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Abstract—A Brain-Computer Interface (BCI) is a device that
interprets brain activity to help people with disabilities com-
municate. The P300 ERP-based BCI speller displays a series of
events on the screen and searches the elicited electroencephalo-
gram (EEG) data for target P300 event-related potential (ERP)
responses among a series of non-target events. The Checkerboard
(CB) paradigm is a common stimulus presentation paradigm.
Although a few studies have proposed data-driven methods
for stimulus selection, they suffer from intractable decision
rules, large computation complexity, or error propagation for
participants who perform poorly under the static paradigm. In
addition, none of the methods have been applied to the CB
paradigm directly. In this work, we propose a sequence-based
adaptive stimulus selection method using Thompson Sampling
in the multi-bandit problem with multiple actions. During each
sequence, the algorithm selects a random subset of stimuli with
fixed size, aiming to identify all target stimuli and to improve
the spelling speed by reducing the number of unnecessary non-
target stimuli. We compute “clean” stimulus-specific rewards
from raw classifier scores via the Bayes rule. We perform
extensive simulation studies to compare our algorithm to the
static CB paradigm. We show the robustness of our algorithm
by considering the constraints of practical use. For scenarios
where simulated data resemble the real data the most, the
spelling efficiency of our algorithm increases by more than 70 %,
compared to the static CB paradigm.

Index Terms—Adaptive Stimulus Selection, Thompson Sam-
pling, Checkerboard Paradigm, Brain-Computer Interface

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a device that interprets
patterns of brain activity to assist people with severe neuro-
muscular diseases with normal communication, such as “typ-
ing” words without using a physical keyboard [1]. One of the
most popular non-invasive BClIs is the P300 ERP-based BCI
speller [2] recorded in the form of the electroencephalogram
(EEG) signals. The P300 ERP is a particular event-related
potential (ERP) embedded in the EEG signals that occurs
in response to a rare, but a relevant event (target stimulus)
among a series of irrelevant events (non-target stimuli). The
name “P300” comes from the fact that its shape usually has
a positive deflection in voltage around 300ms post event time

[3].
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In a visual P300 ERP-BCI speller, a virtual keyboard is
presented to the participant (See Figure 2). A combination
of characters, defined as the stimulus group, are highlighted
sequentially on the screen with pre-specified time intervals.
Participants are asked to focus on one target character of
interest such that they want to type it on the screen and to
mentally count when they see a stimulus group containing the
character of interest and to ignore all other stimulus groups.
When a stimulus group contains the target character of interest,
it is called a target stimulus, and it should elicit a P300
ERP response. The conventional procedure for the P300 ERP
speller analyzes EEG signals in a fixed time window after
each stimulus to make a binary decision whether a target ERP
response is elicited. Then, the binary classification results are
converted into character-level probabilities. However, despite
the straightforward framework, the prediction accuracy is
susceptible to noisy EEG signals due to its low signal-to-
noise ratio (SNR) property. Therefore, a typical P300 ERP-
BCI speller requires collecting data from multi-electrodes with
many sequences of replications, where different electrodes are
used to capture brain activity on different brain surfaces.

For most existing visual P300 spellers, the set of stimulus
groups is usually fixed regardless of target characters of
interest. The row-column (RC) paradigm by [2] is a typical
stimulus selection paradigm following the principle. In the RC
paradigm, flash groups are rows and columns of characters in
the virtual keyboard. During each sequence, all the row and
column stimulus groups are shown with the order permuted.
Each sequence has exactly two target stimulus groups, and the
intersection of the target stimulus groups is the target character
of interest. However, most approaches do not make decisions
on subsequent stimulus selection based on previously observed
EEG data.

