
Energy-Adaptive Real-time Sensing for
Batteryless Devices

Mohsen Karimi, Yidi Wang, and Hyoseung Kim
University of California, Riverside

mkari007@ucr.edu, ywang665@ucr.edu, hyoseung@ucr.edu

Abstract—The use of batteryless energy harvesting devices has
been recognized as a promising solution for their low mainte-
nance requirements and ability to work in harsh environments.
However, these devices have to harvest energy from ambient
energy sources and execute real-time sensing tasks periodically
while satisfying data freshness constraints, which is especially
challenging as the energy sources are often unreliable and
intermittent. In this paper, we develop an energy-adaptive real-
time sensing framework for batteryless devices. This framework
includes a lightweight machine learning-based energy predictor
that is capable of running on microcontroller devices and
predicting the energy availability and intensity based on energy
traces. Using this, the framework adapts the schedule of real-
time tasks by effectively taking into account the predicted energy
supply and the resulting age of information of each task, in
order to achieve continuous sensing operations and satisfy given
data freshness requirements. We discuss various design choices
for adaptive scheduling and evaluate their performance in the
context of batteryless devices. Experimental results show that
the proposed adaptive real-time approach outperforms the recent
methods based on static and reactive approaches, in both energy
utilization and data freshness.

I. INTRODUCTION

Latest batteryless embedded devices are designed to harvest
energy from the environment energy resources, i.e., Radio
Frequency (RF) signals, body movements, solar energy, wind,
etc., and to provide usable data to the end user despite
intermittent energy supplies. The variety of their applications
such as health monitoring and smart agriculture is due to the
fact that these devices are more reliable, have longer lifetime,
require very few maintenance, and can be implemented in
extreme environments where batteries cannot operate, e.g.,
high temperature, or for high pulse/high drain applications.

Although many batteryless sensors are being developed
these days, conducting reliable task execution on batteryless
devices is still challenging especially when real-time sensing
tasks, that collect data from sensors, are considered. Energy
sources for harvesting devices are usually unreliable and inter-
mittent while real-time systems necessitate periodic/sporadic
task executions with guaranteed deadline or bounded deadline
misses for hard or soft real-time requirements respectively.

Furthermore, the amount of energy that can be stored in
this type of devices is usually small due to the small size of
energy storage capacitors that can be used [1]–[5]. Therefore,
any long uninterruptible task execution without a proper power
management is difficult if not impossible. This calls for a
precise energy predictor as well as an energy-aware task

scheduler to properly adapt task executions based on the
energy availability while satisfying the entire system’s real-
time requirements.

In many sensing applications, even though sensing tasks
are periodic, maintaining a desired level of data freshness of
tasks is often more important than increasing the number of
executed jobs or reducing the number deadline misses. For
example, for health monitoring systems, the data freshness of
each sensor is more critical than the total number of samples
from all sensors during a fixed time interval. Data freshness
is also known to be a critical criteria in databases [6], [7].
Existing methods for task scheduling on batteryless devices
can be categorized into static and reactive approaches. The
static approaches [4], [8] target periodic task execution with
known charging behavior. They aim to meet the deadlines of
a given taskset when the system is provided with an assumed
amount of energy supply. The reactive approaches [9], [10]
consider event-driven tasks and aim to minimize job response
times in a best effort manner whenever the system has energy
to run. However, neither of these approaches are suitable
for real-time sensing applications where ensuring consistent
data freshness over a long period of time under changing
environmental conditions is more important than focusing on
individual job-level deadlines or response times.

This paper presents an energy-adaptive real-time sensing
framework for batteryless devices. We consider Age of Infor-
mation (AoI) as the metric to measure data freshness of each
task. The proposed framework consists of a machine learning-
based energy predictor unit, to estimate the energy reception
rate of the device for a future time intervals based on the
previous energy samples, as well as a task scheduler unit that
utilizes the predicted energy and provides an efficient schedule
for real-time sensing tasks while satisfying the system data
freshness requirements. In this paper, we particularly focus on
solar energy prediction, but our proposed method with minor
modifications can be applied to any energy resource that have
a pseudo-periodic behavior at different time scales.

