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ABSTRACT

To better understand the dynamics of human settlements, thorough knowledge of the uncertainty in geospatial
built-up surface datasets is critical. While frameworks for localized accuracy assessments of categorical gridded
data have been proposed to account for the spatial non-stationarity of classification accuracy, such approaches
have not been applied to (binary) built-up land data. Such data differs from other data such as land cover data,
due to considerable variations of built-up surface density across the rural-urban continuum resulting in switches
of class imbalance, causing sparsely populated confusion matrices based on small underlying sample sizes. In this
paper, we aim to fill this gap by testing common agreement measures for their suitability and plausibility to
measure the localized accuracy of built-up surface data. We examine the sensitivity of localized accuracy to the
assessment support, as well as to the unit of analysis, and analyze the relationships between local accuracy and
density / structure-related properties of built-up areas, across rural-urban trajectories and over time. Our ex-
periments are based on the multi-temporal Global Human Settlement Layer (GHSL) and a reference database for
the state of Massachusetts (USA). We find strong variation of suitability among commonly used agreement
measures, and varying levels of sensitivity to the assessment support. We then apply our framework to assess
localized GHSL data accuracy over time from 1975 to 2014. Besides increasing accuracy along the rural-urban
gradient, we find that accuracy generally increases over time, mainly driven by peri-urban densification pro-
cesses in our study area. Moreover, we find that localized densification measures derived from the GHSL tend to
overestimate peri-urban densification processes that occurred between 1975 and 2014, due to higher levels of
omission errors in the GHSL epoch 1975.

1. Introduction

expansion, or infilling processes) can only be modeled and understood
objectively if the underlying local uncertainty structure is known.

Understanding the regional and local patterns of human settlements
on Earth requires not only reliable geospatial data at sufficiently high
spatial resolution, but also thorough knowledge about the uncertainty in
the data used to analyze settlement processes (e.g., suburbanization and
conurbation processes), including the spatial (and temporal) variability
of the uncertainty inherent in built-up land data. Ignoring or over-
simplifying the uncertainty of such data may seriously bias the inter-
pretation of analytical results, and thus, frameworks for the accuracy
assessment of such data products are required to take into account the
peculiarities of built-up land data. This includes the accuracy estimation
at suitable analytical extents and within meaningful spatial strata.
Moreover, local processes of human settlement (e.g., densification,

Uncertainty in geospatial categorical data such as remote-sensing
derived land cover data is often quantified by statistical measures ob-
tained through accuracy assessments that are based on map comparison
techniques. In such assessments the examined data are compared to an
independently compiled reference dataset of presumed higher accuracy
(FGDC, 1998). Common map comparison approaches include the use of
confusion matrices to derive accuracy metrics that quantify the agree-
ment between the test data and reference data within the study area
(Fielding and Bell, 1997). In a traditional accuracy assessment, a global
accuracy measure is computed for the whole study area ignoring spatial
variation of the level of agreement between the two data sources (Foody,
2007). In recent years, geospatial research has established an improved
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understanding of uncertainty in spatial data as a spatially varying phe-
nomenon (e.g., Leyk and Zimmermann, 2004; Foody, 2007; Wickham
et al., 2018). This spatial variation can be driven by differences in
quality of underlying source data between rural and urban regions,
ambiguous spectral responses of different land cover categories, or ob-
structions due to clouds, to mention some examples.

Based on this recent research, it is known that overly aggregated
accuracy measures might misrepresent the inherent uncertainty in the
data under test and ignore its spatial structure. Furthermore, it has been
shown that classification accuracy metrics can be sensitive to the sample
size (e.g., Bujang and Baharum, 2017; Champagne et al., 2014; Sim and
Wright, 2005) and severely biased if the proportional sizes of individual
classes are heavily imbalanced (see Rosenfield and Melley, 1980;
Wickham et al., 2010; Akosa, 2017; Shao et al., 2019; Radoux et al.,
2020; Stehman and Wickham, 2020). To reduce these effects, different
approaches have been proposed including stratified sampling (e.g.,
Congalton, 1991), spatially constrained (localized) confusion matrices
(Leyk and Zimmermann, 2004; Foody, 2007), predictive uncertainty
modelling using ancillary variables (e.g., Smith et al., 2003; Leyk and
Zimmermann, 2007; van Oort et al., 2004; Zhang and Mei, 2016;
Wickham et al., 2018; Mei et al., 2019) and spatial / geostatistical
interpolation methods (Steele et al., 1998; Kyriakidis and Dungan, 2001;
Comber et al., 2012; Tsutsumida and Comber, 2015). Localized accuracy
assessments typically involve the creation of continuous accuracy sur-
faces and are sometimes referred to as spatially explicit accuracy as-
sessments (Low et al., 2013; Khatami et al., 2017; Waldner et al., 2017;
Mitchell et al., 2018).

According to Foody (2002), accuracy estimates may vary consider-
ably for different analytical scales, and depend strongly on the sample
used to establish the confusion matrix, which ideally is representative
for the conditions found within the study area (see also Stehman and
Foody, 2019). Accordingly, different efforts have proposed and applied
accuracy assessment frameworks using different analytical units (Pon-
tius Jr., 2002; Pontius Jr. and Suedmeyer, 2004; Pontius Jr et al., 2004;
Pontius Jr. and Cheuk, 2006; Pontius et al., 2008b; Pontius Jr et al.,
2011; Stehman and Wickham, 2011; Zhu et al., 2013; Yan et al., 2014;
Ye et al., 2018; Marconcini et al., 2020a), for different sample sizes (e.g.,
Congalton, 1988; Hashemian et al., 2004; Foody, 2009) but also across
different geographic extents (Wardlow and Callahan, 2014; Ariza-Lopez
et al., 2018), and different levels of semantic aggregation (Pontius and
Malizia, 2004). The geographic extent (sometimes called geographic
scale, cf. Smith, 2000) used to draw a sample of analytical units to
establish the confusion matrix is the spatial support, or assessment unit
(Stehman, 2009), and will be called assessment support in this work.

The sensitivity of a spatial variable to the size and shape of an
imposed zoning unit used for aggregation is a well-known phenomenon
in geographic information science and the social sciences (i.e., the
modifiable areal unit problem, MAUP; Openshaw, 1984, see Nelson and
Brewer, 2017 for a recent in-depth study). Hence, it is particularly sur-
prising that only few studies have analyzed the sensitivity of accuracy
measures to their constraining geometry or assessment support,
considering that the elements of the confusion matrix computed for a
given areal extent consist of the sums of agreement-disagreement com-
binations within that extent and thus, can be conceptualized as a
spatially aggregated geographic variable that propagates the inherent
uncertainties of the selected analytical scales.

With recent technological advances in geospatial data acquisition,
processing, cloud-based dissemination and analysis infrastructure, there
is an increasing amount of novel geospatial datasets available,
measuring the spatio-temporal distribution of human settlements and
land cover in general, over large extents and at unprecedented spatial
granularity. These datasets include the different built-up surface layers
from the Global Human Settlement Layer project (GHSL, Pesaresi et al.,
2013, Corbane et al., 2019a, Corbane et al., 2019b, Corbane et al.,
2021), Global Urban Footprint (Esch et al., 2013), High-Resolution
Settlement Layer (Facebook Connectivity Lab and Center for
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International Earth Science Information Network - CIESIN - Columbia
University, 2016), and the World Settlement Footprint (Marconcini
et al., 2020a, 2020b), as well as the FROM-GLC10 (Gong et al., 2019),
and the Global artificial impervious areas product (GAIA, Gong et al.,
2020). While such datasets greatly facilitate the study of urbanization, of
human-natural systems and of related geographic-environmental pro-
cesses at unseen levels of detail, little research has been done on the
accuracy of such datasets and how accuracy trajectories can be char-
acterized across the rural-urban continuum, often due to the lack of
reliable reference data over sufficiently large spatial (and temporal)
extents. For example, previous work has revealed varying levels of ac-
curacy among different settlement datasets (Klotz et al., 2016),
increasing accuracy levels over time in case of the multi-temporal Global
Human Settlement Layer (Leyk et al., 2018), and increases in accuracy
from rural towards urban areas (Uhl and Leyk, 2017; Uhl et al., 2018; Liu
et al.,, 2020). However, these general trends are based on coarse,
regional stratification of the studied area and thus, possibly neglect local
accuracy variations.

High-resolution built-up land data, discriminating between built-up
and not built-up land in a binary fashion, exhibit some significant dif-
ferences compared to multi-class land use / land cover (LULC) data, that
is, they can be severely imbalanced, and this imbalance can shift be-
tween rural and urban areas. Furthermore, measures derived from
localized confusion matrices can be void due to zero instances in one of
the matrix fields. Thus, a framework for localized accuracy assessment
of built-up land data needs to account for extreme, bi-directional class
imbalance, as well as small sample sizes underlying a spatially con-
strained confusion matrix, and the absence of instances of one or more
confusion matrix elements. This study has the goal to develop such a
framework guided by the following research questions:

- Are commonly used accuracy measures suitable for assessing the
local accuracy of binary, gridded built-up surface datasets?

- How does local accuracy relate to the underlying density of built-up
area and to population density, and how generalizable are these re-
lationships across the rural-urban continuum, and over time?

- How does the assessment support and analytical unit influence local
accuracy estimates and their trends across the rural-urban
continuum?