Recently, a few studies have incorporated historical EEG
data into the decision making on the stimulus selection,
known as data-driven stimulus selection methods. Park et al.
[4] applied the partially observable Markov decision process
(POMDP) to compute an optimal stimulus schedule under the
RC paradigm. Ma et al. [5] proposed a hierarchy of sets of
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stimulus groups combined with a statistical language model
to solve a stochastic control problem of low computational
complexity. Kalika et al. [6] developed an adaptive and greedy
stimulus-based stimulus selection algorithm based on the ex-
pected discrimination gain (EDG) function. These approaches
have all made progress in improving the spelling performance
compared to the static RC paradigm under simulated or real-
time BCI settings. However, the POMPD approach becomes
difficult to solve for a real-time system with a large search
space. The hierarchical approach is likely to accumulate errors,
especially for participants with poor performance. The EDG
approach also suffers from large computation complexity and
approximation is required to estimate the character-level prob-
abilities in presence of the response delay. In addition, none
of the methods has applied the adaptive stimulus selection
strategies to the Checkerboard (CB) paradigm [7].

In this paper, we propose a sequence-based adaptive stim-
ulus selection method by framing the problem as a multi-
armed bandit problem with multiple actions [8]. During each
sequence, the proposed algorithm selects a fixed subset of
stimulus groups by the posterior probability. The algorithm
aims to identify all target stimulus groups and enhance the
spelling speed by reducing the number of unnecessary non-
target stimulus groups. We apply Thompson Sampling to
achieve this goal [9]. We perform extensive simulation studies
based on the CB paradigm and demonstrate the robustness
of our algorithm by considering both ideal and practical
scenarios.

The rest of this paper is organized as follows: Section II
presents background information relevant to our algorithm.
Section III introduces the proposed algorithm in detail. Section
IV presents the numerical results of the simulation studies. Fi-
nally, Section VI concludes our paper with a brief discussion.

II. BACKGROUND
A. The Checkerboard (CB) Paradigm

In this work, we develop our adaptive stimulus selection
algorithm based upon the CB paradigm introduced by [7]. The
traditional RC paradigm is susceptible to error propagation that
leads to attention shifts and frustration for two primary reasons
[7]. First, due to “adjacency-distraction,” the selection errors
are most likely to occur next to the target character, especially
when non-target stimulus rows or columns that are confusing
to participants are close to the target character and they distract
the attention of participants. Second, when the target row and
column stimuli are too close, participants may ignore or mis-
perceive the second one, which can change the amplitude and
shape of P300 ERP responses and lead to poor classification
performance, known as the “double-flash” problem. The CB
paradigm reduces the impact of the “adjacency-distraction”
and completely avoids the “double-flash” problem.

Figure 1 provides a simple example of the CB paradigm.
Suppose that we have a 3 x 6 keyboard with 18 keys labelled
from 1 to 18, and we would like to select the target key with
id 8. First, we split the keyboard to two sets (red and blue).
We map each set to a 3 X 3 matrix (hidden matrices 1 and
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2). Hidden matrices are not necessarily square matrices. The
method of mapping is not unique. For the stimulus groups,
we extract the rows and columns from each hidden matrix.
We end up with HIR1, ..., HIR3, HIC1, ..., HIC3, H2R1,
H2R3, and H2C1, ..., H2C3. Each element is a stimulus with
three characters being flashed together. A total of 12 stimuli
are included within each sequence, and two of them are target
ones. Stimuli are presented in the order of rows from hidden
matrix 1, rows from hidden matrix 2, columns from hidden
matrix 1, and columns from hidden matrix 2, but the order
within each row (column) set is random. In this example,
H2R3 and H2CI, containing the target key index of 8, are
the target stimuli within this sequence.

