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Abstract

Increasing fire impacts across North America are associated with climate and vegetation change,
greater exposure through development expansion, and less-well studied but salient social
vulnerabilities. We are at a critical moment in the contemporary human-fire relationship, with an
urgent need to transition from emergency response to proactive measures that build sustainable
communities, protect human health, and restore the use of fire necessary for maintaining
ecosystem processes. We propose an integrated risk factor that includes fire and smoke hazard,
exposure, and vulnerability as a method to identify ‘fires that matter), that is, fires that have
potentially devastating impacts on our communities. This approach enables pathways to delineate
and prioritise science-informed planning strategies most likely to increase community

resilience to fires.

1. The fire crisis

The world has experienced some of the most destruct-
ive and deadly wildfires in a century during the past
decade. In the US alone, tens of thousands of homes
have been destroyed [1], over 200 people have lost
their lives in blazes, and an order of magnitude more
have died due to health impacts from smoke exposure
[2], with many more requiring hospitalisation for res-
piratory or cardiovascular disease [3]. The US spends
over USD 2B a year fighting wildfires; the accrued dir-
ect and indirect impacts of wildfires on infrastruc-
ture, buildings and communities could be 30 times
that amount [4]; and there is no clear end to these
mounting costs in sight.

The last few years suggest that we are reaching a
critical point beyond which mass wildfire destruction

will be the norm, rather than the exception. We
struggle with devastating events because we have
failed to develop and implement a holistic, sustain-
able regional system approach for co-existing with
fire. Rather than conceptualising fire as an extrinsic
phenomenon that threatens communities, we need
a framework that places social, environmental, and
technological factors as interrelated and interacting
components [5, 6]. The 2018 Camp Fire in Paradise,
California, ignited by a faulty powerline, exemplifies
the necessity for this paradigm shift, as its unpreced-
ented impacts resulted from rapid fire progression
facilitated by natural and urban fuels [7], limited
evacuation routes, and inherent social vulnerabilities
[8]. Similarly, the 2017 Thomas Fire in California and
the 2021 Marshall Fire in Colorado burned through
both natural and developed landscapes, destroying

© 2022 The Author(s). Published by IOP Publishing Ltd
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thousands of homes. These fire disasters suggest that
not only do we have a wildland fire problem, but also
an urban fire problem.

The majority of the world population already
lives in urban areas [9-11]. In the US, an anticip-
ated 87.6 million people will live in cities by 2050
[12], creating an expanding development fringe that
increasingly intersects with wildlands [13]. Urban
expansion and densification along the rural-urban
continuum grow the fire risk, as we introduce igni-
tions [14], building materials that are often more
flammable than the surrounding vegetation [15],
and communities with a range of social vulnerabilit-
ies into fire-prone areas [16]. For this reason, there
is a pressing need to reframe firescapes as social-
environmental-technological systems (SETS) [17].
Such a multi-component fire risk framework is crit-
ical for identifying resilience pathways and precipitat-
ing a shift from emergency response to proactive sus-
tainable planning.

More integrated risk management framings of the
fire problem are already emerging [18-23]. Dunn
et al for example, provide such an assessment focused
on wildfire management at the site to landscape
scale, including decision support for allocation of fire
suppression assets, pre-fire planning and prefigur-
ing of resources, and evaluating risk to firefighters
and to priority land resources [24]. Here, we pro-
pose an approach for analysing relationships between
humans and fire as part of a SETS and conduct a
quantitative, census-tract-level risk assessment across
the western US that encompasses direct and indir-
ect fire hazard from flame and smoke, population
exposure, and social vulnerability. We then use this
framework to provide community-specific recom-
mendations for resilience pathways that could reduce
the likelihood of the most destructive and disruptive
events, i.e. the ‘fires that matter’

2. Fire risk is an emergent property of
SETS

The fire crisis is partly due to the higher probab-
ility of fire and expansion of urban development
into wildlands observed in recent years. Anthropo-
genic contributions to climate change have also effect-
ively doubled the amount of western forests that have
burned since 1984 [25], and created a fire season that
is up to three months longer than in previous decades
[26, 27]. Although social, economic, and technolo-
gical factors are known to exacerbate fire effects and
increase the likelihood of disasters [28], implementa-
tion of a fully-integrated SETS fire risk model remains
challenging [18, 23, 29, 30].