Thus, this study has four contributions: (a) we identify suitable ac-
curacy measures for localized uncertainty assessment of built-up land
data, (b) we reveal novel, fine-grained insights of the local, spatio-
temporal uncertainty inherent in the multitemporal, Landsat-based
Global Human Settlement Layer, and (c) we assess the scale-
dependency of localized accuracy measures. To shed light on these
questions, we analyzed the mathematical definition and behavior of
commonly used accuracy and agreement measures with respect to small
sample sizes and sparsely populated confusion matrices, and we con-
ducted an exemplary, spatially explicit accuracy assessment of built-up
area derived from the GHSL against a large reference database derived
from cadastral parcel and building footprint records. We generated large
amounts (N > 100,000,000) of spatially constrained confusion matrices,
using (a) external enumeration boundaries to define zones, and (b)
moving focal windows as constraining geometry, both at various levels
of spatial granularity. We computed a variety of commonly used accu-
racy measures for these zonal and focal constraining regions, to assess
their sensitivity to the assessment support, and examined relationships
between these local accuracy measures and structure / density of built-
up area, as well as population density. Finally, we applied our frame-
work to the multi-temporal settlement data from the GHSL, and assessed
temporal trajectories of localized accuracy across space and along the
rural-urban continuum. Herein, we will use the term “built-up density”
when referring to the density of built-up surface within a given areal
reference unit. Moreover, we will use the term “local / localized accu-
racy” for focal and zonal accuracy estimates, describing the data
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accuracy within a local spatial unit. The term “accuracy” refers to both,
estimates of thematic and quantity agreement (see Section 2.2.3).

2. Data and methods

This study consists of two major analytical parts: First, we analyzed
accuracy measures of GHSL-derived built-up areas within spatial units
defined by zoning data derived from administrative boundaries and U.S.
census enumeration units of various granularities (i.e., zonal accuracy
estimates). Second, we assessed accuracy measures within moving
windows of varying size (i.e., focal accuracy estimates). The former
allowed for examining relationships of zonal accuracy estimates to
population density, whereas the latter allowed for generating a contin-
uous space of assessment support, independently of underlying admin-
istrative zones or population distributions. In both cases, we employed a
highly accurate reference database of built-up areas derived from
cadastral parcel and building footprint data and analyzed these localized
accuracy measures in various ways for the state of Massachusetts, USA,
which extends across an area of over 27,000 km? and contains highly
urbanized regions, such as Boston, but also extensive rural areas.

2.1. Data

This study is based on binary built-up / not built-up raster layers
extracted from the GHSL (Fig. 1a,b). Specifically, we employed built-up
areas in 1975, 1990, 2000 and 2014 extracted from the GHSL Landsat
edition (GHS-BUILT R2018A, Florczyk et al.,, 2019, file name:
GHS_BUILT LDSMT _GLOBE_R2018A_3857_30_V2.0). @ While finer-
grained, contemporary built-up land depictions have been released in
the GHSL effort (e.g. Corbane et al., 2021), the GHS-BUILT R2018A is, to
date, the most recent, and fine-grained global settlement dataset
covering such a long time period. The GHSL estimates the presence and
distribution of human settlements on the planet at a spatial resolution of
30 m and for different points in time (1975, 1990, 2000, and 2014),
based on multi-temporal Landsat data and a machine learning approach
(Pesaresi et al., 2015, 2016). We used the GHS-BUILT R2018A, as it
extends farthest back in time among the multi-temporal global built-up
surface datasets (i.e., to 1975, as opposed to the WSF-evolution data
product dating back to 1985, Marconcini et al., 2020b). Moreover, the
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GHSL dataset has been used for different data production efforts, such as
the GHS-POP population dataset or the GHS-SMOD rural-urban classi-
fication (Florczyk et al., 2019). The GHS-BUILT R2018A or derived
products have been used in a wide range of scientific studies (see Ehrlich
etal., 2021 for an overview). Thus, understanding the uncertainty in this
data product enables a more reflected use of the data or derived datasets
in applied studies.

The extracted built-up presence surfaces represent the data under
test, and were compared to a reference database of multi-temporal built-
up areas in the U.S. that has been created by the authors through inte-
grating publicly available cadastral, tax assessment and building foot-
print data and allows for accuracy assessments of built-up land data at
fine spatial resolution, covering over 30 U.S. counties (i.e., >40,000km?,
more than 6,000,000 cadastral parcels). Parcel geometries which
include built-year information were spatially refined to the extent of
building outlines and rasterized using the GHSL grid properties (Fig. 1c,
d). This multi-temporal reference database has been applied for vali-
dation purposes in previous work (see Uhl and Leyk, 2017; Leyk et al.,
2018; Uhl et al., 2018; Leyk and Uhl, 2018; Uhl et al., 2021). We call this
database the Multi-Temporal Building Footprint dataset (MTBF-33) as
it covers 33 U.S. counties and made this database publicly available (Uhl
and Leyk, 2022). This valuable data source can be used to create unique
snapshots of built-up land (Uhl and Leyk, 2020) suitable as reference
surfaces for developed or built-up land classes at arbitrary points in time
since 1900. We assessed the plausibility of this integrated data product
by cross-comparing building and parcel information and excluded
discrepant areas from the analysis (e.g., parcels without associated
building footprint but indicating the presence of a building, making up
approximately 16% of the study area), which increases the reliability of
the reference data (see Leyk et al., 2018 for details). The state of Mas-
sachusetts represents the largest contiguous area covered in MTBF-33
and thus, is used as study area herein.

We derived the zoning data from administrative boundaries (i.e.,
state, county and township boundaries; MassGIS, 2016) and U.S. census
enumeration units, (i.e., census tracts, block groups and blocks; U.S.
Census Bureau, 2017). Census tracts generally have a population size
between 1200 and 8000 people, block groups contain between 600 and
3000 people and census blocks represent single city blocks in urban
areas, and may encompass large areas in rural regions (U.S. Census

B Built-up area .
Reference data not reliable N

Ref. R

Fig. 1. Data used in this study: Built-up areas (a) from the GHS_BUILT_LDSMT_GLOBE_R2018A product in 1975 and 2014, and (b) from the reference database, at a
spatial resolution of 30mx30m, for Massachusetts (USA). Panel (c) shows the data for a part of the city of Worcester, Massachusetts.
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Bureau, 2017). In 2010, the state of Massachusetts contains 14 counties,
351 townships, 1475 census tracts, 4982 block groups, and 157,508
census blocks. The delineation of census enumeration boundaries is
heavily influenced by the underlying spatial population distribution,
and it can be expected that large-scale spatio-temporal patterns of
population are related to those of built-up area. Therefore, using census
enumeration units is an inherently meaningful way to spatially constrain
the confusion matrices for substantive evaluation of underlying accu-
racy associations. The levels of granularity of these spatial units
constitute different levels of assessment support. The use of census data
from 2010 and GHSL built-up areas from 2014 ensured that temporal
discrepancies between zoning and test data were kept to a minimum.

2.2. Methods

In a first step, we projected and rasterized the built-up areas derived
from the reference database in 2014 (i.e., polygonal vector data) to the
spatial reference system and spatial resolution used in GHSL version
2018. During this process, the definition of the abstract class “built-up
area” (i.e., a grid cell is considered built-up if at least one built-up
structure overlaps the grid cell; see Pesaresi et al., 2016) was applied
to the reference data to ensure spatial and thematic compatibility
(Fig. 2a).

2.2.1. Generating zonal accuracy measures

First, we generated agreement category surfaces, i.e., encoding true
positives (TP), true negatives (TN), false positives (FP), and false nega-
tives (FN) based on map comparison (i.e., pixel-wise agreement /
disagreement) between built-up areas in 2014 derived from GHSL and
the rasterized reference data (Fig. 2b), using an exhaustive sampling

(a) Input surfaces

(b) Thematic
agreement surfaces

¥
Map comparison
¥

N P1 000 N P2500

I (c) Zonal accuracy analysis

Zonal
Administrative & accuracy
census enumeration units measures

¥

(e) Aggregated agreement surfaces (f) Focal confusion
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scheme, excluding grid cells within parcels that are considered unreli-
able. These surfaces use one-hot encoding (e.g., TP = 1, other cells = 0).
For each agreement category, we computed the zonal sums of the
respective categories within each (vector) zoning geometry at all six
assessment support levels (i.e., state, county, township, tract, block
group, block), yielding the confusion matrix for each individual zoning
geometry (Fig. 2c). We calculated a range of accuracy measures (Section
2.2.3), derived from these confusion matrices and appended them as
attributes to the respective zoning geometries. We linked each of the
>150,000 census blocks to all zoning geometries that spatially con-
tained the respective census block, in order to establish links between all
zoning geometries across the assessment support domain. This method
allows for extracting accuracy measures at each individual zoning ge-
ometry defining the assessment support, as well as the accuracy trajec-
tories for a given location across all support levels for visualization and
analysis (see Section 3.4).

