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Abstract—A majority of research in communication in wireless
networks is devoted to maximizing information flow, improving
connectivity, or making the system robust against physical
perturbations such as jamming. In this work we study how
intentional jamming can be used for assuring privacy of wireless
communication under the popular Signal-to-Interference-plus-
Noise-Ratio (SINR) model. The considered problem, called Zone-
restriction with Max-coverage, is as follows: how to place a
number of jamming stations in order to generate interference
that block the signal of given genuine stations in a specified
restricted area, i.e., by making the SINR value of the genuine
stations’ signal below a pre-defined threshold in that area. In
the construction of algorithms, we aim at optimizing both the
accuracy – by minimizing the impact of the jamming stations
to the area of genuine communication and by maximizing their
influence to the area that should be jammed, as well as the
energy consumption of the jamming stations. We present several
solutions in various settings of the network, which often lead
to challenging analysis even in relatively simple cases. Among
others, we show that, surprisingly, it is possible to jam arbitrarily
large areas by jammers using total energy arbitrarily close
to zero.

Index Terms—Wireless sensor networks, SINR, information
hiding, jamming

I. INTRODUCTION

In this work we pursue a non-traditional approach to wire-
less communication – how to (slightly) limit the genuine com-
munication in order to protect it from eavesdropping? More
specifically, we assume that there are some restricted areas,
where we expect that the genuine wireless communication
signal cannot be successfully received by any entity. At the
same time, we would rather not affect the genuine commu-
nication that takes place outside the restricted areas. This
problem can be motivated by many natural scenarios, spanning
from military communication, preventing industrial espionage
to protecting personal communication against eavesdropping,
or providing wireless services in selected workspaces without
being overheard in another ones.

One may be tempted to think that this problem can be solved
by using standard cryptographic mechanisms. Note however
that in many cases it is not possible to apply predeployment
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of any cryptographic material, especially in the case of real-life
ad hoc systems. Moreover, in some environment the network
devices are computationally restricted, and thus they cannot
perform cryptographic operations required by even the sim-
plest of cryptographic protocols. Finally, in many cases, e.g.,
on the battlefield, one needs to hide not only the content of the
message, but also the fact that a communication takes place.

The outlined problem can be considered in various wire-
less communication models, however, in our paper, we con-
sider popular Signal-to-Interference-plus-Noise-Ratio (SINR)
model ([1]), in which the analysis of the problem is particu-
larly challenging. On the other hand, the SINR model assumes
that the power of the signal is fading with distance from the
transmitting station and there is an interference from other
network devices, which gives a model close to reality and
acceptable from (most of) technology perspective. The SINR
model has been proven significantly complex for analysis
of even seemingly simple problems, such as answering the
question if a chosen point can receive the transmission from
any station (cf., [1], [3]). The complexity comes, among
others, from the fact that transmission of a single station
impacts the reception zones of even very distant stations.

In principle, the goal of limiting the communication in
SINR model can be attained in two ways. The first is based on
lowering the transmission power of stations, while the second
is based on adding jamming stations to the original network
that selectively reduce the reception zones by the introduction
of an additional interference. In our paper we concentrate on
the latter approach, as it has an inevitable advantage — we
do not have to modify the initial network to apply it, we
only add some jamming stations. This approach, sometimes
called a friendly jamming, appeared in many previous papers
that assumed other models of wireless networks (cf., [4], [5]),
however the way how such policy can be applied is very
different from our approach in SINR model.

Our contribution and paper organization: We consider
several settings of SINR networks and construct algorithms
for placing jammers to block the communication in a given
restricted area while simultaneously minimizing unnecessary
interferences in the rest of the network. Apart from such
defined accuracy, we also consider the energy cost of jamming
(total power of the jamming stations). It turns out, however,



that the formal analysis of the effects of adding jamming
stations leads to difficult analytical problems even in some
simple settings of just a few stations.

In Section II we introduce the model of communication and
formalize the Zone-restriction with Max-coverage problem,
stated above. Section III presents our results for various
settings in a one-dimensional model. In particular, as a warm-
up, Section III-A studies the simplest case of a network with
a single broadcasting station and a single jamming station.
In Section III-B we present algorithm for finding an optimal
solution for jamming a single station by two jamming stations.
Despite very simple formulation of the problem, the analysis
of the algorithm turned out to be surprisingly complex. The
correctness of this algorithm is presented in Theorem 1.

In Section IV we present the idea of noisy dust – accurate
positioning of multiple stations with small energy levels.
Specifically, in Section IV-A we introduce an adaptive noisy
dust scheme and prove somehow surprising result that the total
energy of all jammers can get arbitrarily close to zero. We also
utilize a similar scheme of stripes, more universal method of
jamming arbitrary fragments of space in Section IV-B.

