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Abstract

We consider wireless networks operating under the SINR model of interference. Nodes have limited individual knowledge and
capabilities: they do not know their positions in a coordinate system in the plane, further they do not know their neighborhoods,
nor do they know the size of the network 7, and finally they cannot sense collisions resulting from simultaneous transmissions
by at least two neighbors. Each node is equipped with a unique integer name, where N as an upper bound on the a range
of names. We refer as a backbone to a subnetwork induced by a diameter-preserving dominating set of nodes. Let A denote
a maximum number of nodes that can successfully receive a message transmitted by a node when no other nodes transmit
concurrently. We study distributed algorithms for communication problems in three settings. In the single-node-start case,
when one node starts an execution and other nodes are awoken by receiving messages from already awoken nodes, we present
arandomized broadcast algorithm that wakes up all nodes in O(n log? N)) rounds with high probability. For the synchronized-
start case, when all nodes start an execution simultaneously, we give a randomized algorithm computing a backbone in
O(Alog’ N) rounds with high probability. In the partly-coordinated-start case, when a number of nodes start an execution
together and other nodes are awoken by receiving messages from the already awoken nodes, we develop an algorithm that

creates a backbone in time O(n log> N + A log’ N) with high probability

Keywords Wireless network - Signal-to-interference-plus-noise ratio - Broadcast - Backbone

1 Introduction

We consider wireless networks in which the effects of
interference are determined by the signal-to-interference-
plus-noise ratio (SINR) model. The extent to which such
networks can support distributed communication depends
on nodes’ capabilities, like the ability to detect signals’
collisions (caused by two or more neighbors transmitting
simultaneously), and on the information that can be used
in codes of algorithms, such as coordinates of nodes in a
Cartesian coordinate system in a plane. We demonstrate that
efficient distributed communication can be carried out by a
wireless network whose nodes have severely limited power.

We assume that the nodes of a wireless network are
positioned in a two-dimensional Euclidean space. This is
abstracted into an associated graph structure called the com-
munication graph of the network. The nodes of the network
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serve as vertices of the communication graph. A pair of such
vertices (u, w) makes an edge in the communication graph
if w can successfully receive a message transmitted by u
when no other node transmits simultaneously, and vice versa.
We use A to denote a maximum node-degree in a communi-
cation graph, and D to denote a diameter of this graph.

We want to distinguish certain vertices of a communica-
tion graph such that they together make a backbone of the
graph. We call these vertices backbone vertices. Backbone
vertices induce a subgraph of a constant degree in the com-
munication graph that has its diameter asymptotically equal
to that of the whole communication graph and such that every
node outside the backbone is connected to some backbone
vertex.

Nodes of a wireless network communicate directly subject
to restrictions on the signal-to-interference-plus-noise ratio
(SINR). A transmission is successfully received by a node
depending on a ratio of the signal strength to the strength
of other signals plus ambient noise, when evaluated at a
receiver. Let 7 be a set of nodes that transmit together at
a round, and let two nodes v and u be such that v € 7 and
u ¢ 7. The signal strength of v’s transmission as reach-
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ing u is determined as P (v, u) = P, - dist(v, u)~%, where
dist(v, u) is the distance between u and v, quantity p, is
the transmission strength, and o > 2 is a path loss. The
interference at u means Z(v, u,7) = ZweT\{v} P(w, u).
The quantity SINR (v, u, 7) is defined as SINR(v, u, 7) =
P, u)/N + Z(v,u,T)), where ' > 0 is the ambient
noise. For a node u to successfully receive a transmission by
node v, it is necessary for the inequality SINR(v, u, 7) > 8
to hold, where 8 > 0 is some threshold. We work with a
SINR model that combines weak-connectivity assumptions,
as formulated by Daum et al. [9], with weak-sensitivity (weak
devices) assumptions, as formulated by Jurdzinski et al. [26],
see also Jurdzinski and Kowalski [21]. In a weak-sensitivity
setting, a node can never successfully receive a transmis-
sion from the borderline of its transmission range, while
weak connectivity means that all links that could success-
fully transfer a message in a suitably favorable scenario are
included as links of a network, see Sect. 2 for details. We
also assume that nodes cannot detect collisions produced by
interfering transmissions from at least two neighbors.

Algorithms are restricted in what information can be used
in their codes. A network is said to be bare-bones when it is
subject to a specific set of such restrictions, which are used
in this paper and can be summarized as follows. Each node
among the n nodes in a network has a unique name in the
range {1, ..., N}, for some positive integer N > n. Each
node knows its name and the number N. Nodes do not know
their neighbors in the communication graph but they know
the parameter A.

We consider distributed algorithms to synchronize and
organize a wireless network. The way a communication task
is initiated impacts how a communication algorithm may be
designed. We consider the following natural modes of ini-
tialization of communication tasks. If all the nodes begin an
execution together in the same round, then such an execution
is said to be performed from a synchronized start. Executing
algorithms from an single-node start means that just a sin-
gle node is awoken at the beginning of an execution, while
all the other nodes do not send messages until they hear a
message. A case of multiple-nodes synchronized start means
that a group of nodes start an execution together, while the
remaining nodes wait to be awoken by hearing messages.
Synchronized start is a global configuration of a network
that facilitates executing a communication algorithm with
all nodes starting at the same time.

We consider implementations of three communication
primitives useful in developing distributed algorithms. One
primitive is to prepare a synchronized-start configuration
from a single-node start. This means to make all nodes reach
a “start” global state from which to begin in unison an execu-
tion of some algorithm. Another primitive is to synchronize
start from a multiple-nodes synchronized start, which has a
similar goal but subject to the stated different initial condi-
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tions. These two tasks can be accomplished by a broadcast
with a wake-up functionality, like coordinating round num-
bers at nodes. The third primitive is to build a backbone
of the communication graph of a network, provided that a
synchronized-start configuration has already been reached.

Next, we briefly summarize the results presented in this
paper, and put them in the context of previous and related
work.

A summary of the results.

We develop randomized distributed algorithms imple-
menting certain communication primitives in wireless net-
works operating under the SINR regime of interferences
among concurrent transmissions. Each of them has the
property that a node uses only O(log® N) random bits in
an execution. The model is of weak-sensitivity and weak-
connectivity.

We begin by developing a randomized distributed algo-
rithm to perform a broadcast from a single-node start in
O(nlog? N) expected time, where it is the source that starts
as an activated node. Once an execution is completed, every
node will have been activated and all the nodes have their
round numbers synchronized. This may be used as a prepa-
ration to begin an execution of a distributed communication
algorithm from a synchronized start.

We present two randomized algorithms to build a back-
bone. One of them completes the task from a synchronized
start in O(A log’ N) rounds with high probability. The other
one creates a backbone from multiple-nodes coordinated-
startin O(n log” N4 A log’ N) rounds with high probability.

There are known lower bounds €2 (nlog N) and Q2(DA)
on time to broadcast from a single-node start, given by Jur-
dzinski et al. [26]. These lower bounds hold for randomized
algorithms and when nodes know their coordinates in a sys-
tem of coordinates, so these lower bounds apply to our less
demanding settings as well. Therefore the time performance
of our broadcast algorithm misses a lower bound €2 (n log N)
by a factor of O(logn).

Building a backbone from a single-node start could pro-
ceed by way of first coordinating all the nodes such that
they can start simultaneously an execution of a distributed
communication algorithm to build a backbone. For D =
A = ©O(4/n), both constructing a backbone and perform-
ing broadcast could be performed in O(A polylog N) =
O(4/n polylog N) rounds, while they may need as much as
Q(DA) = Q(n) rounds for a single-node start. The per-
formance of our algorithm for building a backbone from
a synchronized start implies that having all the nodes of a
network synchronized, so that they can start an execution
simultaneously, makes it possible to perform some dis-
tributed tasks faster than otherwise, in that building a virtual
backbone network is among such tasks.
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Our work extends the results of Jurdziiski and Kowalski
[20] and Jurdzifiski et al. [26], whose solutions rely on the
knowledge of coordinates of nodes in a coordinate system in
a plane, to a setting where such knowledge is not available.
These are the first algorithms with performance bounds close
to optimal in the model of weak sensitivity and weak con-
nectivity of wireless networks, in view of the lower bounds
in the settings considered in Jurdziriski et al [26] that apply
to the setting of this paper as well.

