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ABSTRACT

We study consensus and checkpointing in synchronous distributed
systems. There are n nodes that communicate by sending messages,
and any two nodes can communicate directly. The nodes are prone
to crashing, with an upper bound ¢ on the number of crashes. Algo-
rithms use overlay networks of choice to save on the amount of com-
munication. We explore using Ramanujan graphs as such overlay
networks. We demonstrate that Ramanujan graphs have topological
properties conducive to fault-tolerance and time/communication
efficiency of distributed algorithms. Our consensus algorithm as-
sumes binary input values, runs in O(t) time and sends O(n+t log t)
bits. The algorithm sends the optimum number O(n) of bits for
t = O(n/log n), thus for this range of ¢ it improves on the algorithm
by Galil, Mayer and Yung [FOCS 1995] that also sends O(n) bits
but works in exponential time. The consensus algorithm can be
implemented such that a node sends a message to at most one node
at a round while maintaining the asymptotic time and communi-
cation performance bounds. Qur checkpointing algorithm runs in
linear time O(n) and with O(n log” n) messages. It improves on the
most communication-efficient and time-optimal algorithm by Galil,
Mayer and Yung [FOCS 1995], which may have O(n'*€) messages
sent, for any chosen constant € > 0.
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1 INTRODUCTION

We develop distributed algorithms for binary consensus and check-
pointing. A distributed system consists of nodes that communicate
by sending messages. Any two nodes can communicate directly.
The communication is synchronous, in that executions of algo-
rithms are partitioned into rounds such that a message is delivered
in the round in which it is transmitted. Algorithms use overlay
networks of choice to save on the amount of communication.

Each node has a unique integer name in the set {1,...,n}. The
number n is known to all the nodes, in that it may be a part of code
of an algorithm. Nodes are prone to crashing. An upper bound on
the number of crashes in an execution is an integer denoted by t.
We assume that the number t is known, in that it can be used in a
code of an algorithm.

If a node can multicast and receive messages to/from any set of
recipients/senders in a round then this is the multi-port model. If a
node can send/receive a message to/from at most one sender/recip-
ient in a round then we call this the single-port model.

We explore using Ramanujan graphs as overlay networks in
designing distributed algorithms. We demonstrate that Ramanujan
graphs have topological properties conducive to fault-tolerance and
time/communication efficiency of distributed algorithms.
Agreement problems. In each of the two considered agreement
problems, eventually every node needs to decide on a value. De-
ciding can be made at any time before halting in the course of
an execution. A decision is irrevocable once made. The three con-
straints of validity, agreement, and termination need to be satisfied
in each execution.

Agreement means that no two nodes decide on different values.
Termination means that each node eventually decides, unless it
crashes. Validity if formulated differently for each of the problems
we consider. In the problem of consensus, each node starts with an
initial input value, which is either 0 or 1. Consensus validity means
that each node decides on the initial input value of some node.
In the problem of checkpointing, nodes work to collect knowledge
about these nodes that have already crashed. Checkpointing validity
means that each node decides on a set of nodes E such that a node
that crashed at the start does not belong to E and every nonfaulty
node does belong to E.

The previous and related work. The problem of checkpointing
was introduced by De Prisco, Mayer, and Yung [14], who presented
an algorithm of O((t + 1)n) message complexity. A checkpointing
algorithm developed by Chlebus, Gasieniec, Kowalski, and Schwarz-
mann [5] sends O(n(n — t)) messages. Galil, Mayer, and Yung [17]
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gave an algorithm solving checkpointing in time O( (¢ + 1)8IJIJ €) and
with O(n + tn) messages, for any € > 0.

A consensus solution needs to send Q(n) messages because each
process is required to send at least one message. Galil, Mayer, and
Yung [17] developed an algorithm that runs in O(n!'*¢) rounds,
for any 0 < ¢ < 1, and sends O(n) messages. They also gave an
algorithm for binary consensus sending O(n) bits in messages, but
the algorithm runs in exponential time. Chlebus and Kowalski [6]
showed that consensus can be solved in O(t¢ + 1) time and with
O(nlog? t) messages under the assumption that the number n — ¢
of non-faulty nodes satisfies n — t = Q(n). Chlebus, Kowalski, and
Strojnowski [9] gave algorithms for binary consensus operating in
time O(t + 1) that send O(nlog? n) bits for ¢ < 7 and O(n log* n)
bits for any t < n.

