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In the Group Testing problem, the objective is to learn a subset K of some much larger 
domain N , using the shortest-possible sequence of queries Q. A feedback to a query 
provides some information about the intersection between the query and subset K . Several 
specific feedbacks have been studied in the literature, often proving different formulas for 
the estimate of the query complexity of the problem, defined as the shortest length of 
queries’ sequence solving Group Testing problem with specific feedback. In this paper we 
study what are the properties of the feedback that influence the query complexity of Group 
Testing and what is their measurable impact. We propose a generic framework that covers 
a vast majority of relevant settings considered in the literature, which depends on two 
fundamental parameters of the feedback: input capacity α and output expressiveness β . 
They upper bound the logarithm of the size of the feedback function domain and image, 
respectively. To justify the value of the framework, we prove upper bounds on query 
complexity of non-adaptive, deterministic Group Testing under some “efficient” feedbacks, 
for minimum, maximum and general expressiveness, and complement them with a lower 
bound on all feedbacks with given parameters α, β . Our upper bounds also hold if 
the feedback function could get an input twisted by a malicious adversary, in case the 
intersection of a query and the hidden set is bigger than the feedback capacity α. We also 
show that slight change in the feedback function may result in substantial worsening of the 
query complexity. Additionally, we analyze explicitly constructed randomized counterparts 
of the deterministic results. Our results provide some insights to what are the most useful 
bits of information an output-restricted feedback could provide, and open a number of 
challenging research directions.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Group Testing, introduced by [25], is an inference problem, where the goal is to identify, by asking queries, all elements 
of an unknown set K . All we initially know about set K is that |K | ≤ k and that it is a subset of some much larger set N with 
|N| = n, for given parameters k, n. To learn set K , we must have answers to the queries that provide some information about 
set K . In our model, the answer to a query Q depends on the intersection between K and Q and equals to Feed(K ∩ Q ), 
where Feed is some known pre-defined feedback function. The sequence of queries is a correct solution to Group Testing 
if and only if for any two different sets K1, K2 such that |K1|, |K2| ≤ k, the sequence of feedback answers computed for 
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sets K1 and K2 are different; we say then that the sequence of queries distinguishes any pair of sets, or identifies any set 
of size at most k.1 The objective is, for a given deterministic feedback function Feed(·), to find a sequence of queries that 
identifies any set K of size at most k and the length of this sequence, called query complexity, will be shortest possible. 
In particular, we are interested in algorithms that have query complexity logarithmic in n = |N| and polynomial in k = |K |. 
In the classic variant, studied in most of the existing relevant literature, the function Feed simply answers whether the 
intersection between K and Q is empty or not, while another popular feedback returns the size of the intersection [26,29]. 
These variants were applied in many domains, including pattern matching [14,35], compressed sensing [16], streaming 
algorithms [17] and graph reconstruction [12,30] or even accelerating computations in neural networks [39]. Though one of 
the most prominent examples of applications of Group Testing is in conflict resolution in communication networks [8,9,11,
29,31,32,38,41,45].

There is a large body of literature introducing new variants of the Group Testing [10,30,7,22,21], which could be simply 
viewed as different feedback functions applied to some generic Group Testing framework. Therefore, in this paper we aim 
at designing such a universal framework allowing a holistic view at many previous modifications of Group Testing setting, 
and study the dependence of the query complexity on two identified fundamental parameters of the feedback function:

Capacity: this parameter denotes the maximum set size that can be processed by the feedback function. In other words, 
the domain of the feedback function with capacity α is the family of all subsets of N of size at most α. The 
capacity is denoted by α throughout this paper and varies between 1 and k.

Expressiveness: this parameter denotes the number of output bits of the feedback function.
It is denoted by β throughout this paper, and varies between 1 and ᾱ, where the latter denotes a binary logarithm 
of the number of all subsets of N of size at most α, i.e., ᾱ = log2

∑α
i=0

(n
i

)
.

A feedback function with capacity α and expressiveness β is called an (α, β)-feedback.
If for some query Q , |Q ∩ K | > α, then the intersection set Q ∩ K cannot be passed directly to the feedback function, 

because (α, β)-feedback functions are not defined for such sets. Therefore, in our framework we resolve this issue by 
presence of an adversary – a non-deterministic feature which, for such queries with large intersection, selects a set with 
at most α elements and the answer to query Q is the feedback on this set. We consider different models of an adversary, 
including a powerful Malicious Adversary, who could “fool” the feedback with arbitrary sets of at most α elements of N ,2

and more benign Honest Adversary, who always returns some subset of the intersection.
Clearly, increasing the capacity parameter α or expressiveness β increases the number of (α, β)-feedback functions, 

and thus should decrease the query complexity of the best feedbacks in this family. But what is the asymptotic pace of 
this query complexity decrease? Is there a substantial difference in query complexity of Group Testing under Honest and 
Malicious adversaries? Are there better and worse feedback functions for given α, β , i.e., resulting in smaller (resp., larger) 
query complexity? This paper provides partial answers to these questions.

Document structure. In Section 2 we formally define the general framework of (n, k)-Group-Testing, including (α, β)-
feedback functions and adversaries, and outline the contribution of the paper. Then we discuss a related work on specific 
feedbacks in Section 3. In Section 4 we prove upper bounds on the query complexity for efficient feedbacks with minimal, 
maximal and general expressiveness β and any capacity α, under powerful Malicious Adversary. Section 5 presents a lower 
bound for feedbacks with maximum expressiveness, i.e., (α, ᾱ)-feedbacks, which holds even for more benign Honest adver-
saries. A case study of two (α, 2 logn)-feedback functions with (provably) substantially different query performance is given 
in Section 6. Discussion of results from perspective of future directions is given in Section 7.

2. Generalized framework and our contribution

As we will discuss in Sections 2.1 and 3, many previously considered variants of (n, k)-Group-Testing problem could 
be expressed by, and their query complexities depend on, specific parameters of the feedback to the queries. Here, we 
formally introduce generalized framework, including families of (α, β)-feedbacks, where α is the feedback capacity while 
β is its expressiveness, and adversaries that provide input to the feedback function in case the intersection has more than 
α elements. We consider non-adaptive deterministic solutions, in which subsequent queries do not depend on the feedback 
from the previous ones nor on random bits. This class is very popular in the literature, due to its applicability and relevance 
to coding [37] and information theory [28,3].

In subsequent technical sections, we will be studying query complexity of the whole classes of (α, β)-feedbacks, de-
pending on parameters n, k, α, β and specific adversary, as well as several interesting sub-classes. We will also discuss 

1 In this work we abstract from computational efficiency of decoding of sets, which is a large research area by itself, cf., [2].
2 One could also assume that the Malicious Adversary could give any input to the feedback function in case of exceeded capacity – this could however 

require re-definition of the feedback function to handle non-valid input sets.
Example of an adversary, widely but implicitly considered in the literature, is the mechanism of feedback in radio networks or multiple access chan-

nels, when the feedback provides answers “collision” or “silence” or an arbitrary element if two or more neighbors of a communication device transmit 
simultaneously, cf., [4,11].
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randomized counterparts of our deterministic solutions, cf., Definition 4, as in some cases they could be computed more ef-
ficiently.

We assume that the universe of all elements N , with |N| = n, is enumerated with integers 1, 2, . . . , n. Throughout the 
paper we will associate an element with its identifier.

Specification of generalized group testing framework.

Definition 1. The generalized (n, k)-Group-Testing framework is defined as follows:

1. An (n, k)-Group-Testing Algorithm is defined as a sequence of queries Q = Qn,k = 〈Q 1, Q 2, . . . , Qt〉 depending on n, k, 
where each query is an arbitrary subset of N . The sequence length t is called a query complexity of the sequence/algo-
rithm.3

2. An adversary is defined as an entity that performs two actions. Firstly, it chooses set K as an arbitrary subset of N with 
|K | ≤ k. Secondly, it defines a function Adv(X, i |Q, K ), for every X ⊆ N , and every i ∈ {1, . . . , |Q|}, where i denotes the 
index4 in sequence Q. This function must satisfy:
• Adv(X, i |Q, K )) ⊆ N ,
• |Adv(X, i |Q, K ))| ≤ α,
• Adv(X, i |Q, K ) = X , if |X | ≤ α.

3. An adversary strategy, under a given query sequence Q and a set K fixed by an adversary is defined as a function 
Adv(X, i |Q, K ) of two arguments: set X ⊂ N and index i ∈ {1, 2, . . . , |Q|}. Sadv(Q, K ) denotes the set of all adversarial 
strategies under a given query sequence Q and a set K fixed by an adversary, and Sadv(Q, ·) = {Sadv(Q, K )}K⊆N,|K |≤k
is the set of all possible strategies of the adversary over sets K of at most k elements.

4. An (α, β)-feedback function Feed is a function that takes as an input any subset of N with at most α elements and 
outputs a binary vector of β bits.

5. A feedback vector is defined as a sequence of outputs of the feedback function on the intersections between K and the 
subsequent queries Q 1, Q 2, . . . , Qt :

F(K ,Adv) =〈Feed(Adv(Q 1 ∩ K ,1 | Q, K )),Feed(Adv(Q 2 ∩ K ,2 | Q, K )), . . . ,

Feed(Adv(Qt ∩ K , t | Q, K ))〉 .

6. For any fixed n, k, we say that a sequence of queries Q solves (n, k)-Group-Testing problem under some adversary with 
the set of possible strategies Sadv (Q, ·) if we have:

∀
K1,K2⊂N

|K1|,|K2|≤α
K1 �=K2

{F(K1,Adv) : Adv ∈ Sadv(Q, K1)} ∩ {F(K2,Adv) : Adv ∈ Sadv(Q, K2)} = ∅

In other words, the sets of possible (under the given adversary) feedback vectors for two different sets K1, K2 are 
disjoint.