We introduce a novel approach to collision avoidance,
based on strongly selective families with specifically chosen
parameters, in order to compensate for lack of node coordi-
nates in a system of coordinates in the plane. We combine
them with a number of graph-related and geometry-related
algorithmic techniques to synchronize and build a backbone
sub-network.

A preliminary version of this paper appeared as [6].

Previous work.

Communication algorithms in SINR wireless networks
known in the literature have been designed under vari-
ous assumptions regarding the underlying models. Such
specifications are sometimes mutually exclusive so that the
respective algorithms cannot be directly compared. To put
our work in a proper context, we first clarify the relevant
aspects of wireless networks and then concentrate on the
broadcasting primitive.

We categorize communication models of SINR wireless
networks following a methodology popularized by Jur-
dziriski and Kowalski [21]. This methodology is based to
the following two independent criteria. One pertains to weak
versus strong “sensitivity,” which is also known as weak
versus strong “devices,” according to the terminology used
by Jurdzinski et al. [26]. The other relates to weak versus
strong “links” in reachability graphs, according to the ter-
minology introduced by Daum et al. [9]. These assumptions
together determine four different settings, which we explain
in detail in Sect. 2. Intuitively, weak-sensitivity makes it
impossible for a node to ever receive a transmission from
the borderline of its transmission range, while strong sen-
sitivity determines a success of a transmission entirely by
a suitable magnitude of the SINR ratio. Weak connectivity
means that all links that could possibly transfer a message
under favorable circumstances are considered as valid links,
unlike strong connectivity, in which borderline neighbors are
not connected by links. Along with these stipulations, addi-
tional assumptions determine which parameters of a network
are known to the nodes, so that they can be used in codes of
algorithms.

The weak-sensitivity and weak-connectivity model, which
is used in this work, was considered by Jurdzinski et al.
[26]. They proved the lower bounds €2 (n log N) and Q2 (D A)
on time to broadcast from a single-node start. These lower

bounds hold for randomized algorithms even when the nodes
know their coordinates in the plane. They also developed a
deterministic algorithm that accomplishes broadcast in time
O(min{DA log2 N,nlog N}). For this model, Jurdzinski
and Kowalski [20] gave a deterministic distributed algo-
rithms building a backbone from a synchronized start in
O(A polylog n) rounds. The algorithms presented in Jur-
dzinski and Kowalski [20] and Jurdzinski et al. [26] rely on
nodes knowing their position in a coordinate system.

For the model of weak sensitivity and strong connectiv-
ity, Yu et al. [35] gave broadcast algorithms operating in
times O(D +log? n) and O(D log? n) with high probability,
where the bound depends on how broadcast is initiated. These
algorithms additionally resort to a power-control mechanism.
This approach applies to broadcasting multiple messages and
was generalized by Yu et al. [36] to a scenario when nodes are
activated in arbitrary rounds. The model of wireless networks
used in the papers Yu et al. [35] and Yu et al. [36] incorpo-
rates additional parameters, with the suitable assumptions
on these parameters on which efficiency of the algorithms
depends; one could expect that in such environments even
more involved communication tasks might have solutions
with running time proportional to D, with other parameters
contributing sub-linear factors.

For the model of strong sensitivity and weak connectivity,
Daum et al. [9] gave a randomized broadcast algorithm oper-
ating in time O(n log® n). Compared to the algorithm in this
paper, the algorithm in [9] uses nearly exponentially more,
namely Q (n log® N), random bits per node. They showed a
lower bound €2(n), which holds in networks of diameter 2.

Finally, for the model of strong sensitivity and strong con-
nectivity, Jurdzinski et al. [22] gave a broadcast algorithm
working in time O(Dlogn + log?n) with high proba-
bility, which relies on nodes knowing their coordinates.
Jurdziniski et al. [23] gave another algorithm that works in
time O(D log? n) with high probability. The latter algorithm
does not rely on nodes knowing their coordinates, improv-
ing the performance of algorithms for this model given by
Daum et al. [9] for a suitable range of model parameters. A
solution in Jurdzinski et al. [23] was generalized to the wake-
up problem with non-synchronized start-ups by Jurdzinski et
al. [24]. For this model of strong sensitivity and strong con-
nectivity, Jurdzinski et al. [25] studied deterministic solutions
for the single-broadcast problem when nodes know their own
coordinates in the plane and those of their neighbors. Their
deterministic algorithm for a single-node start operates in
time O(D log2 n), and another deterministic algorithm for a
synchronized start operates in time O(D +log? ). No deter-
ministic algorithms for this model are known that do not rely
on the knowledge of coordinates of nodes in a coordinate
system in the plane and that are of comparable time perfor-
mance.
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Table 1 Time performance bounds on randomized broadcasting for the four sensitivity and connectivity settings

Strong connectivity: Weak connectivity:

Bounds & > & Ec = &
Strong sensitivity: Lower QD) T Q(n) [9]
g =0 Upper O(D lognlog®*! Ry) [9]; O(D log? n) [23] O@nlog?n) ¥ [9]
Weak sensitivity: Lower QD) * Q(min{DA, n}) [26]
e >0 Upper oD log2 n) * [35] On log2 n) this paper

The following parameters occur in the bounds: A denotes the maximum node degree in a communication graph, D is the diameter of this graph,
«a is the path loss, and R; is the maximum ratio between distances of neighbors in communication graph. It is assumed that nodes’ names are in a
range [1, N] such that N = O(n) and N is known to all nodes. The lower bounds marked with the dagger § follow by a distance argument. The
algorithm giving an upper bound marked with the asterisk * requires a power control mechanism and assumes &, = 2/3. The algorithm giving an
upper bound marked with i requires Q2 (n log3 N) random bits per node

Table 2 Time performance bounds to build a backbone in a randomized manner for four sensitivity and connectivity settings, with spontaneous
wake-up

Strong connectivity Weak connectivity

bounds & > & Ec = &
Strong sensitivity: Lower Q(logn) 129] Q(A) F120]
g =0 Upper O(log? n) [18] O(NA) ®
Weak sensitivity: Lower Qlogn) T [29] Q(A) *120]
& >0 Upper O(logn) * [38.,40] O(Alog’ n) this paper

The lower bounds marked with the dagger 1 hold in the model of radio networks, which represents interference through neighborhoods of nodes in
graphs of arbitrary topology. The upper bound marked with the asterisk * requires knowing the coordinates in the plane and the ability to exchange
them in messages and assumes that the parameter &, is greater than some absolute positive constant. The lower bounds marked with & holds even
with known node coordinates. The algorithm giving the upper bound marked with the diamond ¢ consists of executing single-node transmissions

in a round-robin manner O(A) times

We summarize known lower and upper bounds on time
performance of randomized broadcasting in Table 1 and
building backbone in Table 2.

Broadcasting can be considered with a limited goal to
inform only the neighbors in the communication graph.
Such local broadcasting in wireless networks was studied by
Barenboim and Peleg [2], Goussevskaia et al. [14], Kessel-
heim and Vocking [27], Yu et al. [37], Halldérsson et al.
[16], Halldérsson and Mitra [17] and Fuchs and Wagner [12].
Halldérsson et al. [19] studied broadcasting in dynamic wire-
less networks. Centralized algorithms for the SINR model
were surveyed by Goussevskaia et al. [15].