B - - -

Set1:{1,3,.., 15,17}, Hidden Matrix 1 Hldden Matrix 2
Set2:{2,4,.., 16, 18).
(@)
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Fig. 1. An illustration of the checkerboard design. (a). A 3 x 6 keyboard with
18 keys labelled from 1 to 18 in a row switchback order. (b). The keyboard is
split into two sets (red and blue) and placed in hidden matrices 1 and 2. (c).
We extract rows and columns from two hidden matrices to form 12 stimulus
groups within one sequence. (d). We follow the order of rows from hidden
matrix 1, rows from hidden matrix 2, columns from hidden matrix 1, and
columns from hidden matrix 2 for stimulus presentation. The order within each
row (column) set is at random. In this example, H2R3 and H2C1, containing
the target key of id 8, are the target stimuli within the drawn sequence.

B. Thompson Sampling

The multi-armed bandit (MAB) problem is one of the most
widely studied sequential decision making problems. In gen-
eral, during each iteration, a predictor takes one action among
a fixed set of actions and receives a reward associated with
the selected action. The goal of the predictor is to maximize
the cumulative reward over iterations, and the performance
is usually evaluated with a regret, which is defined as the
difference of the cumulative rewards between the selected
and optimal actions. Thompson sampling (TS), originally
proposed in [9] in 1933, is a heuristic for tackling the MAB
problem where actions are taken in a certain order such that
the expected reward functions with respect to the posterior
distribution of parameters are maximized. The canonical TS
is used to select a single action among a fixed set of actions
over multiple iterations. However, in the setting of the P300
ERP-based BCIs, in order to increase the spelling speed, we
aim to identify both target stimuli and to reduce the number
of unnecessary non-target stimuli. Thus, we need to select
multiple actions during each iteration. Fortunately, recent work
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by [8] has extended the canonical MAB problem with single
action to the MAB problem with multiple actions and provided
a theoretical analysis of the optimal regret bound.

In this work, we build our adaptive algorithm upon the
problem of the Beta-Bernoulli Bandit (See Example 3.1 in
[10]). The number of total actions K is the number of stimulus
groups that divide the entire virtual keyboard (See Section
III-B). An action (or a stimulus group) k& produces a reward
that follows a Bernoulli distribution with an unknown parame-
ter 0. Each 0 is interpreted as the success probability for each
action. We start from a non-informative prior on each 6, and
let these priors follow action-specific Beta distributions with
parameters oy and Sj. The conjugate property between Beta
and Bernoulli distributions make it easy to update parameters
and fast to converge.

C. Bayesian Dynamic Stopping Criterion

One of the most important aspects about data-driven stim-
ulus selection methods is the dynamic data collection. Past
work in [11] developed the method to dynamically change
the number and duration of stimulus groups, according to
the subject’s current online performance. The naive Bayesian
dynamic stopping algorithm (NBDSA) in [12] specified a
stopping criterion on a participant-independent, probability-
based (unit-less) metric. Although the classifier scores after
each stimulus group (originally transformed by EEG feature
vectors via binary classifiers) serve as the natural inputs of the
rewards, the actual values are too noisy to use directly. Thus,
we modify the NBDSA method to compute “clean” rewards. In
general, given the previous character-level probability vector
and the resulting classifier score associated with each stimulus
group being flashed, we update the character-level probability
with the likelihoods of classifier scores accordingly. In this
case, other than the rewards that are only available for the
selected actions, we update the rewards for the entire action
set, which enhances the spelling speed. In the next section, we
describe the proposed algorithm in detail.

III. PROPOSED ALGORITHM
A. Assumptions

First, we assume that the parameters of these two normal
distributions are fransferable between the different flash pat-
tern paradigms under consideration. In other words, we assume
that the patterns of P300 ERP responses are stable under the
static paradigm and the adaptive stimulus selection paradigm.
Second, we do not incorporate the impact of the practical
constraints directly into the proposed algorithm. However,
we address the modifications for practical implementations in
Section IV.