In the above framework, the adversary could be deterministic (if the set of strategies Sadv (Q, K ) for any given Q, K
is a single function, e.g., always passing an empty set to the feedback function for intersections larger than α) or non-
deterministic (otherwise). The feedback function is always deterministic. Observe also that in case of non-adaptive algo-
rithms considered in this work the order of queries does not matter from perspective of query complexity, but helps in the 
analysis to relate queries with their corresponding feedbacks in the feedback vector.

Decoding of elements. It follows from our Definition 1, point 6, of solving (n, k)-Group-Testing problem that elements of 
the hidden set K could be enlisted. A straightforward, though not computationally efficient way, would be to consider all 
possible sets K of size at most k; then, for each of them – consider a family of all possible adversarial strategies and 
compute feedback vectors for them; finally, one could find among them a matching copy of the actual feedback vector. This 
copy is in some computed family corresponding to a set K , which is the actual hidden set to be enlisted. The correctness 
of this solution follows directly from Definition 1, point 6: all possible feedback vectors obtained for all possible adversarial 
strategies are disjoint for different sets K of size at most k. In this work we do not study more efficient decoding algorithms 
than the above mentioned method – this topic could be an interesting and challenging future direction.

3 Due to the scope of this paper, our definition considers non-adaptive algorithms, i.e., in which the sequence of queries is fixed in advance. However, an 
analogous framework can be defined for adaptive algorithm, in which consecutive queries are defined based on the partial feedback vector, i.e., feedbacks 
on the preceding queries.
4 This means that the adversary receives not only the whole sequence Q but also the step number; hence, may output different values for two identical 

intersection sets but obtained for different queues.
20
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Maximum capacity. The intersection between a query and set K has always at most k elements, hence having α larger than 
k does not increase the power of the model compared to the case of k = α. Therefore, in all our results we assume that 
k ≥ α (for a setting α > k one could use a sequence of queries for k = α).

Maximum expressiveness. Similarly, we may restrict our considerations to β ≤ ᾱ because of the following fact.

Proposition 1. For any feedback function f1 , there exists a feedback function f2 with expressiveness β ≤ ᾱ such that for any two sets 
K1, K2 ⊆ N, with |K1|, |K2| ≤ α,

f1(K1) = f1(K2) ⇔ f2(K1) = f2(K2) .

Adversaries and feedback functions. In this paper we consider the following adversaries and feedback functions. Note that 
one could consider also other types of adversaries and feedback functions.

Definition 2. We define the following two adversary types:

1. α-Malicious Adversary. This adversary, whenever for some query Q we have |Q ∩ K | > α, choses an arbitrary subset of 
at most α elements from set N and passes this set to the feedback function. Effectively, such adversary has the power 
to choose an arbitrary value of feedback for queries that intersect with the hidden set K on more than α elements.

2. α-Honest Adversary. This adversary, whenever for some query Q we have |Q ∩ K | > α, choses a subset of exactly α
elements from set Q ∩ K and passes this set to the feedback function.
• α-Honest x-Avoiding Adversary, is a special case of α-Honest Adversary that for some element x ∈ N , if x ∈ K ∪ Q

and |K ∪ Q | > α then the set chosen by the adversary does not contain element x. In other words it hides element 
x, whenever possible.

Definition 3. We define the following three feedback functions:

1. Parity(α)(X) = (|X | mod 2). It is an (α, 1)-feedback, function because the returned value can be encoded on one bit.
2. Full(α)(X) = X . It is an (α, ᾱ)-feedback, as any subset of N of at most α elements can be encoded by ᾱ bits.

3. General(α,β)(X) = (|X | mod 2)
� (⊕

x∈X BCC(x)
)
, where BCC(x) is an 

[
n, β − 1,

⌊
β−1
c log n

k

⌋]
-BCC code of element x, cf., 

Definition 5, and c is a constant from [10, Lemma 2]
⊕

denotes bitwise XOR operation and 
�
denotes concatenation of 

vectors. It is an (α, β)-feedback, because BCC code uses β − 1 bits and the remaining bit denotes the parity of |X |.

The above Definition 2 of adversaries and the third defined feedback function in Definition 3 have not been considered 
in the Group Testing literature, to the best of our knowledge. We will derive upper bounds under the strongest of the 
defined adversaries, α-Malicious Adversary, while we also prove nearly matching lower bound(s) that holds also under the 
weaker α-Honest x-Avoiding Adversary; thus, the power of the adversary does not have a substantial impact on the query 
complexity of Group Testing.

The next observation specifies useful criteria for the analysis of algorithms against α-Malicious Adversary, which we will 
apply in all our proofs of upper bounds.

Proposition 2. Fix any n, k. If for query sequence Qn,k = 〈Q i〉ti=1 we have that for any K1, K2 ⊂ N, with |K1|, |K2| ≤ α and K1 �= K2:

∃
τ

|Q τ ∩ K1| ≤ α ∧ |Q τ ∩ K2| ≤ α ∧ Feed(Q τ ∩ K1) �= Feed(Q τ ∩ K2) ,

then Qn,k solves (n, k)-Group-Testing under α-Malicious Adversary.

In the following we will say that a query Q τ distinguishes sets K1 and K2 under some feedback function Feed if |Q τ ∩
K1| ≤ α, |Q τ ∩ K2| ≤ α and Feed(Q τ ∩ K1) �= Feed(Q ∩ K2).

2.1. Technical results

Binary feedback. First, we consider feedbacks with minimum possible expressiveness, namely, returning only one bit of 
information. In this setting we have to answer the question of What is the most useful bit of information about a set of elements?
It turns out that a parity bit allows us to obtain an efficient solution in the family of (α, 1)-feedbacks. Interestingly, this 
result, and all our other upper bounds, hold for the strongest adversary.

Theorem 1. Under Parity(α) feedback and under α-Malicious Adversary, there exists a deterministic solution to (n, k)-Group-Testing 
with query complexity O  

((
k + k2

)
· log n

)
.
α k
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The proof is based on derandomization of random queries drawn from different random distribution, after proving that 
these queries satisfy a certain Separation Property (formulated and proved in Lemma 1).

Full feedback. Our second result is in the setting with the maximum possible expressiveness β = ᾱ = �(α log(n/α)), i.e., 
sufficient to return all identifiers of any set of size at most α. We show that maximum expressiveness allows to design 
algorithms with small query complexity O  

(
min

{
n
α , k2

α2 · logc n
})

for some c ∈ [1, 2], more precisely:

Theorem 2. Under Full(α) feedback and under α-Malicious Adversary, there exists a deterministic solution to (n, k)-Group-Testing 
with query complexity:

O

(
min

{
n

α
,
k2

α2
· logn

})
if α > 18 logk,

O

(
min

{
n

α
,
k2

α
· log n

k

})
otherwise.

The proof is via derandomization of a random sequence of queries Q, from which we require to simultaneously satisfy 
two conditions: on the number of queries containing a specific element, and on the sizes of the intersections of queries 
from any subset of Q of certain size and any possible instantiation of set K .

Interestingly, for α = ω(
√
k logn), the obtained query complexity is sublinear in k. This can be contrasted with an 

�(k log(n/k)) lower bound for classical Group Testing (i.e., for α = O (1)) that holds also for any randomized algorithm 
working with non-vanishing probability [15]. This proves the impact of feedback capacity on query complexity.

General feedback. After considering both extreme values of β we study the general case, where a feedback needs to work 
for an arbitrary 1 ≤ β ≤ ᾱ. In this case our first contribution is a design of a more sophisticated general feedback function 
General(α,β) , cf., Definition 3, which works for almost any α, β . Our proposed feedback is a concatenation of a specific code 
(called BCC code) with an additional parity bit. Under this feedback we obtain the main result of the paper:

Theorem 3. Under General(α,β) feedback and under α-Malicious Adversary, there exists a deterministic solution to (n, k)-Group-
Testing with query complexity O  

(
k2

αβ
logc+1 n

)
for some c ∈ [1, 2], more precisely:

O

(
k2

αβ
logn

(
β

α
+ logn

))
if α > 18 logk,

O

(
k2

α
· log n

k

)
otherwise.

Our main result shows that the query complexity decreases linearly with α and with β . Intuitively factor k
α in our 

complexity comes from congestion, since the feedback function has capacity to serve at most α elements out of k in a single 
query. The second factor k log

n
k

β
≈ log(nk)

β
comes from the information-theoretic bound that we need log2

(n
k

)
bits to uniquely 

encode any subset of k elements and the fact that the feedback function provides only β bits per round. What is surprising 
and challenging to prove is that the query complexity of efficient (but not all!) (α, β)-feedbacks is (close to) a multiplication 
of these two characteristics.

The proof combines ideas from the analysis of the binary feedback and full feedback. In the binary feedback case we 
observe that sets that differ on many elements can be distinguished quickly using the parity feedback. On the other hand, 
sets that differ only on few elements are handled using a combination of full feedback algorithm with a specific coding to 
encapsulate the feedback into β bits.

Lower bound. We show a lower bound that proves that our upper bound shown in Theorem 2 is optimal up to polylog-
arithmic factor, for any α. It holds even for a weaker adversary, α-Honest Adversary, or more specifically, for its sub-type 
of α-Honest x-Avoiding Adversary. Thus, it also holds for the stronger α-Malicious Adversary, for which all our algorithms 
are analyzed.

Theorem 4. If n > k2 logn/ logk, then any deterministic solution to (n, k)-Group-Testing under any (α, β)-feedback has query com-

plexity � 
(

k2

α2 log−1 k
)
for some α-Honest Adversary.