Broadcasting of multiple messages was considered by
Reddy et al. [31,32] and Yu et al. [35,36]. Chlebus et al.
[5] considered multi-communication primitives for radio
networks; that paper also used breadth-then-depth trees, sim-
ilarly as the broadcast algorithm in Sect. 4. Derbel and Talbi
[11] showed how to estimate node degrees in radio networks
with nodes initially not knowing their neighbors.

Scheideler et al. [33] gave an algorithm to find a dominat-
ing set in time O(log n). That algorithm relies on manipulat-
ing thresholds in physical carrier sensing. Halldérsson and
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Tonoyan [18] demonstrated how nodes in wireless networks
can leverage indirect information received during collisions
to infer neighborhoods and construct backbones; building on
this, they showed applications of backbones to various com-
munication problems in wireless networks. Moses and Vaya
[30] developed deterministic algorithms for multi-broadcast
and building backbones in wireless networks. Yu et al. [38]
considered distributed algorithms to construct dominating
sets in dynamic wireless networks. Zou et al. [40] studied
building backbones in wireless networks subject to adver-
sarial jamming. Constructions and applications of virtual
backbones and dominating sets in wireless networks were
surveyed by Yu et al. [39].

There has been a great variety of approaches to signal
strength and geometric decay in representations of wireless
networks. Some authors have sought to specialize SINR-like
settings to the Euclidean space, in order to leverage its spe-
cific topological properties, as for example, Avin et al. [1]
in their work on the SINR diagrams. Others have sought to
abstract from the coordinates in a plane but maintain a met-
ric space of bounded growth that defines distances, like in
the papers of Daum et al. [9] and Jurdziriski et al. [23]. Still
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others, like Bodlaender and Halldérsson [3] and Halld6rsson
et al. [19], attempted to abstract the geometry even further
and consider models that relax the properties of distance as
represented by metric spaces.

2 Technical preliminaries

Executions of algorithms are synchronous, in that they are
structured as sequences of rounds of equal duration. The size
of messages transmitted by nodes is scaled to the length of a
round, so that one message can be transmitted and received
in a round. We do not assume the existence of a global clock
giving the same consecutive round numbers to each node.

There are n nodes in a network. Nodes have unique names
assigned to them. Each node’s name is an integer in the range
[1, N1, for some positive N. We treat the numbers n and N
as independent parameters in formulas, subject only to the
assumption that N > n.

A broadcast algorithm disseminates some contents
throughout the network; this contents is referred to as a
rumor. Rumors and messages are also mutually scaled to
each other such that a message consists of at most one rumor.
A message may contain a sequence of control bits, whenever
needed, to help nodes coordinate their concurrent actions.
This set of restrictions on communication is often referred to
in the literature as of separate or bounded messages, which
comes from the interpretation that multiple rumors require
multiple messages, a separate message per each rumor. The
number of control bits per message in our algorithms is
always O(log N).

Models of wireless communication.

Networks are embedded in a two-dimensional Euclidean
space. Each node can be identified by its coordinates in a
Cartesian coordinate system. These coordinates determine
the Euclidean distance dist(x, y) between any pair of points
x and y.

The SINR interference model involves the following
parameters: path loss a > 2, ambient noise N > 0,
transmission success threshold f > 0, sensitivity ¢; and
connectivity &, such that 0 < &g < e, < 1. The transmis-
sion strength of a node v is a positive real number denoted
by P,.

If node v transmits and u is a different node then the sig-
nal strength of v’s transmission as reaching u is denoted
by P(v, u) and is defined as follows:

P, u) = P, -dist(v, u) "% . )

We will consider only uniform networks in which all trans-
mission strengths of nodes are equal, and denoted as P.

Let 7 be a set of nodes that transmit together in a round.
For any twonodes v and u, where v € 7 andu ¢ 7, the inter-
ference at u of this configuration is denoted by Z (v, u, 7)
and is defined as follows:

Iw,u,T)= Y Pw.u). )
weT \{v}

Observe that Z(v, u,7) = 0 if and only if 7 = {v}. The
signal-to-interference-plus-noise ratio in this configuration
is denoted by SINR (v, u, 7') and is defined as follows:

P, u)

SINR(v.u. T) = = -

3)

We say that node u hears node v in a round when the
following holds: (1) v transmits in this round, (2) u# does
not transmit in this round, and (3) u successfully receives
the message transmitted by v. A node u is in the hearing
range of node v if u can hear a message transmitted by v
in a round in which v is the only node in the network that
transmits. Nodes execute algorithms driven by the following
two kinds of events only: either hearing a whole message
from a node or not hearing a whole message from a node.
Nodes do not react to any other medium-sensing feedback
from the wireless network.

Next, we explain the categorization of models with respect
of sensitivity, which determines when nodes can hear trans-
mitted messages. Again, let a set of nodes 7 consist of these
nodes that transmit in a round, and let nodes v and u be such
thatve 7 andu ¢ 7.

In the model of strong sensitivity, a node u hears node v
in this round when the inequality SINR(v, u, 7)) > g holds,
where parameter f > 0 is a transmission success thresh-
old. This condition determines the hearing range of v as a
distance from v, which can be determined as follows. A dis-
tance d from which a message transmitted by a node v can
be heard by u is determined by the formula (3) and satisfies
the inequality

P.—dia > B 4)
N+Zw,u,T) — "

The maximum magnitude of such a distance d can be found as
follows. The ambient noise A is a fixed part of the left-hand
side of (4), but the interference part (2) can vary and it is min-
imized when Z (v, u, 7) = 0, which holds when 7 = {v}. It
follows that the maximum d attainable in (4) is determined by
setting Z(v, u, 7) to 0 and equals (P /(N B))'/%; we call this
quantity the network radius and denote by r. For the strong-
sensitivity model, the meaning of the network radius r is
such that a node u is in the hearing range of v if and only
if d(v, u) < r. In uniform networks, the network radius is
a number determined by a network that does not depend on
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a transmitting node, while acting as a single transmitter, nor
on listening nodes.
We may remark that if SINR(v, u, 7) > B then also

P.uw) > B-Tw,u,T)=4- Y Pw.u),
weT \{v}

because AV > 0. It follows that, in the model of strong sensi-
tivity, if 8 > 1 and anode u ¢ 7 hears a node v then node u
cannot hear any other node in 7. In this paper we assume
only that 8 > 0.

In the model of weak sensitivity, a node u hears another
node v in a round when v transmits and SINR(v, u, 7) > B
and dist(v, u) < (1 —&;) - r, where r = (P /(NB))!/% is the
network radius again. We use the notation R = (1 — &) - r
and call R the hearing radius.

The categorization of models into two classes of weak and
strong sensitivities (devices) was introduced by Jurdziriski et
al. [26]. Weak sensitivity may be justified by the fact that it is
often too costly for wireless devices to perform signal acqui-
sition continuously, due to the constraints of the technology
of wireless communication, see Goldsmith and Wicker [13].
An alternative is to wait for an energy spike, as represented by
the condition SINR (v, u, 7) > B. Once nodes experience it,
they may start sampling and correlating to synchronize and
acquire a potential packet preamble, see Schmid and Watten-
hofer [34]. After that they can detect signals as determined
by the formulas of weak sensitivity. Observe that if a node
wants to transmit to a distance of the network’s radius r,
then this node needs to be the only transmitting one in a net-
work, but when a range of desired transmission is restricted
to (1 — &) - r, then several nodes may succeed in transmit-
ting concurrently. In this paper, we use the model of weak
sensitivity.

There is a natural algorithmic interpretation of weak sensi-
tivity for wireless networks operating under the SINR regime.
Namely, such a network could be understood as a unit disc
graph with transmission range R, where R is the hearing
radius, which is further restricted by the property that only a
“dominating” signal from a station within the transmission
range can be heard. One may observe that algorithms for
weak-sensitivity wireless networks could employ techniques
similar to the ones used in unit disc graphs to develop trans-
mission schemes relying on sets of transmitters positioned
relatively “sparsely” throughout the network. Guided by this
observation, we use strongly selective families with suitably
chosen parameters to implement message exchanges among
the nodes.