For millennia, people have started and man-
aged fires [31], and fire regimes have co-evolved
with societies as their economies shifted toward
hunting-gathering, pastoralism, farming, and indus-
trialization [24, 32, 33]. Today, settlement patterns
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significantly alter the number of homes in harm’s way
[34], increase fire ignitions [14], and sustain com-
bustion [15, 35]. Firescapes are thus a palimpsest of
ecological and historical processes, shaped by waves
of land use and urban expansion. In this context, fire
risk, defined as the likelihood of substantial altera-
tions in the normal functions of a community [36],
emerges from the combined effects of fire hazard
(section 2.1), the presence of people, livelihoods,
infrastructure, and assets in places that are exposed
to fire and smoke (hereafter, ‘exposure’; section 2.2),
and socio-economic, health, and built-environment
vulnerability (section 2.3) (figure 1).

2.1. Hazard: the potential for fire and smoke

The fire regime, i.e. the characteristic seasonality,
return interval, size, spatial complexity, intensity, and
severity of fire in an ecosystem [37], is a function of
the interplay between climate, vegetation, and igni-
tions [38]. The influence of climate on fire is relat-
ively well understood: in ecosystems with sufficient
fuels to carry fire, drier conditions lead to increased
burning as long as the probability of ignition remains
unchanged [39]. In these areas, hotter, drier future
climates will increase the likelihood of fire [40]. Burn-
ing also depends on the abundance of fuel. Thus,
semiarid areas like the Great Basin experience some
of the largest wildfires in the US [41] when wet-
ter conditions in the months preceding the fire sea-
son allow the growth of abundant grasses and shrubs
[42, 43]. Finally, ignitions occur from lightning or
human causes including prescribed burning, sparks
produced through powerline or equipment failure,
cigarette butts, campfires, and arson. Studies investig-
ating the role of lightning- vs human-related ignitions
suggest that while the former are the main cause of
burning in remote regions [44], human-started fires
account for 84% of all wildfires in the US and are
especially significant in areas where dry convective
storms are rare [45].

The behaviour of a particular fire depends on
cross-scale interactions among climate/weather,
topography, and fuel [27]. For example, fast fires
that outpace suppression efforts (~0.4 km produc-
tion line*hr~! [46]) are driven by ambient and fire-
induced winds, and can be exacerbated by fuel accu-
mulation and drought, especially in steep terrain [47].
Fuelload, type (e.g. grasses vs shrubs), condition (e.g.
dead vs alive), and horizontal connectivity, in turn,
are a function of ecological processes and the legacy
of past land use and management. The long-lasting
effects of management are evidenced by decades of
fire suppression in several regions with resulting fuel
build-up conducive to more destructive fires [48].
Exceptional accumulation of fuel can also occur due
to high tree mortality, such as that observed in the
Sierra Nevada of California due to bark beetle out-
breaks [49]. There, the unusual abundance of large
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surface fuels may increase the potential for smoulder-
ing fire [50] that alters local fire spread dynamics.

2.2. Fire exposure: direct and indirect

Fire exposure refers to the ‘presence of people, live-
lihoods, services, resources, infrastructure, or eco-
nomic, social, or cultural assets in settings that could
be adversely affected’ by fire [36]. Within the context
of SETS, we identify two types of fire exposure: direct
exposure of people and buildings to flames, and indir-
ect exposure due to smoke. Both direct and indirect
threats can potentially impact people’s psychological,
physical and financial wellbeing.

Firescapes include areas of varying levels of devel-
opment, from wildlands to rural, suburban, and
even densely-populated urban systems. Communit-
ies adjacent to, intermingled with, or surrounded
by wildland (Wildland-Urban Interface; WUI) con-
stitute hotspots where high fire potential meets the
built environment. In the US, ~60 million structures
were less than 1 km from the boundaries of wildfires
between 1992 and 2015 [14]. The extent of the WUT is
projected to double by 2030 [51], suggesting that mil-
lions of new homes will be exposed to elevated fire
hazard in years to come [52-54]. Due to the grow-
ing number of buildings in these transitional zones,
there is an urgent need to understand how spatial
patterns in housing development influence risk, both
through changing exposure and by altering the con-
tinuity, abundance, and flammability of fuels across
the landscape.