The proof of Theorem 4 is by transformation of our generalized Group Testing framework to selectors – structures studied 
in related literature, formally defined in Section 5. We show that if there were shorter query sequences, there would exist 
selectors violating some of their lower bound. This transformation is however possible only in one way, as we will show in 
the next result.
22
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Table 1
Results on non-adaptive (n, k)-Group-Testing with (α, β)-feedback. The upper bound 
column states query complexity of the best found (α, β)-feedback found for param-
eters α, β fixed in the first two columns; as we will show, not all (α, β)-feedbacks 
could reach that complexity. Symbol ∗ stands for any valid value of the parameter, 
and ᾱ stands for a ceiling of the binary logarithm of the number of all subsets of N
of size at most α. We display results from Theorem 2 and 3 in regime α > 18 logk, 
however our theorems cover the whole range of α.

α β Upper bound Lower bound

1 1 O
(
k2 log n

k

)
[19] �

(
k2 logn

logk

)
[13]

k 1 O (k log n
k ) [10] �(k log n

k ) [10]

k logk O
(
k
log n

k
logk

)
[30] �

(
k
log n

k
logk

)
[23,40]

∗ 1 O
((

k + k2

α

)
log n

k

)
Theorem 1 �

(
k2

α2 log−1 k
)
Theorem 4

∗ ᾱ O
(
min

{
n
α , k2

α2 logn
})

Theorem 2 �
(

k2

α2 log−1 k
)
Theorem 4

∗ ∗ O
(

k2

αβ
log2 n

)
Theorem 3 �

(
k2

α2 log−1 k
)
Theorem 4

Minimum elements feedbacks. Our two final results show that designing an efficient feedback function is very subtle. We 
show that a reasonable (α, 2 logn)-feedback function that returns two minimal elements from the set leads to very large 
query complexity of �(min{n, k2}) if we restrict the function to return the elements in fixed order, cf., Theorem 5. With-
out this restriction it is possible to obtain feedback function for which there exists a deterministic algorithm with query 
complexity O  

(
k2

α · log n
k

)
, cf., Corollary 5.

Theorem 5 with Corollary 5 provide an argument that there is no universal reduction between selectors and our general 
Group Testing framework, as both the considered feedback functions have the same parameters α and β and differ only 
(slightly) in the definition of the feedback function, yet having query complexities different nearly by factor α. Thus, our 
general framework is provably more complex than the theory of selectors.

Table 1 presents our main deterministic results in comparison to the most related previous work on specific feed-
back functions. In this work we also analyze explicitly constructed randomized counterparts of the deterministic results.

Definition 4. A randomized algorithm solves (n, k)-Group-Testing against Adaptive Adversary with probability 1 − c, for 
some 0 ≤ c < 1, if with probability 1 − c it generates a sequence of queries Q that solves (n, k)-Group-Testing according to 
Definition 1.

Note that in Definition 4 the adversary is assumed to know sequence Q (see Definition 1(3)). Hence, our analysis’ of 
randomized counterparts of deterministic solutions also hold against Adaptive Adversary. This is to distinguish from the case, 
where the adversary does not know all the queries when choosing set K [20,5].

3. Motivation, previous and related work

The problem of Group Testing (and related equivalent problems such as coin weighting) has been considered in various 
feedback models. In this section we present details of implementation of some classical feedback models in our framework. 
Our framework, with two parameters of feedback α and β , allows, among others, a comparison of results in different 
models, for a discussion about what is the best utilization of feedback output bits, and for comparison and generalization 
of existing results obtained for specific feedbacks, cf., Table 1.

Beeping model and shared channel communication. Beeping feedback model is a standard model considered in most of the 
Group Testing literature [26], where the feedback tells whether the intersection between query Q and set K is empty or 
not. Solutions to Group Testing in this feedback model have direct applications to conflict resolution on a multiple access 
channel and broadcast in unknown radio networks, cf., [13].

Observe that in Beeping feedback model, the feedback returns 0 if the intersection is empty and 1 otherwise. Thus 
beeping feedback is a (1, 1)-feedback.

In this feedback model, the Group Testing problem is known to be solvable using O (k2 log(n/k)) [19] queries and an 
explicit construction of length O (k2 log2 n) [37] exists. Best known lower bound (for k <

√
n) is �(k2 logn/ logk) [13].

A related model, where the feedback equals NULL if the intersection is of size 0, the identifier of the element, if the 
intersection is of size 1 and a value COLLISION otherwise, can be seen as (2, logn)-feedback. This model is applicable to 
communication on shared channel and has been an area of extensive research. The solutions in literature include adap-
tive algorithms [8,9], semi-oblivious algorithms where an element can deactivate after successful transmission [38,32] (see 
surveys [29,11] for more details on results in this model). As mentioned earlier, some of the previous works also consider 
non-adaptive adversarial component of the feedback, cf., [4].
23
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Finite-field additive radio network. In this model, the feedback to a query is a parity of the size of the intersection between 
set K and a query. One can observe that using BCC-codes of length O (k log n

k ) [10] it is possible to design a sequence of 
queries of the same length, that solves (n, k)-Group-Testing in this model. This construction solves (n, k)-Group-Testing with 
O (k log n

k ) in a Parity(k) feedback model (which is an example of (k, 1)-feedback), because by the definition of BCC-codes 
any bit-wise XOR of up to k codewords is unique. The construction of BCC codes has also been applied to solutions of 
standard communication problems (such as broadcast) in specific models of communication networks [10].

We note that Parity(α) feedback for borderline value of α = k corresponds to the setting considered in [10]. In this 
case our algorithm matches the best known upper bound, hence our proposed feedback function and our algorithm are a 
valid generalization, showing the smooth transition of query complexity between settings of α = logk and α = k in a pace 
inversely proportional to the feedback capacity α.

Coin weighting. The problem of coin weighting is exactly the Group Testing problem with a different feedback. In the coin 
weighting problem, we have a set of n coins of two distinct weights w0 (true coin) and w1 (counterfeit coin), out of which 
up to k are counterfeit ones. We are allowed to weight any subset of coins in a spring scale, hence we can deduce the 
number of counterfeit coins in each weighting. The task is to identify all the counterfeit coins.

The coin weighting can be implemented in our framework as a (k, logk)-feedback, where the feedback returns the size 
of the intersection between the query and the set K . The problem is solvable with O (k log(n/k)/ logk) [30] queries.

Bounds for both BCC codes and non-adaptive coin weighting are tight, thus increasing the number of output bits from 
1 to logk results in decrease in query complexity by a factor of logk.

Threshold group testing. In this variant of Group Testing introduced in [18], a number of thresholds 0 < t1 ≤ t2 ≤ · · · ≤ ts
are defined. Thresholds divide the set [k] into set of discrete intervals [0, t1), [t1, t2), . . . , [ts−1, ts), [ts, k]. The feedback to 
query Q is the index of the interval to which |K ∩ Q | belongs. This feedback can be implemented as a (ts + 1, log s)-
feedback. An upper bound for a single threshold t of approximately O ( k2√

t
log n

k ) [22] suggests that single threshold feedback 
is probably not the optimal feedback (according to our parameters) since we know that (t, 1)-feedbacks can lead to query 
complexity O ( k

2

t log n
k ). On the other hand, in [21] the authors analyze a feedback with 

√
k logk thresholds out of which 

maximum threshold is �(k), which in our framework translates to a (k, logk)-feedback. Result in [21] is an algorithm with 
query complexity O ( k

logk · log n
k ), which is logarithmically far from O  

(
k

logk log
2 n
)

obtained from our generic upper bound 

O  
(

k2

αβ
log2 n

)
in Theorem 3 instantiated for α = k, β = logk.

Other related results. The problem of Group Testing has been recently discussed from different perspectives. Some papers 
consider different models of generating (or constraining) the subset K . This may lead to critically different optimal strategies, 
even for non-adaptive settings. In [1] the author considers the model, wherein each element is included in K with a fixed 
probability p – we need �(n) tests to have error probability tending to zero. Somehow related randomized model has been 
discussed in [20], wherein the algorithm may fail on a small fraction of inputs. In [34] the authors consider “sparse” Group 
Testing, where the size of each query is limited. They also consider settings wherein each element can be included in a 
limited number of queries.

4. Upper bounds

4.1. Minimal expressiveness – binary feedback

We first show (Lemma 1) an upper bound on length of a sequence that distinguishes any pair of sets satisfying a certain 
size restriction. This length is inversely proportional to the product of capacity α and the lower bound on the size of 
the symmetric difference between the sets, denoted by δ. This proof is based on analyzing a certain Separation Property 
of a sequence of random queries drawn from specific probabilistic distribution, and showing that it yields distinguishing 
between two sets K1, K2 with a large probability, sufficient to derandomize it. In the second step (Lemma 3), we show how 
to remove the size restrictions from the result. Finally, Theorem 1 will follow directly from Lemma 3 applied for δ = 1.

In Lemma 3 we will need the following notation and basic facts.

Basic notation and tools. We will use the following notation for the symmetric difference of two sets A � B = (A \B) ∪(B \ A). 
In our proofs, we also use the following two elementary facts:

Fact 1. Let X ∼ Binomial(n, p), then P [ X is odd ] = 1
2 − 1

2 (1 − 2p)n.

The proof of Fact 1 can be found in the appendix. The following fact can be found e.g., in [42, (p. 34, eq. 6)].

Fact 2. For any 0 ≤ x ≤ 1 and n ∈ N+: (1 − x)n ≤ 1 − nx + 1n(n − 1)x2 .
2
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Main technical tools. We first show how to construct sequences distinguishing pairs of sets K1, K2 satisfying specific condi-
tions.