B. The Stimulus Group Set

The proposed algorithm is applicable to the paradigm that
specifies a valid stimulus group set as follows: Let w be
the index for the target character to spell (denoted as the
target index) from a virtual keyboard of size N. We map
the characters of the keyboard to the character index set
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No ={1l,-- ,N}. Let § = {Sx : k = 1,--- ,K} be a
stimulus group set such that each element Sy covers character
indices of similar sizes, and for each character index n, we
always find exactly two stimulus group indices mj,no such
that {n} = Sy, N Sp,. The stimulus group set is a particular
way of partitioning the character index set, and the partitioning
is not unique. In addition, we can vary the partitioning when
we spell the next target character of interest.

C. The Algorithm

Let Ty and pmax be the total number of sequences and
maximum probability thresholds, respectively. Together they
form the stopping criteria. Let Beta(c,3) be a beta distri-
bution with shape parameters «, 3. For ¢ = 0, we initialize
the beta distributions and the character-level probability vector
Py with uniform priors and discrete uniform probability of
+, respectively. Let 6(t) be the probability that stimulus
group k contains the target index w for sequence t. We
assume that 05 (t) ~ Beta(oy, B¢,) with shape parameters
ay k, Br k. We sample a vector of {9k (t)} from the above beta
distributions. Let I(¢) and F; be the indices of the L samples
with the largest values and the corresponding subset of selected
stimulus groups during sequence t, respectively. Let z;; be
the classifier score of stimulus group ! during sequence t.
Let NV(u, 02) be a univariate normal distribution with mean
and variance o2. Here, we introduce one way to produce the
classifier scores. We assume that the classifier scores of target
and non-target stimuli follow normal distributions with means
w1 and g, pt1 > po, and common variance o2.

N N(ui,0%), wesS
ol N (o, 0?), wé¢S.

In practice, obtaining a classifier score is equivalent to a series
of processes that include the brain response to stimulus groups,
the feature extraction and segmentation, application to binary
classifiers. We will discuss the alternative way in Section I'V-C.
Then, we compute the ‘“clean” rewards for each character
nn=1---,N.

)

P _ Hlel Et,l,n(zt,l)Pt—l,n
t,n — N i3 5
Zc:l Hl:l ﬁt,l,c(zt,Z)Ptfl,c
| Lo(ze1), néShw,
Ct,l,n(Zt,l) - { El(zt,l)y ne SIlEtiv
where L1, Lo, and P; are likelihood functions of N (uy,c?),
N (110,02), and the character-level probability vector after
sequence t, respectively. We sum up the probabilities of
which character indices belong to the stimulus group Sk, k =
1,---, K. Let I4(x) be the indicator function that equals 1 if
x € A, and 0 otherwise, where A is an ordinary set, then

2

N
rk =Y Pin-ls,(n), k=1 K (3
n=1

Finally, we update the shape parameters for each stimulus
group k. k=1,--- | K.

ap —op+reg, P Bt 1T “)
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We repeat the above process until we reach the pre-specified
stopping criterion. Algorithm 1 summarizes the adaptive stim-
ulus selection paradigm.

Algorithm 1:
Input: The stimulus group set S = {51, , Sk}, the
subset size L, (4 < L < K).
Output: Selected indices I(¢) and character-level
probabilities P;.
for k=1,--- /K do
| Initialize o, = 1, 8 = 1.
end
Initialize Py with uniform probability.
while 1 <t < Ty and max(P;) < ppax do
for k=1,--- /K do
‘ Sample ék(t) ~ Beta(ag, Bi)-
end
I(t) = Indices of top-L stimulus groups ranked by
{0,(t),k=1,--- ,K}.
for/=1,---,L do
Observe {z;,;} for stimulus groups from brain
responses indexed by I(t).

end
Py V2P P, {20}, Lo, L1 (See Eq.2)

for k=1,---,K do
T‘t,k = ZTJXZI Pt/ﬂ . HSk (n).
(g, Br) < (g + 7, B +1 =14 1)

end

end

D. Practical Constraints

During online BCI implementation, we accommodate two
constraints. Since the CB paradigm avoids the impact of the
double-flash problem, we primarily consider another system-
atic constraint due to the data generation mechanism. On one
hand, in order to produce a classifier score, the time window
of EEG signals associated with each stimulus presentation
requires filtering, segmentation, and application to the binary
classifier. On the other hand, the time window of EEG signals
is generally shorter than the time interval between adjacent
stimulus groups. Therefore, there always exists a response
delay between the presentation of stimulus group during
sequence t and its corresponding classifier score. We address
the constraint of the response delay by applying a policy called
“cross iteration update” (See Figure 3).

