at 
sample locations within focal windows of 1×1 km (see Section 2.2.5). 
Comparison of these structural measures with the focal IoU surface (cf. 

Fig. 3h) and the corresponding built-up density surface allow for visu
alizing the rural-urban continuum in two-dimensional spaces (Fig. 6): 
Fig. 6a shows the interactions of built-up density, NP and the IoU, 
indicating high thematic accuracy where built-up density is high and 
number of patches is low (i.e., dense, contiguous patches of built-up 
land, such as urban cores), decreasing towards peri-urban areas (i.e., 
moderate built-up density, high levels of segregation), and rural areas 
(low built-up density, and few, scattered settlement patches). The 
visualization of quantity agreement (AE, Fig. 6b) reveals that the un
derestimation of built-up area (i.e., negative AE) mainly occurs in areas 
characterized by low and moderate built-up density, but relatively 
independently from the level of spatial segregation of built-up areas. 
However, the shapes of the point clouds in Fig. 6a,b illustrate the 
ambiguous nature of the NP metric to characterize the rural-urban 
continuum, as the same values of NP can be found in both, low and 
high-density regions. Combining built-up density and LPI shows a 
different picture: Thematic accuracy of the GHSL is mainly driven by 
built-up density, and occur for both, large and small contiguous patches 
of built-up land (Fig. 6c). Underestimation of built-up area (i.e., quantity 
disagreement measured by negative AE) occurs mostly in areas of low 
built-up density characterized by small patches of built-up land 
(Fig. 6d). 

Lastly, we assessed the interactions between thematic agreement 
(IoU) and quantity agreement (AE) across density and structure of the 

Fig. 5. Interactions of precision and recall across the rural-urban continuum: (a) Distributions of the Fβ measure for different values of β, within strata of reference 
built-up density, (b) Pearson's correlation coefficient between reference built-up density and Fβ for a range of β values, (c) Localized precision-recall scatterplot, color- 
coded by reference built-up density, white dashed line represents the average precision per recall percentile. (d) True positive, false positive, and false negative 
ternary plot, color-coded by reference built-up density; including locations where precision equals recall in white and (e) reference built-up density distributions (i.e., 
probability density functions) within bands of precision-recall similarity (i.e., 10% and 20% maximum deviation between precision and recall). Ternary plot in (d) 
created with python-ternary (Harper et al., 2015). 
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Fig. 6. Interactions between thematic accuracy, quantity agreement, and density-structure characteristics of built-up land: (a) IoU and (b) AE color-coded in a bi-dimensional space of built-up density and number of 
patches, (c) IoU and (d) AE color-coded in a bi-dimensional space of built-up density and LPI, (e) – (h): built-up density color-coded in a bi-dimensional space of IoU and AE, stratified based on percentiles of LPI (PLPI). 
All built-up density and structural variables are derived from the reference data, localized measures are based on a focal window of 1x1km. 
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built-up areas (Fig. 6e-h). As expected, we observe a general trend of 
decreasing AE with increasing IoU, across all strata of LPI. In regions of 
low LPI (i.e., small, scattered patches of built-up land, Fig. 6e), we 
mainly observe built-up land overestimation (i.e., AE > 0), possibly due 
to highways and roads misclassified as built-up land in the GHSL. In 
other words, low IoU values in these regions are driven by high pro
portions of false positives. Conversely, in regions where large, contig
uous patches of built-up land dominate (i.e., high LPI, Fig. 6h), we 
observe higher levels of overestimation despite moderate or high IoU. 
Highest IoU values occur in the high LPI stratum, which is in agreement 
with previous work (Klotz et al., 2016; Mück et al., 2017). 

3.4. Assessing sensitivity of localized accuracy estimates to assessment 
support 

Up to this point, our analysis was based on localized accuracy esti
mates derived from fixed levels of assessment support, without taking 
into account potential sensitivity of these estimates to assessment sup
port. In this section, we aim to identify such sensitivities. First, we 
visualize localized accuracy estimates derived from the zonal geometries 
(see Section 2.2.1) in geographic space. Mapping the IoU at different 
levels of assessment support illustrates the inherent spatial variability 
across different geographical extents (Fig. 7). Whereas IoU at the state 
level (Fig. 7a) has a similar magnitude as the majority of counties 
(Fig. 7b), it decreases in most entities of the subsequent finer scales 
(Fig. 7c-f), especially in rural settings. In highly urban regions (e.g., 
Greater Boston), IoU tends to increase from state to census tract level but 
yields highly dispersed values when using units of finer granularity. 
Thus, IoU generated from the state level-confusion matrix un
derestimates thematic agreement in urban settings and overestimates in 
rural areas. The low IoU in rural settings is likely due to a high number of 
false positives caused by road features detected as built-up land in GHSL 
(cf. Fig. 6e), alongside with high levels of omission errors caused by the 
difficulty in detecting dispersed small settlements in GHSL. 