In Section V, we utilize the stripes scheme from 1D-model
and hexagonal tessellation to provide a method of jamming
rectangular shapes in a 2D-plane.

Due to space limitation, some technical proofs are to be
presented in the full version of this paper. The related work
is discussed in Section VI, while Section VII presents conclu-
sions and most important future directions.

II. MODEL AND PROBLEM STATEMENT

A. Model of SINR network

The SINR network is a tuple1 A = ⟨D,S,N, β, P, α⟩, where:
• D ∈ N+ is the dimension of the network, in realistic

scenarios limited to D ∈ {1, 2, 3},
• S = {s1, . . . , sn} is a set of positions of stations in RD,
• N > 0 is an ambient, background noise (fixed real

number)2,
• β ⩾ 1 is the reception threshold (fixed real number),
• P : S → R is a stations’ power function; by Pi = P (si)

we denote the power of station si
3,

• α ⩾ 2 is a path-loss parameter (fixed real number).
For a network A, we define the SINR function for station

si ∈ S and point x ∈ RD\(S\{si}) as:

SINRA(si, x) =
Pi · d(si, x)−α

N +
∑

sj∈S\{si}
Pj · d(sj , x)−α

,

where d is a D-dimensional Euclidean metric. For x ∈ S\{si}
we put SINR(s, x) = 0. If the network A is known from
context, we simplify the notation to SINR(s, x) for a station s.

1We follow the [6] definition of SINR model (different ones can be found
in literature).

2The case N = 0 is also considered, but we may encounter anomalies like
infinite reception zones.

3Slightly abusing the notation, in some cases we identify stations with their
positions. In such case we assume that no two stations share the same position.

The SINR function calculates the relative power of the signal
transmitted by station si in point x, taking into consideration
the network parameters, distance between si and x and the
interference of all other stations in this network. The threshold
β is the network-wide minimal SINR value enabling commu-
nication. A reception zone of station s in network A is defined
as HA

s = {x ∈ RD : SINRA(s, x) ⩾ β}. In simple words,
HA

s is the space where the station s is heard. The reception
zones for parameter β ⩾ 1 do not overlap, thus if some station
s is heard at some point x, no other station is heard at that
point for this network configuration. For convenience, instead
of using the full name of a station si in lower indices, we will
be using its unique order number i: HA

i will be equivalent to
HA

si . Finally, we define the range of station s for the network

with positive noise value (N > 0) as range(s) =
(

α

√
Nβ
P

)−1

,

which is the radius of maximal reception zone of s (in a
network consisting of a single station).

B. Formulation of the problem of restricting transmissions

For a network A, there is given a restricted area R: a subset
of space, wherein no station can be heard. In other words, in
all points in R the SINR function of all stations in a set S has
to be lowered below the threshold β. This can be done using
two techniques. First is to modify the network parameters – we
can increase the threshold value β, decrease stations’ powers,
or increase the path-loss parameter α. Second, we can use
special jamming stations added to the network in order to
generate interference and change the shapes of the reception
zones of the original set of stations in network A.

An illustration of such approaches for a single broadcasting
station is presented in Figure 1. The red rectangles represent
the restricted area and the blue field is the reception zone of
the original station. In Figure 1a we see the initial status –
the blue space overlaps with the red restricted areas, possibly
compromising the transmission from the station. Using the first
approach – changing some of the network parameters to reduce
the reception zone – the reception zone stops overlapping with
the upper restricted area, cf., Figure 1b, but it still does with
the lower one. In Figure 1c we follow the second approach
– adding jamming station (yellow field in the lower restricted
area). It generates enough interference to prevent the original
station from being heard at lower restricted area, but it is still
heard at the upper one. Finally, in Figure 1d both approaches
are combined – jamming station and network parameters
modification solve the problem for both restricted areas.

In order to formalize our approaches, assume that there
is a network A = ⟨D,S,N, β, P, α⟩ and some subspace
R ⊂ RD representing the restricted area to be excluded from
any communication involving stations from S.

The problem of Zone-restriction with Max-coverage is de-
fined as finding a set of jamming stations J = (S(J), P (J))
with positions in S(J) and powers defined by the func-
tion P (J) in such a way that in the resulting network
AJ = ⟨D,S(J) ∪ S,N, β, P ∪ P (J), α⟩ the following condi-



(a) Initial problem with one re-
ception zone (blue) and two re-
stricted zones (red rectangles).

(b) Single zone problem solved
(upper rectangle) by reducing
station power.

(c) Single zone problem solved
(lower rectangle) by adding jam-
ming station.