IV. NUMERICAL EXPERIMENT AND RESULTS

We perform simulation studies of the P300 speller character
selection process to compare different configurations of our
proposed algorithm to the static CB paradigm. We base the
speller grid on Figure 2 [13] , where L ranges from 4 to 26.
When L = 26, it is equivalent to the static CB paradigm
because no subset selection process is involved. We design
three scenarios: classifier score-based without response delay,
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classifier score-based with response delay, and EEG signal-
based with response delay.

For the first two scenarios, we follow the framework in [6]
by directly generating classifier scores of target and non-target
stimulus groups from normal distributions /1 (z) and lo(z),
respectively. We define the following parameters,

d = M1 — MO7 (5)
g

where d' is the detectability index defined in [14]; u; and
o are the mean parameters for [;(z) and ly(z), respectively;
and o is the standard deviation shared by both target and non-
target stimulus groups. We vary the parameter d’ and the subset
size L to produce various cases of simulation studies. For the
third scenario, we generate EEG signals by aligning simulated
ERP responses according to their stimulus type indicators. We
add additional Gaussian noise with variance 0% and auto-
correlation parameter g to simulate the background activity.
Next, we extract the EEG signal segments from the onset of
the stimulus group with a fixed EEG window (e.g., 800ms)
as the feature vectors. Then, we apply the the stepwise linear
discriminant analysis (swLDA) method [15][16] to obtain the
classifier scores z. We assume that the swLDA model has
been trained from additional dataset generated by the same
simulated ERP responses and noise structure. The additional
dataset for each case has the same dimension. We vary the
parameter o3 and subset size L to produce various cases
of simulation studies. In each case, we assume one target
character to type (e.g., character index of 70), and we do
not incorporate any prior information into any candidate
characters. For the last two scenarios, we randomly specify
the selected stimulus groups for the first two sequences to
account for the delay.

We define the probability threshold pp.x = 0.9 and the
sequence upper threshold T = 5. Since L is an input for the
algorithm, we evaluate the spelling time in the final results
for consist comparison. The spelling time is defined as the
product among the number of sequences, subset size L, and
the time interval between adjacent stimulus groups, where this
time interval is set to 160 ms. We report the final accuracy
and the spelling time to satisfy the above criteria jointly. In
addition, we report the information transfer rate (ITR) as in
[17] and the BCI utility (Utility) as in [18] to provide more
comprehensive metrics that combine accuracy and speed. We
present the metrics for L = 5,10, 13, and 26. For each case,
we repeat the case 500 times and report the average results
across replications.

In Section IV-A, we present the results for simulation
studies based on classifier scores without the response delay.
In Section IV-B, we present the results for simulation studies
based on classifier scores with the response delay. Finally, in
Section IV-C, we present the results where simulation studies
are based on EEG signal segments with the response delay.

A. Classifier Score-based without Response Delay

Assuming no response delay, we perform simulation stud-
ies to compare the performance of subset selection to the
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Fig. 2. Anillustration of an 84-key keyboard with a combination of characters,
denoted as a stimulus group, being highlighted. Under the CB paradigm,
stimulus groups are not necessarily row and column arranged.

static CB paradigm. We fix p; = 0.50 and po = —0.20,
and varied o among {0.20,0.30,0.40,0.50,0.60} (d' =
3.50,2.33,1.75,1.40,1.17). Notice that the combination of
u1 = 0.5, 49 = —0.2, and o = 0.3 or equivalently, d’ = 2.33
is based on the result of a real participant, and we vary o to
demonstrate the robustness of our method. Table I shows the
mean accuracy, spelling time, ITR, and Utility metrics of Sce-
nario A under various o across 500 replications. As the subset
size L increases from 5 to 26, the probability of correctly
selecting the target character, ITR, and Utility decreases, while
the spelling time to reach the stopping criterion increases. This
suggests that our algorithm is more efficient than the static CB
paradigm.