Whereas such map sequences across levels of assessment support 

illustrate the spatial variability of the accuracy estimates and their 
support dependency, it is difficult to detect and visualize cross-support 
effects. We generated cross-support trajectory plots for thematic agree
ment (IoU, Fig. 8a) and quantity agreement (AE, Fig. 8b) and, for cross- 
comparison, for Kappa and PCC (Figs. 8c and d, respectively), for all 
157,508 census blocks in Massachusetts, and observe the following: 

3.4.1. Support sensitivity 
Among the shown thematic accuracy measures, IoU exhibits the 

widest range of magnitudes, and shows lowest degrees of sensitivity (i. 
e., high stability) across all support levels from township to block group 
level. This implies that the proportion of misclassified instances stays 
stable across these assessment support levels. Kappa exhibits a consid
erable amount of trajectories dropping to very low values from township 
to block group level, and converging to extreme values (i.e., 0 and 1) at 
the block level. This indicates high levels of support sensitivity and 
confirms common criticisms to Kappa, such as its sensitivity to marginal 
probabilities (Gwet, 2002), or its non-suitability for accuracy assess
ments of land cover data (Pontius Jr and Millones, 2011; Foody, 2020). 

3.4.2. Sample size sensitivity 
All accuracy measures under test show high levels of diffusion at the 

lowest level of assessment support, the block level. This indicates high 
degrees of sensitivity to small sample sizes, taking into account that the 
median size of census blocks in Massachusetts is 16,175 sqm, corre
sponding to a sample size of 18.0 grid cells of 30x30m to establish the 
confusion matrix (2.4 grid cells for the 25th percentile, and 42.9 grid 
cells for the 75th percentile, respectively). Moreover, the accuracy 
values tend to take extreme values (i.e., 0.0, 1.0) due to critically low 
sample sizes and a lack in robustness of the accuracy measures when 
using low sample sizes. 

3.4.3. Trend 
PCC and Kappa exhibit decreasing trends towards the block level. 

While a decreasing trend for PCC can be explained with an increase in 

Fig. 7. IoU for different levels of assessment support derived from constraining zonal geometries: (a) State, (b) counties, (c) townships, (d) census tracts, (e) census 
block groups, and (f) census blocks. Gray areas in (a) are excluded from the analysis due to implausible reference data. 
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class balance, Kappa is showing a nearly linearly decreasing trend to
wards the block group level, i.e., with decreasing sample size. Such a 
trend, alongside the previously observed diffuse behavior for small 
sample sizes are in line with earlier work examining critical sample sizes 
and sample size dependency for inter-rater agreement measures such as 
the Kappa index (e.g., Sim and Wright, 2005; Bujang and Baharum, 
2017). Regarding the average trajectories for rural and urban census 
blocks, the IoU shows the geographically most plausible picture, i.e., 
higher levels of accuracy in census blocks of high built-up density, as 
observed in Section 3.1. 

3.4.4. Conservativeness 
Whereas Kappa exhibits lower magnitudes across the examined 

support levels down to the block group level and thus, characterizes 
accuracy in a rather conservative way, PCC tends to yield high values 
that decrease steadily down to the block group level, confirming the 
well-known issue of PCC to yield inflated values, in particular when the 
evaluated classes are imbalanced (Rosenfield and Melley, 1980; Shao 
et al., 2019; Stehman and Wickham, 2020). Moderate PCC values (here, 
approx. 0.6–0.8) yielded for township, tract and block group level could 
indicate a more balanced class distribution of built-up and not built-up 
classes. 

The AE as a quantity agreement measure exhibits a distinct picture: 
As expected, AE as an absolute measure decreases with decreasing 
assessment support (i.e., towards block level), consistently for most 
census blocks. Several trajectories switch sign, indicating that the 
change in assessment support can cause a switch from under- to over
estimation or vice-versa, likely due to heterogeneous or dispropor
tionate levels of built-up density within those zones. 

The census unit boundaries used to generate these zonal accuracy 
estimates typically align with human-made features (e.g., neighbor
hoods, major roads) and, less frequently with rivers, and thus, contain 
low levels of within-unit land cover variability, especially in urban and 
peri-urban areas. This circumstance may affect cross-support trajectories 

and introduce certain bias. Hence, we performed a similar analysis based 
on focal accuracy estimates across our set of accuracy surfaces for 
different levels of assessment support (see Section 2.2.2), allowing for 
cross-support trajectory analysis independently of externally imposed 
zoning boundaries. 