2.2.2. Generating focal accuracy measures

The second data processing effort conducted in this study yielded a
set of surfaces of localized accuracy measures within focal (moving)
windows, of varying size, and thus, independent from external zoning
data (Fig. 2d). More specifically, we used quadratic focal windows of
size sxs, with s € (1 km, 2.5 km, 5 km, 10 km), representing four levels of
focal assessment support. In a first step, for each focal support level, we
computed the focal sum of the instances of each agreement type (TP, TN,
FP, FN, see Fig. 2e). For example, the focal sum of TP instances for
support s = 1000 m (i.e., TP1ggp) represents the TP elements of the
corresponding localized confusion matrices CMjggp. We stacked these
four surfaces into a 4-band composite, representing a spatialized version
of localized confusion matrices. We generated such a confusion matrix

(g) Output surfaces
matrix composite

|
L

BUDENSge 1000

Assessment
support = 1000m

10U 000

Assessment
support = 2500m

BUDENSer 2500

i J FNZTP

(d) Focal accuracy analysis

Data Analysis

Fig. 2. Workflow of the conducted data processing steps: (a) Binary input surfaces indicating the presence and absence of built-up areas, (b) agreement surfaces for
each agreement type (TP, TN, FP, FN) obtained by cell-by-cell map comparison, (c) zonal accuracy measure creation, (d) analytical steps for the focal accuracy
analysis, shown for two of four levels of assessment support, (e) aggregated agreement surfaces, (f) resulting focal confusion matrix composites, (g) exemplary output
surfaces generated from the confusion matrix composites, and (h) exemplary focal landscape metrics (i.e., number of patches, NP) derived for two levels of

assessment support. Surfaces are shown for Worcester, Massachusetts.
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composite for each of the four support levels. The TP, FP, and FN bands
of these composites are shown in Fig. 2f using RGB color-coding,
exemplarily for s = 1 km and s = 2.5 km.

For each of the four levels of focal assessment support, we drew a
stratified random subsample of N = 1,000,000 locations from the >6.6
million grid cells within Massachusetts that have at least one GHSL or
reference built-up instance within their focal neighborhood. In order to
obtain a representative sample across the rural-urban continuum
covering both GHSL and reference data, we stratified the data by deciles
of reference built-up area density (i.e., 100,000 locations per decile
stratum). All subsequent computations are based on these compositional
data structures, allowing for efficient retrieval of localized confusion
matrix components at any location and support level, and the fast
computation of accuracy surfaces for a range of accuracy measures (see
Fig. 2g for an example, see also Section 2.2.3) and built-up area density
surfaces (Fig. 2g, Section 2.2.4).

2.2.3. Agreement measures
The agreement measures examined herein are based on a binary
contingency table, representing the confusion matrix CM:

(€8]

oM - [TN FP]

FN TP

with TN: true negatives, FN: false negatives, FP: false positives, and TP:
true positives as counts resulting from cross-tabulation of the reference
and test data records, where “positive” refers to the entities of interest (i.
e., built-up). Then the overall accuracy, or percentage of correctly
classified (PCC) is defined as

P + TN
PCC = —J; @)

where n is the sum of all elements of CM (Michie et al., 1994). Producer's
accuracy (PA, also known as recall, sensitivity, or true positive rate)
indicates the probability of a reference element being classified
correctly, and is complementary to the omission error OE (error of
exclusion, or type II error), whereas User's accuracy (UA, also known as
precision) indicates the probability of a classified object being correct,
and is complementary to the commission error CE (error of inclusion, or
type I error) (Story and Congalton, 1986):

TP
PA =recall = ————=1-0E 3
TP + FN
and
TP
A = ision=———=1—CE
UA = precision P+ FP C )

Note that in the remainder of this analysis, we use the terms “pre-
cision” and “recall”. The F-measure is defined as the harmonic mean of
precision and recall (van Rijsbergen, 1974):
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and allows for assigning higher weights to precision (0 < < 1) or to
recall (B > 1) and is particularly useful to evaluate binary classification
scenarios when precision or recall should be emphasized, e.g., in the
case of heavily imbalanced data. Some commonly used Fy measures are
the Fy score (i.e., p = 2, favoring recall), and the Fy 5 score, (i.e., p = 0.5,
favoring precision) (Van Rijsbergen, 1979).

The geometric mean (G-mean, Kubat and Matwin, 1997) is defined
as the geometric mean of specificity (i.e., the recall of the negative class)
and sensitivity (i.e., recall of the positive class):

N TP

C=\IN+FPEN+ TP

7)

Maratea et al. (2014) combine the concepts of the Fy measure and the
G-mean and developed the adjusted F-measure (Fap;), which is defined
as:

Fapy = /Fa-inv(Fys) (8)
and represents the geometric mean of the F; measure and inv.(Fgs),
where inv.(F 5) denominates the Fy 5 measure after inverting the posi-
tive and negative class labels, in order to account for the class imbalance
bias. Moreover, the Jaccard Index (Jaccard, 1902) sometimes referred to
as “figure of merit” (e.g., Pontius et al., 2008a), or Intersection-over-
Union (IoU) is defined as:

TP

JoU=— "
U TTIPTFPYFN

)]

Cohen's Kappa index (Cohen, 1960) in case of a binary classification
is defined as

_Po—Pc
k=20 Fe

with pg being the observed overall agreement corresponding to PCC and
P being chance agreement, estimated as:

= <TP+FN) (TP+FP> n (TN—I—FN) <TN+FP ) an

n n n n

Moreover, Matthews Correlation Coefficient (MCC, Matthews,
1975), defined as:
TP-TN — FP-FN

MCC = 12)
/(TP + FP)-(TP + FN)-(IN + FP)-(IN + FN)

is increasingly used as an accuracy measure in land cover classifications
(e.g., Herfort et al., 2019; Longépé et al., 2019; Vasilakos et al., 2020).
Finally, the Normalized Mutual Information score (NMI, Forbes, 1995) is
obtained based on the entropy H of the predicted class labels p, the
entropy of the reference class labels r and the entropy of both reference
and predicted class labels as:

H(r,p) — H(p)
NMI =1 ——F—F——— 1
-~ 2.TP _ 2-precision-recall ©) H(r) (13)
" 2. TP+ FP+FN  precision + recall
which equals in the case of a binary classification problem to:
and represents a specific case of the generalized Fy measure for § = 1
(Maratea et al., 2014). The Fy measure is defined as:
i — 1 ~TPIn(TP) = FP In(FP) — FN In(FN) — TN In(TN) + (TP + FP)In(TP + FP) + (FN + TN)In(FN + TN) 19
- nIn(n) — [(TP + FN)In(TP + FN) + (FP + TN)In(FP + TN)]
Herein, we divided uncertainty into thematic agreement and quan-
recision-recall tity agreement. A similar separation has been proposed by Pontius Jr
Fy= (14 )0 ®)

(/}2 ~precisi0n) + recall

and Millones (2011) and has proven to provide interesting insights into



J.H. Uhl and S. Leyk

model uncertainty (e.g., Pickard et al., 2017), but also into data uncer-
tainty while reducing influences of spatial offsets between test and
reference data (see Section 2.2.5).

The quantity agreement measures used herein are the absolute error
(AE), obtained as:

AE = (TP+FP) — (TP+ FN) = FP— FN @s)
and the relative error (RE), which is the AE in relation to the built-up
quantity reported in the reference data, is calculated as:

_ AE _(FP—FN)
RE = (TP +FN) ~ (TP +FN) (16)

Moreover, we separate the absolute error (Eq. 15) into over-
estimation (OE) and underestimation (UE) components as follows:

AE,AE >0
0E7{ 0AE <0 a7
0,AE >0
VE= {abs(AE),AE <0 as)

This will allow for a statistical analysis of the relationships of over-
and underestimation components across the rural-urban continuum
(Section 2.2.5).

At this point, it is worth noting that, despite being widely used for
classification and map accuracy assessments, several of the presented
accuracy and agreement measures have been subject to criticisms
regarding their suitability for unbiased quantification of classification
accuracy. For example, Pontius Jr and Millones (2011) as well as Foody
(2020) discourage the community from using the Kappa index, and Shao
et al. (2019) and Stehman and Wickham (2020) point out that PCC may
be severely biased in case of class imbalance. Conversely, the F-measure
and G-mean are known for being less sensitive to imbalance effects
(Fawcett, 2006), and the MCC has recently been recommended to be
preferable over Kappa (Delgado and Tibau, 2019), and over the F-
measure (Chicco and Jurman, 2020), see also Luque et al. (2019).
Despite these criticisms, these metrics have been widely used for map
comparison and for the evaluation of (binary) classification problems (e.
g., Kappa). We include them into our suitability analysis (Section 3.1) to
raise further awareness of the potential bias in these metrics (i.e., Kappa
and PCC). See Table Al for an overview of these metrics.

2.2.4. Modelling the rural-urban continuum

Quantitative modelling of the rural-urban continuum, i.e., the
gradual transition between highly populated urban areas to sparsely
populated rural places, represents an important analytical component of
this work. While there are numerous global and national data products
enabling the high-resolution modelling of the rural-urban continuum
based on a variety of input data (e.g., Waldorf and Kim, 2018; Florczyk
et al.,, 2019), these datasets use spatial units that are not directly
compatible with the assessment support provided by the described
localized confusion matrices. Thus, we stratified the study area by
varying levels of development intensity, modelled by the built-up den-
sity found in the reference data as well as in the GHSL, allowing for
stratification across the rural-urban continuum, consistent to the
assessment support of the localized accuracy estimates. The reference
built-up density (in %) at a given location and for a (quadratic) assess-
ment support s (in m) can be derived from the reference built-up grid cell
counts in the confusion matrix composite directly as:

TP + FN
BUDENSer %) = 100~302-L2) 19)
The GHSL-based built-up density is obtained as:
TP + FP
BUDENS s s[%) = 100~302~(%) (20)
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for a spatial resolution of 30 m. An example of the resulting focal
built-up density surfaces is shown in Fig. 2g.