The results of Scenario A can be considered as an upper
bound of the performance evaluation. In Scenarios B and C,
we evaluate the robustness of our algorithm in response to the
response delay from two data generative mechanisms.

B. Classifier Score-based with Response Delay

Since the CB paradigm avoids the “double flash” problem
mentioned above, we consider the response delay for the
practical implementation. We perform simulation studies to
compare the performance of subset selection to the static CB
paradigm with the same parameter set in Section IV-A. We
assume that the data collection, classifier score generation,
and posterior sampling associated with sequence ¢ will be
completed by the end of sequence (¢ + 1), denoted as “cross
iteration update” (See Figure 3). Thus, we randomly initialize
stimulus groups for the first two sequences to compensate for
the response delay. For sequence ¢,t > 2, we generate the
stimulus groups based on the Thompson sampling results of
the posterior samples c;_o and 3;_». Table II shows the mean
accuracy, spelling time, ITR, and Utility of Scenario B under
various o across 500 replications. Similar patterns to Table
I are observed. The ITR, Utility, accuracy, and spelling time
in Scenario B are, on average, lower than those in Scenario
A because by assumption, we record the probability of the
sequence prior to the one that reaches the stopping criterion.
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TABLE I
A TABLE OF THE EVALUATION METRICS FOR THE CLASSIFIER
SCORE-BASED SCENARIO WITHOUT RESPONSE DELAY. METRICS INCLUDE
ACCURACY, SPELLING TIME, ITR, AND UTILITY. WE VARY THE
DETECTABILITY INDEX d’ AND THE SUBSET SIZE L. THE RESULTS FOR
L = 26 ARE THE BASELINE WHERE NO ADAPTIVE STIMULUS SELECTION
IS INVOLVED.

da’ Subset Size L ITR  Utility Accuracy Time (ms)
3.50 5 0.95 0.94 0.97 5920
3.50 10 0.74 0.74 0.99 6880
3.50 13 0.65 0.64 0.99 7680
3.50 26 0.50 0.50 0.99 9440
2.33 5 0.69 0.69 0.96 7520
2.33 10 0.53 0.53 0.97 9120
2.33 13 0.49 0.49 0.97 10080
2.33 26 0.35 0.34 0.97 13600
1.75 5 0.47 0.47 0.92 10400
1.75 10 0.38 0.38 0.93 12480
1.75 13 0.34 0.34 0.93 13440
1.75 26 0.23 0.23 0.87 17600
1.20 5 0.35 0.35 0.87 13120
1.20 10 0.26 0.25 0.83 16000
1.20 13 0.24 0.23 0.81 16000
1.20 26 0.14 0.13 0.67 19200
1.17 5 0.26 0.25 0.79 15520
1.17 10 0.18 0.17 0.70 17600
1.17 13 0.14 0.13 0.63 19200
1.17 26 0.08 0.07 0.47 20800
Seq 1 Seq 2 Seq 3 Seq4
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Fig. 3. A figure of the simulated data generation mechanism with the response
delay. The upper panel is the time frame for stimulus presentation, while the
lower panel is the time frame of data collection and analysis for each sequence.
Let F¢ be the set of stimulus groups for sequence t. We randomly initialize
the stimulus groups for the first two sequences. We assume that the data
collection, classifier score generation, and posterior sampling associated with
sequence ¢ would will be completed by the end of sequence (¢ + 1), denoted
as “cross iteration update”. For sequence ¢,t > 2, we generate the stimulus
groups based on posterior samples of TS, a¢—2,Bt—2. The process is not
terminated until the stopping criterion is reached.