(d) Both zone problems solved
by combining jamming station
with power reduction.

Fig. 1: Sample problem for a single broadcasting station.

tion holds: (∀ s ∈ S)(∀ x ∈ R) SINR(s, x) < β. If this
condition holds, we say that S(J) correctly protects R.

This problem can be trivially solved by adding a single
station in any restricted area and assigning to this station
appropriately high transmission power. In typical scenarios this
would however also suppress the desired communication in the
reception zones of the genuine network.

In order to take into account the above issue, we define a
coverage – specifying how the new reception areas correspond
to their original sizes, excluding the restricted area:

Cover(J ,A) =

∣∣∣∣∣ ⋃
si∈S

(
HAJ

i ∩ (HA
i \ R)

)∣∣∣∣∣∣∣∣∣∣ ⋃
si∈S

HA
i \ R

∣∣∣∣∣
,

where |A| denotes the volume of a set A. Note that
Cover(J ,A) is always properly defined, as long as N > 0,
and 0 ⩽ Cover(J ,A) ⩽ 1. If the coverage equals to 1, then
the jamming stations do not change the genuine reception
zones apart from the restricted area. Our goal is to maximize
the coverage. Finally, we define the power cost function
Cost(J ) =

∑
s∈S(J)

P (J)(s), which measures the total power

used by the jamming stations.
The problem considered in this paper is specified as follows:

For a given network A and the restricted
area R, find a set of stations and their powers,

J = (S(J), P (J)), correctly protecting R and max-
imizing Cover(J ,A).

Optionally, we also require minimizing Cost(J ).
This work studies selected cases of S(J) and P (J), e.g., a

limit on the number of jamming stations used for jamming.

III. JAMMING IN ONE-DIMENSIONAL NETWORKS

In this section we consider one-dimensional SINR model
(D = 1). The restricted area is a union of some (potentially
infinite) disjoint intervals. For example, in Figure 2a there
are two broadcasting stations located in sa and sb with the
restricted area given as a union of two intervals (b0l , b

1
l )

and (br,∞). Such scenarios is often considered in VANET
networks [7]. We say that the network is uniform if all the

sa sbb1lb0l br

(a) Non-uniform network example.

sa sbbl br

(b) Uniform network example.

Fig. 2: Example of 1D instance (restricted areas are red).

stations (both from S and S(J)) have identical power level
(that is, P ∪ P (J) ≡ 1).4 In uniform setting all the reception
zones are convex (cf., [3]), which substantially simplifies
reasoning. For instance, in Figure 2a the interval (b0l , b

1
l ) from

the initial restricted zone can be replaced by (−∞, b1l ). Indeed,
if a given station located to the right of b1l is not heard in b1l ,
then due to convexity, it is not heard in any point x < b0l as
well. Hence, we can model this constraint by a single point
bl = b1l . This configuration is presented in Figure 2b.

In the case of uniform networks the power level parameter
is redundant, thus we identify the set of jamming stations J =
(S(J), P (J)) with the set of their positions S(J), or even with
a single position when we deal with a single jamming station.

A. One side jamming

As an introduction, let us consider the simplest uniform
network A0 with a single broadcasting station s and a single
jamming station sJ . W.l.o.g. we can assume that s = 0
and a restricted area Rb = (b,∞) for some b > 0. This
problem can be solved by placing the jamming station at
sJ = b+ r for some r > 0 in order to block communication
in Rb. Nevertheless, this jamming station also influences the
initial part of the original communication of the station s,
which should be taken into consideration in order to prevent
a reduction of the coverage (see Figure 3b).

Lemma 1. Let A0 be a network and sJ be a single jamming
station placed at: sJ = b+ α

√
β

b−α−βN . Then

4In principle, we can use any other fixed power level and re-scale other
parameters (see e.g., [3]). Under uniformity, we skip the parameter P from
formal descriptions in this section.



s b

(a) An original reception zone.

s sJb

(b) A reception zone with one jamming station sJ .

Fig. 3: Single side jamming example. The reception zone is
indicated with darker color.

1) sJ correctly protects Rb,
2) guarantees coverage Cover({sJ},A0) in[

b+ (β(N +MaxI))−
1
α

range(s) + b
,
b+ (β(N +MinI))−

1
α

range(s) + b

]
,

where MinI := (sJ + range(s))−α and MaxI := (sJ + b)−α.