The rest of the paper is structured as follows: Section II
reviews previous work. In Section III, some backgrounds and
the system model are presented. The proposed method is
described in Section IV. Evaluation results are presented in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

There are many works that have focused on predicting the
energy received by energy harvesting devices from various
power sources. In this paper, we mainly focus on the pre-
diction of energy received from solar radiation. In [11], the
exponentially weighted moving average (EWMA) is proposed
to predict the energy of each time slot based on the moving
average of the same time slot at previous days. The method
performs well in stable weather conditions; however, the
error is substantially high for day-to-day weather changes. In
[12], the authors proposed the weather-conditioned moving
average (WCMA) method based on EWMA and provided an
adaptation factor which considers the previous time slots on
the same day to mitigate the error for day-to-day weather
changes. Pro-Energy [13] provides an energy predictor by
defining different profiles for the prediction. For each time
slot, the predictor chooses one of the profiles based on the
similarity of the previous data to each of the profiles and
then makes prediction based on a similar method as EWMA.
Afterwards, it checks if the current data can be stored as
a new profile or be substituted with another profile in the
profile list. Despite its relatively high accuracy in smaller time
frames, the method requires a large amount of memory and
computation than EWMA and WCMA to store, compare, and
update the profiles, which leads to a substantial overhead to
task execution on batteryless embedded devices.

An extensive amount of work has been done in solar
radiation prediction. Most existing approaches either take
into account other sensory parameters such as temperature,
pressure, humidity, and wind speed [14]–[17] which are not
always available, or employ complex models that can lead to
a computation overhead of several seconds and an extensive
amount of memory, making them unusable for batteryless
devices with limited capabilities [18]. In [19], the authors
provide a hybrid model based on Long Short Term Memory
(LSTM) network and empirical mode decomposition (EMD).
Although the provided method has better performance than
WCMA method in some of the cases, in the experiment done
by the authors, the average of Mean absolute percentage error
(MAPE) of prediction for both WCMA and EWMA are still
better. Furthermore, [20] provides a Q-learning based solar
energy predictor for wireless sensor networks. The author’s
experiments show that their proposed method outperforms
EWMA in all the cases and Pro-Energy in some of the cases.
However, Pro-Energy performs better with some weighting
factor parameters. For multiple battery-powered energy har-
vesting devices connected to a single base station, [21] pro-
vides a two layer reinforcement learning network to predict the
battery state and control the access of each joint in order to
minimize the prediction loss and maximize the transmission
sum rate, respectively. The authors’ simulation results show
that their method has better performance than myopic, round-
robin, and random scheduling policies.

Regarding task execution on batteryless devices, there
are many methods that focus on scheduling tasks on an

intermittently-powered devices while maintaining the memory
consistency of the device and the ability to resume task execu-
tion in the presence of power failures. The scheduling papers
can be categorized into static and reactive approaches. For
static approaches, the authors of [8] provide online and offline
schedulers which ensure the schedulability of taskset for a
given energy harvesting rate at any time as a priori. Although
they could provide a reasonable schedule given the charging
rate, the schedulability overhead is significant. They also
considered tasks to be completely preemptive which makes
it incompatible with sensing tasks as well as the state-of-the-
art programming models and kernels designed for batteryless
devices. [4] also takes a static approach and it provides a
real-time task scheduler that considers the energy harvesting
device as a periodic energy resource. They provided analysis
for hard real-time tasks under the Rate Monotonic (RM)
and the Earliest Deadline First (EDF) scheduling policies
and demonstrated a hardware implementation to assess the
performance of the scheduler. Although the method is shown
to perform well when a steady minimum energy provision
rate is provided and can tolerate a certain duration of missing
energy sources, in real-world energy harvesting scenarios with
weather conditioned energy sources like solar energy, it may
underutilize surplus energy or fail to follow a given schedule,
resulting in deteriorated data freshness.

Among reactive scheduling methods, [9] provides a event-
based kernel developed for timely execution of tasks on in-
termittently powered devices. It schedules the tasks whenever
the energy is available without considering the energy rate
and conserving energy for the future and therefore, unable to
prevent any deadline misses. In [10], the authors provide a low
overhead scheduling method to degrades the performance of
the scheduler in case of low energy harvesting rates to prevent
deadline misses. However, the harvested power is modeled as
Gaussian distribution which makes it unable to be adaptable
to many of the real-world applications.

III. SYSTEM MODEL

In this section, we provide a background of the concepts
used in the paper as well as the properties of the system used
in the rest of the paper.