Specifically, we extracted IoU, AE, Kappa, and PCC trajectories for 
our stratified random sample of 1,000,000 locations in Massachusetts 
across all levels of assessment support (Fig. 9). These boxplots show the 
distribution of the accuracy measures across the rural-urban continuum, 
separately for each level of assessment support. The IoU trajectories 
(Fig. 9a) confirm the trends observed in zonal accuracy trajectories 
across support levels (cf. Fig. 8a): i) given any level of assessment sup
port, accuracy increases with increasing built-up density; ii) IoU exhibits 
low levels of variance to the chosen support level in dense, urban areas 
(i.e., the increase of distribution medians with increasing support is least 
pronounced in the high-density stratum), and IoU dispersion (i.e., inter- 
quartile ranges) appears quite constant across support levels, and even 
across the rural-urban continuum. This implies that using the IoU to 
characterize localized thematic accuracy of built-up land data is largely 
invariant to the chosen level of assessment support in urban areas (un
less very low assessment support levels are used, such as census blocks in 
highly populated urban areas; cf. Fig. 8a), but may be sensitive to the 
level of support in rural regions. 

The AE computed within focal windows of varying assessment sup
port (Fig. 9b) shows a distinct pattern. Average AE magnitudes and 
dispersion increase with increasing assessment support, across all den
sity strata. This is expected, since AE is an absolute measure. Median AE 
across support levels decreases in rural strata, and increases in the more 
urban strata. In the high-density stratum, there are a few locations of 
quantity underestimation (i.e., negative AE), increasing with support, 
shown as outliers. These results highlight that localized accuracy mea
sures such as the IoU and AE need to be interpreted carefully when the 
underlying assessment support is not constant. 

Kappa (Fig. 9c) shows a moderately increasing trend across the rural- 

Fig. 8. Cross-support trajectories of (a) IoU, (b) AE, (c) Kappa, and (d) PCC for all 157,508 census blocks in Massachusetts. Trajectories are color-coded by the 
agreement level at census block scale. Dashed lines represent average trajectories for census blocks overall and in strata of low and high built-up density, using the 
75th percentile as a separation threshold. For readability purposes, AE values are log-transformed while preserving the original sign (Webber, 2012). 
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Fig. 9. Distributions of selected localized accuracy measures across strata of built-up density, computed within 1,000,000 focal windows for four levels of assessment 
support: (a) Intersection-over-union, (b) absolute error, (c) Kappa, and (d) PCC. For readability purposes, AE values are log-transformed while preserving the original 
sign (Webber, 2012). 

Fig. 10. Pearson's correlation coefficients for the analyzed accuracy measures to different versions of built-up density across levels of assessment support: (a) Built-up 
density derived from reference data, (b) derived from the GHSL, and (c) average of the former two. 
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urban continuum for all support levels. This trend is less pronounced 
than the IoU (Fig. 9a), likely due to the numerical problems of Kappa in 
highly urbanized areas (cf. Fig. 3k), while sensitivity to assessment 
support is similar to the IoU. PCC (Fig. 9d) exhibits an opposite trend (i. 
e., decreasing accuracy from rural to urban areas), which emphasizes the 
previously discussed unsuitability of PCC for localized accuracy esti
mation (cf. Fig. 3i). Notably, PCC exhibits the lowest level of assessment 
support sensitivity among the four accuracy measures. 

While these distributions indicate considerable levels of sensitivity to 
assessment support, the correlations of these measures to built-up den
sity appear to be stable across support levels for some measures (i.e., 
IoU, F-measure, precision, and recall), and increase with assessment 
support for the remaining measures, most notably for the AE and MCC 
(Fig. 10a). This indicates that these measures may be suitable for 
localized accuracy characterization if assessment support / sample size 
of the underlying confusion matrices is large enough. For the accuracy 
measures exhibiting highest levels of correlation, correlation ranks are 
stable across the support levels, indicating high levels of generalizability 
of these relationships across spatial scales. Correlation trends with 
respect to the GHSL-derived built-up densities (Fig. 10b) largely show 
similar trends for most measures, except the absolute error (AE) that 
shows a considerable increase in correlation. We also calculated these 
trends for the average of reference data and GHSL-derived built-up 
densities, and observe similar trends, ensuring that the data source for 
built-up density calculation does not affect our findings. 