Although the WUI is of special interest to dir-
ect exposure mitigation, it is important to recognize

that it is part of the wildland-rural-urban gradient.
Wildfires anywhere along this gradient affect people
who live, work, or recreate downwind due to smoke
exposure [55, 56]. However, smoke exposure is often
neglected in fire risk assessment. It is estimated with
a blend of statistical models with in situ monitoring
data, satellite observations, and chemical transport
models [57-60]. These data are also used to judge
the effects of a key wildfire mitigation strategy: pre-
scribed burning, which has different and sometimes
reduced air-pollutant emissions compared to wild-
fires [61, 62]. Although this difference could have
large implications for smoke management, key ques-
tions related to air-pollutant composition, concen-
trations, locations and timing still remain. Further-
more, despite calls for more prescribed burning for
fuel and ecosystem management [63], existing policy
implementations of the National Ambient Air Qual-
ity Standards (NAAQS) limit how much burning can
actually be done [64].

2.3. Vulnerability: social and built environment

Vaulnerability is defined as the ‘degree of loss to
each element should a hazard of a given severity
occur’ [36]. When assessing vulnerability to fire, the
‘elements’ that could be adversely affected include
people and buildings, and therefore at least two types
of vulnerability need to be considered: social and
built-environment. Social vulnerability depends on
the characteristics of an individual or community
that influence their ability to anticipate, respond to,
and cope with disasters [65]. Key elements of social
vulnerability such as age, sex, race, income, and

3



10P Publishing

Environ. Res. Lett. 17 (2022) 045014

other demographics related to the ability to interpret
information and access resources [66], interact with
natural hazards making communities more or less
likely to suffer damages and long-lasting disruptions.
For example, lower income communities may have
fewer resources to mitigate against fire (e.g. install-
ation of ignition-resistant roofing [67]) and smoke
exposure (e.g. use of air conditioning or air purifiers
[68]), as well as resources for socio-economic recov-
ery (e.g. insurance).

Built-environment vulnerability to fire is defined
by the properties of buildings in flammable land-
scapes, and has to be understood separately from,
although interrelated with, social vulnerability.
Homes are ignitable and combustible, represent-
ing a complex fuel element located in the WUI, yet
current fuel classifications do not account for their
presence. Higher rates of structure loss have been
related to intermediate structure densities located
within more flammable herbaceous fuels, as higher
building densities may protect subdivisions from dir-
ect flame impingement but constitute a source of
heat and embers when burned [35, 69]. Moreover,
construction material and design can increase the
ignitability, and subsequently the vulnerability of a
home [15, 70, 71]. It is noteworthy that, while fed-
eral land agencies have spent billions of dollars on
vegetation-fuel assessment and treatment (e.g. USD
2.7B between 2001 and 2006 to treat millions of hec-
tares [72]), research has only begun to focus on the
importance of defensible space, and little attention
has been given to the influence of building dens-
ity and arrangement on fire spread and intensity
[73, 74].

Social vulnerability assessments need to incor-
porate both direct (flames) and indirect (smoke)
threats from fires. The WUI, which is directly
threatened by fire, is predominantly developed and
occupied by White and economically secure popula-
tions [68, 75, 76], leading many to equate threat of
wildfire with low social vulnerability. However, the
same studies highlight that these estimates are aver-
ages, and at least a third of the Americans living in
areas of high fire hazard are Hispanic, Black, Nat-
ive American, over the age of 65, have disabilities, or
live in poverty [16], with an unknown greater num-
ber of socially-vulnerable people affected by smoke in
neighbouring urban and rural areas.

The impacts of smoke are also magnified by
underlying social and health disparities. A recent
meta-analysis showed growing evidence that, when
exposed to wildfire smoke, women are more likely to
experience asthma exacerbations than men, adults are
more affected than children [77], and elderly African
American people are more vulnerable than elderly
White people [78]. Of special concern are people who
work long shifts outdoors, such as farmworkers [79].
In many cases, low income, limited access to informa-
tion, healthcare, and immigration status increase the
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vulnerability of these populations to smoke exposure
and other hazards [80].