Moreover, we calculated selected landscape metrics quantifying the
segregation of the built-up areas. These landscape metrics include the
number of built-up patches (NP) and the Largest Patch Index (LPI)
(McGarigal et al., 2012). This is motivated by previous work suggesting
that particularly the size of patches affects the classification accuracy
(Smith et al., 2002, 2003; Klotz et al., 2016; Miick et al., 2017). We
calculated the focal NP and LPI, consistent to the focal accuracy and
density surfaces, for each level of assessment support (Fig. 2h).

2.2.5. Assessing the effects of positional uncertainty in reference and GHSL
data

The Landsat-based multispectral data used as input for the GHS-BUILT
datahasan approximate positional accuracy of 12-23 m (Zanter, 2017).In
addition to that, the geodetic datum transformation applied when
reprojecting the data into the target reference system can be expected to
ingest additional positional uncertainty in the range of few meters. The
building footprint data obtained from cadastral data sources, used to
generate the reference surfaces are expected to have high positional ac-
curacy, but may be affected by a spatial tolerance of up to 12 m (Craig and
Wahl, 2003). Thus, the thematic accuracy estimates obtained from the
gridded surfaces at the original resolution of 30 m may be biased by
misalignments due to the positional uncertainty in the underlying data-
sets (Congalton, 2007). In order to mitigate this effect, we carried out
some of our analyses based on 3 x 3 pixel blocks as assessment unit (e.g.,
Gu and Congalton, 2020; Gu and Congalton, 2021; Marconcini et al.,
2020a) and analyzed how these results differ from the analyses carried out
using individual grid cells for map comparison (Sections 3.5 and 3.6).

2.2.6. Analytical framework

Based on the generated data structures and surfaces (Fig. 2), we carried
out the subsequent analyses. Spatial data processing was done using Python
3.6, ESRI ArcPy Python package (ESRI, 2020) and Geospatial Data
Abstraction Library (GDAL; GDAL/OGR contributors, 2020). The analytical
steps are as follows: We examined the relationships of various (thematic and
quantity) agreement measures characterizing zonal accuracy (Section 2.2.1)
and focal accuracy (Section 2.2.2) with population density and built-up
density across the rural-urban continuum (Section 3.1). Moreover, we con-
ducted a theoretical suitability assessment of commonly used accuracy
measures for small sample sizes and extreme class imbalance, and their
plausibility with respect to theoretical expectations (i.e., the assumed in-
crease of accuracy from rural towards urban settings) (Section 3.1).

Based on this assessment, we identified a set of suitable agreement
metrics, for which the remainder of this analysis was carried out. We
analyzed the interactions between omission and commission errors across
the rural-urban continuum (Section 3.2) and examined the relationships
between localized accuracy estimates and structural characteristics of
built-up areas (Section 3.3). We then analyzed the sensitivity of zonal and
focallocalized accuracy estimates to the assessment support (Section 3.4).
Subsequently, we tested the robustness of our analyses to the effects of
positional uncertainty in reference and GHSL data, by applying selected
analytical steps based on agreement metrics derived from the aggregated
3 x 3 pixel blocks (Section 3.5).

Finally, we applied our framework and integrated focal accuracy
surfaces derived for the different GHSL epochs (i.e., 1975, 1990, 2000
and 2014) in order to assess how the localized GHSL accuracy varies
over time (Section 3.6).

3. Results

3.1. Suitability of agreement measures for localized accuracy estimation
across the rural-urban continuum

The the generated (focal) accuracy surfaces (Section 2.2.2) allow for
a visual comparison of the measures under test. These surfaces are
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shown for the Greater Worcester area in Fig. 3. As can be seen in
Figs. 3a) and b), built-up areas are well detected in densely developed
areas of the urban core, whereas peri-urban settlements are less well
detected in GHSL. This trend has been observed in previous work (Leyk
et al.,, 2018; Uhl et al, 2018) and constitutes important domain

Table 1
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Fig. 3. Input data, derived focal density and accuracy surfaces for the agreement measures used herein, computed at spatial resolution of 30 m, using an assessment
support (i.e., focal window) of 1x1 km: (a) Reference built-up grid cells, (b) GHSL 2014 built-up grid cells, (c) localized built-up density derived from the reference
data, and surfaces of (d) Precision, (e) Recall, (f) F-measure, (g) Adjusted F-measure, (h) Intersection-over-union, (i) Percentage correctly classified, (j) G-mean, (k)
Kappa, (1) Matthews correlation coefficient, (m) Normalized mutual information, and focal quantity agreement surfaces (n) relative error, and (o) absolute error.

knowledge for the evaluation of these accuracy surfaces. The quantity
agreement measures (Fig. 3n and o) confirm this trend, reporting
overestimation in urban areas, and underestimation in rural areas (Liu
et al., 2020). Among the tested thematic agreement measures, this trend
of increasing accuracy from rural towards more urban settings is only

Numerical robustness table of the agreement measures used in this study. Each line represents a unique combination of presence / absence of the four agreement
categories. The four blocks show different combinations of presence / absence of positive instances (i.e., TP and TN). Check marks indicate valid numerical values,
hyphens denominate undefined instances. Values of 0.0 and 1.0 (and — 1.0 for MCC) are indicated explicitly.

TP N FP FN UA (Precision) PA (Recall) F-measure Adj. F-measure IoU PCC G-mean Kappa MCC NMI RE AE
0 0 0 v - 0.0 - - 0.0 0.0 - 0.0 - - v v
0 0 v 0 0.0 - - - 0.0 0.0 - - - - - v
0 0 v 4 0.0 0.0 - - 0.0 0.0 0.0 v -1.0 - 4 v
0 v 0 0 - - - - - 1.0 - 1.0 - - - 0.0
0 4 0 v - 0.0 - - 0.0 v 0.0 v - - v v
0 v 4 0 0.0 - - - 0.0 v - v - - - v
0 v v 4 0.0 0.0 - - 0.0 v 0.0 v v - 4 v
v 0 0 0 1.0 1.0 1.0 - 1.0 1.0 - - - - 0.0 0.0
v 0 0 v 1.0 v v - v v - 0.0 - - v v
v 0 v 0 v 1.0 v - v v 0.0 v - - v v
v 0 v v v v v - v v 0.0 v v - v v
v 4 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - 0.0 0.0
v v 0 4 1.0 v v v v v v v v - v v
v v v 0 v 1.0 v v v v v v v - v v
v v v v v v v v v v v v v v v v
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seems to occur more independently from built-up density, e.g., due to
roads and impervious surfaces misclassified as built-up land, which may
occur in both rural and urban regions.

The census-based, zonal accuracy estimates underlying the correla-
tion analysis reported in Table 2 may suffer from a sampling bias, since
census enumeration units are designed in a way that each unit contains a
minimum population count. Assuming that the built-up area reflects the
population counts to some degree, the existence of census enumeration
units containing very few or no built-up instances in the test data is
unlikely. Therefore, we cross-compared the relationships between built-
up density and localized accuracy estimates based on zonal and focal
constraining geometries (Fig. 4). While illustrating the previously dis-
cussed variety in the trajectories of different agreement measures across
the rural-urban continuum, these scatterplots exhibit high degrees of
similarity between zonal (Fig. 4a,b) and focal (Fig. 4c,d) accuracy esti-
mates. This indicates that, despite the above-mentioned sampling bias in
census-based zonal accuracy estimates, the relationships to built-up
density are of generalizable nature. Importantly, the trajectories of the
respective agreement measures across the rural-urban continuum using
reference built-up density (Fig. 4a,c) and GHSL-based built-up density
(Fig. 4b,d) are highly similar, in particular when zonal geometries are
used to define the assessment support. Comparing the F-measure and
IoU, which exhibit strongest levels of correlation overall, the shape of
the point clouds indicates a steeper slope of the F-measure, indicating
higher levels of conservativeness of the IoU in low-density regions.

Based on results shown in Figs. 3 and 4, and Tables 1 and 2, we
consider IoU the most suitable agreement measure for estimating the
local accuracy variations of built-up land layers such as the GHSL,
yielding geographically plausible and robust results, exhibiting strong
associations with built-up density and population density.

3.2. Interactions of omission and commission errors across the rural-
urban continuum

As the different patterns of precision and recall distributions against
built-up density in Fig. 4 suggest, omission and commission errors
appear to follow different trajectories across the rural-urban continuum.
In order to test this, we used our 1,000,000 sample locations drawn from
the confusion matrix composites (cf. Fig. 2f, Section 2.2.5). For each of
these sample locations, we calculated the F3 measure for a range of § =
0.5 to p = 2.0, in increments of 0.1. This allowed us to assess the vari-
ations of the Fy measure on a continuous scale between the Fg 5 measure

Precision Recall

Measure

Built-up density

F-measure Adj. F-meas. loU PCC G-mean
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(favoring precision over recall) and the Fy( measure (favoring recall
over precision), within quintile-based strata of reference built-up den-
sity (Fig. 5a). The median Fj trends per density stratum reveal inter-
esting details: In the low-density stratum, both extremely low precision
and recall values seem to occur, resulting in a symmetric, slightly U-
shaped curve of median Fy across the § range. This is likely to be a su-
perposed effect of highly precise built-up grid cells in GHSL, suffering
from high omission errors, and a low-precision component induced by
falsely labelled road grid cells. The effect of this low-precision compo-
nent disappears in density stratum 2, where the median Fy trend in-
dicates low recall but high levels of precision. In the medium density
stratum 3, precision and recall appear to be equilibrated. The trend is
inverted in the high-density strata 4 and 5, where the Fy measure de-
creases with higher weight to precision, and increases if more weight is
given to recall, reflecting high levels of commission errors (e.g., roads,
impervious surfaces) and low levels of built-up area omission in the
GHSL. The supplementary movie illustrates the effect of § on the rela-
tionship of the F3 measure and built-up density.