Proof: We skip a straightforward proof of point 1., based
on monotonicity of the function SINR(s, x) w.r.t. argument x.
The point 2. of the lemma follows from the limitation of the
space, where some point bl < s can have SINR(s, bl) = β,
to interval [−range(s),−b]. The fact, that bl > −range(s)
is obvious and because of the monotonicity of the jamming
station interference I(s, x) = d(sJ , x)

−α, symmetry of the s
energy function E(s, x) = d(s, x)−α regarding point s and the
fact that d(sJ , bl) > d(sJ , b), the inequality bl > −b follows.

We define maximal interference of sJ , achieved at point
−b and denoted as MaxI and minimal interference achieved at
point −range(s), denoted as MinI. Let us define the following,
simplified, version of SINR function:

SNR(s, x, I) =
d(s, x)−α

N + I
,

where we essentially replace the jamming interference with
some constant value I . By using it for MinI and MaxI, we
solve the equations:

SNR(s, xl,MinI) = β SNR(s, xr,MaxI) = β ,

getting the following results:

xl = (β(N +MinI))−
1
α xr = (β(N +MaxI))−

1
α .

Based on the monotonicity of I(s, x), we know that −xl ⩽
bl ⩽ −xr (Figure 4), what means that the final reception zone
of s can be maximally of size of the segment [−xl, b] and
at least of the size of the segment [−xr, b]. Additionally, the
maximal reception zone of s, excluding restricted area has the
following size: ∣∣HA

s \ R
∣∣ = range(s) + b ,

which finalizes the proof for the Cover value bounds.

s sJbl bxrxl

Fig. 4: Bounding the possible values of bl by segment [xl, xr].

Let us note that a careful inspection of possible choices of
the place for the jamming stations sJ show that the chosen
place is optimal in terms of coverage.

B. Two precise jammers in uniform network

Let us again consider the network A0 and restricted area of
the form Rbl,br := (−∞,−bl) ∪ (br,∞) for some 0 < bl, br
and two jamming stations. Assume that bl, br ⩽ range(s)
(otherwise the problem either simplifies to a single side
jamming or becomes trivial). Clearly one can use directly the
positions described in the previous section to jam left and right
side independently. However, this way network is burdened
with a significant and unnecessary reduction of the coverage.

If the jamming stations J ∗ = {−x∗, y∗} guarantees

H
AJ∗

0
s = [−bl, br], then we call J ∗ an optimal arrangement.
Below, we briefly present an iterative algorithm that returns

positions −x, y of jamming stations that guarantee correct
protection of the restricted zone and are δ-close to optimal
arrangement −x∗, y∗ (see Theorem 1 for precise formulation).

1) Short description of the algorithm: Apart from param-
eters which describe the SINR model and the restricted area
Rbl,br , the algorithm takes a precision parameter δ as an input.
We use the following notation:

• Ci =
1
β − N

P bαi , for i ∈ {l, r},
• for b > 0 and x > b−

1
α , let us define

f(a, b;x) = 1 + a
(
1 + (b− x−α)

− 1
α

)
,

• h(x) = f
(

bl
br
, Cl; f

(
br
bl
, Cr;x

))
.

Algorithm 1: AssignJammingStations(δ)

Algorithm AssignJammingStations(δ)

t0 = 1 + bl
br

(
1 + C

− 1
α

l

)
,

t =AlignPosition(t, δ)

Df =

∣∣∣ ∂
∂tf

(
br
bl
, Cr; t

)∣∣∣ bl
br

if Df ⩾ 1 then
δ = δ

Df
, t =AlignPosition(t, δ)

y =
(
f
(

br
bl
, Cr; t

)
− 1

)
bl, x = (t− 1)br

return (−x, y)
Procedure AlignPosition(t, δ)

ζ = h′(t)

k =


ln

(
δ
br

(1−ζ)

h(t)−t

)
ln ζ


for i ∈ {1, . . . , k} do

t = h(t)
return t

Without going into low-level details, the function f en-
tangles positions of optimally set jamming stations. Thence
we assume the same in our approach. The function h adapts
position of the left jamming station to be closer to optimal.
Initially we carefully set admissible position t0 and then the
lion’s share of the execution, Algorithm 1 rectifies t, which is
responsible for the position of the left jamming station and at
the end, it returns positions −x and y, which are δ-close to
the optimal ones. In fact, there are two adaptive phases, the



first one is performed in order to guarantee that |x− x∗| < δ,
and the second, to affirm dual condition |y − y∗| < δ.

2) Result and ideas:

Theorem 1. Consider a uniform SINR network A0 with a
single station s = 0 and parameters N > 0, α ⩾ 1 and a
restricted area Rbl,br such that

1) 0 < bl ⩽ br ⩽ range(s),
2) C

− 1
α

r < t0 = 1 + bl
br

(
1 + C

− 1
α

l

)
,

3) C
− 1

α

l < 1 + br
bl

(
1 + C

− 1
α

r

)
.