A consensus algorithm is early-stopping if it runs in O(f+1) time,
where f is the number of failures actually occurring in an execution,
while the algorithm may be designed for a known upper bound ¢
on the number of crashes. Dolev, Reischuk, and Strong [16] gave
an early-stopping solution for consensus with arbitrary process
failures and a lower bound min{t+1, f+2} on the number of rounds.
Coan [12] gave a consensus algorithm running in time O(f + 1)
that uses messages of size logarithmic in the size of the range of
input values; see also Bar-Noy, Dolev, Dwork, and Strong [3] and
Berman, Garay, and Perry [4]. Chlebus and Kowalski [7] devel-
oped an early stopping consensus algorithm sending O(nlog® n)
messages. Dolev and Lenzen [15] showed that any crash-resilient
consensus algorithm deciding in exactly f + 1 rounds has Q(n%f)
worst-case message complexity.

Chor, Merritt, and Shmoys [11] gave a randomized algorithm
for consensus that has O(log n) round complexity and O(n? log n)
message complexity with high probability, while tolerating fewer
than £ crashes. Bar-Joseph and Ben-Or [2] gave a randomized

2
consensus algorithm against an adaptive adversary that controls

crashes. The algorithm works in O(%] expected time, which is

n
munications bits. Kowalski and Mirek [21] demonstrated how to

decrease the number of messages to O(n3/2 polylog n), while keep-
ing the number of bits at ©(n3/2 polylog n) and slowing down the
algorithm by a factor of O(log? n), by using deterministic fault-
tolerant gossip from [7]. Chlebus and Kowalski [8] developed a
randomized consensus algorithm that terminates in the expected
O(log n) time and such that the expected number of bits sent and
received by each process is O(log n) when the adversary is oblivi-
ous and such that a bound t on the number of crashes is a constant
fraction of the number n of nodes. Gilbert and Kowalski [19] pre-
sented a randomized consensus algorithm that tolerates up to %
crashes and terminates in O(log n) time and sends O(n) messages
with high probability. Gilbert, Guerraoui, and Kowalski [18] devel-
oped an indulgent consensus algorithm, in that it solves consensus
under eventual synchrony, while in synchronous executions it is
early-stopping and achieves O(n polylog n) message complexity.
Robinson, Scheideler, and Setzer [23] showed how to achieve an
almost-everywhere consensus in O(logn) time with high proba-
bility against adversaries controlling crashes that are weaker than
adaptive. Chlebus, Kowalski, and Strojnowski. [10] gave a quantum

provably optimal, while generating O(fc’fgi] messages and com-
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algorithm for binary consensus, executed by crash-prone quan-
tum processes that operates in O(polylog n) rounds while sending
O(n polylog n) qubits against the adaptive adversary. Alistarh, Asp-
nes, King, and Saia [1] developed a randomized consensus algorithm
for asynchronous message passing that sends the expected number
of O(nt + t? log? t) messages.

For properties and construction of graphs with suitable expan-
sion properties, see [13, 20, 22].

2 RAMANUJAN OVERLAY GRAPHS

Let G = (V, E) denote a simple graph, where V is the set of vertices
and E is the set of edges. For a set of vertices W, the notation N (‘; (W)
denotes the set of all vertices in V of distance at most i from some
node in W in graph G. For two disjoint set of vertices Wy and W5,
an edge (v, w) € E connects Wy with Wy if v € W and w € W5.

Next, we list properties of overlay graphs and their vertices
relevant to efficiency of algorithms, following [9]. Let &, y and £ be
positive integers and 0 < ¢ < 1 be a real number.

Dense neighborhood: For a node v € V,asetS C Ng(n) is
said to be (y, §)-dense-neighborhood for v when every node
mnsSnN Né:._l (v) has at least § neighbors in S.

Survival subset: For a set of vertices BC V, asubset C C Bisa
&-survival subset for B if every node’s degree in the subgraph
of G induced by C is at least 4.

Compactness: graph G is said to be (¥, ¢, §)-compact if, for any
set B C V of at least f vertices, there is a subset C C B of at
least f vertices that is a §-survival subset for B.