A. Age of Information

We use the Age of Information (AoI) to quantify the data
freshness of each task. We define the AoI of a task τi at time
t, Ai(t), as the time elapsed since the latest output of the
task was generated. Fig. 1 shows the AoI of a task τ1 in a
taskset with 3 tasks. For example, after first job execution of
task τ1 at time t1, the output starts to age and the AoI of τ1
increases linearly with time until the second job of τ1 finishes
its execution. At time t2 a new fresh output is generated and
AoI of τ1 changes from t2 − t1 to 0. To find the average AoI
we need to consider the area below the graph shown in Fig. 1
or calculate the following equation.

µA1
=

∫ t4
t1

A1(t) dt

t4 − t1
=

∑3
i=1(ti+1 − ti)

2

2× (t4 − t1)
(1)

2

t1 t3 t40

Task τ1

Task τ2

Task τ3

time

 Job arrival

 Task execution

time

AoI of τ1

t2

t1 t3 t4t2

Fig. 1. Age of Information of task τ1

where A1(t) is the AoI of the task τ1 at time t, µA1 is the
mean of the AoI of τ1 between time t1 to t4. It should be
noted that we calculate the AoI after the first job execution,
i.e., after t1 for task τ1 in the example, because there is no
output available before t1.

B. Task Model

In this paper, we consider AoI as the metric to measure
the data freshness of a task. We characterize a task τi in a
taskset Γ by τi = (Ci, Ti, Di,MTAi), where Ci, Ti, Di, and
MTAi are the worst-case execution time, period, deadline,
and maximum tolerable AoI of the task i, respectively. It
should be noted that in most of the applications the provided
MTA is larger than and Di is smaller than the period of the
tasks, i.e. ∀i ≤ n | MTAi ≥ Ti ∧ Di ≤ Ti. Most of the
state-of-the-art kernels and programming models designed for
intermittently powered devices [2], [9], [22], [23] consider
non-preemptive tasks to ensure forward progress and memory
consistency in case of power losses. Furthermore, in sensing
applications, any power loss during the sensing would lead to
a failure in sensing operation and sensor data could not be
obtained at all. Therefore, we consider all the sensing tasks to
be non-preemptable. We also utilize the charging model that
is proposed in [4] which considers mPi

as the discharging
rate for task τi. Based on [4], considering the charging rate
of the system to be fixed as ma and the discharging rate of
task τi to be mPi , the charging time required for task τi can
be calculated as

Qi =
(mPi −ma)× Ci

ma
(2)

where Qi is the charging time required before starting the
execution of task τi to guarantee its completion without any
interrupt, i.e., the system needs to be charged for at least Qi

time units with the charging rate of ma before task τi with
the discharging rate of mPi starts its execution. Otherwise, the
device’s energy would deplete in the middle of execution of τi
and the task’s execution would fail. It should be noted that the
charging time Qi can be performed at any time before starting
τi and is not required to happen in a single or continuous
charging session.

C. Energy Harvesting

Batteryless devices use an energy harvester unit to convert
energy from the incoming energy source to a type of energy,
usually electricity, that can be stored in energy storage unit.
The energy storage unit usually contains capacitors to store
the energy so that it can be later used by the device when
it is needed. They also usually contain an energy monitoring
unit which measures the energy level of the energy storage
unit at fixed time intervals and can estimate the average
harvesting rate of the past interval from the measurement, e.g.,
by calculating the difference of the energy at the beginning
and the end of the time interval divided by the time interval
length. The charging rate of the system is considered fixed
during each prediction time interval, Tadapt, which we will
discuss later in the paper.

IV. PROPOSED FRAMEWORK

The proposed framework consists of five units as shown
in Fig. 2. As discussed earlier, the energy harvester converts
energy to electricity, the harvested energy is stored in an en-
ergy storage unit (e.g., capacitors), and the energy monitoring
unit contains the circuitry to measure the energy harvesting
rate. As discussed in the previous section, the actual energy
harvesting rate of each time interval can only be calculated at
the end of that time interval.

The harvesting rate computed by the energy monitoring unit
is fed in the energy predictor unit to compute a predicted
energy rate for the next time slot. Finally, the predicted energy
rate from the previous state is used by the task scheduler unit to
efficiently schedule real-time tasks. The prediction is triggered
by the task scheduler and occurs periodically based on the
given time interval, Tadapt, which is configurable by the user
(it is set to 30 minutes in our experiment). At the beginning of
each time slot, the scheduler updates the schedule according
to the predicted energy harvesting rate for the next time slot.
In the remaining parts of this section, we further provide a
more detailed explanation of the designed energy predictor as
well as the proposed task scheduler unit.