Then

1) there exists a unique optimal arrangement J ∗ =
{−x∗, y∗}

2) AssignJammingStations(δ) returns
J = {−x, y} such that:

• J correctly protect Rbl,br ,
• |x−x∗| ⩽ δ and |y− y∗| ⩽ δ (we then say that the

arrangement J is δ-close).

The proof of Theorem 1 is technical and it is postponed
to be presented in a full version of this paper. However, we
roughly sketch its idea in here as well. First, we show that
with the assumptions of Theorem 1, h function is rising and
concave. Then, by Banach fixed point theorem, we prove that
a sequence given by the relations x0 = t0 and xn+1 = h(xn)
converges monotonically to 1 + x∗

br
and can be used in order

to provide the positions of the left jamming station. Further
we obtain that then the position of the second jamming station
can be computed in terms of f function. Next we provide how
many steps in each adaptation phase are needed before termi-
nation of AlignPosition(δ) in order to satisfy δ-closeness
condition, which finalizes the proof. Let us mention that it can
be proved that each of the adapting phases are executed faster
than a Newton-Raphson method for a function h (which has
very fast, quadratic rate of convergence).

IV. JAMMING BY NOISY DUST

In this section we introduce the idea of noisy dust —
universal strategy for utilizing numerous jamming stations
for jamming arbitrary fragments of space. Let us consider
a network A, where S = {s1, s2, . . . , sk} and si < sj for
any i < j, with P ≡ 1. Moreover, for any s ∈ S, let
us introduce border points bι(s), for ι ∈ {l, r} such that
s−range(s) < bl(s) < s < br(s) < s+range(s) and br(si) <

bl(sj) whenever i < j. Let R = R\
k⋃

i=1

[bl(si), br(si)] be a

restricted area. By a noisy dust we understand a set of stations
J = (S(J), P (J)) placed onto the restricted area, where
P (J) ≡ p and S(J) is a disjoint union

⋃
s∈S

⋃
ι∈{l,r}

S(J)(bι(s)),

where S(J)(bι(s)) is a set of positions of jamming stations,
which intuitively are close to bι(s) and correctly protects the
nearby restricted area (e.g. S(J)(br(sk−1)) correctly protects
the segment (sk−1, sk−1 +range(sk−1))∩ (br(sk−1), bl(sk)).
Note that p intuitively should be small and let F (p) = (pβ)

1
α .

Below we present a theorem which describes a space which
a single station with small power p can correctly protect:

Theorem 2. Assume a network A with a station s0, a power
P0 = 1 and some point b, such that s0 < b < range(s0). Let
Pj be the power of a jamming station placed at sj = b+r. Let
us assume that d(sj , b) = d(s0, b)F (Pj) . Then sj correctly
protects the segment (b, sj).

Proof: Realize that energy functions of s0 and sj are
monotonic for the segment (b, sj): decreasing for s0 and
increasing for sj . Hence if we will show that SINR(s0, b) = β,
it will be enough to prove the jamming property for that
segment. We can do it by rearranging the noiseless SINR
equation to obtain the relations below:

SINR(s0, b) =
d(s0, b)

−α

Pj d(sj , b)−α
= β ,

F (Pj) = (Pjβ)
1
α =

d(sj , b)

d(s0, b)
, d(sj , b) = d(s0, b)F (Pj) .

With the addition of the noise, the desired property of correct
protection will not be affected.

This simple equation can be used in positioning schemes for
multiple jamming stations and let us freely calculate jamming
station configuration by modifying the border point position,
jamming station power and distance of the station from the
border point b. We utilize it for two jamming schemes: an
adaptive noisy dust in subsection IV-A, where we optimize
the number of required stations by taking into account how
the jamming zone of station changes with distance from the
jammed station, and special noisy dust stripes in subsec-
tion IV-B, which let us create universal jamming networks.
Finally, in subsection IV-C we present general lower coverage
bound for the noisy dust scheme.

A. Adaptive noisy dust

s0

l1 r1 l2 r2

b0 s1 b1 s2 b2

Fig. 5: Positioning of multiple small stations.

Let us assume that we have single station s0 = 0 with
selected area Rb = (b,∞) for some proper border point b,
which we want protect for some network A0 and power of
station s is equal to P ≡ 1. In adaptive noisy dust scheme
we will iteratively position consecutive jamming stations with
uniform powers equal to p = Pj (arbitrarily chosen), for which
F = F (p). Starting from point b0 = b (Figure 5) and using
it as initial border, we assign a position of the first station,
then we calculate the borders of segment (b0, b1) protected by
this station and use this information to set the next jamming
station in b1, which will serve as a new border point. We will
continue this process until we fill the whole Rb area. The
details of the process are described in Theorem 3 along with
a surprising result concerning cost of such jamming network,
which converges to zero as p → 0+ (and increase in the



number of jamming stations). Slightly abusing notation, we
will denote the distance between station s and point b by using
d(s, b) = b.