Lemma 1. For any 1 ≤ δ ≤ k/α and if k ≥ α, there exists a sequence of O  
(

k2

αδ
· log(n/k)

)
sets Q such that for any two sets K1, K2 ⊆ N

satisfying k ≥ |K1| ≥ k/2 and |K1| ≥ |K2| and |K1 � K2| ≥ δ there exists Q ∈ Q that satisfies |Q ∩ K1| ≤ α, |Q ∩ K2| ≤ α and 
Parity(α)(Q ∩ K1) �= Parity(α)(Q ∩ K1).

Proof. We will show this result using the probabilistic method. More precisely, we first define a sequence of random queries 
Q of length O ( k2

αδ
· log(n/k)). Next, we fix any two different sets K1, K2 ⊆ N whose cardinalities satisfy the conditions of 

the lemma. Recall that, by Proposition 2, a query Q ∈ Q distinguishes K1 from K2 if it satisfies the three conditions from 
the statement of the Lemma: |Q ∩ K1| ≤ α, |Q ∩ K2| ≤ α and Parity(α)(Q ∩ K1) �= Parity(α)(Q ∩ K1). We will compute the 
probability that no query from sequence Q distinguishes the considered sets K1 and K2. Then, we apply the union bound 
over all pairs of K1, K2 and take the complementary event, which, as we show, holds with a positive probability. This 
implies existence of the sought query sequence. The details follow.
Definition of random sequence Q. We define a sequence of probabilities P of length O ( k2

αδ
· log(n/k)) as probability α

16k

repeated 
⌈

150k2
αδ

· log 4n
k

⌉
times. We define Q i , an i-th element of the sequence Q, as a set generated by including each 

element of N independently with the i-th probability from sequence P .
Proving Separation Property. Consider two different sets K1, K2 ⊆ N whose cardinalities satisfy the conditions of the lemma. 
Let S = K1 � K2 be the symmetric difference of K1 and K2. Note that 2k ≥ |K1 ∪ K2| ≥ |S| ≥ δ. We also know, by the 
assumed restriction on the size of K1, that |K1 ∪ K2| ≥ k/2. We want to show the following:

Separation Property: for any positive integer i ≤ |Q|/2 and for some constant c > 0, the probability that query Q i ∈ Q, 
distinguishes K1 and K2 is at least cαδ/k.

Before proving the Separation Property we need the following technical claim.

Claim. For any Q j ∈Q, where j ≤ |Q|:
P
[
Q j distinguishes K1 from K2

]≥ P
[ |(K1 ∪ K2) ∩ Q j| ≤ α and |S ∩ Q j| is odd

]
.

Proof of the Claim. Consider a query Q j , for some j ≤ |Q|, from the random sequence Q, and assume that the event 
“|(K1 ∪ K2) ∩ Q j | ≤ α and |S ∩ Q j | is odd” holds. It follows from |(K1 ∪ K2) ∩ Q j | ≤ α that |K1 ∩ Q j| ≤ α and |K2 ∩ Q j| ≤ α. 
Moreover, since the event also implies that |S ∩ Q j| is odd, then |K1 ∩ Q j | �= |K2 ∩ Q j | mod 2. Hence, Parity(α)(K1 ∩ Q j) �=
Parity(α)(K2 ∩ Q j). This completes the proof of the Claim. �

We continue the proof of the Separation Property. In the case, where α ≥ log 256k
7αδ

we have, that:

P [ |(K1 ∪ K2) ∩ Q | ≤ α and |S ∩ Q | is odd ] ≥ P [ |S ∩ Q | is odd ]− P [ |(K1 ∪ K2) ∩ Q | > α ] .

Random variable H2 = |(K1 ∪ K2) ∩ Q | is distributed according to the Binomial distribution with parameters |K1 ∪ K2| and 
p, and E [ H2 ] = p|K1 ∪ K2| ≤ 2pk = α/8. Then, by Chernoff bound (cf., [24]):

P [ H2 ≥ α ] ≤ 2−α .

Random variable |S ∩ Q | is also distributed according to the Binomial distribution with parameters |S| and p. By Fact 1 we 
have

P [ |S ∩ Q | is odd ] = 1

2
− 1

2
(1− 2p)|S| .

Term 12 (1 − 2p)|S| is maximized, when |S| is minimized, which gives us:

P [ |S ∩ Q | is odd ] ≥ 1

2
− 1

2
(1− 2p)δ .

Using Fact 2, we get:

1

2
− 1

2
(1− 2p)δ ≥ 1

2
− 1

2

(
1− 2pδ + 4δ(δ − 1)p2

)
= αδ

16k
− δ(δ − 1)α2

128k
= αδ

16k

(
1− (δ − 1)α

8k

)
,

and knowing that δ < k/α we get 
(
1− (δ−1)α

)
≥ 7/8. Finally, combining the above and knowing that α ≥ log 256k , we get:
8k 7αδ
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M. Klonowski, D.R. Kowalski and D. Pająk Theoretical Computer Science 919 (2022) 18–35
P [ |S ∩ Q | is odd ]− P [ |(K1 ∪ K2) ∩ Q | > α ] ≥ 7αδ

128k
− 2−α ≥ 7αδ

256k
≥ αδ

50k
.

In the second case assume, that α ≤ log 256k
7αδ

. In this case we have:

P
[
Q j distinguishes K1 from K2

]≥ P
[ |(K1 ∪ K2) ∩ Q j| ≤ α and |S ∩ Q j| is odd

]
≥ P

[ |(K1 ∩ K2) ∩ Q j| ≤ α − 1 and |S ∩ Q j| = 1
]

≥ P
[ |(K1 ∩ K2) ∩ Q j| ≤ α − 1

] · P [ |S ∩ Q j| = 1
]
,

where the last equality is true, because sets S and K1 ∩ K2 are disjoint.
Random variable H1 = |(K1 ∩ K2) ∩ Q | is distributed according to the Binomial distribution with parameters |K1 ∩ K2|

and p, and E [ H1 ] = p|K1 ∩ K2| ≤ pk = α/16. Then, by Markov inequality P [ H2 ≥ α ] ≤ 1/16. We want to lowerbound 
term

P
[ |S ∩ Q j| = 1

]= p|S|(1− p)|S|−1 = α|S|
16k

·
(
1− α

16k

)|S|−1

If |S| ≤ 16k/α, then (1 − α/(16k))|S|−1 ≥ e−1 and:

P
[ |S ∩ Q j| = 1

]≥ αδ

16ek
.

Hence P
[
Q j distinguishes K1 from K2

]≥ 15
16 · αδ

16ek ≥ αδ
50k .

If |S| > 16k/α, then p|S| ≥ 1 and (knowing that |S| ≤ 2k), we get:

(
1− α

16k

)|S|−1 ≥
(
1− α

16k

)( 16k
α −1

)
α
8 + α

8 ≥ e−α/8 · e−α/8 ≥ e−α ≥ 7αδ

256k
.

Hence, also in this case, we get P
[
Q j distinguishes K1 from K2

]≥ 15
16 · 7αδ

256k ≥ αδ
50k .

This completes the proof of the Separation Property for c = 1/50.
Computing the probability of Q distinguishing K1 from K2 . By the proven Separation Property for c = 1/50 and by independence 
of selection of each query in the sequence Q of length 150k2/(αδ) · log(4n/k), the probability that Q fails to distinguish K1

from K2 is at most:(
1− αδ

50k

)150k2/(αδ)·log(4n/k)

=
(
1− αδ

50k

)50k/(αδ)·3k log(4n/k)

≤ e−3k log(4n/k) =
(
4n

k

)−3k

.

Applying the union bound and probabilistic argument. The number of possible pairs of sets K1, K2 for the case k ≤ n/2 can be 
upper bounded as follows:(

k∑
i=1

(
n

i

))2

≤ k2
(
n

k

)2

≤ k2
(en

k

)2k
.

If n ≥ k ≥ n/2 the number of possible pairs K1, K2 can be simply upper bounded by:

2n · 2n ≤
(
4n

k

)2k

.

In both cases the number of possible pairs of K1, K2 is upper bounded by

k2 ·
(
4n

k

)2k

.

Thus, using the Union Bound, the probability that some pair of sets is not distinguished by Q is at most:(
4n

k

)−3k

· k2 ·
(
4n

k

)2k

≤ 4−k · k2 < 1 .

Hence, there is a positive probability of the complementary event that there exists a sequence of length O ( k2

αδ
· log(n/k))

that distinguishes any pair K1 and K2 (satisfying the conditions of the lemma) under the Parity(α) feedback function, and 
by the probabilistic argument – such a sequence exists. �

In the next lemma we show that it is possible to also distinguish sets of size at most α.
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Lemma 2. If k ≤ α, there exists a sequence of O  (k · log(n/k)) sets Q such that for any two sets K1, K2 ⊆ N satisfying k ≥ |K1|, 
k ≥ |K2| and K1 �= K2 there exists Q ∈Q that satisfies Parity(α)(Q ∩ K1) �= Parity(α)(Q ∩ K1).

Proof. The proof follows in a similar vein as proof of Lemma 1. We construct a sequence of �3k log(4n/k)� queries Q
as follows: i-th element of the sequence is generated by including each element of N independently with probability 
1
2 . Since |K1| ≤ α and |K2| ≤ α, then P

[
Q j distinguishes K1 from K2

] ≥ P
[ |(K1 � K2) ∩ Q j| is odd

]
. By Fact 1 we have 

P
[ |(K1 � K2) ∩ Q j | is odd

]= 1
2 .

Similarly as in Lemma 1, the number of possible pairs of K1, K2 can be upper bounded by k2 ·
(
4n
k

)2k
. Thus, using the 

Union Bound, the probability that some pair of sets is not distinguished by Q is at most:(
4n

k

)−3k

· k2 ·
(
4n

k

)2k

≤ 4−k · k2 < 1 .