3. Investigating hazard, exposure, and
vulnerability to mitigate fire and smoke
risk

Effective mitigation strategies need to target the
underlying drivers of fire and smoke risk. As a proof
of concept, we evaluated the relative contribution of
hazard, exposure, and social vulnerability to fire risk
in the western US, at the census-tract level. We calcu-
lated direct fire hazard as the median annual probab-
ility of fire in each census tract using the fire prob-
ability layer of the Wildfire Hazard Potential data
product [81] (figure 2(a)). To estimate the probabil-
ity of unhealthy air conditions due to smoke (indir-
ect fire hazard), we employed daily fine-particulate-
matter concentrations (PM, 5) generated by Reid et al
for 2008-2018 [82]. Although smoke is not the only
source of PM; 5, it is the main contributor during the
summer months in fire-prone areas such as the west-
ern US [83, 84] and has been associated with adverse
health effects including lung cancer [85], cardiores-
piratory morbidity [86], and mortality [87]. For this
reason, we calculated the probability of at least one
summer day per year with unhealthy PM, 5 concen-
trations (PM,5 > 55 [88]) (figure 2(b)). Lastly, we
obtained population estimates and the social vulner-
ability index (SVI) from the Center for Disease Con-
trol to quantify exposure and the capacity of local
populations to cope with and recover from direct and
indirect impacts [89], respectively.

Following the IPCC [36, 90], we calculated risk
as (1):

Risk(cry = Hazard(cy x Exposurecr)
X Vulnerability(CT), (1)

where hazard cr is the probability of fire (figure 2(c))
or smoke in census tract CT (figure 2(d)) and has
lower and upper boundaries of 0 and 1; exposure(cr)
is the total population in census tract CT arithmet-
ically scaled so that the minimum value registered in
the western US corresponds to 0 and the highest to
1; and vulnerability(cr) is the SVI in census tract CT.
By design, the SVI is unitless and ranges between 0
and 1 [89]. The multiplicative nature of the equation
allows estimation of the likelihood of a person being
affected by fire or smoke given their social vulnerab-
ility and the probability of hazard, which is consistent
with the definition of risk that we adopted.

Analyses that incorporate hazard, exposure, and
vulnerability illustrate the complexity of fire risk
(figure 3) and point to different mitigation opportun-
ities across geographies (figure 4). On average, high
fire risk in the western US (top 5% census tracts) does
not result from exceptional hazard or exposure, but
from high vulnerability (figures 3(a)—(c)). However,
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Figure 2. Annual probability of (a) fire and (b) unhealthy air quality due to smoke (PM,5 > 55 pug*m™?) in the western US. Risk
of (¢) fire and of (d) unhealthy air quality due to smoke (PM, 5 > 55 ug*m~?). Note that the colour scales are logarithmic.

census tracts in California, Idaho and Nevada show
that the relative influence of exposure, vulnerability
and hazard is community-dependent and variable.
Thus, more discerning risk assessment can point to
tailored mitigation strategies. Situations of high fire
hazard and low exposure (figure 2(a)) call for actions
to reduce fire ignitions and spread (sections 4.1 and
4.2). Places marked by low/ moderate fire probability
and vulnerability (figure 2(b)) but elevated exposure
require an emphasis on building better (section 4.3).
Risk in other communities may chiefly arise from
high social vulnerability (figure 3(c)), placing the mit-
igation emphasis on reducing socioeconomic dispar-
ities and serving environmental justice (section 4.4).

In terms of smoke, the average high-risk
census tract (top 5%) has a very high probab-
ility of unhealthy concentrations of PM,s, high
social vulnerability, and moderate smoke expos-
ure (figures 3(d)—(f)). Similar to fire risk, the rel-
ative importance of these factors changes as we
shift from the regional scale to individual census
tracts. However, a difference emerges: while high
direct fire risk is associated with variable levels of
fire hazard, high smoke risk always reflects very

high probability of unhealthy PM, 5 concentrations.
Strategies aimed at minimising the probability of
ignition (section 4.1) and fire spread (sections 4.2)
would thus be particularly effective at reducing risk.
Implementation of these strategies may prove chal-
lenging, as smoke crosses geopolitical and admin-
istrative boundaries, and the communities affected
by smoke are not necessarily the same ones dir-
ectly impacted by wildfires (figure 2). The impacts
of smoke thus raise issues of morally permissible
risk imposition and highlight the necessity for a sys-
tems approach that crosses geopolitical boundaries
to holistically incorporate fire and smoke in fire risk
mitigation towards a more resilient future.