How does assessment support affect the relationships between ac
curacy measures? To investigate this, we visualized some of the previ
ously discussed relationships at different levels of assessment support 
(Fig. 11, see also Fig. A1 for all support levels). For example, we observe 
an increasingly linear relationship between the IoU and AE, in particular 
in regions of higher built-up density, as assessment support increases 
from 2.5 km (Fig. 11a) to 10 km (Fig. 11b). This applies also to the 
relationship between precision and recall (Fig. 11c,d) and the relative 
proportions of TP, FP, and FN (Fig. 11e,f), reflected in a “bundling” ef
fect. Correlation coefficients between these measures consistently in
crease with increasing support as well (Table 3). Thus, as assessment 
support increases, thematic and quantity agreement, as well as com
mission and omission errors, and agreement / disagreement measures 
become increasingly correlated to one another, and the fine nuances 
between different uncertainty types disappear with increasing assess
ment support. These results clearly demonstrate the need for localized 
accuracy estimates, revealing fine-grained uncertainty patterns that 
remain hidden if “global” or spatially over-generalized accuracy esti
mates are reported. 

3.5. Analysis of assessment unit sensitivity 

As described in Section 2.2.5, thematic accuracy estimates obtained 
from map comparison at the original resolution may be biased by the 
misalignment of gridded test and reference data, induced by the posi
tional uncertainty of the underlying spatial data. This effect is expected 
to be mitigated by using 3 × 3 grid cell (i.e., 90 m × 90 m) blocks as 
assessment unit. Fig. 12 a, b, and c show how IoU increases when using 
such aggregated units, particularly in sparsely built-up, peri-urban and 
rural areas (cf. reference built-up density surface in Fig. 12d). This effect 
causes an average increase of IoU of about 0.25 in medium-density re
gions (Fig. 12e), likely a superposed effect of increasing levels of accu
racy, and a decreasing aggregation effect from rural to urban areas. 
However, in relative terms, this effect is most nuanced in sparsely built- 
up rural areas (Fig. 12f). These trends are persistent over time when 
comparing the epochs 1975 and 2014 (Fig. 12 e,f). 

The IoU obtained from map comparison at an assessment unit of 3 ×
3 grid cell blocks is expected to be more realistic, as it is free from bias 
introduced by positional uncertainty. Since this effect is more pro
nounced in rural areas, the “true” trend of IoU across the rural-urban 
continuum (see Fig. 4) is expected to be less steep, and the “true” 

correlation between IoU and built-up density is expected to be lower. 
This is confirmed by the scatterplots shown in Fig. A2 and the correla
tion coefficients reported in Table 4. However, Table 4 shows that IoU 
still exhibits higher levels of correlation to built-up density than the F- 
measure, and thus, indicates that our observations made in Section 3.1 
are unaffected by potential bias due to positional uncertainty in the data. 
Moreover, these trends are highly persistent over time (Table 4). 

3.6. Assessing focal accuracy over time 

The observations made in Section 3.5 regarding sensitivity to the 
assessment unit and accuracy trends across the rural-urban continuum 
appear to be highly persistent over time. But how does the local accuracy 
of the GHS-BUILT surfaces change over time, and how do such temporal 
trends play out across space and along the rural-urban continuum? To 
answer this question, we visualize IoU trends across the four epochs 
1975, 1990, 2000, and 2014 for three strata based on reference built-up 
density in 2014. The thresholds for this stratification are adopted from a 
strategy used in Leyk et al. (2018), where two sets of thresholds were 
applied in order to ensure that the choice of thresholds does not affect 
the resulting trends. We observe mostly increasing thematic accuracy 
trends over time, for both assessment units. The decreasing trend of IoU 
over time in the low-density stratum (Fig. 13a) indicates that opposite 
behaviour may occur, likely due to increased construction activity of 
scattered, rural settlements within our study area during the period 
1975–2014, alongside with low sample sizes in the rural stratum. 

These areas constitute around 36% of the land area within the rural 
stratum, and the average built-up density in these areas is low (2,5%), as 
shown in Table 5. These statistics represent a refined, more localized 
insight into GHSL accuracy trends over time, reported in Leyk et al. 
(2018), indicating that accuracy increased in most areas in both rural 
and urban regions, and accuracy increase tends to occur in the regions of 
higher built-up density within each stratum. We observe similar trends 
when using IoU based on 3 × 3 cell blocks, again confirming that these 
trends appear to be robust to changes in the assessment unit or under
lying positional uncertainty. 

As mentioned above, we extracted these statistics for a second set of 
thresholds to establish rural, peri-urban and urban strata and generally 
observe similar trends, except in the rural stratum, which is likely an 
artefact of lower sample sizes (Fig. A3, Table A2). In order to assess, how 
these accuracy trends play out across space, we visualized the focal 
confusion matrix composite (cf. Fig. 2f) and the derived focal IoU surface 
for Greater Boston, both for the years 1975 and 2014, and for both 
assessment units (Fig. 14a and b). These surfaces, and the difference 
surface shown in Fig. 14c illustrate how accuracy increased notably in 
peri-urban regions around the city of Boston, and less so in dense urban 
areas. 