Hence, there is a positive probability of the complementary event that there exists a sequence of length O (k · log(n/k)) that 
distinguishes any pair K1 and K2 (satisfying the conditions of the lemma) under the Parity(α) feedback function, and by the 
probabilistic argument – such a sequence exists. �

In the next lemma we show that the sequences constructed in Lemma 1 and Lemma 2 could be concatenated in order 
to obtain a sequence that distinguishes sets without the lower restriction on their sizes.

Lemma 3. There exists a sequence Q of length O  
((

k + k2

αδ

)
· log(n/k)

)
for any 1 ≤ δ ≤ max{k/α, 1}, such that for any sets K1, K2 ⊆

N satisfying |K1|, |K2| ≤ k and |K1 � K2| ≥ δ there exists Q ∈Q that satisfies |Q ∩ K1| ≤ α, |Q ∩ K2| ≤ α and Parity(α)(Q ∩ K1) �=
Parity(α)(Q ∩ K1).

Proof. Assume that k is a power of 2 (if it is not, we can increase k to the closest power of 2 without increasing the 
asymptotic complexity of our sequence). From Lemma 1, we have that there exists a sequence of length ck2 log(n/k)/(αδ), 
for some constant c, distinguishing any two sets K1, K2 satisfying |K1| ≥ |K2| and k ≥ |K1| ≥ k/2 and |K1 � K2| ≥ δ. We want 
to show that such a sequence exists for any pair of sets of size at most k. We call the sequences from Lemma 1 applied to 
parameter k/2i instead of k as Qi . By concatenating such sequences for i = 0, 1, . . . , �log2(k/α)� and with sequence Q̂ from 
Lemma 2, we obtain sequence Q of length: �3k log(4n/k)� +∑�log2(k/α)�

i=0 c k2 log(2in/k)
4iαδ

∈ O ((k + k2

αδ
) · log(n/k)). Take any two 

sets K1 and K2 such that |K1|, |K2| ≤ k and |K1 � K2| ≥ δ. Without loss of generality assume that |K1| ≥ |K2|. If |K1| ≤ α, 
then the pair is distinguished by Q̂ due to Lemma 2. Otherwise, we find such i, that k2−i ≥ |K1| ≥ k2−i−1. By Lemma 1, 
sequence Qi distinguishes K1 from K2. Since Q contains Qi as subsequence, then Q also distinguishes K1 from K2. �

As mentioned earlier, Theorem 1 follows directly from Lemma 3 applied for δ = 1. It is worth mentioning that Lemma 3, 
based on technical development in Lemma 1, could be seen as more universal tool that could be applied to the analysis of 
other feedbacks related to or using parity as its part, cf., Section 4.3.

Randomized counterpart construction. First note that the explicit randomized construction used in the proof of Lemma 1
leads directly to the following corollary:

Corollary 1. There exists an explicit randomized algorithm that generates a sequence Q of O ( k2

αδ
· log(n/k)) sets such that with prob-

ability at least 1 − k2/4−k the following holds: for any sets K1, K2 ⊆ N such that k ≥ |K1| ≥ k/2 and |K1| ≥ |K2| and |K1 � K2| ≥ δ, 
there exists Q ∈Q that satisfies |Q ∩ K1| ≤ α, |Q ∩ K2| ≤ α and Parity(α)(Q ∩ K1) �= Parity(α)(Q ∩ K2).

A randomized algorithm generating a concatenation of sequences Qi , taken from Corollary 1 for parameters k/2i , in 
the same manner as in Lemma 3 for δ = 1, results in an explicit randomized algorithm for (n, k)-Group-Testing under α-
Malicious Adversary. It is easy to see that if each of �log2 k� concatenated sequences Qi does not fail (i.e., it does distinguish 
all pairs of sets of certain sizes), then the resulting sequence distinguishes all pairs of sets of sizes at most k.

Corollary 2. Under Parity(α) feedback and under adaptive α-Malicious Adversary, there exists an explicit randomized solution to 
(n, k)-Group-Testing with query complexity O  

((
k + k2

α

)
· log n

k log1/c
)
working with probability at least 1 − c, for any c ∈ (0, 1).

Proof. The probability that a single of the sequences concatenated in Lemma 3 fails to distinguish all sets of certain sizes 
is at most:

k2 · 4−k +
�log2(k/α)�∑

(k/2i)24−(k/2i) ≤ 1

4
+

∞∑
j24− j = 107

108
,

i=0 j=1
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because 
∑∞

j=1 j24− j = 20/27. If we concatenate �log108/107 1/c� independently generated such sequences, we get a se-
quence that distinguishes all sets with probability at least 1 − c. �
4.2. Maximum expressiveness – full feedback

In this section we consider Full(α) feedback. Using it, we show that larger expressiveness of feedback allows for smaller 
query complexity. The following lemma is independent of any feedback function and shows that there exists a query se-
quence that α-isolates each element of K , in the following sense: for any set K of size at most k and each element in K , 
there exists a query such that this element and at most α − 1 other elements from K belong to this query.

Lemma 4. If α ≥ 9 logk and k ≥ α, then there exists a sequence Q of t = O ((k2/α2) · logn) subsets of N with the property that for 
any set K ⊆ N such that |K | ≤ k and any element x ∈ K , there exists Q ∈Q with the property that x ∈ Q and |K ∩ Q | ≤ α.

Proof. We prove existence of such family Q by a probabilistic argument. Let h = �16 log(3n)�. The family Q consists of 
t = 6h · x · k2/α2 subsets denoted as Q 1, . . . , Qt . For each i = 1, . . . , t the set Q i is generated in the following manner: each 
element x ∈ N belongs to Q i with probability α

6·k . All the random choices are independent over all elements and subsets.

Claim 1. With probability at least 2/3 each element of N belongs to at least k
2α queries in the sequence Q.

Proof of Claim 1. For a fixed x ∈ N , let Lx = |{i ∈ [t] : x ∈ Ai}|. Clearly, Lx is a sum of Bernoulli trials and E [ Lx ] = hxk
α . 

Due to the independence of random inclusion of consecutive elements we can use a standard Chernoff bound [24] to get 
P
[
Lx < h k

2α

]
≤ e− hk

16α < 1
3n , where the last inequality follows from the fact that, hk

16α ≥ log(3n). Using the union bound over 
all n possible elements v ∈ N we get Claim 1. �

Consider a sub-sequence of queries from Q, and from all these queries we remove all elements that do not belong to K , 
namely: QK ,T = {Q i ∩ K : Q i ∈Q & i ∈ T }.
Claim 2. With probability at least 2/3, for any choice of K with k elements and any T of hk

2α indices, the resulting sequence QK ,T
contains a set with at most α elements.

Proof of Claim 2. Let us fix any subset K ⊆ N and a set T with proper cardinalities. In any fixed set Q ′ ∈ QK ,T we define 
its number of elements as XQ ′ . Clearly, XQ ′ is a sum of Bernoulli random variables.

We have E 
[
XQ ′

]= α
6 and by the Chernoff bound we get P

[
XQ ′ > α

]
< P [ X > 6E [ X ] ] < e−α . Due to independence 

of choices elements in different queries, the probability that the number of elements is greater than α in all hxk
2α sets in 

QK ,T is at most e−α· hk
2α = e− hk

2 . Recall that the above reasoning was performed for a fixed choice of sets K and T . To apply 
a union bound argument one needs to multiply the above value by the number of all possible choices of sets K and T . The 
logarithm of the number of possible combinations of K and T equals to:

log

⎛
⎝(n

k

)
·
( 6hk2

α2

hk
2α

)⎞⎠≤ k log
(en

k

)
+ hxk

2α
log

(
6ek

α

)
,

and since α > 9 logk we obtain the logarithm of the union-bounded probability multiplied by the number of choices we 
get:

log

⎛
⎝e− hk

2 ·
(
n

k

)
·
(6h · k2

α2

h · k
2α

)⎞⎠≤ −hk

2
+ k log

(en
k

)
+ hk

2α
log

(
6ek

α

)

≤ −hk

2
+ k log

(en
k

)
+ hk logk

18 logk
≤ −4hk

9
+ k log

(en
k

)

≤ −14k log
3n

k
+ k log

en

k
≤ −13k log

3n

k
< log

1

3
.

Hence, e−k·32 log(3n/k) · (nk) · ( 6hk2

α2
hk
α

)
< 1

3 . This concludes the proof of Claim 2. �

Observe that with probability at least 1/3, a randomly chosen family Q simultaneously meets conditions described in 
Claim 1 and Claim 2, by the union bound. Consequently, with probability at least 1/3, in the randomly generated family Q
for any set K of size k and every sub-sequence T of hkα queries from Q there is at least one query Q i such that |Q i ∩ K | ≤ α, 
for some i ∈ T . Hence, such a family Q exists, by straightforward probabilistic argument. Finally, observe that since Q works 
for any set K of exactly k elements, then it also does for any K such that |K | ≤ k. �
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Interestingly, sequence Q from Lemma 4 with parameters n, k does not distinguish all pairs of sets K1, K2 of size at 
most k. We only know, that each element x ∈ K1 belongs to some query Q τ ∈ Q, with |K1 ∩ Q τ | ≤ α. But we may have 
|K2 ∩ Q τ | > α and the α-Malicious Adversary may force the feedbacks to be equal on this position for sets K1 and K2. To 
solve this problem, in the proof of Theorem 2, we take the sequence from Lemma 4 with parameters n, 2k, and use it for 
set K = K1 ∪ K2.