4. Identifying resilience pathways

At present, the siloed approach to mapping fire risk as
purely direct or indirect constrains implementation
of policies (e.g. Fire Hazard Reduction, Endangered
Species Act, and National Ambient Air Quality Stand-
ards), such that managers have limited pathways to
build resilience [64]. Meanwhile, our market-driven
system of settlement and development, subsidised
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with public infrastructure investments, is exceedingly
robust and thereby able to maintain behaviours (mal-
adaptive or otherwise) despite repeated shocks and
growing uncertainty [91, 92]. As a result, low-density
and leapfrog development, income stratification, and
environmental injustice are persistent features absent
systemic reform [93-95]. A systems approach that
quantifies fire risk across the wildland-rural-urban
gradient as a function of fire and smoke hazard,
exposure, and vulnerability (section 3) paves the way
to more discerning, sustainable mitigation. By adopt-
ing this perspective, we can recognize the mismatch
of proposed mitigation invested primarily in control
and emergency management. Adapting to modern
fire regimes requires us to instead invest in a system
of ‘social-ecological resilience’ that promotes sustain-
ability, adaptive capacity, learning, and innovation
[91]. In this spirit and guided by our risk assess-
ment, we present four pathways toward resilience
that reduce human-related ignitions (section 4.1),
implement prescribed burns (section 4.2), build bet-
ter (section 4.3), and serve environmental justice
(section 4.4) (figure 4).

4.1. Reduce human-related ignitions
Increased settlements and WUI expansion mean
increased human-caused ignitions, which are

responsible for 97% of all wildfires in the western
US WUI [14]. These fires consume about a third
of fire-fighting costs [96], and result in billions in
damages [1]. Although not all ignitions are avert-
able, some can be prevented. Faulty power lines, for
example, have started 10 of the 20 most destruct-
ive fires in California [97], costing PG&E more than
USD 6B, and ultimately resulting in them filing what
some have called the first climate change bankruptcy
[98]. Direct incentives that could reduce the prob-
ability of ignition by power lines include infrastruc-
ture improvements (e.g. wires, poles, transformers),
targeted inspections/remediations (e.g. grid harden-
ing and vegetation removal), public-safety power
shutoffs, and moves to decentralised power (e.g.
microgrids) thereby reducing energy transport. Many
of these mitigations can be costly, and power com-
panies, which often serve a regional community, need
to prioritise investments, making high-resolution
analyses of risk essential.

4.2. Implement prescribed burns to reduce fire
hazard and promote better smoke management
Restoring fire to fire-adapted SETS is one of the
primary paths to sustainability in the western US. The
suppression of wildfire and exclusion of Indigenous
cultural fire over the 20th century is widely recognized
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as a key driver of contemporary large and fast-moving
fires [99]. This recognition, however, has not trans-
lated into increased prescribed fire due to a host of
policy, fiscal, and social barriers [63, 100]. There is
concern that attempts to restore fire in contemporary
novel SETS that developed under similarly novel cli-
mates may yield equally disastrous results from con-
tinued exclusion [101, 102]. Given the barriers to
increasing intentional fire use, we need to ask whether
application below some minimum desired threshold
will sufficiently offset the negative impacts so as to be
justified.

Because we can control location and timing, pre-
scribed burning could yield lesser smoke impacts
on the atmosphere and populations downwind than
wildland fires [61, 62]. For example, ozone concentra-
tions, regulated by the Clean Air Act, can increase due
to wildfire emissions, and are problematic in the sum-
mer when ozone formation conditions are optimal
[103, 104]. Altering the timing of smoke emissions
through the use of prescribed burning such that the
emissions occur outside of the ozone season may

reduce health impacts, while also mitigating direct
impacts from wildfire. It is therefore critical to under-
stand when, how much, and where prescribed fire
is required to effectively mitigate direct and indir-
ect fire risk without triggering undesired ecological
transformations or introducing toxic levels of smoke
beyond what wildfire would produce.

4.3. Build better

The ‘fire-adapted community’ movement has
developed an integrated framework for mitigation
that considers the nature of buildings, nearby veget-
ation treatments, vehicle access, and water sources.
Recent events indicate the need to integrate larger
infrastructure systems, especially the electricity grid,
as well as consider how community design affects
human-caused ignitions (section 4.2). An even more
holistic approach would incorporate fire into all haz-
ard and climate mitigation, as codified in the US Con-
ference of Mayors Climate Protection Agreement,
signed by more than 1000 cities.
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A recent study demonstrated that building a
new home with fire-resistant materials costs about
the same as building a traditional home [71]. Fur-
thermore, while massive urban conflagrations led to
building codes to reduce flammability indoors and
protect occupants (e.g. Chicago in 1871), today, sim-
ilar measures extending from the skeleton of the
structure out to the landscape are needed to create
defensible space [73, 74]. Greater focus is needed on
reducing dwelling susceptibility and treating nearby
hazardous fuels through proactive planning efforts
and implementation of neighbourhood zoning or
county-level building codes that create ignition-
resistant communities [18]. Guided by comprehens-
ive risk assessments that include built-environment
exposure and vulnerability, such efforts could even-
tually aggregate to reduced fire risk at the regional
scale despite increased fire hazard due to expanding
development and a warmer and drier climate. Efforts
to develop datasets on the built environment neces-
sary to conduct such risk assessment and mitigation
would be valuable to help identify efficient pathways
to improved fire resilience.