However, the results between Scenarios A and B do not differ
very much.

C. EEG Signal-based with Response Delay

Finally, we extend Scenario B where we start from simu-
lated EEG time series. We apply the same updating policy as in
Section IV-B. We assume that the simulated EEG signals have
an additive signal-and-noise effect. For the signal component,
we start with simulated ERP responses to target and non-target
stimuli by the type of stimuli (See Figure 4), and align them by
the rule of convolution. For the noise component, we assume
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TABLE II
A TABLE OF THE EVALUATION METRICS FOR THE CLASSIFIER
SCORE-BASED SCENARIO WITH RESPONSE DELAY. METRICS INCLUDE
ACCURACY, SPELLING TIME, ITR, AND UTILITY. WE VARY THE
DETECTABILITY INDEX d’ AND THE SUBSET SIZE L. THE RESULTS FOR
L = 26 ARE THE BASELINE WHERE NO ADAPTIVE STIMULUS SELECTION
IS INVOLVED.

d’ Subset Size L ITR  Utility Accuracy Time (ms)
3.50 5 0.80 0.79 0.98 6240
3.50 10 0.60 0.59 0.98 8000
3.50 13 0.54 0.54 0.98 8640
3.50 26 0.35 0.35 0.99 13280
2.33 5 0.59 0.59 0.97 8160
2.33 10 0.43 0.43 0.97 10720
2.33 13 0.38 0.38 0.97 11840
2.33 26 0.26 0.26 0.95 17600
1.75 5 0.42 0.42 0.95 11040
1.75 10 0.31 0.30 0.93 14560
1.75 13 0.28 0.27 0.91 15680
1.75 26 0.18 0.17 0.80 19200
1.20 5 0.33 0.33 0.91 13600
1.20 10 0.23 0.23 0.86 17600
1.20 13 0.19 0.19 0.80 19200
1.20 26 0.10 0.09 0.55 20800
1.17 5 0.25 0.24 0.82 16000
1.17 10 0.15 0.13 0.65 19200
1.17 13 0.12 0.10 0.59 19200
1.17 26 0.05 0.04 0.37 20800
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Fig. 4. A figure of simulated ERP response functions to target (red) and
non-target (blue) in Scenario C. Both ERP response functions contain 25
time points, with the unit time interval representing 32 ms. The peak ratio
between target and non-target stimuli is around 3. We assume that the time
interval between adjacent stimuli are 160ms, and the extracted EEG response
window has the same length as the simulated ERP response functions.

W
(o
W
w

it follows a Gaussian distribution with an auto-correlation
structure AR(g) and the variance 0% . For this study, we only
generate one-dimension simulated data (one electrode), so no
spatial correlation is considered. Then, we extract the EEG
signal segments from the onset of each stimulus with the
fixed response window (i.e., 800 ms) as the feature vector, and
convert them to the classifier scores using the swLDA weights.
Here, we obtain the pi,pu, o, and d by computing the
sample means and the sample variance of classifier scores from
the training set. Thus, we fix the simulated ERP responses
and the auto-correlation structure of (0.5,0), and vary the
noise variance 0% among {0.1,2,5.5,12.5,20} to match d’
approximately for the consistent comparison. Table III shows
the means and standard deviations of accuracy, spelling time,
ITR, and TTI of Scenario C under various 0% across 500
replications. Notice that the actual d’ may deviate from the d’
in Scenarios A and B due to the randomness in the training
set.