This visualization, and the average built-up densities reported in 
Table 5 suggest that densification (i.e., change of reference built-up 
density over time) could be a driver for the increases in thematic ac
curacy. Based on the built-up density surfaces from the GHSL and the 
reference data extracted for 1975 and 2014 (Fig. 14d) we generated 
surfaces of the densification per grid cell and observe considerable dif
ferences (Fig. 14e). GHSL-based densification trends appear to over
estimate the actual densification, in particular in peri-urban settings 
(Fig. 14f), as a result of the higher omission errors in medium and low- 
density areas in the 1975 GHSL epoch. 

Moreover, we observe that the reference densification surface ap
pears very similar to the IoU difference surface (Fig. 14g). The scatter
plots in Fig. 14h exhibit a relatively strong association between 
increasing built-up density and increased levels of thematic accuracy of 
the GHSL. Once again, this trend appears to be unaffected by positional 
uncertainty (Pearson = 0.46 for 30 m-based IoU, and 0.44 for 90 m- 
based IoU). 
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Fig. 11. Scatterplots of the relationships between selected localized accuracy measures and confusion matrix components, all color-coded by reference built-up density: (a,b) IoU versus AE, (c,d) Precision versus Recall, 
and (e,f) ternary plot of relative proportions of TP, FP, and FN. Top row: assessment support of 2.5 km, bottom row: assessment support of 10 km. 
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4. Discussion and conclusions 

4.1. Methodological contributions 

Herein, we presented a framework for the localized accuracy 
assessment of binary built-up surface datasets, which takes into account 
the peculiarities of such data products, i.e., shifting class imbalance 
across the rural-urban continuum. The proposed framework entails the 
creation of a set of focal density surfaces, counting the occurrences of 
grid cells per agreement category (i.e., TP, TN, FP, FN) in a confusion 
matrix within focal windows of varying size (i.e., assessment support) 
(Fig. 2). From a technical point of view, the proposed computational 
framework allows storing the elements of localized confusion matrices 
in data cubes, and enables efficient, exhaustive and spatially explicit 
accuracy assessments at high spatial resolution and across large 
geographic extents. Based on these computational structures, we effi
ciently derived continuous, exhaustive surfaces of commonly used 
agreement metrics and assessed the plausibility (from a geographic 
perspective) and robustness (to underlying sample size and extreme 
class imbalance) of these metrics. Moreover, we tested the sensitivity of 
our results to the choice of assessment support and assessment unit, and 

applied our framework to multi-temporal built-up surface layers from 
the GHS-BUILT. 

4.2. Implications for analysts conducting accuracy assessments 

We demonstrated that the choice of a suitable agreement measure is 
critical for conducting meaningful spatially explicit accuracy assess
ments of binary categorical geospatial data, such as built-up surface 
products, exemplified herein by the GHSL. The choice of a robust, 
suitable measure for localized, spatially explicit accuracy assessments is 
crucial, in particular since class imbalance (and its variability) is a 
prevalent characteristic of built-up land data. We identified the 
Intersection-over-Union as the metric yielding most geographically 
plausible results across the rural-urban continuum, while exhibiting 
high levels of robustness to underlying assessment support and sample 
size. Similar results were achieved for the F-measure (Figs. 3 and 4, 
Table 2). Observed differences between those two measures may be 

Table 3 
Pearson's correlation coefficients between selected localized accuracy measures 
and confusion matrix components, for two levels of assessment support.  

Measure 1 Measure 2 1x1km 10x10km 

IoU AE 0.457 0.670 
Precision Recall 0.440 0.666 
FN FP 0.244 0.472 
TP FP 0.632 0.833 
TP FN 0.215 0.333  

Fig. 12. Quantifying the bias in the focal thematic accuracy estimates introduced by positional uncertainty in the data. Focal IoU surface using (a) 30 m individual 
grid cells and (b) 3 × 3 grid cell (i.e., 90 m × 90 m) blocks as assessment unit. Panel (c) shows the pixel-wise difference of IoU (90 m blocks) and IoU (30 m cells), and 
(d) reference built-up density surface for comparison, all shown for the city of Worcester, Massachussets). Boxplots show the trends of these differences across the 
rural-urban continuum, modelled by a percentile-based classification of the reference built-up density: (e) absolute IoU difference, and (f) difference in % of the IoU 
based on 30 m cells as assessment unit, both shown for the GHSL epochs 1975 and 2014. The blue line in (e) and (f) indicates a difference of zero. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Pearson's correlation coefficients of the IoU and F-measure with reference built- 
up density, for different assessment units and the epochs 1975 and 2014.  