Theorem 3. Let us consider a single station network A0 with
a restricted area Rb = (b,∞). Let

n =


ln
(

range(s)
b

)
ln
(

1+F
1−F

)
 , si =

b(1 + F )i

(1− F )i−1
.

Then, for the set Jp = ({si| i ∈ [n]}, {si → p| i ∈ [n]}) of
jamming stations:

1) Jp correctly protects Rb ,
2) lim

p→0+
Cost(Jp) = 0.

Proof: Using the Theorem 2, we can easily calculate the
position of a single station based on the border point, ex.
for the first border point b0 = b we will get l1 = b0 F .
Now for station s1 = b0 + l1, we have to know how
far it can protect the space on the side opposite to the
jammed station — indeed, we are searching for r1 from
Figure 5. Consider point b1 = s1 + r1 and the equation
SINR(s, b1) = β. Note that SINR(s, x) is continuous for
x > 0 and SINR(s, x)

x→s1−→ 0, so SINR(s, x) < β for
x ∈ (s1 − l1, s1 + r1). Since SINR(s, s1 + r1) = β is
a symmetrical to the case of SINR(s, s1 − l1), we conduct
very similar argument and obtain r1 = b1F = (s1 + r1)F .
Therefore r1(1− F ) = s1F = (b0 + l1)F = b0(1 + F )F , so
we can obtain

s1 = b0(1 + F ) , r1 =
F (1 + F )b0

1− F
=

Fs1
1− F

,

b1 = b0

(
1 + F +

F (1 + F )

1− F

)
= b0

1 + F

1− F
.

(1)

This concludes, that by setting s1 = b0(1 + F ), we will
correctly protect the interval (s1 − l1, s1 + r1) = (b0, b1).
Realize, that this is true also for network with noise (N > 0).

Now we want to extend this result to multiple stations. We
use similar approach, where next station s2 is positioned with
the assumption that point b1 is its border point, and it will
drowns out some interval (b1, b2). We will put recursively
subsequent stations, until we reach range(s) and cover interval
(b0, range(s)) with small jamming fields. Note that we do not
need to care about points bi, i > 0, since the interference of
multiple stations is bigger than for a single one and in result
SINR(s, bi) < β for i > 0. By using equations (1) as a base,
we can extend our notation for other stations as follows:

bi = bi−1
1 + F

1− F
, si = (1 + F )bi−1 , li = Fbi−1 ,

ri =
F (1 + F )bi−1

1− F
=

Fsi
1− F

for i ∈ {1, 2, . . . , n} .

(2)

Thus, we instantly get the positions of the jamming stations:

si=(1 + F )bi−1=(1 + F )b0

(
1 + F

1− F

)i−1

=s1

(
1 + F

1− F

)i−1

,

with the first one given by s1 = (1 + F )b0.

We are also interested in the number n of jamming stations
that we need to correctly drown out the region (b0, range(s)].
More precisely, we search for the minimal n such that bn >

range(s). As bn = b0

(
1+F
1−F

)n

, we need
(

1+F
1−F

)n

> range(s)
b0

to be fulfilled, hence we attain:

n =


ln
(

range(s)
b0

)
ln

(
1+F
1−F

)
 . (3)

For our convenience we denote the internal value of the ceiling
function in the right hand side of Equation 3 as ñ. It finishes
the proof for statement 1. of Theorem 3.

To evaluate the energy efficiency of the algorithm, depend-
ing on the power p of the jamming stations, we have to
analyze the value Cost(Jp) = np or easier to consider value
of Cost′(Jp) = ñp. Let C(p) = 1

pβ and F (p) = (C(p))
− 1

α =

(pβ)
1
α . Notice that range(s)

b0
= (Nβ)−

1
α

b0
is not dependent on p.

We see that as p → 0+, the limits of numerator num(p) and
denominator den(p) of the full form of Cost′(Jp) tend to 0:

lim
p→0+

p ln

(
range(s)

b0

)
= 0 , lim

p→0+
ln

(
1 + F (p)

1− F (p)

)
= 0 .