A. Energy Predictor

Due to the limited processing capability of batteryless de-
vices, we need to use an energy prediction model that (1) does
not require substantial processing and (2) produces relatively
accurate prediction. Although the existing methods [11]–[13]
perform reasonably for consecutive days with similar exposure
to the sun, they cannot properly predict fluctuations during the
day, e.g. when clouds cover the sun temporarily or when there
is a cloudy day after a sunny day. Fig. 3 shows an example
of power reception from solar panels at May 6 and May 7,
2016 used from the NREL dataset [24] as well as the predicted
values by EWMA and WCMA methods (the predictions are
conducted every 15 minutes). As it is shown in the Fig. 3 both
methods failed to adapt the prediction. This behavior motivated
us to design a machine learning based predictor. We design
a Neural Network (NN) predictor to predict the solar energy
rate received from solar panels.

3

EDFLASF

Job Skipping

EDFLASF

Job Skipping

EDFLASF

Elastic Period

EDFLASF

Elastic Period

Voltage
monitoting

circuits

Capacitor bank

Energy Storage Unit

Voltage rectifier
and regulator

Harvester
circuits

Harvesting rate
calculator

Scheduler Energy Predictor

O

H2

H3

Hk

. .
 .

I1

I2

Im

. .
 .

H1

x2

x1

xm

y

Hidden Layers Input LayerOutput Layer

Fig. 2. Overview of the proposed energy-predictive scheduler

1) Neural Network Based Predictor: We present a light-
weight model architecture to make it amenable to run on
batteryless devices that mostly use microcontrollers. This is
the simplest yet feasible model we could come up with,
without losing opportunities to learn dependencies in time-
series input. We divide the time into 30 minutes of time
slots, i.e., Tadapt = 30min, since solar radiation does not
drastically change during this amount of time. Furthermore,
it has been used as a standard prediction duration by many
of the previous studies such as Pro-Energy and WCMA. We
designed a neural network that consists of an input layer with
14 neurons, one hidden layer with 12 neurons, and an out layer
with one neuron. Considering the fact that the solar radiation
of each time slot is relatively correlated to the past few hours
of that time slot as well as the same time slot for past few
days, we consider inputs of the network be from the past 10
samples of solar data (i.e., past 5 hours) as well as 4 samples
from 4 previous days, i.e., 14 samples overall. For example,
when each energy rate sample is generated every 30 minutes,
to predict the energy rate for 1 PM to 1:30 PM, the data from
8 AM to 1 PM of the same day (10 samples) as well as the

0 20 40 60 80
Time (hours)

0

1000

2000

3000

4000

5000

6000

So
la

r R
ad

ia
tio

n
(W

/m
2)

Actual
WCMA
EWMA

Fig. 3. Existing methods fail to predict robustly across different days

data of 1 PM to 1:30 PM from the past 4 days (4 samples)
is used as an input to the network. In the hidden layer Relu
transfer function is used for all the neurons.

B. Task Scheduler

In most of the sensing applications, maintaining a desired
data freshness of tasks has higher importance than increasing
number of executed jobs or reducing the number of deadline
misses during a specific time. For periodic task scheduling on
batteryless devices in overload cases, i.e. when the charging
rate of the system decreases, the deadline misses are un-
avoidable. However, finding an efficient scheduling method
to adapt and maintain a required data freshness of the system
with different charging rates is still a challenge. Two possible
approaches we consider in this paper are skipping some jobs
or adjusting the period of tasks. We explore how these two
different approaches can be used in batteryless devices with
conventional real-time scheduling policies such as EDF and
introduce an alternative policy focusing on AoI.