Proof of Theorem 2. The component n
α follows from the fact, that a simple selector, where each element belongs to one 

query and each query contains α elements (except the last query that contains at most α) has query complexity O ( n
α ) and 

solves (n, k)-Group-Testing under the Full(α) feedback and works under α-Malicious Adversary. The first part of theorem is 
a consequence of Lemma 4. Specifically, we take the family Q from Lemma 4 with parameters n, 2k. We observe that for 
any two sets K1, K2, with |K1|, |K2| ≤ α and K1 �= K2, we have |K1 ∪ K2| ≤ 2k and K1 � K2 �= ∅. Take any x ∈ K1 � K2
and observe that due to Lemma 4 there is a query Q ∈ Q such that x ∈ Q and |Q ∩ (K1 ∪ K2)| ≤ α. Hence, |Q ∩ K1| ≤
α, |Q ∩ K2| ≤ α and Full(α)(Q ∩ K1) �= Full(α)(Q ∩ K2). Consequently, Q solves (n, k)-Group-Testing under α-Malicious 
Adversary, by Proposition 2.

The second part of the theorem follows from the fact that we can use the result from Theorem 1 and obtain a sequence 
of length O ( k

2

α log(n/k)) (this results does not require the assumption on α and also works under α-Malicious Adversary). 
Note that we do not need the O (k log(n/k)) component here because under Full(α) in the case where k ≤ α, the problem is 
solvable using a single query. �
Randomized counterpart construction. In the proof of Lemma 4 we construct a sequence at random and show that it satisfies 
a certain condition with probability at least 1/3. Clearly, from this we can obtain an explicit randomized construction that 
succeeds with probability 1/3, and by iterating it a certain number of times we get the following:

Corollary 3. Under Full(α) feedback and under adaptive α-Malicious Adversary, there exists an explicit randomized solution to (n, k)-
Group-Testing with query complexity

O

(
k2

αβ

(
β

α
+ logn

)
· logn · log1/c

)
if α > 18 logk,

O

(
k2

α
· log n

k
· log1/c

)
otherwise,

working with probability at least 1 − c, for any c ∈ (0, 1).

Proof. We first observe that if k ≤ α then, because of the Full(α) feedback, a single query containing all elements from set N
solves (n, k)-Group-Testing. Hence, we focus on case k ≥ α. If α ≤ 18 logk, then we can use the result from Corollary 2 and 
obtain a desired sequence of length O ((k + k2

α ) log(n/k)log1/c) with probability of success at least 1 − c, which becomes 
O ( k

2

α log(n/k)log1/c), because k ≥ α. Finally if 18 logk < α ≤ k, we can use the construction from the proof of Lemma 4
that fails with probability at most 1/3. By repeating it �log3 1/c� times, independently, and concatenating the resulting 
sequences we obtain a desired probability of success. �
4.3. General feedback

In our construction of General(α,β)(X) (introduced in Definition 3) we use the following code, where notation 
⊕

S
denotes bit-wise XOR of all the elements of set S . Such a code was defined in [10] and its explicit construction can be 
found in [43].

Definition 5. An [n, β, γ ]-BCC-code is a set C ⊆ {0, 1}β of size |C | = n such that for any two subsets S1, S2 ⊆ C (with 
S1 �= S2) of sizes |S1|, |S2| ≤ γ it holds that 

⊕
S1 �=⊕ S2.

Lemma 5. [10, Lemma 2] There exist [n, β, γ ]-BCC codes with β = O (γ logn).

Proof of Theorem 3. First we prove the part of the theorem that works under the assumption α > 18 logk. We denote 
β ′ = min

{⌊
β−1
c logn

⌋
,α
}
. We note that if β < logn, then we get β ′ = 0 but the result follows simply by choosing Q as the 

sequence from Theorem 1. Note that we must have β ′ ≤ α because input set X cannot contain more than α elements.
Assume that β > logn and let us take the family from Lemma 3 with parameter δ = β ′ and concatenate it with the 

family from Lemma 4 with parameters 2k and n. Observe, that this resulting family Q (composed of two parts Q1 and Q2) 
has length O  

(
k2

αβ ′ · logn
)

= O  
(
max

{
k2

α2 logn, k2

αβ
log2 n

})
. We will show that this family distinguishes under General(α,β)

feedback model, any two sets K1, K2 satisfying |K1|, |K2| ≤ k. We will consider two cases.
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In the case, where |K1 � K2| < β ′ , we pick an arbitrary element s ∈ K1 � K2. Without loss of generality assume that 
s ∈ K1. By Lemma 4 in some Q ∈Q2 we have |Q ∩ (K1 ∪ K2)| ≤ α and s ∈ Q .

We want to show that:⊕
s∈Q ∩K1

BCC(s) �=
⊕

s∈Q ∩K2

BCC(s).

We denote K ′
1 = (K1 \ K2) ∩ Q and K ′

2 = (K2 \ K1) ∩ Q and T = K1 ∩ K2 ∩ Q . We know that K ′
1 �= ∅, because s ∈ K ′

1 and 
also K ′

1 �= K ′
2 because s /∈ K ′

2. Since |K1 � K2| < β ′ , and K ′
1, K

′
2 ⊂ K1 � K2 then also |K ′

1|, |K ′
2| < β ′ . By the definition of BCC 

codes [10, Lemma 2] we have that: 
⊕

s∈K ′
1

BCC(s) �=⊕s∈K ′
2

BCC(s). Using the properties of operation XOR:⊕
s∈Q ∩K1

BCC(s) =
⊕
s∈K ′

1

BCC(s) ⊕
⊕
s∈T

BCC(s) �=
⊕
s∈K ′

2

BCC(s) ⊕
⊕
s∈T

BCC(s) =
⊕

s∈Q ∩K2

BCC(s).

Hence, if |K1 � K2| ≤ β ′ then there exists Q such that |Q ∩ (K1 ∪ K2)| ≤ α. Consequently, |Q ∩ K1| ≤ α and |Q ∩ K2| ≤ α. 
We have obtained that General(α,β)(Q ∩ K1) �= General(α,β)(Q ∩ K2), thus Q distinguishes K1 and K2.

If |K1 � K2| ≥ β ′ , then by Lemma 3 the first part of our sequence Q1 distinguishes K1 and K2 under the binary feedback. 
Since General(α,β) includes the binary feedback, our sequence Q distinguishes K1 from K2.

After considering both cases, we have that sequence Q distinguishes any two sets K1, K2 of size at most α and thus we 
can use Proposition 2 and obtain that Q solves the (n, k)-Group-Testing problem under α-Malicious Adversary.

The second part of the theorem follows from the fact that we can use the result from Theorem 1 and obtain a sequence 
of length O ( k

2

α log(n/k)) (this results does not require the assumption on α). �
Randomized counterpart construction. Unlike in previous sections, for General(α,β)(X) feedback it is not simple to provide an 
explicit algorithm, even randomized. This is because an explicit (even randomized) construction of BCC-codes is not known. 
Therefore, we suggest this problem as one of interesting open directions.

5. Lower bound

Proof of Theorem 4. An (n, k, k)-selector is a sequence of queries Q 1, Q 2, . . . , Qt such that for any |K | ≤ k and any element 
x ∈ K , for some query Q we have Q ∩ K = {x}. An (n, k, k)-selector is known to have query complexity �(min{n, (k2/ logk) ·
logn}) [13] and is known to exist with query complexity O (k2 logn) [27]. Assume that n is sufficiently large and let c1
be such a constant that (n, k, k)-selector of query complexity t1 ≤ c1(k2/ logk) · logn does not exist; c1 is well-defined 
by [13]. Let c2 be a constant such that (n, α + 1, α + 1)-selector of size t2 ≤ c2α2 logn exists; c2 is well-defined by [27]. Let 
R = 〈R1, R2, . . . , Rt2 〉 be such a selector.

The proof of the theorem is by contradiction. Assume that there exists a sequence Q = 〈Q 1, Q 2, . . . , Qt〉 solving (n, k)-
Group-Testing with some (α, β)-feedback function, such that the length of the sequence is t ≤ c1

c2
· k2

α2 log−1 k.
First we show the following fact: for any set K ⊂ N of size |K | ≤ k and any element x ∈ K there exists a set Q in 

sequence Q such that |K ∩ Q | ≤ α + 1. Assume the contrary and fix K and x that violate the fact. Observe that sets K and 
K \ {x} may produce the same feedback for any (α, β)-feedback function (regardless of the value of β). This is because for 
any Q i such that x ∈ Q i we have |Q i ∩ K | ≥ α + 2 and |Q i ∩ (K \ {x})| ≥ α + 1. Hence, in the case of Q i ∩ K the α-Honest 
Adversary may provide to the feedback function the same α elements as in Q i ∩ (K \ {x}). Since the feedback function is 
deterministic, the results will be the same, which is a contradiction with the fact that Q solves the (n, k)-Group-Testing 
problem.

Next we transform Q into an (n, k, k)-selector: we take the (n, α + 1, α + 1)-selector R = 〈R1, R2, . . . , Rt2 〉 and construct 
a sequence S = 〈Q ∩ R , for each R = R1, R2, . . . , Rt2 , for each Q = Q 1, Q 2, . . . , Qt〉. The obtained family C has t · t2 ≤ t1
queries. We prove that it is also an (n, k, k)-selector. For any set K with |K | ≤ k and any s ∈ S there exists, by the property 
of the sequence Q proved above, a set Q in sequence Q such that |Q ∩ K | ≤ α + 1. Now, since R is an (n, α + 1, α + 1)-
selector, there exists a set R in R such that R ∩ (Q ∩ K ) = {x}. By the construction of S , set Q ∩ R belongs to sequence S , 
hence element x is selected by family S . Hence S is an (n, k, k)-selector. We know however that (n, k, k)-selector of length 
at most t1 does not exist, and thus obtain a contraction showing that such a family Q cannot exist. �
Randomized counterpart result. In Theorem 4 we show that any sequence that solves (n, k)-Group-Testing must have length 
of at least � 

(
k2

α2 log−1 k
)
. Thus, a randomized algorithm generating sequences that solve (n, k)-Group-Testing with at least 

a constant probability must have expected query complexity of � 
(

k2

α2 log−1 k
)
, since each correct sequence must have such 

length (by Theorem 4).