TABLE III
A TABLE OF THE EVALUATION METRICS FOR THE EEG SIGNAL-BASED
SCENARIO WITH RESPONSE DELAY. METRICS INCLUDE ACCURACY,
SPELLING TIME, ITR, AND UTILITY. WE VARY THE NOISE VARIANCE a§(
TO MATCH THE DETECTABILITY INDEX d’ AND THE SUBSET SIZE L. THE
RESULTS FOR L = 26 ARE THE BASELINE WHERE NO ADAPTIVE
STIMULUS SELECTION IS INVOLVED. THE ACTUAL d’ MAY BE DIFFERENT
FROM THE VALUES IN SCENARIOS A AND B DUE TO THE RANDOMNESS IN
THE TRAINING SET.

d’ Subset Size L ITR  Utility Accuracy Time (ms)
3.51 5 0.87 0.86 0.99 5920
3.48 10 0.68 0.68 0.99 7200
3.48 13 0.61 0.60 1.00 7840
3.47 26 0.38 0.37 1.00 12480
2.39 5 0.62 0.62 0.97 7680
2.44 10 0.46 0.46 0.97 9920
2.22 13 0.42 0.42 0.96 10560
2.24 26 0.27 0.26 0.96 16000
1.65 5 0.46 0.46 0.96 9920
1.63 10 0.33 0.32 0.95 13600
1.78 13 0.29 0.29 0.94 15040
1.76 26 0.18 0.17 0.81 19200
1.20 5 0.34 0.34 0.92 12960
1.25 10 0.20 0.19 0.80 17600
1.39 13 0.19 0.18 0.79 19200
1.27 26 0.09 0.07 0.52 20800
1.03 5 0.28 0.28 0.88 15040
1.04 10 0.18 0.17 0.75 19200
1.02 13 0.14 0.12 0.67 19200
1.09 26 0.05 0.04 0.37 20800

V. DISCUSSION

Although the ITR and Utility increase by more than 70%
if we compare the L 5 to L 26 for the scenarios
where parameter set resembles the real data the most (i.e.,
d’ 2.33), we find that smallest L does not necessarily
always produce the best prediction accuracy, especially for
the scenario of d’ = 3.50. One explanation that smallest
L does not produce the best prediction accuracy is that it
may be difficult to initialize both target stimulus groups
for the first two sequences. Therefore, applying a statistical
language modeling to initialize P, prior to the experiment will
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compensate for the disadvantage. In addition, although the CB
paradigm completely removes the impact of the double-flash
problem, using too small L may make it difficult to create
enough time gap between adjacent target stimuli in practice.
One possible modification is to choose a moderate size of L
(i.e., L = 10 in our setting) so that a minimum of certain
stimulus groups are, on average, selected from four hidden
sets to maintain a reasonable target-to-target interval (TTI).
Finally, when evaluating the applicability of these scenarios
to actual use, we consider that Scenarios A and B are based
on the classifier scores, and Scenario B considers the response
delay. Scenario C is based on synthesized EEG data with the
response delay. Although the distributions of classifier scores
conditional on the type of stimulus groups from synthesized
EEG signals are similar to the ones from real participants, the
synthesized EEG signals in Scenario C may neglect certain
aspects of real EEG data. Therefore, we will follow the steps
in [19] and consider using previously recorded EEG signals
in a simulation-based environment for future work.

VI. CONCLUSION

We propose a sequence-based adaptive stimulus selection
algorithm based on Thompson Sampling under the framework
of a multi-bandit problem with multiple selections. The algo-
rithm selects a random subset of stimuli with fixed size during
each sequence, aiming to identify all target stimulus groups
and to improve the spelling speed by reducing the number
of unnecessary non-target stimulus groups. For the scenario
where parameter set resembles the real data the most, both
ITR and Utility increase by 70.4% and 76.9%, respectively.
We compute “clean” rewards from raw classifier scores via
the Bayes rule to further improve the spelling efficiency. We
perform extensive simulation studies to compare our algorithm
to the static CB paradigm. We also show the robustness of
our algorithm by considering the physiological and practical
constraints in real-time BCI implementations. In future work,
we will test our algorithm on data from real participants.
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