Assessment 
unit 

Accuracy 
metric 

Correlation w/ ref.built-up 
density 1975 

Correlation w/ 
ref. 
built-up density 
2014 

30x30m cells F-measure 0.761 0.759 
3 × 3 cell 

blocks 
F-measure 0.665 0.675 

30x30m cells IoU 0.812 0.810 
3 × 3 cell 

blocks IoU 0.733 0.745  
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region-specific, and thus, we recommend either the IoU or the less 
conservative F-measure to be used in localized accuracy assessments of 
binary spatial data affected by locally varying class imbalance. These 
findings are robust to the analytical unit, i.e., we can rule out that po
sitional uncertainty in the test or reference data severely biases the 
thematic accuracy assessment conducted herein, and they are consistent 
over time (Table 4, Fig. A2). Moreover, we identified that some accuracy 
metrics are heavily sensitive to the underlying sample size (e.g. Kappa, 
Fig. 8c), implying that localized accuracy assessments should be based 
on spatial support large enough to avoid sample size issues, and small 
enough to capture desired spatial detail. Accuracy metrics that are 
sensitive to the sample-size should be avoided if spatial support varies 
(e.g., if census units are used). Analysts should be aware that the 
magnitude of most accuracy metrics increases with increasing spatial 
support (Fig. 9). 

Furthermore, the work presented herein underlines the well-known 
drawbacks of reporting overly generalized (“global”) accuracy esti
mates (see e.g., Strahler et al., 2006; Foody, 2007; Khatami et al., 2017), 
and constitutes important methodological knowledge as spatially 
explicit accuracy assessments are increasingly used in remote-sensing 
related applications (Morales-Barquero et al., 2019). 

4.3. Implications for GHSL practitioners 

The revealed spatial accuracy variations of built-up land in the GHSL 
will increase awareness of the variability of inherent uncertainty in 
remote-sensing based settlement data such as the GHSL among data 
users. We identified high levels of association between accuracy mea
sures and density characteristics of built-up areas, and thus, users can 
roughly estimate the level of accuracy based on measured built-up 
density (Table 2, Fig. 10). Thus, knowledge, or at least awareness of, 
fine-grained uncertainty variations in the GHS-BUILT R2018A are 

essential for an unbiased interpretation of local settlement patterns, and 
of products derived from GHS-BUILT R2018A such as GHS-POP or GHS- 
SMOD. Importantly, we provide a refined, spatially explicit view of the 
increasing GHS-BUILT accuracy trend from rural to urban settings (e.g., 
Figs. 4 and 12, cf. Leyk et al., 2018), resulting in the underestimation of 
built-up land in rural areas versus overestimation in urban areas. These 
insights are in line with the findings of related studies using Global 
Urban Footprint data in Europe (Klotz et al., 2016) and Africa (Mück 
et al., 2017) and the GHSL in China (Liu et al., 2020). These consistent 
results suggest that the reported findings are likely to be valid for large 
parts of North-American settlements, and possibly for comparable 
landscapes in other regions. Moreover, we shed light on localized ac
curacy trends over time. We revealed that thematic accuracy has 
increased considerably, in particular in regions characterized by urban 
sprawl and densification of built-up areas (Fig. 13). However, we also 
showed that localized densification estimates derived from the GHS- 
BUILT heavily overestimate the built-up area densification measured 
by our reference data (Fig. 14), calling for GHSL data users to be 
particularly cautious when using the GHS-BUILT (and its derived 
products) for local built-up density change assessments. 

4.4. Limitations 

The choice of the study area used herein (i.e., the state of Massa
chusetts) was dictated by data availability and accessibility. Even 
though this study area is relatively large (>27,000 km2), the observed 
trends could potentially be biased by relatively homogeneous vegetation 
and settlement characteristics. As the reported findings are in line with 
the literature, we are confident that they are valid for large parts of 
North America. However, some of our results, such as the sensitivity of 
focal accuracy metrics to the assessment support, as well as the re
lationships between accuracy and structural characteristics of built-up 

Fig. 13. Trends of IoU across the four GHSL epochs 1975–2014, within strata of reference built-up density, loosely related to (a) rural (0%–5% built-up density), (b) 
peri-urban (5%–20% built-up density), and (c) urban (>20% built-up density). 

Table 5 
Change statistics of localized IoU from 1975 to 2014, within strata of reference built-up density, for both single cells, and 3 × 3 cell blocks used as unit for the accuracy 
assessment.    