The following property of overlay graphs is also relevant:

Expansion: graph G is f-expanding, or is an {-expander, if any
two disjoint subsets of £ vertices each are connected by an
edge.

For a constant d, let G = G(n, d) denote a d-regular Ramanujan
graph of n vertices. Let A1 > Az > ... > A, be the eigenvalues
of G(n,d), and let A = max(|Az|, |An|)- For a d-regular simple graph
to be Ramanujan means 1 < 2Vd — 1.

We also use the following notations:

£(n,d) =4nd~'/8, and &(d) = %(d”s — &%) .

THEOREM 2.1. Every Ramanujan graph G = G(n,d) is £(n,d)-

expanding.

THEOREM 2.2. Every Ramanujan graph G = G(n, d) has the prop-
erty to be (£(n,d), %, 8(d))-compact.

THEOREM 2.3. In a Ramanujan graph G = G(n,d), a (y(n), 8(d))-
dense-neighborhood of a vertex includes at least £(n,d) vertices, for
any y(n) > 21gn and sufficiently large d.

THEOREM 2.4. Let0 < € < 1 be a fixed constant, and let A and B
be two disjoint subsets of vertices of a Ramanujan graph G = G(n, d).

If|A| = €-n and |B| > %, then there exists an edge connecting A
with B.

3 CONSENSUS AND CHECKPOINTING

We give an algorithm for binary consensus that uses messages
of size O(1) bits. We assume for the analysis of the consensus
algorithm that there is a constant « satisfying 0 < & < 1 such
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that t is at most & - n. An execution takes O(t + logn) rounds
and O(n + tlogt) bits are transmitted in total. The efficiency of
the algorithm is reflected by the property that one crash delays
termination by O(1) rounds, there are O(1) bits transmitted per
node, and O(logt) bits transmitted per crash. The optimal O(n)
number of bits/messages are sent as long as t = O( logn)' This
partially answers the problem of bit-communication complexity of
binary consensus posed by Galil, Mayer, and Yung [17], who showed
that sending O(n) bits in messages by a consensus algorithm is
achievable for any bound on the number of crashes ¢ < n, but their
algorithm runs in a number of rounds exponential in n.

THEOREM 3.1. There exists a deterministic algorithm that solves
consensus in O(t + log n) rounds sending a total of O(n +t logt) bits
in messages.

Using Ramanujan graphs of constant degrees as overlay graphs
has the additional advantage that our consensus algorithm can be
implemented in the single-port model with the same asymptotic
time and communication performance bounds as in the multi-port
model. This gives the first known consensus algorithm for the

single-port model of a comparable time and message efficiency.

THEOREM 3.2. The exists an algorithm implemented in the single-
port model that solves consensus in O(t + log n) rounds sending a
total of O(n + t log t) bits in messages.

We give a checkpointing algorithm working in linear time O(n)
and sending a nearly-optimal number of messages O(nlog” n). This
improves on the most message-efficient time-optimal solution pre-
viously known by Galil, Mayer, and Yung [17] by a polynomial
factor.

THEOREM 3.3. There exists a deterministic algorithm that solves
checkpointing in O(n) rounds using O(nlog’ n) messages for any
number of crashest < n.

4 DISCUSSION AND OPEN PROBLEMS

An immediately occurring question regarding consensus with crashes
that follows from this work asks whether the component (1 log t)
in the communication bit complexity bound O(n + ¢ log t) could be
decreased. This question is open and applies to both multi-port and
single-port settings. The message complexity of the time-optimal
checkpointing algorithm given in this work may miss optimality
by a poly-logarithmic factor in the multi-port model. The time
performance of the message-optimal algorithm for checkpointing
given by Galil, Mayer, and Yung [17] may miss time optimality by
a polynomial factor in the multi-port model. Resolving simulta-
neous optimality with respect to time and message complexities
of checkpointing is thus open. We conjecture that algorithms of
comparable asymptotic performance as in the multi-port model
could be implemented in the single-port model.

This work demonstrates that Ramanujan graphs can be used as
overlay networks to structure communication for time and commu-
nication efficient algorithms solving consensus and checkpointing
with nodes prone to crashes. We expect that the newly discovered
properties of Ramanujan graphs could be applied to streamline
algorithms for other problems in distributed computing and com-
munication, including gossiping, counting, and majority consensus,
with respect to time and communication efficiency.
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