Corollary 4. If n > k2 logn/ logk, then any randomized solution to (n, k)-Group-Testing under any (α, β)-feedback has expected query 
complexity � 

(
k2
2 log−1 k

)
for some adaptive α-Honest Adversary.
α
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M. Klonowski, D.R. Kowalski and D. Pająk Theoretical Computer Science 919 (2022) 18–35
6. Some (α, β)-feedbacks are better than others

One could be tempted to develop a similar universal reduction, as in the proof of the lower bound in Section 5, also for 
upper bounds – between a setting with any (α, β)-feedback and some strong selectors. However, in this section we show 
that such a reduction does not exist: we define two seemingly very similar feedback functions with the same values of α, β
and show that the resulting query complexities for these two feedbacks are asymptotically very different.

Consider the following two feedback functions, both being (α, β)-feedbacks for any α ≤ k and β = 2�log2 n�. In the 
following we associate each element with its identifier. We assume that each identifier has exactly �log2 n� bits and is 
different from the string of all zeros.

F1(S) =
{

(min S)
�
(min(S \ {min S}), if 2 ≤ |S| ≤ α

(min S)
�
00 . . .0, if |S| = 1 .

F2(S) =

⎧⎪⎨
⎪⎩

(min S)
�
min(S \ {min S}), if 2 ≤ |S| ≤ α and |S| is odd

(min(S \ {min S})) �
min S, if 2 ≤ |S| ≤ α and |S| is even

(min S)
�
00 . . .0, if |S| = 1 .

We show that the query complexity of (n, k)-Group-Testing with feedback F2 is substantially lower than with feedback F1.

Corollary 5. For any α ≤ k, query complexity of (n, k)-Group-Testing under feedback F2 under α-Malicious Adversary is
O  
(
k2

α log(n/k)
)
.

Proof. We can see that under feedback F2 we can deduce the parity bit from the feedback from every request with in-
tersection at most α, by checking the order of the two outputted elements (note that if there is only one or no outputted 
elements, the parity is obvious). Hence, the corollary is a direct consequence of Theorem 1. �
Remark. An unexpected inspiration for the feedback F2 is a type of move, called count signal, used in contract bridge. 
Contract bridge is a card game, where players play in pairs (but without seeing non-revealed cards of other players) and 
sometimes it is crucial to exchange some information between the partners about their cards. The only way to disclose is by 
revealing (playing) the cards, but the order in which the cards are played can have some meaning. A count signal is exactly 
the F2 feedback, where the parity of one player’s cards (in some particular suit) is disclosed by the order in which he/she 
plays the cards. For example a player holding ♦Q 963 (meaning Queen, 9, 6, 3 in diamonds) plays 6 and then 3 to show 
even number of cards in diamonds.

On the other hand, returning the same two minimal values as in F2 but always in order, results in a dramatic increase 
in the query complexity, even under Honest Adversary.

Theorem 5. For any k, α, query complexity of (n, k)-Group-Testing under feedback F1 is �(min{n, k2}) under α-Honest Adversary.

Proof. Assume, that we have a sequence of queries solving (n, k)-Group-Testing. Let us denote the queries by Q 1, Q 2, . . . , Qt , 
where t is the number of queries. Recall that N denotes the set of all the elements.

If k ≥ n/2, then assuming that we had t < k/2, take an arbitrary set of k elements K ⊂ N . And observe that feedback to 
each query reveals at most two identifiers. The total number of identifiers revealed is t · 2 < k. Hence there is an element 
x ∈ K that is never returned by the feedback. It is easy to see that by the properties of the feedback function F1, the 
feedbacks for set K \ {x} would be identical as for set K for each query. Hence if k ≥ n/2 we must have t ≥ k/2 ≥ n/4.

Let us now consider the more interesting range of k < n/2. We define sets of indices T>1 = {τ : |Q τ | > 1}, T=1 = {τ :
|Q τ | = 1}. Denote the following set of elements:

M =
⋃

τ∈T=1

Q τ ∪
⋃

τ∈T>1

({min Q τ } ∪ {min(Q τ \min Q τ )}) .

We know that |M| ≤ 2t , because we take at most 2 elements from each query. Denote set R = N \M . Set R are the elements 
from N that are not smallest (or second smallest) in any of the queries.

If we have |R| < k, then n − 2t < k and since k ≤ n/2 we have t ≥ n/4.
Assume that |R| ≥ k, consider R ordered in the decreasing order of identifiers. Denote this ordering as r1, r2, . . . and let 

Ri, j = {ri, r2, . . . , r j}. Denote the indices of queries that include element ri as T
(ri)
>1 = {τ ∈ T>1|ri ∈ Q τ }.

For any j ∈ N and i = 1, 2, . . . , j, define two sets of query indices:

A j(i) = {τ ∈ T ri
>1, |Q τ ∩ Ri+1, j| = 0} ,

B j(i) = {τ ∈ T ri , |Q τ ∩ Ri+1, j| = 1} .
>1
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We will prove the following:

Claim 1: For any j, i we have 2 · |A j(i)| + |B j(i)| > k − j.
Assume on the contrary that this does not hold for some particular j, i and observe that then we can find for every 

query Q τ for τ ∈ A j(i) two elements that belong to Q τ and are smaller than ri . Take such two elements for each τ ∈ A j(i). 
We have 2|A j(i)| elements, call this set A. For every τ ∈ B j(i) find one element that belongs to Q τ and is smaller than ri . 
We take |B j(i)| such elements (one for each of B j(i)) and call this set B . Consider two sets

S = R1, j ∪ A ∪ B ,

S ′ = R1, j ∪ A ∪ B \ {ri} .

Observe that |S| ≤ |S ′| ≤ j +k − j = k. We will compare the feedbacks for S and S ′ and show that the feedbacks are identical 
for each query. Note that for every τ ∈ T (ri)

>1 , S
′ ∩ Q τ has at least two elements that are smaller than ri . Hence if |S∩ Q τ | ≤ α

then surely F1(S ′ ∩ Q τ ) = F1(S ∩ Q τ ). If |S ∩ Q τ | > α, there is a simple strategy of an adversary to ensure equal feedbacks. 
The adversary selects an arbitrary set X with |X | = α satisfying, X ⊂ S ′ ∩ Q τ and X ⊂ S ∩ Q τ and passes X to the feedback 
function. Hence the feedback in step τ is identical for both S and S ′ . Note that, since ri /∈ M , then ri does not belong to 
any other query than the queries with indices in T (ri )

>1 , hence we cannot distinguish S from S ′ . This means that the query 
sequence does not solve the set learning problem. We obtained a contradiction, which proves the claim.

In the next claim we prove that sets A j(i) and B j(i) are disjoint.

Claim 2: For any j, we have A j(i) ∩ A j(i′) = ∅ and B j(i) ∩ B j(i′) = ∅, for i, i′ ≤ j and i �= i′ .
Assume on the contrary that for some j and i, i′ ≤ j we have A j(i) ∩ A j(i′) �= ∅ and take arbitrary τ ∗ ∈ A j(i) ∩ A j(i′). 

Assume without loss of generality that i < i′ . By the definition of sets A we have ri ∈ Q τ ∗ and ri′ ∈ Q τ ∗ . Since i < i′ ≤ j we 
also have ri′ ∈ Ri+1, j , hence |Q τ ∗ ∩ Ri+1, j | ≥ 1 and τ ∗ /∈ A j(i) a contradiction. Now if B j(i) ∩ B j(i′) �= ∅ then similarly take 
τ ∗ ∈ B j(i) ∩ B j(i′) and assume i < i′ . We have ri, ri′ ∈ Q τ ∗ . We know that |Q τ ∗ ∩ Ri′+1, j | = 1 thus |Q τ ∗ ∩ Ri′, j | = 2. Which 
implies that |Q τ ∗ ∩ Ri+1, j | ≥ 2 and τ ∗ /∈ B j(i). We obtained a contradiction proving the claim.

We fix j∗ = �k/2�. From Claim 1 we have 2 · |A j∗ (i)| + |B j∗ (i)| > k/2 for each i = 1, 2, . . . , j. Sets A j(i) contain indices of 
queries hence using Claim 2 we get:

t ≥
∣∣∣∣∣∣

j∗⋃
i=1

A j∗(i)

∣∣∣∣∣∣=
j∗∑

i=1

∣∣A j∗(i)
∣∣ ,

t ≥
∣∣∣∣∣∣

j∗⋃
i=1

B j∗(i)

∣∣∣∣∣∣=
j∗∑

i=1

∣∣B j(i)
∣∣ .

Adding up the above inequalities gives us:

3t ≥ 2 ·
j∗∑

i=1

∣∣A j∗(i)
∣∣+ j∗∑

i=1

∣∣B j∗(i)
∣∣= j∗∑

i=1

(2|A j∗(i)| +
∣∣B j∗(i)

∣∣) ≥ j∗ · k/2 ≥ k2/4− k/2 .

Thus, finally we get t ≥ k2/12 − k/6. �
Randomized counterpart result. In Theorem 5 we show that any sequence that solves (n, k)-Group-Testing under feedback F1
under α-Honest Adversary must have length of at least � 

(
min{n,k2}). Thus, a randomized algorithm generating sequences 

that solve (n, k)-Group-Testing under this feedback with at least a constant probability must have expected query complexity 
of � 

(
min{n,k2}), since each correct sequence must have such length (by Theorem 5).

Corollary 6. For any k, α, query complexity of any randomized solution to (n, k)-Group-Testing under feedback F1 is �(min{n, k2})
under adaptive α-Honest Adversary.

7. Discussion of results and open directions

We conclude the paper with four promising future directions.