Lemma 1: According to [4], for a taskset with n tasks
ordered by their relative deadlines, i.e. , ∀i, j ≤ n, i ≤ j →
Di ≤ Dj , the taskset is schedulable with the EDF scheduling
policy if

∀k = 1, ..., n,
k∑

i=1

(
Ci +Q+

i

Di

)
+

Bk

Dk
≤ 1 (3)

where Q+
i = max{Qi, 0}. In the above equation, Bk is the

blocking time of a task τk that can be obtained by

Bk = max
j:Dj>Dk

Cj (4)

Proof: The equation is the based on the EDF schedula-
bility with the Stack Resource Policy (SRP) provided in [25]
with added energy constraints. Further details of the proof is
elaborated in [4].
It should be noted that for the Eq. (3) to hold, the deadline of
each task should be always smaller than or equal to the period
of the task, i.e. ∀i = 1, ..., n, Di ≤ Ti.

Even though Lemma 1 which is proposed by [4] can be
used to find the schedulability of the taskset under the EDF
policy, during overload situations where the charging rate is
not enough for the tasks to meet their deadlines, it cannot
provide any solution although AoI constraints could still be
satisfied. Furthermore, during the time when the charging rate
is high enough that the taskset can run at a faster pace, the
EDF scheduler can only provide a schedule just to meet the
deadlines without further optimizing for AoI constraints.

Hence, we propose the Least AoI Slack First (LASF) policy
to address AoI requirements. We also provide two scheduling
methods, job skipping and elastic period adjustment, for the
LASF and EDF policies. Either of these scheduling methods
can be used in the system considering on the system’s limi-
tations and constraints. For all these methods, the scheduler
uses the charging rate of the system, ma, predicted by the
energy predictor and tries to minimize the average age of
information of the taskset considering the current charging rate

4

of the system as well as the required data freshness given by
the AoI constraint of each task, MTA.

In the LASF policy, the remaining tolerable AoI of tasks,
i.e., argmini (ASDi −Ai) is used to find the highest priority
task, where Ai is the AoI of task τi and ASDi is the AoI
deadline of task τi which can be calculated as

ASDi = M̂TAi − Ci (5)

We define M̂TAi as the pseudo maximum tolerable AoI of
task τi that can be calculated as

M̂TAk = Ul ×MTAk (6)

where Ul is the utilization bound to satisfy the data freshness
given by AoI constraint MTA, i.e. if Ul > 1, the required
data freshness cannot be satisfied. Ul can be obtained by

Ul = max
k≤n

{
k∑

i=1

(
Ci +Q+

i

MTAi

)
+

Bk

MTAk

}
(7)

It should be noted that even in the case when data freshness
cannot be satisfied, i.e., Ul > 1, this scheduling policy tries to
minimize the AoI of the taskset.

1) Job Skipping: During overloads on the system, one of
the approaches can be used is skipping some of the jobs. When
the EDF policy is used with the job skipping method, we skip
jobs of a task if the previous job of the same task has not
finished its execution. That is, the job queue of the scheduler
can only contain one job from each task at each time. It should
be noted that each job can only enter the job queue at its
release time, therefore, ignored jobs will not be considered to
execute at any time.

The job skipping method for the LASF policy is described
in Algorithm 1. In this method, we first find a utilization bound
for the given AoI constraints from (7). Then, we generate
M̂TA and ASD for each task, shown in line 4 to 7. Then
the ASD and the current AoI of tasks, Ai, are used to find
the highest priority task τh shown on line 8 of the algorithm.
If the current energy (Curr Charge) is enough to execute
the highest priority task, then we execute it. Otherwise, we
find the next scheduling decision time, tnew, shown on line
12 to 15 of Algorithm and put the device into sleep mode
for the difference of current time and tnew to preserve energy
during this time. As discussed earlier, only one job of each
task can enter the scheduling queue. Therefore, jobs of a task
are skipped at their arrival time if the previous job of the same
task is not executed.

2) Elastic Period Adjustment: There are systems that allow
changing the period of tasks at run time. For these type of
systems, we present an elastic period adjustment method. In
this method, we change the period of tasks so that the arrival
rate of jobs adapts to the predicted charging rate of the system.
For the EDF policy with elastic period adjustment, we change
the period of task τi to T ′

i = Ti×Ue, where Ue is the utilization
bound based on the taskset deadlines and can be calculated as

Ue = max
k≤n

{
k∑

i=1

(
Ci +Q+

i

Ti

)
+

Bk

Tk

}
(8)

Based on Lemma 1, this guarantees the schedulability of

Algorithm 1 Least AoI Slack First
1: t← current time
2: Update Ai of each task
3: Compute Ul by (7)
4: for k ≤ n do
5: M̂TAk = Ul ×MTAk ▷ Ul is obtained by (7)
6: ASDi = M̂TAi − Ci