Graphs.

Let G = (V, E) be a simple graph. A set of vertices M C
V is independent when no two vertices in M are connected
by an edge in E. An independent set of vertices of G is
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maximal independent (or is a MIS) when it is maximal in
the sense of inclusion among all independent sets. A set of
vertices B C V is dominating in G when every vertex not
in B is adjacent to at least one vertex of B. A dominating
set in minimal dominating when it is minimal in the sense of
inclusion among all dominating sets. A maximal independent
setin G is also a minimal dominating set of G.

We consider the length of a path to be the number of hops,
so the length of each edge is 1. A shortest path connecting two
members of a maximal independent set that does not include
at least one other member of the maximal independent set
has length at most three, and the number three is smallest
as such a bound in general. In other words, if there are at
least two members in an independent set, then a vertex in
this independent set is connected to some other member by
a path of length at most three.

Communication graphs.

A wireless network differs from wireline ones by lack-
ing physical links. Wires used as links allow to interpret
the network as a graph with nodes acting as vertices and
links serving as edges. Associating a graph with a network
helps to interpret communication algorithms as working in
a clean abstract model of graphs, where information flows
through edges. A similar benefit could be obtained for wire-
less networks by associating graphs with them. Such graphs
are called “communication graphs” in this paper. The nodes
serve the purpose to be vertices of communication graphs,
but what determines edges is less apparent.

The communication graph of a wireless network is defined
as follows: all the network’s nodes are its vertices, and for any
two nodes u and v, they are connected by an edge in the com-
munication graph when the inequality dist(u, v) < (1—e&.)-r
holds, where r is the network’s radius and a connectivity coef-
ficient ¢, satisfies 0 < g5 < e, < 1. We say that nodes u and
v are k-hops away from each other, or are k-hop neighbors,
when £k is the length of a shortest path connecting u to v in
the communication graph. A simultaneous transmission of
two or more neighbors of a node v is called a collision at
this node v. A collision at v does not produce any special
medium-sensing feedback at v, but results in no message
successfully received, for 8 > 1/2 + 1/N.

If e = & then the model is of weak connectivity, and if
&c > &g then the model is of strong connectivity. In the model
of weak connectivity, any two nodes u and v are connected
by an edge in the communication graph if the inequality
dist(u#, v) < R holds, where R is the hearing radius.

The categorization of wireless networks with respect to
weak and strong connectivity was introduced by Daum et
al. [9]. The problem of broadcasting allows to differenti-
ate between the two models. Strong connectivity allows to
develop a broadcast algorithm of running time that depends
linearly on the diameter D while other parameters contribute
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Fig. 1 A depiction of a pivotal grid. The circle of radius R centered
at the square dot point is the hearing range of this point. The round
dot point in box 1 belongs to the same box as the center of the circle.
The dot point in box 6 belongs to the 3 x 3 square centered at the box
containing the center of the circle. The dot point in box 23 belongs to
the 5 x 5 square centered at the box containing the center of the circle

sublinear factors, see Table 1. In contrast to that, weak con-
nectivity demand time that s either 2 (n) or Q (min{ DA, n}),
depending on sensitivity.

We assume the models of weak sensitivity and weak
connectivity and use hearing and communication graphs
as determined by these models. To simplify notations, we
denote the parameter ¢, = &5 by ¢.

Grids and boxes.

Communication algorithms for wireless networks with
nodes interpreted as points in a Euclidean space may be
designed to leverage the geometric properties of this space.
For a constant b > 0, we consider a grid of lines parallel to
the coordinate axes that partition the space into b x b disjoint
boxes, and such that (0, 0) is an intersection of a horizontal
line and a vertical one; see Fig. 1 for an illustration. Specif-
ically, a box determined by its internal point includes the
points on its left side without the top endpoint and the points
on its bottom side without the rightmost endpoint, and the
other points on the boundary are excluded. Two boxes are
adjacent when their interiors are separated by a line of the
grid. Two boxes share a corner when they share exactly one
point on their boundaries. The grid distance between two
boxes is understood in the Manhattan-metric sense, in that it
is a natural number equal to the minimum number of hops
between two adjacent boxes needed to move from one of
them to the other. In particular, adjacent boxes are of dis-
tance 1, and there are 4j boxes of grid distance j from any
box.

Ifb = R/ﬁ, where R = (1 —¢) - r is the hearing radius,
then the grid is called pivotal. We will use only the pivotal
grid in this paper. Any two nodes in a box of the pivotal

grid are within the Euclidean distance R from each other. It
follows that there are at most A + 1 nodes in a box, since all
these nodes induce a clique and A is an upper bound on the
degree of a vertex in a communication graph.

All the neighbors of a vertex v belong to 25 boxes in the
“S x 5 square” of boxes centered at the box of v. This is
depicted in Fig. 1, where the square dot represents such a
vertex v. To verify this, observe that one hop in horizontal
direction from a vertical edge of a box covers distance at
most R, which is less than the width of two columns of boxes,
because R < V2R =2 75 while 5 =2+ 1+2.

All the vertices 2-hop away from a vertex v belong to 49
boxes in the “7 x 7 square” of boxes centered at the box
containing v. To verify this, observe that two hops in hori-
zontal direction from a vertical edge of a box covers distance
at most 2R, which is less than the width of three columns of
boxes, because 2R < 3 - %, and we have 7 =3 + 1 + 3.

All the vertices 3-hop away from a vertex v belong to 121
boxes in the “11 x 11 square” of boxes centered at the box
containing v. To see this, observe that three hops in horizontal
direction from a vertical edge of a box cover distance at most
3R, which is less than five columns of boxes, because 3R <

R —
S'E,and]1_5+l+5.

Backbones.

A backbone of a network is a subnetwork that facilitates
global communication tasks, similarly as a spanning tree
does. Given a communication graph G, its subgraph H that
is a backbone of G is required to be connected, similarly
to a tree, but rather than spanning G it is a dominating set
of G. A backbone is required to have asymptotically the same
diameter as that of G, so that implementing broadcast of a
rumor by flooding inside a backbone does not incur an extra
distance to cover. At the same time, degrees of nodes in a
backbone are required to be small, which facilitates collision
resolution is wireless communication. The notion is more
involved though, because each node is additionally equipped
with specialized algorithms that facilitate using a backbone
efficiently. A precise specification is as follows.

Consider a network with a communication graph G of
diameter D. A subnetwork H of G is an induced subgraph
of G. Backbones are subnetworks that have the suitable topo-
logical properties along with local algorithms associated with
nodes. We say that a subnetwork H is a backbone of G when
it has the following topological properties:

The nodes of H form a connected dominating set of G.
Each node’s degree in H is O(1).

The diameter of H is O(D).

For each node v in G \ H, there is exactly one neighbor w
in H assigned to v; the node w is called a representative
of v and v is said to be associated with v.

.
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The definition above refers to implicit constants in the
asymptotic notation that do not depend on the size of the
communication graph G. A method of construction of back-
bones is expected to assign representatives to neighbors of
the obtained backbone in some systematic manner.

There are two local algorithms INTRAp and INTER gy that
provide communication functionality of a backbone H for
a network G, that implement intra-backbone communica-
tion among the nodes in the backbone and inter-backbone
communication between nodes not in the backbone and their
representatives in the backbone, respectively. These algo-
rithms have the following functionality:

Algorithm INTRA g : It facilitates exchanging messages
between each pair of neighbors in H. In the process of
executing INTERy, each message received by a node
v € H is also delivered to all the nodes in G associated
with v, that is, to the nodes for which v is a repre-
sentative. Algorithm INTER g : It facilitates delivering a
message from a node to its representative.