Which F3 measure best reflects the rural-urban gradient? We
analyzed the correlations of the Fy measure for a range of p ¢ [0.1,2.0],
for all four levels of assessment support (Fig. 5b), indicating maxima of
Pearson's correlation coefficient for p between 0.75 and approximately
0.9, for all support levels, suggesting that an Fy measure slightly favoring
precision exhibits a stronger linear relationship across the rural-urban
continuum than the unweighted F-measure. Here, it is worth noting
that none of these correlation maxima exceeds the correlation between
IoU and reference built-up density of 0.84 (Fig. 4c).

This indicates that precision and recall follow different trajectories
across the rural-urban continuum. Thus, we analyzed the relationship
between precision and recall themselves (Fig. 5¢), and found a much
steeper increase of recall compared to precision. Fig. 5c shows most
locations in rural areas (i.e., low built-up density) are found below the
main diagonal of the plot (i.e., precision > recall), whereas in higher
density regions, recall seems to be greater than precision (above the
main diagonal). This asymmetric relationship between precision and
recall is also reflected in the ternary plot shown in Fig. 5d, which is based
on the relative proportions of TP, FP, and FN at each sample location.
Fig. 5d also shows locations where precision equals recall, which we call
“isometric” locations, which can be found for a wide range of TP, and
throughout the rural-urban continuum, except in areas of high built-up
density. These locations are particularly interesting, as the quantity
error is 0, and thus, regardless the level of thematic disagreement, the

Kappa MCC NMI RE AE
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Fig. 4. Scatterplots of localized accuracy estimates (y-axis) against built-up density (x-axis): (a) zonal support, using reference built-up density, (b) zonal support,
using GHSL-based built-up density, (c) focal support, using reference built-up density, (d) focal support, using GHSL-based built-up density. Underlying focal ac-
curacy surfaces have a spatial resolution of 30 m and are based on an assessment support of 1x1 km. Zonal accuracy measures are shown for census tracts, block
groups and blocks together. Also shown are Pearson's correlation coefficients for each scatterplot.
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Fig. 5. Interactions of precision and recall across the rural-urban continuum: (a) Distributions of the Fy measure for different values of p, within strata of reference
built-up density, (b) Pearson's correlation coefficient between reference built-up density and F; for a range of f values, (c) Localized precision-recall scatterplot, color-
coded by reference built-up density, white dashed line represents the average precision per recall percentile. (d) True positive, false positive, and false negative
ternary plot, color-coded by reference built-up density; including locations where precision equals recall in white and (e) reference built-up density distributions (i.e.,
probability density functions) within bands of precision-recall similarity (i.e., 10% and 20% maximum deviation between precision and recall). Ternary plot in (d)

created with python-ternary (Harper et al., 2015).

GHSL provides correct estimates of total built-up area. Moreover, we
identified locations where the relative difference between precision and
recall does not exceed 10%, and 20%, respectively, and visualized the
distribution of these “quasi-isometric” locations along the rural-urban
continuum (Fig. 5e). These kernel density functions indicate that
quasi-isometric locations are mainly found in rural regions with built-up
densities of 5-15%, and this peak is more nuanced as assessment support
increases.

3.3. Interactions between localized accuracy estimates and density—/
structure-related characteristics of built-up surfaces

While built-up density represents a commonly used and computa-
tionally inexpensive proxy variable to characterize the rural-urban
continuum, structural measures describing the shape and spatial segre-
gation of built-up areas may relate differently to localized accuracy es-
timates. To explore this, we explicitly analyzed two landscape metrics
and their relationship to built-up density, to the IoU as a thematic ac-
curacy measure, as well as to the absolute error (AE) as a measure of
quantity agreement. These landscape metrics include the number of
contiguous built-up area patches (NP) and the largest patch index (LPI,
reflecting area proportion of the largest built-up patch), computed at
sample locations within focal windows of 1x1 km (see Section 2.2.5).
Comparison of these structural measures with the focal IoU surface (cf.

10

Fig. 3h) and the corresponding built-up density surface allow for visu-
alizing the rural-urban continuum in two-dimensional spaces (Fig. 6):
Fig. 6a shows the interactions of built-up density, NP and the IoU,
indicating high thematic accuracy where built-up density is high and
number of patches is low (i.e., dense, contiguous patches of built-up
land, such as urban cores), decreasing towards peri-urban areas (i.e.,
moderate built-up density, high levels of segregation), and rural areas
(low built-up density, and few, scattered settlement patches). The
visualization of quantity agreement (AE, Fig. 6b) reveals that the un-
derestimation of built-up area (i.e., negative AE) mainly occurs in areas
characterized by low and moderate built-up density, but relatively
independently from the level of spatial segregation of built-up areas.
However, the shapes of the point clouds in Fig. 6a,b illustrate the
ambiguous nature of the NP metric to characterize the rural-urban
continuum, as the same values of NP can be found in both, low and
high-density regions. Combining built-up density and LPI shows a
different picture: Thematic accuracy of the GHSL is mainly driven by
built-up density, and occur for both, large and small contiguous patches
of built-up land (Fig. 6¢). Underestimation of built-up area (i.e., quantity
disagreement measured by negative AE) occurs mostly in areas of low
built-up density characterized by small patches of built-up land
(Fig. 6d).

Lastly, we assessed the interactions between thematic agreement
(IoU) and quantity agreement (AE) across density and structure of the
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built-up areas (Fig. 6e-h). As expected, we observe a general trend of
decreasing AE with increasing IoU, across all strata of LPI. In regions of
low LPI (i.e., small, scattered patches of built-up land, Fig. 6e), we
mainly observe built-up land overestimation (i.e., AE > 0), possibly due
to highways and roads misclassified as built-up land in the GHSL. In
other words, low IoU values in these regions are driven by high pro-
portions of false positives. Conversely, in regions where large, contig-
uous patches of built-up land dominate (i.e., high LPI, Fig. 6h), we
observe higher levels of overestimation despite moderate or high IoU.
Highest IoU values occur in the high LPI stratum, which is in agreement
with previous work (Klotz et al., 2016; Miick et al., 2017).

3.4. Assessing sensitivity of localized accuracy estimates to assessment
support

Up to this point, our analysis was based on localized accuracy esti-
mates derived from fixed levels of assessment support, without taking
into account potential sensitivity of these estimates to assessment sup-
port. In this section, we aim to identify such sensitivities. First, we
visualize localized accuracy estimates derived from the zonal geometries
(see Section 2.2.1) in geographic space. Mapping the IoU at different
levels of assessment support illustrates the inherent spatial variability
across different geographical extents (Fig. 7). Whereas IoU at the state
level (Fig. 7a) has a similar magnitude as the majority of counties
(Fig. 7b), it decreases in most entities of the subsequent finer scales
(Fig. 7c-f), especially in rural settings. In highly urban regions (e.g.,
Greater Boston), IoU tends to increase from state to census tract level but
yields highly dispersed values when using units of finer granularity.
Thus, IoU generated from the state level-confusion matrix un-
derestimates thematic agreement in urban settings and overestimates in
rural areas. The low IoU in rural settings is likely due to a high number of
false positives caused by road features detected as built-up land in GHSL
(cf. Fig. 6e), alongside with high levels of omission errors caused by the
difficulty in detecting dispersed small settlements in GHSL.

Whereas such map sequences across levels of assessment support

Areas excluded due to
implausible reference data
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illustrate the spatial variability of the accuracy estimates and their
support dependency, it is difficult to detect and visualize cross-support
effects. We generated cross-support trajectory plots for thematic agree-
ment (IoU, Fig. 8a) and quantity agreement (AE, Fig. 8b) and, for cross-
comparison, for Kappa and PCC (Figs. 8c and d, respectively), for all
157,508 census blocks in Massachusetts, and observe the following:

3.4.1. Support sensitivity

Among the shown thematic accuracy measures, IoU exhibits the
widest range of magnitudes, and shows lowest degrees of sensitivity (i.
e., high stability) across all support levels from township to block group
level. This implies that the proportion of misclassified instances stays
stable across these assessment support levels. Kappa exhibits a consid-
erable amount of trajectories dropping to very low values from township
to block group level, and converging to extreme values (i.e., 0 and 1) at
the block level. This indicates high levels of support sensitivity and
confirms common criticisms to Kappa, such as its sensitivity to marginal
probabilities (Gwet, 2002), or its non-suitability for accuracy assess-
ments of land cover data (Pontius Jr and Millones, 2011; Foody, 2020).

3.4.2. Sample size sensitivity

All accuracy measures under test show high levels of diffusion at the
lowest level of assessment support, the block level. This indicates high
degrees of sensitivity to small sample sizes, taking into account that the
median size of census blocks in Massachusetts is 16,175 sqm, corre-
sponding to a sample size of 18.0 grid cells of 30x30m to establish the
confusion matrix (2.4 grid cells for the 25th percentile, and 42.9 grid
cells for the 75th percentile, respectively). Moreover, the accuracy
values tend to take extreme values (i.e., 0.0, 1.0) due to critically low
sample sizes and a lack in robustness of the accuracy measures when
using low sample sizes.