7: end for
8: h← argmini (ASDi −Ai)
9: if Curr Charge ≥ Qi then

10: Execute the task τi
11: else
12: tr ← earliest release time of a job from any of the tasks
13: tc ← t+Qi − Curr Charge
14: tnew ← min{tc, tr}
15: t← tnew ▷ Device goes to sleep for tnew − t seconds
16: end if

the taskset given the deadline of each task to be equal to its
period as:

max
k≤n

{
k∑

i=1

(
Ci +Q+

i

T ′
i

)
+

Bk

T ′
k

}
=

1

Ue
max
k≤n

{
k∑

i=1

(
Ci +Q+

i

Ti

)
+

Bk

Tk

}
= 1

(9)

For the LASF policy, we set periods as T ′
i = M̂TAi and

then use Algorithm 1 to find the schedule. This guarantees
each task τi to meet its AoI constraint of M̂TAi.

We later compare the performance of each method in term
of average data freshness.

V. EVALUATION

A. Energy Prediction

In this section we provide the evaluation results from
proposed NN-based predictor as well as state of the arts,
i.e. EWMA, WCMA, and Pro-Energy. We both compare the
the prediction error as well as the runtime overhead of the
predictors. We use solar data collected from NREL database
[24] to compare the performance of each method. All the
methods were implemented in python and were performed on
Raspberry Pi 3 (RPI3) as an embedded system example. In
this experiment, we divide the solar data into 30 minutes time
slots and in case of multiple samples during the time slot,
we average the energy reception rate for each time slot. We
use the solar data from 2017 to 2019 to train the networks.
The prediction results were conducted for the entire year of
2020. We found that the accuracy is not the proper metric
to measure the performance of the predictor since there are
a lot of small and zero values in the data, especially during
the night and cloudy days. Hence, we use average prediction
error for each of the methods to compare the performance.
We conducted the prediction data for the entire year of 2020,
i.e. 365 ∗ 48 = 17520 samples, for each of the methods, then
measured the Mean Absolute Error (MAE) of the prediction
compared to the ground truth, and averaged the error over
the number of predicted samples. Fig. 4 shows the average
error for different predictors for the entire year of 2020. For

5

EWMA WCMA ProEnergy Proposed…NN
0

20

40

60

80

100

M
ea

n…
A

bs
ol

ut
e…

Er
ro

r…(
W

/m
2)…

95.67

68.73

52.66

38.13

Fig. 4. Predictors correctness comparison

reference, a regular sunny day in the dataset has an average
solar energy rate of about 800 to 1200 Watt/m2 at noon.
As shown in Fig. 4, the proposed predictor outperform all the
previous methods.

One of the important aspects of an energy predictor for
batteryless devices is the processing overhead it adds to the
system. We conduct another experiment to evaluate the average
runtime of each of the methods. Similar to the previous
evaluation, we measured the execution time of each method
for the entire year of 2020 and averaged the run time over
the number of generated samples. Fig. 5 shows that proposed
method outperformed all of the previous methods, having very
low execution time overhead.

Although EWMA still has the lowest runtime due its sim-
plicity, the accuracy gain achieved by the proposed predictor is
significant considering to its slightly higher runtime overhead.
It should be noted that although the runtime of all the methods
are in the order of milliseconds, the embedded system used
in this experiment is relatively powerful with the processor
frequency of 1.4GHz, whereas most batteryless devices are
equipped with microcontrollers with much lower frequencies
and thus make the runtime overhead of the predictor much
more significant.

B. Task scheduling

We conduct multiple scheduling experiments to compare the
performance of the methods presented in Section IV-B under
different scenarios. For each task, to generate task execution
time, the taskset utilization is obtained using the UUniFast
method [26], multiplied by the task periods, and then rounded
to the nearest multiple of 0.05, i.e., Ci = max(⌊ Ti

0.05 ·Ui⌉, 1)×
0.05. In all of our experiments, all the tasks in the taskset are

EWMA WCMA ProEnergy Proposed…NN
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e…

ex
ec

ut
io

n…
tim

e…
(m

s)

0.001

0.687

2.936

0.069

Fig. 5. Predictors runtime overhead comparison

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Taskset CPU utilization

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 N
or

m
al

iz
ed

 A
O

I M
ea

n

Job Skipping EDF
Elastic Period EDF
Job Skipping LASF
Elastic Period LASF

Fig. 6. Schedulers AoI performance for different taskset utilization

considered to be sensing tasks and data of the sensors are
stored locally on non-volatile memory of the sensing device.