We are going to use L’Hôpital’s rule to find the limit of
Cost′(Jp) = ñp as p tends to 0. In order to proceed, we
need to calculate the derivatives of F (p) and both numerator
and denominator of the full form of Cost′(Jp):

∂ F (p)

∂ p
=

β (C(p))
1
α−1

α
=

F

α 1
βC(p)

=
F

αp

∂ num(p)

∂ p
= ln

(
range(s)

b0

)
∂ den(p)

∂ p
=

1− F

1 + F

∂ F (p)
∂ p (1− F ) + ∂ F (p)

∂ p (1 + F )

(1− F )2

=
∂ F (p)

∂ p

2

(1− F )(1 + F )
=

2F

αp(1− F 2)

From L’Hôpital’s rule:

lim
p→0+

Cost′(Jp) = lim
p→0+

num(p)

den(p)
= lim

p→0+

∂ num(p)
∂ p

∂ den(p)
∂ p

= lim
p→0+

ln

(
range(s)

b0

)
αp(1− F 2)

2F

= α ln

(
range(s)

b0

)
lim

p→0+

p
(
1− (βp)

2
α

)
2 (βp)

1
α

= α ln

(
range(s)

b0

)
lim

p→0+
p1−

1
α

(
1− (βp)

2
α

)
2 (β)

1
α

= 0 ,

therefore also Cost(Jp) tends to 0 as p → 0+, because
|Cost(Jp)− Cost′(Jp)| < p, what concludes the proof.

The idea presented here can be easily used also for multiple
stations jamming scenario, still keeping its property of low
energy usage.



B. Noisy dust stripes

In this subsection we present a scheme of positioning jam-
ming stations with some fixed power in a form of jamming
stripes – uniformly spaced stations, which provide protection
for some chosen space interval. The next theorem shows
how to form a single stripe:

Theorem 4. Let A0 be a single station network with a
restricted area Rb = (b0, b1), where s < b0 < b1 <
range(s). Let

n =

⌈
b1 − b0
2F (p)b0

⌉
, si = b0(1 + F (p) + 2(i− 1)F (p)) .

Then the set Jp = ({si| i ∈ [n]}, {si → p| i ∈ [n]}) of
jamming stations correctly protects Rb.

Proof: Let us look at the jamming station closest to the b0:

s1 = b0 + F (p)b0 .

Basing on Theorem 2, it correctly protects interval (b0, s1).
On the other hand, due to energy function of s being mono-
tonically decreasing for x > s, we know that any point
x > s1 requires less interference than point b0 to be jammed.
However, we have already generated enough interference at
range of F (p)b0 from s1 to jam such points, thus the effective
jamming interval of s1 is (b0, b0 + 2F (p)b0). Then each of
the stations si, for i > 1, is positioned with identical spacing
and power, so they will preserve that property, filling whole
Rb with enough interference to protect it.

The idea of Theorem 4 with single stripe set, can be easily
extended for jamming arbitrary networks — it only requires
to find the closest points to protect (border points for each
broadcasting station) and then configuring stripes accordingly.

C. Noisy dust coverage

The noisy dust coverage value can be limited from below
in generic case as presented in Theorem 5:

Theorem 5. Assume a network A and a restricted area R as
in section IV. Let J be a noisy dust for A with R. Then

Cover(J ,A) ⩾

β− 1
α

∑
s∈S

(N +MaxIl(s,J ))−
1
α∑

s∈S

br(s)− bl(s)
(4)

+

β− 1
α

∑
s∈S

(N +MaxIr(s,J ))−
1
α∑

s∈S

br(s)− bl(s)
,

where, for ι ∈ {l, r},

MaxIι(s,J ) = p
∑

s′∈S
(J)
ι (s)

d(s′, bι(s))
−α + p

∑
s′∈S

(J)

ι′ (s)

d(s′, s)−α .

Proof: We utilize the similar argument to this from the
proof of Lemma 1. Remark that for s, there always exists ε(s)
that s is heard in its vicinity (s− ε, s+ ε), irrespective of J .
From the argument in the proof of Lemma 1, each reception
zone of s ∈ S is convex, so let xl(s) < s and xr(s) > s be

such the points that SINR(s, xl(s)) = SINR(s, xr(s)) = β.
Therefore d(s′, s) < d(s′, xι′) and d(s′, bι(s)) < d(s′, xι),
for any s′ ∈ S

(J)
ι (s) and ι ∈ {l, r}. Therefore, for every

s ∈ S, there exist yl(s) and yr(s) such that xl(s) < yl(s) <
s < yr(s) < xr(s) and SNR(s, yl(s),MaxIl(s,J )) =
SNR(s, yr(s),MaxIr(s,J )) = β. Therefore yι(s) = (β(N +
MaxIι(s,J )))−

1
α for any s ∈ S and ι ∈ {l, r}, just like

in Lemma 1. By summing all d(yl(s), yr(s)) we attain the
numerator of inequality (4). The denominator is just the (finite)
volume of R\R.