3.4.3. Trend
PCC and Kappa exhibit decreasing trends towards the block level.
While a decreasing trend for PCC can be explained with an increase in

Fig. 7. IoU for different levels of assessment support derived from constraining zonal geometries: (a) State, (b) counties, (c) townships, (d) census tracts, (e) census
block groups, and (f) census blocks. Gray areas in (a) are excluded from the analysis due to implausible reference data.
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class balance, Kappa is showing a nearly linearly decreasing trend to-
wards the block group level, i.e., with decreasing sample size. Such a
trend, alongside the previously observed diffuse behavior for small
sample sizes are in line with earlier work examining critical sample sizes
and sample size dependency for inter-rater agreement measures such as
the Kappa index (e.g., Sim and Wright, 2005; Bujang and Baharum,
2017). Regarding the average trajectories for rural and urban census
blocks, the IoU shows the geographically most plausible picture, i.e.,
higher levels of accuracy in census blocks of high built-up density, as
observed in Section 3.1.

3.4.4. Conservativeness

Whereas Kappa exhibits lower magnitudes across the examined
support levels down to the block group level and thus, characterizes
accuracy in a rather conservative way, PCC tends to yield high values
that decrease steadily down to the block group level, confirming the
well-known issue of PCC to yield inflated values, in particular when the
evaluated classes are imbalanced (Rosenfield and Melley, 1980; Shao
et al., 2019; Stehman and Wickham, 2020). Moderate PCC values (here,
approx. 0.6-0.8) yielded for township, tract and block group level could
indicate a more balanced class distribution of built-up and not built-up
classes.

The AE as a quantity agreement measure exhibits a distinct picture:
As expected, AE as an absolute measure decreases with decreasing
assessment support (i.e., towards block level), consistently for most
census blocks. Several trajectories switch sign, indicating that the
change in assessment support can cause a switch from under- to over-
estimation or vice-versa, likely due to heterogeneous or dispropor-
tionate levels of built-up density within those zones.

The census unit boundaries used to generate these zonal accuracy
estimates typically align with human-made features (e.g., neighbor-
hoods, major roads) and, less frequently with rivers, and thus, contain
low levels of within-unit land cover variability, especially in urban and
peri-urban areas. This circumstance may affect cross-support trajectories
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and introduce certain bias. Hence, we performed a similar analysis based
on focal accuracy estimates across our set of accuracy surfaces for
different levels of assessment support (see Section 2.2.2), allowing for
cross-support trajectory analysis independently of externally imposed
zoning boundaries.

Specifically, we extracted IoU, AE, Kappa, and PCC trajectories for
our stratified random sample of 1,000,000 locations in Massachusetts
across all levels of assessment support (Fig. 9). These boxplots show the
distribution of the accuracy measures across the rural-urban continuum,
separately for each level of assessment support. The IoU trajectories
(Fig. 9a) confirm the trends observed in zonal accuracy trajectories
across support levels (cf. Fig. 8a): i) given any level of assessment sup-
port, accuracy increases with increasing built-up density; ii) IoU exhibits
low levels of variance to the chosen support level in dense, urban areas
(i.e., the increase of distribution medians with increasing support is least
pronounced in the high-density stratum), and IoU dispersion (i.e., inter-
quartile ranges) appears quite constant across support levels, and even
across the rural-urban continuum. This implies that using the IoU to
characterize localized thematic accuracy of built-up land data is largely
invariant to the chosen level of assessment support in urban areas (un-
less very low assessment support levels are used, such as census blocks in
highly populated urban areas; cf. Fig. 8a), but may be sensitive to the
level of support in rural regions.

The AE computed within focal windows of varying assessment sup-
port (Fig. 9b) shows a distinct pattern. Average AE magnitudes and
dispersion increase with increasing assessment support, across all den-
sity strata. This is expected, since AE is an absolute measure. Median AE
across support levels decreases in rural strata, and increases in the more
urban strata. In the high-density stratum, there are a few locations of
quantity underestimation (i.e., negative AE), increasing with support,
shown as outliers. These results highlight that localized accuracy mea-
sures such as the IoU and AE need to be interpreted carefully when the
underlying assessment support is not constant.

Kappa (Fig. 9c) shows a moderately increasing trend across the rural-
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urban continuum for all support levels. This trend is less pronounced
than the IoU (Fig. 9a), likely due to the numerical problems of Kappa in
highly urbanized areas (cf. Fig. 3k), while sensitivity to assessment
support is similar to the IoU. PCC (Fig. 9d) exhibits an opposite trend (i.
e., decreasing accuracy from rural to urban areas), which emphasizes the
previously discussed unsuitability of PCC for localized accuracy esti-
mation (cf. Fig. 3i). Notably, PCC exhibits the lowest level of assessment
support sensitivity among the four accuracy measures.

While these distributions indicate considerable levels of sensitivity to
assessment support, the correlations of these measures to built-up den-
sity appear to be stable across support levels for some measures (i.e.,
IoU, F-measure, precision, and recall), and increase with assessment
support for the remaining measures, most notably for the AE and MCC
(Fig. 10a). This indicates that these measures may be suitable for
localized accuracy characterization if assessment support / sample size
of the underlying confusion matrices is large enough. For the accuracy
measures exhibiting highest levels of correlation, correlation ranks are
stable across the support levels, indicating high levels of generalizability
of these relationships across spatial scales. Correlation trends with
respect to the GHSL-derived built-up densities (Fig. 10b) largely show
similar trends for most measures, except the absolute error (AE) that
shows a considerable increase in correlation. We also calculated these
trends for the average of reference data and GHSL-derived built-up
densities, and observe similar trends, ensuring that the data source for
built-up density calculation does not affect our findings.

How does assessment support affect the relationships between ac-
curacy measures? To investigate this, we visualized some of the previ-
ously discussed relationships at different levels of assessment support
(Fig. 11, see also Fig. Al for all support levels). For example, we observe
an increasingly linear relationship between the IoU and AE, in particular
in regions of higher built-up density, as assessment support increases
from 2.5 km (Fig. 11a) to 10 km (Fig. 11b). This applies also to the
relationship between precision and recall (Fig. 11c,d) and the relative
proportions of TP, FP, and FN (Fig. 11e,f), reflected in a “bundling” ef-
fect. Correlation coefficients between these measures consistently in-
crease with increasing support as well (Table 3). Thus, as assessment
support increases, thematic and quantity agreement, as well as com-
mission and omission errors, and agreement / disagreement measures
become increasingly correlated to one another, and the fine nuances
between different uncertainty types disappear with increasing assess-
ment support. These results clearly demonstrate the need for localized
accuracy estimates, revealing fine-grained uncertainty patterns that
remain hidden if “global” or spatially over-generalized accuracy esti-
mates are reported.

3.5. Analysis of assessment unit sensitivity

As described in Section 2.2.5, thematic accuracy estimates obtained
from map comparison at the original resolution may be biased by the
misalignment of gridded test and reference data, induced by the posi-
tional uncertainty of the underlying spatial data. This effect is expected
to be mitigated by using 3 x 3 grid cell (i.e., 90 m x 90 m) blocks as
assessment unit. Fig. 12 a, b, and ¢ show how IoU increases when using
such aggregated units, particularly in sparsely built-up, peri-urban and
rural areas (cf. reference built-up density surface in Fig. 12d). This effect
causes an average increase of IoU of about 0.25 in medium-density re-
gions (Fig. 12e), likely a superposed effect of increasing levels of accu-
racy, and a decreasing aggregation effect from rural to urban areas.
However, in relative terms, this effect is most nuanced in sparsely built-
up rural areas (Fig. 12f). These trends are persistent over time when
comparing the epochs 1975 and 2014 (Fig. 12 e,f).

The IoU obtained from map comparison at an assessment unit of 3 x
3 grid cell blocks is expected to be more realistic, as it is free from bias
introduced by positional uncertainty. Since this effect is more pro-
nounced in rural areas, the “true” trend of IoU across the rural-urban
continuum (see Fig. 4) is expected to be less steep, and the “true”
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correlation between IoU and built-up density is expected to be lower.
This is confirmed by the scatterplots shown in Fig. A2 and the correla-
tion coefficients reported in Table 4. However, Table 4 shows that IoU
still exhibits higher levels of correlation to built-up density than the F-
measure, and thus, indicates that our observations made in Section 3.1
are unaffected by potential bias due to positional uncertainty in the data.
Moreover, these trends are highly persistent over time (Table 4).

3.6. Assessing focal accuracy over time

The observations made in Section 3.5 regarding sensitivity to the
assessment unit and accuracy trends across the rural-urban continuum
appear to be highly persistent over time. But how does the local accuracy
of the GHS-BUILT surfaces change over time, and how do such temporal
trends play out across space and along the rural-urban continuum? To
answer this question, we visualize IoU trends across the four epochs
1975, 1990, 2000, and 2014 for three strata based on reference built-up
density in 2014. The thresholds for this stratification are adopted from a
strategy used in Leyk et al. (2018), where two sets of thresholds were
applied in order to ensure that the choice of thresholds does not affect
the resulting trends. We observe mostly increasing thematic accuracy
trends over time, for both assessment units. The decreasing trend of [oU
over time in the low-density stratum (Fig. 13a) indicates that opposite
behaviour may occur, likely due to increased construction activity of
scattered, rural settlements within our study area during the period
1975-2014, alongside with low sample sizes in the rural stratum.

These areas constitute around 36% of the land area within the rural
stratum, and the average built-up density in these areas is low (2,5%), as
shown in Table 5. These statistics represent a refined, more localized
insight into GHSL accuracy trends over time, reported in Leyk et al.
(2018), indicating that accuracy increased in most areas in both rural
and urban regions, and accuracy increase tends to occur in the regions of
higher built-up density within each stratum. We observe similar trends
when using IoU based on 3 x 3 cell blocks, again confirming that these
trends appear to be robust to changes in the assessment unit or under-
lying positional uncertainty.