The notion of a backbone we use is defined similarly as in
Jurdzinski and Kowalski [20]. Backbones can be used as a
generic tool for many communication and computation tasks
in the network, see Halldérsson and Tonoyan [ 18], Jurdzinski
and Kowalski [20], and Yu et al. [39].

Bare-bones algorithms.

The following restrictions on algorithms for wireless com-
munication make them bare-bones: each node knows only its
name and the numbers N and A, and additionally the size of
messages is constrained such that a single message carries
O(log N) bits. The motivation for studying communication
algorithms under bare-bones constraints is that the restric-
tions imposed on the algorithms make them easily portable
and the obtained performance bounds widely applicable.

Algorithms with similar bare-bones restrictions were
considered by Jurdzinski et al. [23] in the case of strong-
sensitivity and strong-connectivity of wireless networks,
while we consider bare-bones algorithms for a combina-
tion of weak sensitivity and weak connectivity of wireless
networks. The algorithms in Jurdzifski and Kowalski [20]
and Jurdzinski et al. [26], being also for weak-connectivity
and weak-sensitivity of the wireless communication, were
designed with the assumption that nodes know their coordi-
nates in a plane; in this work we develop efficient algorithms
that do not use this information.

Rooted spanning trees.

Consider a simple connected graph G = (V, E) with a
distinguished source vertex. The source generates a token
which traverses the graph and in the process builds a sub-
graph. Here “traversal” means that the token hops from a
visited vertex to its neighbor by traversing the connecting
edge. The specific manner of token traversal and construct-
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ing the subgraph that we use is called breadth-then-depth and
is described as follows.

The source generates a token, and so becomes a first vertex
visited by the token. Vertices are categorized into discovered
and hidden. Initially, the source is discovered and every other
vertex is hidden. Suppose that the token visits a vertex v. If
this is a first visit of the token then all the neighbors of v that
are still hidden become discovered and the edges connecting
them to v become added to the constructed subgraph; the
newly added vertices become the children of v and vertex v
becomes their parent. The source vertex is considered to be
its own parent and is a root. The vertex v dispatches the token
to one of its children that has not been visited by the token
yet, if such vertices exist. If the token comes back again to v
and there are still children of v not visited by the token then v
dispatches the token to one of them, and otherwise sends the
token back to its parent. The traversal terminates when the
source is about to send the token to itself. A tree produced
during a breadth-then-depth traversal of a graph is called a
breadth-then-depth spanning tree. Such a tree is rooted at the
source.

Chlebus et al. [5] used breadth-then-depth trees in their
distributed algorithms in radio networks. Next, we summa-
rize the relevant propertied of breadth-then-depth traversal
as Fact 1.

Fact1 The breadth-then-depth traversal of a simple con-
nected graph creates a spanning tree of the graph. The token
visits the vertices by traversing the obtained spanning tree in
a depth-first manner.

Proof The vertices and edges that are added to the con-
structed graph belong to the original traversed graph, so the
constructed graph is a subgraph. We show next that the edges
connecting children to parents make a subgraph that is con-
nected, has no cycles, and it includes all the vertices.

Connectivity follows from the fact that edges traversed
by a token determine a walk, which creates a path to the
source vertex after being pruned of repetitions of edges. A
cycle cannot occur because an edge connects two vertices
such that when one of them was first visited by the token
then it was already discovered while the other became its
child because it was still hidden. Since the created subgraph
is connected and acyclic, it is a tree.

We show now that all vertices become discovered, and
then they get connected as children to their respective parents.
If there is only one vertex then it is the source and it belongs
to the tree; otherwise let w be a vertex different from the
source. Let vy, ..., v be the children of the source, in the
order in which the source sends the token to them. Observe
that if a token is sent by the source to its child then it comes
back to the source through the same child, as otherwise the
token would traverse a cycle. Let v; be such that i is smallest
with the property that there is a path connecting v; with w
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that does not pass through the source: this path traverses
only undiscovered vertices before the token visits v;. When
the token visits v; and starts traversing the graph then it will
discover and visit w, because the token will discover and
visit all the vertices on the path to w. Since all the vertices
are incorporated into the created tree, it is a spanning tree.
The traversal of the spanning tree, as it unfolds for the
traveling token, is specified by the depth-first search traver-
sal principle: the token explores all the discoverable vertices
before it returns to the parent. O

Sets and sequences of sets

For a natural number N, the notation [/N] denotes the set
{1,2, ..., N}. We consider subsets of [N] and sequences of
such subsets; the notation S will denote a sequence of sub-
sets of [NV]. Such a sequence S = (Sp, ..., S;—1) of subsets
of [N] consisting of ¢ terms is said to be of length t. By writ-
ing B € S we mean that B is a term of such a sequence S,
as if S were an unordered family of sets.

We identify a sequence of sets S = (Sp, ..., S;—1) with a
broadcast schedule S’ consisting of # consecutive rounds, in
which a node v transmits in round i if and only if v € §;, for
0 <i < t. Such a broadcast schedule is said to be performed
by executing S.

Let S be a sequence of subsets of [N]. Forasubset A C N
and a € A, we say that a is selected from A by S if there is
aset S € Ssuchthat ANS = {a}.

Let N, x and y be positive integers such that y < x < N.
We say that a sequence S of subsets of [N] is a (N, x, y)-
selector if for each set A C [N] of x elements there are at
least y elements in A that can be selected from A by S. For
any fixed ¢ such that 0 < ¢ < 1, there is an (N, x, {x)-
selector of size O(x log N), see Chlebus and Kowalski [4]
and DeBonis et al. [10].

For an integer ¢ > 0, a sequence S is (N, ¢)-strongly-
selective if, for every non-empty subset Z of [N] such that
|Z| < ¢, and for each element z € Z, this z can be selected
from Z by S. For each ¢ > 0 such that ¢ < N, there exists
an (N, c)-strongly-selective sequence of length O(c? log N);
see Clementi et al. [7].

Whenever we use combinatorial structures such as selec-
tors or strongly-selective sequences in algorithm design, then
it is assumed that they are a part of code.

Odds and ends.

Performance bounds of an algorithm hold with high prob-
ability if, for any constant d > 1, the performance bounds
can be made to hold with probability at least 1 — n=¢ by
suitably adjusting constants in a code of the algorithm. We
assume that the numbers n, N and A are all powers of 2, for
the simplicity of exposition; in a general case, these parame-
ters can be rounded up to the nearest power of 2. The notation
lg x means logarithm of x to the base 2.

3 Algorithmic tools

We present building blocks of algorithms and concepts and
tools used in deriving their performance bounds.

We propose a construction of an induced subgraph H of
a simple graph G such that H is connected dominating,
which we call shortcut connecting. Start with a maximal
independent set M as an initial dominating set; it will grow
to eventually make the vertices of a connected subgraph H.
We grow H by iterating the following process. Suppose that
there exist two vertices v and vy in M that are connected in
G by a path of length at most three but they are not connected
in H by a path of length at most three: add to H either one
or two vertices along with all the newly induced edges that
provide a missing shortcut such that v; and v, are now con-
nected in H by a path of length at most three. The vertices
added this way are called connectors for M. The final graph
H consists of the initial maximal independent set M and all
the added connectors.

Proposition 1 For a simple connected graph G = (V, E)
of diameter D and a maximal independent set of vertices
M C V, if an induced subgraph H is obtained from M by
shortcut connecting then H is connected, its vertices make a
dominating set of G, and the diameter of H is at most 3D +2.