Analytical unit = 30 m cells Analytical unit = 3 × 3 cell blocks 

Stratum IoU temporal trend Area proportion [%] Avg. ΔIoU Avg. built-up density [%] Area proportion [%] Avg. ΔIoU Avg. built-up density [%] 

Low-density Increasing 63.14 0.08 3.17 50.86 0.09 3.39 
Decreasing 36.86 − 0.06 2.58 49.14 − 0.15 3.15 

Medium-density Increasing 85.02 0.11 11.97 70.93 0.16 13.86 
Decreasing 14.98 − 0.04 10.58 29.07 − 0.11 12.71 

High-density 
Increasing 95.11 0.12 37.51 89.49 0.19 53.13 
Decreasing 4.89 − 0.03 30.58 10.51 − 0.06 42.88  
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areas (Fig. 6) may be very specific to our study area and could vary 
considerably if applied to regions of different configurations of built-up 
surfaces. 

It remains to be investigated how these observations differ in regions 
of different climate and vegetation settings, building materials or settle
ment configurations. For example, climate-depending frequency of cloud 
presence or the level of spectral similarity between impervious surfaces 
and their surrounding natural environments, could affect accuracy trends 
considerably. In particular, the configuration of rural and peri-urban 
settlements may vary considerably across geographic regions and could 
result in different GHS-BUILT accuracy trends across the rural-urban 
continuum. Moreover, the spatial distribution of training data used for 
the production of the GHS-BUILT likely affects its accuracy. 

While our analysis showed that the effect of positional uncertainty on 
the observed trends of localized thematic accuracy estimates is largely 
negligible, it is important to note that part of the disagreement observed 

in this study is partially due to the different definitions of “settlement” 
and “built-up area”. Settlements encompass buildings, but also imper
vious surfaces (roads etc.) and small areas of urban greenery (trees, 
gardens, parks) in direct vicinity of buildings. This concept of the 
“generalized” built-up area is implemented in the GHS-BUILT data 
(Florczyk et al., 2020). Thus, comparing the GHS-BUILT to reference 
data derived from building footprint data may not be a fair assessment. 
In particular, the remote-sensing based differentiation between build
ings with concrete roofs and paved roads can be difficult due to the 
similar spectral responses. While the spatial aggregation to 3 × 3 cell 
blocks partially mitigates this problem, the incorporation of road 
network data into the rasterization process to obtain the reference data 
could further mitigate some of these definitional discrepancies (e.g., 
Marconcini et al., 2020a). Moreover, temporal inconsistencies between 
reference construction year and imagery acquisition date of the Landsat 
data underlying the GHS-BUILT may further affect our accuracy 

Fig. 14. Focal thematic and quantity agreement trends over time. (a) Focal confusion matrix composite for 1 km ×1 km assessment support, in 1975 and 2014, for 
both 30 m grid cell and 90 m blocks as assessment unit. (b) respective focal IoU surfaces, and (c) cell-wise IoU increase from 1975 to 2014. Panel (d) shows the focal 
built-up density surfaces in 1975 and 2014 derived from the GHSL and from the reference data, and (e) shows the corresponding densification surfaces. Panel (f) 
shows the absolute error of densification, and (g) shows the delta IoU for comparison. Panel (h) shows scatterplots and correlation coefficients of IoU increase over 
time and reference densification for both assessment units. Panels (a) – (c) show greater Boston, Massachussets, and panels (d)-(g) show the city of Worcester, 
Massachusetts. Scatterplots in (h) are based on all grid cells in Massachusetts. 
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estimates. Such temporal gaps may be caused by heterogeneous levels of 
currency in the underlying cadastral source data, the vagueness in 
defining the construction year of a building (i.e., effects of land clear
ance and construction activities on spectral responses one or two years 
before a building is finished). While we assume this issue to be of 
random nature and that it has only a minor effect on our results, there 
could be individual clusters of building construction sites, which may 
affect localized accuracy considerably. 