4.4. Serve environmental justice

The interaction of environmental and socioeconomic
change is reshaping our experience with fire in the
American West, similar to other cases of ‘double
exposure’ (e.g. [105, 106]). Research suggests that
land managers are poorly equipped to integrate pro-
cedural and distributional justice concerns into fire
risk mitigation, while vulnerable communities often
lack the capacity to engage in collaborations to
increase resilience [76, 107]. The metrics of fire risk
that we incorporate, namely human exposure, social
vulnerability, and fire and smoke hazard (equation
(1); figures 1 and 3) could facilitate federal compli-
ance with US Executive Order 12898 [108], which
requires that agencies address disproportionate risks
(as well as lack of benefits) to the health and environ-
ment of low income and minority populations. The
limited research available regarding US Forest Service
compliance with this Executive Order indicates that
environmental justice concerns are currently not a
priority in hazardous fuel reduction efforts [ 107], res-
ulting in an array of outcomes based on local context.
Therefore, an increased focus on the social aspects of
wildfire vulnerability may not only improve compli-
ance but also produce more universally beneficial out-
comes which are less dependent on local factors. Spe-
cific actions to serve environmental justice include:
considering differential impact when managing fuels
[107]; recognizing cultural, language, and perception
differences during both planning periods and emer-
gencies [109—-112]; and incentivizing and increasing
access to other risk mitigation efforts (e.g. batteries
for decentralised renewable energy, insurance, and
assistance with grant applications).
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5. Conclusions: out of the ashes comes an
opportunity for change

Our national fire problem results from more homes
spread over fire-prone places, compounded with
social vulnerability, people providing ignitions, and
a changing landscape with urban fuels, all against a
backdrop of a warming climate. This requires urgent,
resilient solutions. In recent years, hazards research
has highlighted the need to both enhance the robust-
ness of infrastructure and institutions, and improve
the capacity of communities to respond to and
recover from extreme events [113]. Resilience capa-
city is constrained by social and economic disparit-
ies, which are often a by-product of the demographic
processes underpinning the mosaic of land uses delin-
eating cities and their hinterlands [114-120]. Thus,
we expect that the design of fire-resilient and sustain-
able regional systems must also attend to a diversity of
adaptive capacities and vulnerabilities, including the
social-environmental processes that shape them.

Increasing fire resilience requires us to comple-
ment the advances made in fire and smoke haz-
ard modeling with an understanding of the social
processes incentivizing development and increasing
exposure, as well as the causes of uneven vulner-
abilities across communities [121-123]—the inter-
related components of a SETS. By extension, we
propose three broad principles for any resilient fire
governance strategy: (a) appreciating that vulner-
able communities are often simultaneously exposed
to economic hardship, political marginalisation, and
climate-induced risks [105, 106]; (b) respecting and
integrating local knowledge into planning and imple-
mentation strategies while empowering communities
to identify vulnerabilities, leverage situational expert-
ise, build adaptive capacity, and carry out local-
ised resilience strategies [118]; and (c) anticipat-
ing that adaptation is a socio-political process [123]
wherein cultural norms and interests compete to
shape outcomes often excluding vulnerable com-
munities [107].

Redefining ‘the fires that matter’ as fires with neg-
ative social impact in a SETS that spans the wildland—
rural-urban gradient, and conceptualising fire risk as
the convergence of hazard, exposure, and social and
built-environment vulnerability enables pathways to
planning and funding initiatives for more fire resili-
ent communities. In this context, the effects of fire
on ecosystem processes and services, including biod-
iversity and water supply, need to be factored into
the risk equation alongside smoke and other indir-
ect hazards. Now is the time to build a holistic view
of equitable SETS that enables data-driven science to
inform decision making. A systems lens, convergent
interdisciplinary research that honours traditional
ecological knowledge [124, 125], and fine-resolution
data that enable a refined, dynamic assessment of
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risk are critical for understanding, identifying and
implementing effective fire resilience pathways across
wildland-urban-rural gradients before the cost of
inaction is too great.
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