Proof The set of vertices of the subgraph H is dominating
in G because M is already such. To show it is connected,
suppose otherwise, to arrive at a contradiction. Each con-
nected component of H includes at least one element of M.
This is because otherwise adding any single vertex from this
component to M would make it larger and still independent.
Consider a shortest path in G connecting two vertices vy and
vy in M that are in different connected components of H . This
shortest path does not include vertices from M, by its mini-
mality. So v; and v, are connected by a path in H of length
at most three. This means that H is not the final subgraph
produced by shortcut connecting, which is a contradiction.
Next we estimate the diameter of H. Take a simple path
P = (v1,...,v) in G that has both endpoints in H. For
each vertex v; on P if v; € M then denote v; also by w;
and otherwise if v; does not belong to M then let w; be a
neighbor of v; that belongs to M. Consider a sequence of
vertices (wy, ..., wg). For each pair w;, w; 41, these vertices
are connected by a path of length at most three in G, by
their selection. Since both w; and w;| are in M, they are
connected by a path of length at most three in H. It follows
that for each path in G connecting two vertices in H of length
L there exists a path in H connecting the same pair of vertices
of length at most 3L + 2. O

The following Proposition 2 gives a useful estimate of
signal strength with our assumptions about the model of com-
munication.
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Proposition 2 In the model of weak sensitivity and weak con-
nectivity, if a node v transmits and another node u is such that
u and v are neighbors in the communication graph then the
signal strength at u of this transmission is at least (14+&)N B.

Proof The signal strength P (v, u) at u of a transmission is
given by the formula (1). The distance between u and v is at
most R, by the specification of edges of the communication
graph. The signal strength can be estimated as follows:

P,u) > P -R“
=P -(1—&) %(P/NBH/)™ > (1 +eNB,

where weused (1 — &)™ > 1 +esforO0 <e < landa > 1.
O

The communication graph could be discovered by the
nodes of a wireless network by having them transmit one
by one in a systematic manner: when a node u hears a
message from another node v that is the only transmitter
in the whole network then it may come from a neighbor
in the communication graph. To determine if the inequality
dist(u, v) < (1 — &) - r holds, the node u could compute
the distance dist(u, v) by resorting to the nodes’ coordi-
nates, assuming the nodes know their own coordinates and
include them in transmitted messages as a “‘signature” iden-
tifying the sender, and also that they know the network
radius r = (P/(NB))Y/* along with the connectivity coef-
ficient e.. After a preprocessing that allows all the nodes to
learn and remember their neighbors in the communication
graph, this could be used in distributed algorithms to con-
struct subgraphs of the communication graph (like backbone)
when such algorithms rely on neighbors in the communica-
tion graph exchanging messages. Namely, when a message
is heard and it does not come from a neighbor in the commu-
nication graph then it could be ignored. A simpler approach
suffices in the model of weak sensitivity and weak connectiv-
ity, as is summarized in the following Proposition 3. This fact
justifies why nodes executing algorithms we develop need to
know so little, and in particular, they do not need to know
their positions in a system of coordinates.

Proposition 3 In the model of weak sensitivity and weak con-
nectivity, if a node u hears a message transmitted by a node v
in a round then u and v are neighbors in the communication
graph.

Proof Let7T be the set of nodes transmitting in around, where
v € 7. Thenode u hears the message transmitted by v if both
inequalities SINR (v, u, 7) > § and dist(v, u) < R hold, by
weak sensitivity. The nodes # and v are neighbors in the
communication graph when the inequality dist(v,u) < R
holds, by weak connectivity. O
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Shortcut connecting in communication graphs.

We obtain a connected dominating set by adding certain
vertices to an independent set of a wireless network. The
resulting subgraph of the communication graph has proper-
ties useful for implementing communication algorithms in
wireless settings.

Proposition 4 For a connected communication graph G =
(V, E) of a wireless network and a maximal independent set
of vertices M C V in G, if a subgraph H of G is obtained

Jrom M by shortcut connecting then there is a constant upper

bound on node degrees of H and the number of nodes in H is
O(m), where m is the size of the smallest connected subgraph
of G dominating in G.

Proof Eachbox of the pivotal grid contains at most one mem-
ber of M. A node has neighbors in at most 25 boxes, including
its own. A member of M is connected via connectors to at
most 24 other members of M. A node that is a connector
plays this role for at most 24 x 25 pairs of members of M. It
follows that there is a constant upper bound on the number
of nodes in H in one box of the pivotal grid. This gives a
constant upper bound on degrees of every node of H.

Let K be an arbitrary set of nodes of G such that K is
dominating, the subgraph induced by K in G is connected,
and the size of K is smallest with these two properties. We
observe that each node v of K is connected to a constant
number of nodes in H. This is because the neighbors of v
in H have to belong to at most 25 boxes of the pivotal grid,
determined by the box of v, and there is a constant upper
bound on the number of nodes in H in one box of the pivotal
grid. It follows that the size of H is at most a constant multiple
of the size of K. O

Next we discuss the efficiency of using strongly selective
sequences to facilitate communication among neighbors in a
communication graph. The following Proposition 5 states a
critical technical insight that we will use to reason about prop-
erties of wireless communication in Euclidean space with the
weak sensitivity and weak connectivity. A similar approach
was applied in Jurdziniski et al. [26]. We assume that some
nodes are active in that only they can transmit.

Proposition 5 [n the model of weak sensitivity and weak con-
nectivity, if there are at most z active nodes per box, then there
is a number c such that ¢ = ©(z>) and with the property that
if all the active nodes execute an (N, c)-strongly-selective
sequence, then, for each active node v, there is a round in
which the node v is heard by all its neighbors in the commu-
nication graph.

Proof Let us define n = 8z/(e/N), where z is smallest such
that there are at most z active nodes in each box and § > Oisa
constant parameter to be determined later. The quantity n is a
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linear function of z, since ¢ and " are both fixed parameters
in wireless networks.

Consider an active node v in a network under considera-
tion. Let the other active nodes in the boxes within the grid
distance of at most 1 of the box of node v make a set A. The
number of such active nodes is |[A| = O(zn?). Let § be large
enough so that all the neighbors of v are in A.

We want a strongly selective sequence such that when it
is executed then there is a round in which v transmits but
none of the nodes in A does. To this end, it is sufficient
to take an (N, c)-strongly-selective sequence, where ¢ =
K zn? with a sufficiently large constant K > 0. Let ¢ denote
this round, counting from the first round of executing the
strongly-selective sequence.

We estimate the total interference at a neighbor of v com-
ing from the active nodes that are not in A. There are 4;
boxes of distance j > 0 from the box of v, each with at
most z nodes transmitting among the active nodes. The sig-
nal strength from each of these nodes, at any node that is a
neighbor of v, is ®(j ~%). The total interference at a neighbor
of v from the transmitting nodes not in A, as specified in (2),
is bounded from above by a quantity proportional to

2y J i =0T Y i) =06, 5)

Jj>n j=1

by the estimate ijl jl=* = O(1), for « > 2. The total
interference at a neighbor of v, as expressed by (5), could
be made smaller than e\’ by choosing a sufficiently large 8
in the specification of 7, since 1/n = eN/(8z). It follows
that the total interference plus noise at such a node is at most
N+eN =(1+e)N.

The signal strength of a neighbor of v in the communica-
tion graph is at least (1 + &)/ B, by Proposition 2. The value
of SINR at such a node, according to the defining Eq. (3),
is at least 8. This means that the conditions of hearing are
satisfied, so that node v is heard by all its neighbors in the
communication graph in round 7. O

In applying Proposition 5, we will use (N, c)-strongly-
selective sequence for sufficiently large c, with ¢ being either
c=0{)orc = @(log3 N), depending on whether z =
O(1) or z = O(log N), respectively, and of the respective
lengths O(log N) and O(log’ N).

4 Broadcasting to coordinate start

We present a randomized algorithm for a single-source
broadcast. Nodes other than the source join an execution only
after they get activated by receiving messages. A “rumor” that
the source wants to disseminate among all the nodes fits into

a message that can be transmitted in one round and consists
of O(log N) bits of information.