We first evaluate the effect of taskset utilization on average
age of information. In this experiment, the taskset utilization
is chosen from 0.05 to 0.9 in 0.05 steps. For each taskset
utilization, 1000 tasksets are generated and the average of
normalized AoI mean of the total 1000 tasksets is reported.
Specifically, for each point, we calculate the following:

µ̂A =

∑1000
i=1

(∑Nγ

γ=1 (µA
γ
i
/MTAγ

i)

Nγ

)
1000

(10)

where µAγ
i

and MTAγ
i are the average age of information

and the maximum tolerable age of information of task τi in the
taskset γ containing Nγ tasks, respectively. It should be noted
that MTA is usually defined more than period but based on the
system’s data freshness requirements. µAγ

i
can be calculated

as described in Section III-A.
The number of tasks, the period, and the discharging rate of

each task are chosen randomly from 2 to 10, from 1s to 50s,
and from 1 to 10, respectively (all in integers). The MTA
for each task is also chosen randomly from 1x to 4x of its
period. The charging time of each task, Qi, can be calculated
from (2). In all experiments, the charging rate is fixed to 3,
and deadlines are set equal to task periods (Di = Ti). Fig. 6
shows the performance of different scheduling methods at
different taskset utilizations. As shown in the figure, the LASF
policy with elastic period adjustment performs better for lower
utilization tasksets, while LASF with job skipping works better
for higher utilization tasksets. The figure depicts that LASF
with job skipping has better performance than EDF with job
skipping, but there is no significant difference between the
EDF and LASF policies when elastic period adjustment is
used. The similar performance of LASF and EDF with elastic
period adjustment can be due to the fact that MTA is chosen
as multiples of period; hence, it causes new task periods under
the two policies to be often the same, resulting in similar task
scheduling behavior in overload situations.

To evaluate the effect of discharging rate of tasks in the
taskset on average age of information, we set up another

6

0 10 20 30 40 50 60 70 80 90 100
Low energy demand tasks percentage

0.15

0.2

0.25

0.3

0.35

0.4
A

ve
ra

ge
 N

or
m

al
iz

ed
 A

O
I M

ea
n

Job Skipping EDF
Elastic Period EDF
Job Skipping LASF
Elastic Period LASF

Fig. 7. Schedulers AoI performance for different taskset sizes

experiment which we divide tasks into two categories: high
and low energy demands. The discharging rate is randomly
chosen from 8 to 10 for high energy demand tasks, and from
1 to 3 for low energy demand tasks. The rest of the parameters
are chosen similar to the previous experiment. Fig. 7 depicts
the performance of each method. As shown in Fig. 7 the
proposed LASF has noticeable improvement over EDF on job
skipping method. However, on elastic period method, there is
no significant difference between EDF and LASF policies.

VI. CONCLUSION

In this paper, we presented a new framework for scheduling
real-time sensing tasks with data freshness constraints on bat-
teryless devices. We proposed a lightweight machine learning
based solar energy predictor which can be easily implemented
on microcontrollers. Our proposed predictor outperformed the
stat-of-the-art methods in terms of mean absolute error as well
as runtime overhead. We also studied job skipping and elastic
period adjustment scheduling methods to deal with overload
situations where the charging rate decreases, and proposed the
LASF policy as an alternative to the standard EDF policy. For
future work, the combination of tasks with AoI constraints
and hard deadlines can be considered. Such tasksets can
contain preprocessing tasks before running sensing tasks or
transmission tasks to send output to a remote device over
low power communication such as Bluetooth Low Energy
(BLE). We plan to explore these issues and further evaluate
our methods in real-world conditions.

ACKNOWLEDGMENT

This work was sponsored by the National Science Foun-
dation (NSF) grant 1943265, the National Institute of Justice
(NIJ) grant 2019-NE-BX-0006, and the National Institute of
Food and Agriculture (NIFA) grant 2020-51181-32198.

REFERENCES

[1] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith, “Design of an RFID-based battery-free programmable sensing
platform,” IEEE Trans. on Inst. and Measurement, vol. 57, no. 11, pp.
2608–2615, 2008.