4.5. Future work 

Next steps will apply the proposed framework to larger study areas, 
and will investigate the potential of using shape and structural proper
ties of built-up areas for predictive uncertainty modeling (Uhl and Leyk, 
2022). The results presented herein focus on the GHS-BUILT R2018A, 
which has been derived from multispectral data from the Landsat 
archive at a spatial resolution of 30 m, using the “Symbolic Machine 
Learning” method (SML; Pesaresi et al., 2016), additionally informed by 
a 2016 settlement layer extracted from Sentinel-1 synthetic aperture 
radar (SAR) data (Florczyk et al., 2019). Similarly, the World Settlement 
Footprint (10 m spatial resolution) has been derived from Sentinel-1 
SAR and multispectral Landsat-8 data, but uses a Support Vector Ma
chine classifier (Marconcini et al., 2020a), and retrospective settlement 
layers in the WSF evolution data product (1985–2015) were based on 
optical Landsat 5 and 7 data (Marconcini et al., 2020b). Moreover, there 
are novel GHS-BUILT datasets such as GHS-BUILT-S1, which is a binary 
built-up surface dataset from 2016, derived from Sentinel-1 SAR data at 
a spatial resolution of 20 m, using the SML classifier (Corbane et al., 
2017), and the GHS-BUILT-S2 dataset which is based on optical 
Sentinel-2 data and a convolutional neural network classification and 
reports the probability of built-up area presence at 10 m spatial reso
lution for 2018 (Corbane et al., 2021). How generalizable are the 
observed accuracy patterns across the rural-urban continuum, and over 
time, to built-up surface data derived from other sensors, at different 
spatial resolutions, using different representations of the data (e.g., 
textural descriptors, time series descriptors, band ratios, etc.), different 
training protocols and classification methods? Is the accuracy of human 
settlement data really a function of the spatial resolution? Does the 
combination of fine-grained, contemporary remote sensing data (e.g., 
Sentinel 1 and 2) and coarser, historical data (e.g., Landsat) improve the 
accuracy of retrospective settlement depictions? In future work, we will 

shed light on such questions by applying our method to systematically 
compare such finer-grained built-up surface layers such as the World 
Settlement Footprint or novel versions of the GHS-BUILT, as well as to 
non-categorical settlement data reporting built-up area fractions or 
probabilities. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2022.113117. 
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Appendix A. Appendix  

Table A1 
Overview of the accuracy metrics analyzed in this study.  

Agreement metric Short 
name 

Alternative name Accuracy 
type 

Purpose / principle Criticism 

Precision – User's accuracy Type I error Measures the commission error – 

Recall – Producer's accuracy 
Type II 
error Measures the omission error – 

F-measure (F1-score) – – Thematic Harmonic mean of precision and recall – 
Adjusted F-measure – – Thematic Accounts for class imbalance – 
Intersection-over- 

Union 
IoU Jaccard index, 

figure of merit 
Thematic Independent from the universe (i.e., from 

the “true negatives”) 
– 

Percentage correctly 
classified PCC 

Overall accuracy 
(OA) Thematic Takes into account the “true negatives” Heavily biased in case of dominant negative class 

Geometric mean G-mean – Thematic 
Geometric mean of sensitivity and 
specificity, accounts for class imbalance – 

Cohen's Kappa index Kappa – Thematic Accounts for chance agreement Chance agreement is not relevant for classification 
accuracy assessments, sensitive to marginal probabilities 

Matthews correlation 
coefficient 

MCC – Thematic Robust to class imbalance – 

Normalized mutual 
information NMI – Thematic 

Entropy-based, does not require 
corresponding class labels – 

Absolute error AE – Quantity Independent from thematic agreement – 
Relative error RE – Quantity Independent from thematic agreement – 
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Fig. A1. Relationships between accuracy measures, built-up density, number of built-up patches, and agreement categories across levels of assessment support.   
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Fig. A2. Robustness check of trends of IoU and F-measure across the rural-urban continuum over time (i.e., for 1975 and 2014) and for two analytical units (i.e., 
30x30m grid cells, and 90x90m blocks). 

Fig. A3. Trends of IoU across the four GHSL epochs 1975–2014, within strata of reference built-up density, loosely related to (a) rural (0%–2% built-up density), (b) 
peri-urban (2%–10% built-up density), and (c) urban (>10% built-up density).  

Table A2 
Change statistics of localized IoU from 1975 to 2014, within strata of reference built-up density, for both single cells, and 3 × 3 cell blocks used as unit for the accuracy 
assessment. Strata according to Fig. A3.    

Analytical unit = 30 m cells Analytical unit = 3 × 3 cells 

Stratum IoU temporal trend Area proportion [%] Avg. ΔIoU Avg. built-up density [%] Area proportion [%] Avg. ΔIoU Avg. built-up density [%] 

Low-density Increasing 47.90 0.07 1.32 45.60 0.04 1.63 
Decreasing 52.10 − 0.07 1.11 54.40 − 0.16 1.54 

Medium-density 
Increasing 76.53 0.09 6.36 60.18 0.13 7.04 
Decreasing 23.47 − 0.05 5.57 39.82 − 0.13 6.54 

High-density 
Increasing 92.21 0.12 28.55 87.21 0.19 48.50 
Decreasing 7.79 − 0.04 20.23 12.79 − 0.07 34.66  
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