The broadcast algorithm we develop may be used to syn-
chronize a network. This can be accomplished by forwarding
a counter of rounds along with each message generated by
the broadcast algorithm. Such a counter is inherited by each
awoken node and is incremented with each round of broad-
casting. A predetermined threshold for the counter values
may be established, determined by the running time of broad-
cast, such that when the counter reaches this threshold then
this indicates reaching a synchronized start. Once such a
synchronized-start round is reached, an algorithm designed
for a synchronized start can be invoked simultaneously by
all the nodes, like the backbone algorithm given in Sect. 5.

The broadcast algorithm involves a token traversing the
network by hopping along the edges of its communication
graph. The token is initiated by the source node and performs
a breadth-then-depth traversal, as summarized in Fact 1 in
Sect. 2. Nodes do not know their neighbors in the communi-
cation graph when the traversal starts and they need to learn
them to be able to control the moves of the token. Discover-
ing edges of the communication graph and sending a token
across them is accomplished by sending messages, so the
token traverses the edges of the communication graph of the
wireless network, by Proposition 3.

We will use two auxiliary randomized distributed routines
to coordinate movements of the token. They will be used to
implement a breadth-then-depth traversal and we use the rel-
evant terminology as explained in Sect. 3. One is to estimate
the number of hidden neighbors of a node in the communi-
cation graph. The other is to discover the hidden neighbors,
based on knowing an estimate of their number. The two aux-
iliary algorithms are discussed in the next two Subsections.

4.1 Estimating the number of hidden neighbors

We discuss arandomized procedure to estimate the number of
hidden neighbors. The procedure is initiated and coordinated
by a node, denoted s, when it holds the token in the course
of its traversal of the network. Only the nodes of distances
at most R from S participate, where R is the hearing radius,
since this distance determines neighborhoods in the commu-
nication graph in the weak-connectivity case. The procedure
is called ESTIMATE- HIDDEN. Its pseudocode is in Fig. 2.
The node s estimates the number of hidden neighbors by
counting messages it hears and comparing the outcome to
some threshold value. The hidden neighbors of the node s
execute 1 +1g N stages. In stage i, a hidden neighbor iterates
the inner loop d Ig N times. A node transmits in one iteration
of the inner loop in stage i with probability 2/, indepen-
dently from other nodes. If k is the latest stage for which the
number of messages heard by s is at least d g N - 2~* then
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Fig.2 Pseudocode for a node s
and its neighbor v.

procedure ESTIMATE-HIDDEN

Transmissions of a dummy
message are performed by v and
heard and counted by s.

Constant d is a parameter to be 3. for i <~ 0 tolgN do
if v is a hidden neighbor of s then
for j< 1todlgN do
v carries out a random trial with probability 2% of success
if a success occurs then v transmits
if s hears a message at least 27° - dlg N times in this stage then k < 4

determined in analysis. The
number 2¥ returned by s is
interpreted as an approximation
of the number of hidden
neighbors of s

4. return 2F at s

1. s initializes k < 0
2. s transmits a message inviting hidden neighbors to participate

/* stage i x/

node s considers the number 2¥ to be an upper bound on the
number of hidden neighbors.

Lemma 1 Foreacha > 0, if p > 1 is the number of hidden
neighbors of s then the number 2 returned by algorithm
ESTIMATE- HIDDEN satisfies p < 2K < 2. p with probability
at least 1 —n=%, for a sufficiently large parameter d > 0 and
all sufficiently large n.

Proof The procedure operates by nodes exchanging mes-
sages, which always arrive at a node from neighbors in the
communication graph, by Proposition 3.

Let the interval of integers [2, 2! 1€V — 1] be partitioned
into disjoint segments as follows:

[2,31,[4,7], ..., 120,200 — 1, ..., [2'eN 2lHeN _q] .

The number p is in precisely one of these ranges. Let £ be
such that p € [2¢, 2¢+1 — 1], where ¢ > 1.

The probability that a specific hidden neighbor of s trans-
mits during stage £, while the other hidden neighbors do not
transmit, can be estimated as follows:

1 1yl 1 1\2'%
R N
20\ 2t 2 2!

1 12! 1 1
_(1__> > .
2¢ -

because p < 2¢F!. The probability that exactly one hidden
neighbor of s transmits is at least

1

1
p-—. —_—

1

because p > 2¢ . Let us define an indicator random variable
X7 such that X! = 1 when a single transmission occurs in

trial j of stage i, otherwise X lj = 0. The estimate of (6)

can be interpreted to mean that Pr(X J = 1) > 2% Define a
random variable X; as follows:

Xi= Y X/

jeldlgN]
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By the linearity of expectation, the following inequality
holds:

E[X,>=2"*dIlgN.

By the Chernoff bound, the number of successful transmis-
sions received by node s in stage ¢ of algorithm ESTIMATE-
HIDDEN is smaller than 274 g N with probability that is at
most n~2¢, for sufficiently large d. It follows that the inequal-
ity 28 > p does not hold with a probability that is at most
n=2a,

Consider a stage i of the algorithm such that £ +7 <i <
1 4 1g N. In a single round of this stage, the probability that
there is at least one transmitting node is at most

p-27<p- 277 <276,

because p < 2¢F!. Thus the expected number of rounds with
at least one transmission in stage i is smaller than d 1g N -276.
By the Chernoff bound, the number of times node s hears a
message in stage i is at least 4 1g N - 27> with a probability
at most n 37, for a sufficiently large d. The number of such
stages is at most lg N. By the union bound, some of these
stages result in producing at least d 1g N - 27> messages that
are heard with probability at most Ig N - n~3¢, which is at
most n~2¢ for sufficiently large n. Therefore, the inequality
2% < 2 p does not hold with probability at most n =24,

We conclude, by the union bound, that both the inequali-
ties p < 2k <23, p hold with probability at least 1 —n~¢, for
a sufficiently large parameter d and all sufficiently large n. O

4.2 Discovering hidden neighbors

Let us assume that we have an upper bound x on the size p of
the hidden neighborhood of a node s, where p < x < 25 p.
The node s could obtain such an estimate x by executing
procedure ESTIMATE- HIDDEN presented in Sect. 4.1. Given
such a bound x for a node s, a routine DISCOVER(x) allows
the node to learn its neighborhood in O(x log N) rounds, as
we show next in Lemma 2.
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Fig.3 Pseudocode for a node s.
The number x is an upper bound

procedure DISCOVER(z)

on the number of hidden
neighbors, it is a power of 2 and
is passed as an argument. The
used selectors are of length
O@2 /xlog N) and are part of
code. The discovered neighbors
become children of s in a
breadth-then-depth tree

1. initialize list of discovered neighbors R < () at s
2. for j=0,1,...,1gz — 1 do
notify neighbors v of s:
if v is hidden then v starts executing (N, 2 7z, 277~ 1x)-selector

during executing a selector by neighbors:
if a name v is heard then v gets discovered: node s adds v to R

/* stage j =/

notify all neighbors discovered in this stage j:
s transmits their names one by one
3. return R as the list of discovered neighbors at s

Pseudocode of procedure DISCOVER is given in Fig. 3.
The procedure works by repeating stages lg x times, each
stage an iteration of the for-loop, with the goal to decrease by
half an estimate on the number of hidden neighbors. This in
turn is accomplished by having the hidden neighbors execute
selectors of lengths determined by stage numbers.

Lemma 2 If a node has at most x hidden neighbors that an
execution of DISCOVER(x) makes this node learn all its hid-
den neighbors in time O(x log N).

Proof The procedure DISCOVER operates by nodes exchang-
ing messages. A transmitted message always hops from a
node to its neighbors in the communication graph, by Propo-
sition 3.