V. JAMMING IN 2D

An extension of our problem to a two-dimensional case
bears some new interesting challenges. For instance, reception
zones are no longer reduced to intervals and can form complex
shapes on a plane, what results in even more complicated
analysis. In this section we propose a simple and natural
generalization our ideas from section IV. Let us consider
a simple network A with a single broadcasting station and
D = 2. On the plane, there is a broad class of reasonable
restricted areas. For a sneak peak, let us examine a simple
case of rectangular restricted zone with sides parallel to the
axes: R = {(x, y) ∈ R2| xl < x < xr, yb < y < yt}, where
parameters xl < xr and yb < yt define the rectangle.
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(a) A blue area is a full effective
jamming zone of a single station
and a red one is a simplified jam-
ming area reduced to a hexagon.
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(b) An example od 2D jamming
— a red rectangle is R and small
hexagons are the simplified jam-
ming zones of added stations.

Fig. 6

In order to provide 2D noisy dust, let us reuse the jamming
stripes idea from subsection IV-B. First, we select a point
b = (bx, by) ∈ R, which is the closest from the broadcasting
station s = (0, 0). Note that two-dimensional undisturbed
reception zone is a circle. Instead of covering the rectangle
with such the figures, we utilize a hexagonal tessellation,
which covers R. For simplification we approximate a circle
drown out by a jamming station via a regular hexagon (see
Figure 6a). This approach has a slight impact on the jammed
space, however it still covers the area properly. If we assume
that each jamming station has the same arbitrary chosen small
power p, then we can calculate a range of each jamming
station as r = d(b, s)F (p) (with F (p) = (pβ)

1
α ). Finally, we

cover R with regular hexagons of side r, with a first hexagon
centered in b. An argumentation from subsection IV-B together



with triangle inequality shows that such the approach correctly
covers R. An exemplary result is presented in Figure 6b.

The aforementioned technique can be easily extended to
cases with restricted zones defined as arbitrary unions of the
rectangles (also rotated). Nevertheless, methods of restriction
of areas of more complicated shape require extensive research.

VI. RELATED WORK

The SINR model is well established in wireless networks,
including older and newer technologies such as 5G mobile
networks [8]. It was used as a measurement of connection
quality [9], [10]. SINR is also widely used in theoretical
models of wireless communication. Its geometrical properties
were studied by Avin et al. [3], who analyzed the properties
of reception zones under uniform SINR model, showing,
among others, their convexity (the result heavily utilized in this
paper). Non-uniform network properties were analyzed in [11],
along with new point location algorithm, and in [12], where
non-uniform SINR network model, combined with Voronoi
Diagrams, proved to retain some of the useful properties of
the uniform setting. There is also a large amount of work
considering the basic problems under the SINR model, such
as broadcasting [13], link scheduling [14] or power control
[15]. Quickly evolving and growing wireless communication
technology is prone to many security threats (ex. [16], [17])
and more then ever require effective and efficient solutions to
protect users privacy. Most of such protective measures are
based on cryptographic solutions ([18], [19]). The approach
taken in this paper, using jamming stations as a part of the
security mechanism, has been considered in [20]–[22] in the
context of simpler models and the idea was proved to be
practically feasible ([23]). Regarding the SINR model, in [24],
the authors considered a model similar to ours, but focusing
on a practical 2D scenario, where the space is divided into a
storage, in which the legitimate communication is supposed to
take place, a jamming space, where jammers can be placed,
delimited by a fence, and the rest of the space, where the
adversary can eavesdrop. In such settings, the optimization
problems of jammers’ positioning and power assignment were
presented with approximation algorithms working for contin-
uous space. This work has been further extended in [4], where
SIR model is used as a connection quality measurement, the
solution is based on performing temporal jamming, and the
channel quality is modeled by the bit-error probability. In our
paper we extensively use some of previous (e.g. convexity
of some SINR diagrams proved in [3]). Nevertheless, to the
best of our knowledge, the general results of the current paper
cannot be reduced to techniques used in previous literature.
This is because the small changes in the problem formulation
or the assumed model lead to significantly changed analysis
in SINR-based networks.

VII. CONCLUSIONS AND OPEN PROBLEMS

We introduced the problem of Zone-restriction with Max-
coverage in SINR wireless networks and considered three
scenarios. Finding a general solution for this problem seems

to be very challenging due to the complexity of the model.
The examples of important open directions are: to consider
two thresholds β′ < β, which models the case where the
eavesdropping adversary may have a more sensitive receivers
than regular users, cf. [4], and jamming only selected stations;
add mobility and directional antennas to the model.
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