[2] A. Colin, E. Ruppel, and B. Lucia, “A Reconfigurable Energy Storage
Architecture for Energy-harvesting Devices,” in ACM SIGPLAN Notices,
vol. 53, 2018.

[3] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless
internet-of-things,” in SenSys, 2017.

[4] M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, “Real-Time
Task Scheduling on Intermittently Powered Batteryless Devices,” IEEE
Internet of Things Journal, vol. 8, no. 17, pp. 13 328–13 342, 2021.

[5] M. Karimi and H. Kim, “Energy Scheduling for Task Execution on
Intermittently-Powered Devices,” ACM SIGBED Review, vol. 17, no. 1,
pp. 36–41, 2020.

[6] Y. Takatsuka, H. Nagao, T. Yaguchi, M. Hanai, and K. Shudo, “A
caching mechanism based on data freshness,” in 2016 International
Conference on Big Data and Smart Computing (BigComp), 2016, pp.
329–332.

[7] T. Yamashita, “Distributed View Divergence Control of Data Freshness
in Replicated Database Systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 21, no. 10, pp. 1403–1417, 2009.

[8] B. Islam and S. Nirjon, “Scheduling computational and energy harvest-
ing tasks in deadline-aware intermittent systems,” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2020.

[9] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “InK: Reactive Kernel for Tiny Batteryless Sensors,” in
SenSys, 2018.

[10] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in PLDI, 2020.

[11] D. K. Noh and K. Kang, “Balanced energy allocation scheme for a solar-
powered sensor system and its effects on network-wide performance,”
J. Comput. Syst. Sci., vol. 77, no. 5, p. 917–932, Sep. 2011.

[12] J. Recas Piorno, C. Bergonzini, D. Atienza, and T. Simunic Rosing,
“Prediction and management in energy harvested wireless sensor nodes,”
in International Conference on Wireless Communication, Vehicular
Technology, Information Theory and Aerospace Electronic Systems Tech-
nology, 2009, pp. 6–10.

[13] A. Cammarano et al., “Pro-energy: A novel energy prediction model for
solar and wind energy-harvesting wireless sensor networks,” in IEEE
International Conference on Mobile Ad-Hoc and Sensor Systems, 2012.

[14] S. Al-Alawi and H. Al-Hinai, “An ann-based approach for predicting
global radiation in locations with no direct measurement instrumenta-
tion,” Renewable Energy, vol. 14, no. 1, pp. 199–204, 1998.

[15] Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using
artificial neural networks and comparison with other empirical models,”
Energy Policy, vol. 36, no. 10, pp. 3833–3837, 2008.

[16] A. Koca, H. F. Oztop, Y. Varol, and G. O. Koca, “Estimation of solar
radiation using artificial neural networks with different input parameters
for mediterranean region of anatolia in turkey,” Expert Systems with
Applications, vol. 38, no. 7, pp. 8756–8762, 2011.

[17] A. Sharafati et al., “The potential of novel data mining models for global
solar radiation prediction,” International Journal of Environmental Sci-
ence and Technology, vol. 16, no. 11, p. 7147–7164, 2019.

[18] Z. Pang, F. Niu, and Z. O’Neill, “Solar radiation prediction using
recurrent neural network and artificial neural network: A case study
with comparisons,” Renewable Energy, vol. 156, pp. 279–289, 2020.

[19] Y. Ge, Y. Nan, and L. Bai, “A hybrid prediction model for solar radiation
based on long short-term memory, empirical mode decomposition, and
solar profiles for energy harvesting wireless sensor networks,” Energies,
vol. 12, no. 24, 2019.

[20] S. Kosunalp, “A new energy prediction algorithm for energy-harvesting
wireless sensor networks with q-learning,” IEEE Access, vol. 4, pp.
5755–5763, 2016.

[21] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning based
multi-access control and battery prediction with energy harvesting in iot
systems,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2009–2020,
2018.

[22] J. Hester, K. Storer, and J. Sorber, “Timely Execution on Intermittently
Powered Batteryless Sensors,” in SenSys, 2018.

[23] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in OSDI, 2018.

[24] A. M. Andreas, “University of nevada - las vegas,” 2006. [Online].
Available: https://midcdmz.nrel.gov/apps/sitehome.pl?site=UNLV

[25] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, 1991.

[26] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

7