As mentioned above, we extracted these statistics for a second set of
thresholds to establish rural, peri-urban and urban strata and generally
observe similar trends, except in the rural stratum, which is likely an
artefact of lower sample sizes (Fig. A3, Table A2). In order to assess, how
these accuracy trends play out across space, we visualized the focal
confusion matrix composite (cf. Fig. 2f) and the derived focal IoU surface
for Greater Boston, both for the years 1975 and 2014, and for both
assessment units (Fig. 14a and b). These surfaces, and the difference
surface shown in Fig. 14c illustrate how accuracy increased notably in
peri-urban regions around the city of Boston, and less so in dense urban
areas.

This visualization, and the average built-up densities reported in
Table 5 suggest that densification (i.e., change of reference built-up
density over time) could be a driver for the increases in thematic ac-
curacy. Based on the built-up density surfaces from the GHSL and the
reference data extracted for 1975 and 2014 (Fig. 14d) we generated
surfaces of the densification per grid cell and observe considerable dif-
ferences (Fig. 14e). GHSL-based densification trends appear to over-
estimate the actual densification, in particular in peri-urban settings
(Fig. 14f), as a result of the higher omission errors in medium and low-
density areas in the 1975 GHSL epoch.

Moreover, we observe that the reference densification surface ap-
pears very similar to the IoU difference surface (Fig. 14g). The scatter-
plots in Fig. 14h exhibit a relatively strong association between
increasing built-up density and increased levels of thematic accuracy of
the GHSL. Once again, this trend appears to be unaffected by positional
uncertainty (Pearson = 0.46 for 30 m-based IoU, and 0.44 for 90 m-
based IoU).
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Table 3
Pearson's correlation coefficients between selected localized accuracy measures
and confusion matrix components, for two levels of assessment support.

Measure 1 Measure 2 1x1km 10x10km
IoU AE 0.457 0.670
Precision Recall 0.440 0.666
FN FP 0.244 0.472
TP FP 0.632 0.833
TP FN 0.215 0.333

4. Discussion and conclusions
4.1. Methodological contributions

Herein, we presented a framework for the localized accuracy
assessment of binary built-up surface datasets, which takes into account
the peculiarities of such data products, i.e., shifting class imbalance
across the rural-urban continuum. The proposed framework entails the
creation of a set of focal density surfaces, counting the occurrences of
grid cells per agreement category (i.e., TP, TN, FP, FN) in a confusion
matrix within focal windows of varying size (i.e., assessment support)
(Fig. 2). From a technical point of view, the proposed computational
framework allows storing the elements of localized confusion matrices
in data cubes, and enables efficient, exhaustive and spatially explicit
accuracy assessments at high spatial resolution and across large
geographic extents. Based on these computational structures, we effi-
ciently derived continuous, exhaustive surfaces of commonly used
agreement metrics and assessed the plausibility (from a geographic
perspective) and robustness (to underlying sample size and extreme
class imbalance) of these metrics. Moreover, we tested the sensitivity of
our results to the choice of assessment support and assessment unit, and
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applied our framework to multi-temporal built-up surface layers from
the GHS-BUILT.

4.2. Implications for analysts conducting accuracy assessments

We demonstrated that the choice of a suitable agreement measure is
critical for conducting meaningful spatially explicit accuracy assess-
ments of binary categorical geospatial data, such as built-up surface
products, exemplified herein by the GHSL. The choice of a robust,
suitable measure for localized, spatially explicit accuracy assessments is
crucial, in particular since class imbalance (and its variability) is a
prevalent characteristic of built-up land data. We identified the
Intersection-over-Union as the metric yielding most geographically
plausible results across the rural-urban continuum, while exhibiting
high levels of robustness to underlying assessment support and sample
size. Similar results were achieved for the F-measure (Figs. 3 and 4,
Table 2). Observed differences between those two measures may be

Table 4
Pearson's correlation coefficients of the IoU and F-measure with reference built-
up density, for different assessment units and the epochs 1975 and 2014.

Assessment Accuracy Correlation w/ ref.built-up Correlation w/
unit metric density 1975 ref.
built-up density
2014
30x30m cells F-measure 0.761 0.759
3 x 3cell
blocks F-measure 0.665 0.675
30x30m cells ToU 0.812 0.810
3 x 3cell
blocks IoU 0.733 0.745
1 1.00
b o @ e Epoch
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Fig. 12. Quantifying the bias in the focal thematic accuracy estimates introduced by positional uncertainty in the data. Focal IoU surface using (a) 30 m individual
grid cells and (b) 3 x 3 grid cell (i.e., 90 m x 90 m) blocks as assessment unit. Panel (c) shows the pixel-wise difference of IoU (90 m blocks) and IoU (30 m cells), and
(d) reference built-up density surface for comparison, all shown for the city of Worcester, Massachussets). Boxplots show the trends of these differences across the
rural-urban continuum, modelled by a percentile-based classification of the reference built-up density: (e) absolute IoU difference, and (f) difference in % of the IoU
based on 30 m cells as assessment unit, both shown for the GHSL epochs 1975 and 2014. The blue line in (e) and (f) indicates a difference of zero. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

17



J.H. Uhl and S. Leyk

a b

Remote Sensing of Environment 279 (2022) 113117

C High built-up density

Low built-up density

Medium built-up density

1.0 v v v v v v v v v
0.8 1 9 - E
0.6 1
=) =)
o i B &L Lo
0.4 1 1 T
02 1 [ [ Cell size [m]
N 30
N 90
0.0 T T T T T T T T T T T e
1975 1990 2000 2014 1975 1990 2000 2014 1975 1990 2000 2014

Year

Year

Year

Fig. 13. Trends of IoU across the four GHSL epochs 1975-2014, within strata of reference built-up density, loosely related to (a) rural (0%-5% built-up density), (b)

peri-urban (5%-20% built-up density), and (c) urban (>20% built-up density).

Table 5
Change statistics of localized IoU from 1975 to 2014, within strata of reference built-up density, for both single cells, and 3 x 3 cell blocks used as unit for the accuracy
assessment.
Analytical unit = 30 m cells Analytical unit = 3 x 3 cell blocks
Stratum IoU temporal trend Area proportion [%] Avg. AloU Avg. built-up density [%] Area proportion [%] Avg. AloU Avg. built-up density [%]
Low-densi Increasing 63.14 0.08 3.17 50.86 0.09 3.39
ty Decreasing 36.86 —0.06 2.58 49.14 -0.15 3.15
Medium-densi Increasing 85.02 0.11 11.97 70.93 0.16 13.86
ty Decreasing 14.98 —0.04 10.58 29.07 —0.11 12.71
High-densi Increasing 95.11 0.12 37.51 89.49 0.19 53.13
s ty Decreasing 4.89 —0.03 30.58 10.51 —0.06 42.88

region-specific, and thus, we recommend either the IoU or the less
conservative F-measure to be used in localized accuracy assessments of
binary spatial data affected by locally varying class imbalance. These
findings are robust to the analytical unit, i.e., we can rule out that po-
sitional uncertainty in the test or reference data severely biases the
thematic accuracy assessment conducted herein, and they are consistent
over time (Table 4, Fig. A2). Moreover, we identified that some accuracy
metrics are heavily sensitive to the underlying sample size (e.g. Kappa,
Fig. 8c), implying that localized accuracy assessments should be based
on spatial support large enough to avoid sample size issues, and small
enough to capture desired spatial detail. Accuracy metrics that are
sensitive to the sample-size should be avoided if spatial support varies
(e.g., if census units are used). Analysts should be aware that the
magnitude of most accuracy metrics increases with increasing spatial
support (Fig. 9).

Furthermore, the work presented herein underlines the well-known
drawbacks of reporting overly generalized (“global”) accuracy esti-
mates (see e.g., Strahler et al., 2006; Foody, 2007; Khatami et al., 2017),
and constitutes important methodological knowledge as spatially
explicit accuracy assessments are increasingly used in remote-sensing
related applications (Morales-Barquero et al., 2019).

4.3. Implications for GHSL practitioners

The revealed spatial accuracy variations of built-up land in the GHSL
will increase awareness of the variability of inherent uncertainty in
remote-sensing based settlement data such as the GHSL among data
users. We identified high levels of association between accuracy mea-
sures and density characteristics of built-up areas, and thus, users can
roughly estimate the level of accuracy based on measured built-up
density (Table 2, Fig. 10). Thus, knowledge, or at least awareness of,
fine-grained uncertainty variations in the GHS-BUILT R2018A are
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essential for an unbiased interpretation of local settlement patterns, and
of products derived from GHS-BUILT R2018A such as GHS-POP or GHS-
SMOD. Importantly, we provide a refined, spatially explicit view of the
increasing GHS-BUILT accuracy trend from rural to urban settings (e.g.,
Figs. 4 and 12, cf. Leyk et al., 2018), resulting in the underestimation of
built-up land in rural areas versus overestimation in urban areas. These
insights are in line with the findings of related studies using Global
Urban Footprint data in Europe (Klotz et al., 2016) and Africa (Miick
et al., 2017) and the GHSL in China (Liu et al., 2020). These consistent
results suggest that the reported findings are likely to be valid for large
parts of North-American settlements, and possibly for comparable
landscapes in other regions. Moreover, we shed light on localized ac-
curacy trends over time. We revealed that thematic accuracy has
increased considerably, in particular in regions characterized by urban
sprawl and densification of built-up areas (Fig. 13). However, we also
showed that localized densification estimates derived from the GHS-
BUILT heavily overestimate the built-up area densification measured
by our reference data (Fig. 14), calling for GHSL data users to be
particularly cautious when using the GHS-BUILT (and its derived
products) for local built-up density change assessments.