Sparsity. In addition to the query complexity, there are two additional metrics of Group Testing solutions that are studied 
in literature. These parameters are: the maximum number of queries to which an element belongs to (typically denoted by 
w) and the maximum size of a query (typically denoted by ρ). The interplay between all these three parameters, i.e., query 
complexity, w and ρ , was carefully studied in [34] in case of the Beeping feedback, and in some other recent works [33,36]
the sparsity of some particular selectors was established and discussed. It is possible to derive bounds on parameters w
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and ρ also for the query sequences considered in this paper. In particular, the sequence in Theorem 1 under the Parity(α)

feedback has w = O (k log(n/k)) and ρ = O (nα/k), where both bounds can be obtained by a small modification of the 
analysis in Section 4.1. An interesting future direction would be to study tradeoffs between query complexity and the values 
of w, ρ for different feedback models, in particular, for different capacity α and expressiveness β .

Randomness. A popular line of research in Group Testing is to consider randomized solutions [15,6,36]. While in this work 
we focus on deterministic solutions, some of our algorithms have their simply constructed randomized counterparts, also 
presented in this work. Randomized algorithms defined in this way correctly distinguish all sets K . This can be contrasted 
with existing solutions that, typically, have weaker guarantees: with some probability, to correctly distinguish a randomly 
chosen set K from other sets of size at most k, or to correctly identify each element only with some probability (resulting in 
some false-positives and/or false-negatives with non-zero probability). Moreover, they typically work against a weaker non-
adaptive version of an adversary, who has to choose the unknown set K before the random choices of the algorithm. 
An interesting future direction would be to investigate how different probabilistic guarantees and types of adversaries 
influence the query complexity of generalized Group Testing. Another intriguing question is how random perturbations of 
the feedback function (see e.g., [44]) affect the query complexity. Finally, designing efficient coding (i.e., constructing queries) 
and decoding (i.e., reconstructing set K from the feedback) algorithms, working in polynomial time, is a challenging open 
direction, sometimes even for randomized algorithms (cf., Section 4.3 with General(α,β)(X) feedback).

Other feedbacks. The third direction, motivated by subtle examples of the considered (α, 2�log2 n�)-feedbacks of different 
query complexity in Section 6, is to study other specific well-motivated classes of (α, β)-feedbacks and their complexities. 
Although all (α, β)-feedbacks have to observe the universal lower bounds, such as the one in Theorem 4, their actual query 
complexity might be asymptotically larger.

Other adversaries. Observe that in our proofs of the lower bounds, Theorems 4 and 5, we use a weak α-Honest Adversary. 
This makes our lower bounds stronger and suggests that in case of deterministic non-adaptive algorithms, the adversary 
that uses some fixed function Adv may have similar power to the one being allowed to return arbitrary subsets. What 
actually follows from our results is that this adversarial impact may be similar for the best feedbacks in the class of (α, β)-
feedbacks, but does not necessarily tell us about the impact for a specific feedback function. This opens an interesting 
direction of studying the impact of adversarial power, and more generally non-adaptiveness and “maliciousness”, to the 
Group Testing problem, not only for general classes of (α, β)-feedbacks (universal lower bounds, matching by upper bounds 
obtained for some (α, β)-feedbacks), but also for specific well-motivated feedback functions.
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Appendix A. Auxiliary tools

A.1. Proof of Proposition 1

Proof. There are at most 2ᾱ possible inputs to function f1. Hence, since it is deterministic, there are at most 2ᾱ possible 
outputs. Take the family of all subsets of N of size at most N and define the partition of this family into subfamilies – each 
consisting of sets with the same value of f1. This partition has at most 2ᾱ elements, because this is the size of the domain 
of f1. Fix an arbitrary ordering of this partition and enumerate its elements. Each subfamily receives a unique label with at 
most ᾱ bits. Let feedback function f2 for each set K return the label of the subfamily to which K belongs. Such feedback 
function has expressiveness at most ᾱ and clearly it satisfies the property required from f2 in the statement of the fact. �
A.2. Proof of Proposition 2

Proof. Let Sadv denotes the set of all strategies of α-Malicious Adversary. From the definition of the adversary, we 
have Adv(Q τ ∩ K1, τ ) = Q τ ∩ K1 and Adv(Q τ ∩ K2, τ ) = Q τ ∩ K2. Hence position τ of feedback vector F(K1, Adv)
equals to Feed(Q τ ∩ K1) for any strategy of the adversary. Similarly position τ of feedback vector F(K2, Adv) equals 
to Feed(Q τ ∩ K2) for any strategy of the adversary. Since Feed(Q τ ∩ K1) �= Feed(Q τ ∩ K2), then {F(K1, Adv) : Adv ∈
Sadv(Q, K1)} ∩ {F(K2, Adv) : Adv ∈ Sadv(Q, K2)} = ∅. �
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A.3. Proof of Fact 1

Proof. We have:

(1 − 2p)n = ((1 − p) − p)n =
n∑

k=0

(
n

k

)
(−p)k(1 − p)n−k

=
�n/2�∑
k=0

(
n

2k

)
p2k(1− p)n−2k −

�n/2�∑
k=0

(
n

2k + 1

)
p2k+1(1 − p)n−2k−1

= P [ X is even ]− P [ X is odd ] .

An since 1 = P [ X is even ]+P [ X is odd ], we get P [ X is odd ] = (1 − (1 − 2p)n)/2. �
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M. Klonowski, D.R. Kowalski and D. Pająk Theoretical Computer Science 919 (2022) 18–35
[33] Elijah Hradovich, Marek Klonowski, Dariusz R. Kowalski, Contention resolution on a restrained channel, in: 26th IEEE International Conference on 
Parallel and Distributed Systems, ICPADS 2020, Hong Kong, December 2-4, 2020, IEEE, 2020, pp. 89–98.

[34] Huseyin A. Inan, Peter Kairouz, Ayfer Özgür, Sparse combinatorial group testing, IEEE Trans. Inf. Theory 66 (5) (2020) 2729–2742.
[35] Piotr Indyk, Deterministic superimposed coding with applications to pattern matching, in: 38th Annual Symposium on Foundations of Computer 

Science, FOCS ’97, October 19-22, 1997, IEEE Computer Society, Miami Beach, Florida, USA, 1997, pp. 127–136.
[36] Oliver Johnson, Matthew Aldridge, Jonathan Scarlett, Performance of group testing algorithms with near-constant tests per item, IEEE Trans. Inf. Theory 

65 (2) (2019) 707–723.
[37] William Kautz, Roy Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inf. Theory 10 (4) (1964) 363–377.
[38] János Komlós, Albert G. Greenberg, An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels, IEEE Trans. Inf. 

Theory 31 (2) (1985) 302–306.
[39] Weixin Liang, James Zou, Neural group testing to accelerate deep learning, in: IEEE International Symposium on Information Theory, ISIT 2021, IEEE, 

2021.
[40] Bernt Lindstrom, Determining subsets by unramified experiments, in: A Survey of Statistical Design and Linear Models, 1975, pp. 407–418.
[41] James L. Massey, Collision-resolution algorithms and random-access communications, in: Multi-User Communication Systems, Springer, 1981, 

pp. 73–137.
[42] Dragoslav S. Mitrinovic, Petar M. Vasic, Analytic inequalities, vol. 1, Springer, 1970.
[43] Ron M. Roth, Introduction to coding theory, IET Commun. 47 (2006).
[44] Jonathan Scarlett, Oliver Johnson, Noisy non-adaptive group testing: a (near-)definite defectives approach, IEEE Trans. Inf. Theory 66 (6) (2020) 

3775–3797.
[45] Jack Wolf, Born again group testing: multiaccess communications, IEEE Trans. Inf. Theory 31 (2) (1985) 185–191.
35

http://refhub.elsevier.com/S0304-3975(22)00166-9/bibBA5DFF865DE6D75BA328D9D4AB06D14Ds1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibBA5DFF865DE6D75BA328D9D4AB06D14Ds1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib01AFC16E533111EDE31B0B2C66B7FAE5s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibCA50391D3AEAB30728D784346EA716E4s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibCA50391D3AEAB30728D784346EA716E4s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibB91F3CD56FADF2AEBCD4CF5A76FD3422s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibB91F3CD56FADF2AEBCD4CF5A76FD3422s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibD819206950DD0734422DDA95224CFE3Cs1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibF7FAAB765F0445F5E66C1F9773874BD6s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bibF7FAAB765F0445F5E66C1F9773874BD6s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib5A84AA3FDB3AFD2599697013179B650As1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib5A84AA3FDB3AFD2599697013179B650As1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib67C1654B75A748B90ACFC23039E68501s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib3BF60D3B9DA40C8A52472C1D8F81CC5Bs1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib3BF60D3B9DA40C8A52472C1D8F81CC5Bs1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib0AAB26F5FA2DCAB1B567348E474176B9s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib0730FA00588EC92684AC86A527669CA3s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib63E8C7A97FD553036562EF04B006EDF9s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib63E8C7A97FD553036562EF04B006EDF9s1
http://refhub.elsevier.com/S0304-3975(22)00166-9/bib1526FB00A86B391A860F982D1C7FBCE2s1

	Generalized framework for Group Testing: Queries, feedbacks and adversaries
	1 Introduction
	2 Generalized framework and our contribution
	2.1 Technical results

	3 Motivation, previous and related work
	4 Upper bounds
	4.1 Minimal expressiveness -- binary feedback
	4.2 Maximum expressiveness -- full feedback
	4.3 General feedback

	5 Lower bound
	6 Some (α,β)-feedbacks are better than others
	7 Discussion of results and open directions
	Declaration of competing interest
	Acknowledgements
	Appendix A Auxiliary tools
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Fact 1

	References