4.4. Limitations

The choice of the study area used herein (i.e., the state of Massa-
chusetts) was dictated by data availability and accessibility. Even
though this study area is relatively large (>27,000 km?), the observed
trends could potentially be biased by relatively homogeneous vegetation
and settlement characteristics. As the reported findings are in line with
the literature, we are confident that they are valid for large parts of
North America. However, some of our results, such as the sensitivity of
focal accuracy metrics to the assessment support, as well as the re-
lationships between accuracy and structural characteristics of built-up
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built-up density surfaces in 1975 and 2014 derived from the GHSL and from the reference data, and (e) shows the corresponding densification surfaces. Panel (f)
shows the absolute error of densification, and (g) shows the delta IoU for comparison. Panel (h) shows scatterplots and correlation coefficients of IoU increase over
time and reference densification for both assessment units. Panels (a) — (c) show greater Boston, Massachussets, and panels (d)-(g) show the city of Worcester,
Massachusetts. Scatterplots in (h) are based on all grid cells in Massachusetts.

areas (Fig. 6) may be very specific to our study area and could vary in this study is partially due to the different definitions of “settlement”
considerably if applied to regions of different configurations of built-up and “built-up area”. Settlements encompass buildings, but also imper-
surfaces. vious surfaces (roads etc.) and small areas of urban greenery (trees,

It remains to be investigated how these observations differ in regions gardens, parks) in direct vicinity of buildings. This concept of the
of different climate and vegetation settings, building materials or settle- “generalized” built-up area is implemented in the GHS-BUILT data
ment configurations. For example, climate-depending frequency of cloud (Florezyk et al., 2020). Thus, comparing the GHS-BUILT to reference
presence or the level of spectral similarity between impervious surfaces data derived from building footprint data may not be a fair assessment.
and their surrounding natural environments, could affect accuracy trends In particular, the remote-sensing based differentiation between build-
considerably. In particular, the configuration of rural and peri-urban ings with concrete roofs and paved roads can be difficult due to the
settlements may vary considerably across geographic regions and could similar spectral responses. While the spatial aggregation to 3 x 3 cell
result in different GHS-BUILT accuracy trends across the rural-urban blocks partially mitigates this problem, the incorporation of road
continuum. Moreover, the spatial distribution of training data used for network data into the rasterization process to obtain the reference data
the production of the GHS-BUILT likely affects its accuracy. could further mitigate some of these definitional discrepancies (e.g.,

While our analysis showed that the effect of positional uncertainty on Marconcini et al., 2020a). Moreover, temporal inconsistencies between
the observed trends of localized thematic accuracy estimates is largely reference construction year and imagery acquisition date of the Landsat
negligible, it is important to note that part of the disagreement observed data underlying the GHS-BUILT may further affect our accuracy
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estimates. Such temporal gaps may be caused by heterogeneous levels of
currency in the underlying cadastral source data, the vagueness in
defining the construction year of a building (i.e., effects of land clear-
ance and construction activities on spectral responses one or two years
before a building is finished). While we assume this issue to be of
random nature and that it has only a minor effect on our results, there
could be individual clusters of building construction sites, which may
affect localized accuracy considerably.

4.5. Future work

Next steps will apply the proposed framework to larger study areas,
and will investigate the potential of using shape and structural proper-
ties of built-up areas for predictive uncertainty modeling (Uhl and Leyk,
2022). The results presented herein focus on the GHS-BUILT R2018A,
which has been derived from multispectral data from the Landsat
archive at a spatial resolution of 30 m, using the “Symbolic Machine
Learning” method (SML; Pesaresi et al., 2016), additionally informed by
a 2016 settlement layer extracted from Sentinel-1 synthetic aperture
radar (SAR) data (Florczyk et al., 2019). Similarly, the World Settlement
Footprint (10 m spatial resolution) has been derived from Sentinel-1
SAR and multispectral Landsat-8 data, but uses a Support Vector Ma-
chine classifier (Marconcini et al., 2020a), and retrospective settlement
layers in the WSF evolution data product (1985-2015) were based on
optical Landsat 5 and 7 data (Marconcini et al., 2020b). Moreover, there
are novel GHS-BUILT datasets such as GHS-BUILT-S1, which is a binary
built-up surface dataset from 2016, derived from Sentinel-1 SAR data at
a spatial resolution of 20 m, using the SML classifier (Corbane et al.,
2017), and the GHS-BUILT-S2 dataset which is based on optical
Sentinel-2 data and a convolutional neural network classification and
reports the probability of built-up area presence at 10 m spatial reso-
lution for 2018 (Corbane et al., 2021). How generalizable are the
observed accuracy patterns across the rural-urban continuum, and over
time, to built-up surface data derived from other sensors, at different
spatial resolutions, using different representations of the data (e.g.,
textural descriptors, time series descriptors, band ratios, etc.), different
training protocols and classification methods? Is the accuracy of human
settlement data really a function of the spatial resolution? Does the
combination of fine-grained, contemporary remote sensing data (e.g.,
Sentinel 1 and 2) and coarser, historical data (e.g., Landsat) improve the
accuracy of retrospective settlement depictions? In future work, we will

Appendix A. Appendix

Table Al
Overview of the accuracy metrics analyzed in this study.
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shed light on such questions by applying our method to systematically
compare such finer-grained built-up surface layers such as the World
Settlement Footprint or novel versions of the GHS-BUILT, as well as to
non-categorical settlement data reporting built-up area fractions or
probabilities.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2022.113117.

Data availability statement

The GHS-BUILT R2018A is available at https://doi.org/10.
2905/jrc-ghsl-10007. The MTBF-33 reference database is available at
https://doi.org/10.17632/w33vbvjtdy. Code for multi-resolution,
global, zonal, and focal accuracy assessment is available at https:
//github.com/johannesuhl/local accuracy. Moreover, a sample of the
focal accuracy estimates used in this study are available at https://doi.
org/10.6084/m9.figshare.19785877.

Acknowledgments & funding

Funding for this work was partially provided through the National
Science Foundation (awards 1924670 and 2121976 to University of
Colorado Boulder). This research benefited from support provided to the
University of Colorado Population Center (CUPC, Project
2P2CHD066613-06) from the Eunice Kennedy Shriver Institute of Child
Health Human and Human Development. The content is solely the re-
sponsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health or CUPC.

CRediT authorship contribution statement

Johannes H. Uhl: Conceptualization, Methodology, Data curation,
Software, Formal analysis, Validation, Visualization, Writing — original
draft. Stefan Leyk: Funding acquisition, Conceptualization, Methodol-
ogy, Supervision, Writing — review & editing.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Agreement metric Short Alternative name Accuracy Purpose / principle Criticism
name type
Precision - User's accuracy TypeIerror  Measures the commission error -
Type II .
Recall - Producer's accuracy e:rir Measures the omission error -
F-measure (F1-score) - - Thematic Harmonic mean of precision and recall -
Adjusted F-measure - - Thematic Accounts for class imbalance -
Intersection-over- Jaccard index, . Independent from the universe (i.e., from
. IoU . . Thematic . N -
Union figure of merit the “true negatives™)
Percentage correct] Overall accurac . . . R . . .
X .g v PCC e Thematic Takes into account the “true negatives” Heavily biased in case of dominant negative class
classified (0A)
. . Geometric mean of sensitivity and
Geometric mean G-mean - Thematic e . -
specificity, accounts for class imbalance
. . Chance agreement is not relevant for classification
Cohen's Kappa index Kappa - Thematic Accounts for chance agreement 8 o X .
accuracy assessments, sensitive to marginal probabilities
Matthews correlation . .
.. McCC - Thematic Robust to class imbalance -
coefficient
Normalized mutual . Entropy-based, does not require
. . NMI - Thematic py-based, q -
information corresponding class labels
Absolute error AE - Quantity Independent from thematic agreement -
Relative error RE - Quantity Independent from thematic agreement -
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Fig. A2. Robustness check of trends of IoU and F-measure across the rural-urban continuum over time (i.e., for 1975 and 2014) and for two analytical units (i.e.,
30x30m grid cells, and 90x90m blocks).
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Fig. A3. Trends of IoU across the four GHSL epochs 1975-2014, within strata of reference built-up density, loosely related to (a) rural (0%-2% built-up density), (b)
peri-urban (2%-10% built-up density), and (c) urban (>10% built-up density).

Table A2

Change statistics of localized IoU from 1975 to 2014, within strata of reference built-up density, for both single cells, and 3 x 3 cell blocks used as unit for the accuracy
assessment. Strata according to Fig. A3.

Analytical unit = 30 m cells Analytical unit = 3 x 3 cells
Stratum IoU temporal trend Area proportion [%] Avg. AloU Avg. built-up density [%] Area proportion [%] Avg. AloU Avg. built-up density [%]

Low-densi Increasing 47.90 0.07 1.32 45.60 0.04 1.63
ty Decreasing 52.10 —0.07 1.11 54.40 —0.16 1.54
Medium-densi Increasing 76.53 0.09 6.36 60.18 0.13 7.04
ty Decreasing 23.47 —0.05 5.57 39.82 -0.13 6.54

High-densi Increasing 92.21 0.12 28.55 87.21 0.19 48.50

8 ty Decreasing 7.79 —0.04 20.23 12.79 —-0.07 34.66
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