During executing procedure DISCOVER(x) by a node s, at
most x/2 nodes remain hidden after the first stage, byt the
definition of selectors. This pattern continues, such that after
a jth stage the number of hidden neighbors is at most x /2771
Indeed, the proof is by induction on j. We just argued that it
holds at the end of the execution of loop “for” applied for j =
0, thus assume that it holds for some j > 0. By the definition
of (N,27/x,27/=x)-selector applied to the set of hidden
neighbors, of size at most x / 2J by induction, at most x / 2J—1
of them remain unselected by the selector, hence hidden.
The lengths of these selectors decreases geometrically, so
the lengths of the stages sum up to O(x log N). O

4.3 Algorithm for broadcasting

We present an algorithm to have a token traverse the net-
work. The algorithm is called TRAVERSE- TO- BROADCAST.
It is summarized as a pseudocode in Fig. 4. The token can
carry any contents piggybacked on it with the goal to broad-
cast it. A traversal is initialized by the node which is the
source of a broadcast message. There is no prior coordina-
tion among the nodes of the network to participate in an
execution. The token’s traversal involves building a breadth-
then-depth spanning tree in the communication graph, rooted
at the source node, and the token traverses it in a depth-first
manner, according to Fact 1.

When the algorithm is invoked then nodes do not know
their neighbors yet. Each node uses the procedures ESTIMATE-
HIDDEN and DISCOVER to discover the hidden neighbors in
the communication graph. If a node hears a message from a
neighbor that is executing ESTIMATE- HIDDEN with an invi-
tation to its hidden neighbors to join in disclosing themselves
and becoming children in a breadth-then-depth tree, then this
is a first signal the node obtains that a broadcast has been
initiated. Upon a token’s visit to a discovered neighbor, the
visited node creates a list of its hidden neighbors just to be
discovered. The token will be dispatched to visit these nodes
one by one after each return. When the list of the discovered
neighbors gets exhausted, the token is returned to the parent
node from which it arrived. If the token returns to the ini-
tiating source node and all its neighbors have been already
visited by the token then the traversal terminates.

Theorem 1 Algorithm TRAVERSE- TO- BROADCAST accom-
plishes a broadcast from a single-node start in O(nlog? N)
rounds with high probability. Each node uses O(log> N) ran-
dom bits.

Proof Each node obtains a correct upper bound on the num-
ber of hidden neighbors with high probability when executing
ESTIMATE- HIDDEN, by Lemma 1. If the bound holds true
then procedure DISCOVER identifies the hidden neighbors
correctly, by Lemma 2. The token’s traversal is implemented
by nodes exchanging messages, and this always occurs only
between neighbors in the communication graph, by Proposi-
tion 3. The token traverses the obtained breadth-then-depth
spanning tree, by Fact 1, and accomplishes broadcasting in
the process.

Now we estimate the running time. Each node exe-
cutes procedure ESTIMATE- HIDDEN and DISCOVER once,
by the pseudocode in Fig. 4. These procedures are exe-
cuted sequentially, started by receiving the token for the
first time. Executing ESTIMATE- HIDDEN takes O(log> N)
rounds, since it consists of two nested loops, by the pseu-
docode in Fig. 2, each taking O(log N) iterations. Therefore
the total time spent on executing ESTIMATE- HIDDEN is
O(nlog? N) with high probability. A node participates only
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Fig.4 Pseudocode executed by
anode s upon receiving a token

algorithm TRAVERSE-TO-BROADCAST

while holding it. The source
initiates a token and is the first
node holding the token

1. upon receiving and holding the token for the first time:
if s is different from the source then
record the name of the node from which the token arrived as parent

execute procedure ESTIMATE-HIDDEN

execute procedure DISCOVER(z)

/* returns an upper bound x on the number of hidden neighbors x/
/% returns a list R of discovered neighbors %/

2. upon receiving and holding the token:
if the token arrived from a node v € R then remove v from R
if R nonempty then pass the token to a node in R else
if s is different from the source
then return the token to the parent and exit

else exit

algorithm BACKBONE-SYNCHRONIZED-START

stage 1: call FIND-MIS

stage 2: call CONNECT-T0-MIS

stage 3: build an implementation of INTRA
stage 4: build an implementation of INTER gy

Fig. 5 Pseudocode for all nodes to start simultaneously. Procedure
CONNECT- To- MIS starts from the maximal independent set found by
FIND- MIS

once as a hidden neighbor of a node executing DISCOVER.
The sum of upper bounds on the number of hidden neigh-
bors is at most 251 with high probability, by Lemma 1. It
follows that the time spent on all the executions of DISCOVER
is O(nlog N) with high probability.

Randomness is used only in procedure ESTIMATE- HIDDEN.

Lemma 1 gives the needed estimates on probability. A node
performs O(log” N) experiments, each requiring O(log N)
random bits. O

5 Backbone from synchronized start

We develop arandomized algorithm to build a backbone from
a synchronized start, which means that all the nodes begin
an execution together. The algorithm runs in O(Alog N +
log® N) time, where ¢ is a positive constant. The running
times of algorithms INTERy and INTRA g, associated with a
backbone, are O(log N) and O(A log N), respectively.

The algorithm is called BACKBONE- SYNCHRONIZED-
START. Its pseudocode is in Fig. 5. An execution begins
by calling two procedures. One of them elects a maximal
independent set of nodes in the communication graph; we
present it in Sect. 5.1. The other one inter-connects the nodes
in the obtained maximal independent set into a connected
dominating and also connects the remaining nodes to it; this
procedure is discussed in Sect. 5.2. The execution concludes
with finding transmission schedules for algorithms INTER
and INTRAy associated with the backbone; the details are
given in Sect. 5.3.
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5.1 Finding a maximal independent set

We use a maximal independent set as a minimal domi-
nating set. The procedure to find a maximal independent
set is called FIND- MIS. Its pseudocode is given in Fig. 6.
The invoked (N, ® (log® N))-strongly-selective sequence of
length O(log’ N) exists, by the fact that for each ¢ > 0
such that ¢ < N, there exists an (N, c)-strongly-selective
sequence of length O(c? log N).

The procedure FIND- MIS works in phases numbered by
integers i, where 1 < i < 14 1gA. A phase i consists of
y lg N sub-phases, for a constant y > 0. A sub-phase j of
phase i consists of two stages: the first one serves the purpose
to elect new members of a maximal independent set and the
other one determines for some nodes that they will not belong
to a maximal independent set under construction, such nodes
will be categorized as workers.

Here is a summary of categorizations of nodes we will
use. In the beginning of an execution, all the nodes have
the status of being neutral. This status may change so that
a node becomes either a candidate, a member or a worker.
We want the status of either neutral or a candidate to be
temporary and eventually a node to become either a member
or a worker, such that this status, of a member or a worker,
stays unchanged.

A neutral node can become a candidate in the beginning
of the first stage of a phase, as determined by an outcome of
a random experiment. By the end of the first stage, it is also
determined which among the candidates graduate to mem-
bers and which become neutral again. If a candidate in a
sub-phase hears in the first stage that one of its neighbors is
a candidate too then it reverts to the neutral status. A can-
didate in a sub-phase that does not hear that its neighbor
is a candidate becomes a member. It follows that there are
no candidates at the end of a phase. Once a node becomes
a member, at the end of the first stage, then this status is
permanent. Neutral nodes that hear in the second stage of a
sub-phase that some of their neighbors are members imme-
diately become workers. Once a node becomes a worker, at
the end of the second stage, then this status is permanent. The
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Fig.6 Pseudocode for a node s.

The invoked (N, ® (log? N))- procedure FIND-MIS

strongly-selective sequence is a
part of code and is of (9(log7 N)
length. The independent set
obtained as output consists of
the nodes that become members.
The constant y is determined by
the analysis

fori=1tolg(A+1)do

for j=1toylgN do
(i) Incorporate new members:
if s is neutral then s becomes a candidate with probability 2¢/(A + 1).
if s is a candidate then
s executes an (N, log3 N)-strongly-selective sequence to announce its name
take a record of the names from the messages heard from candidates

/* phase i */
/* sub-phase j %/
/* first stage of sub-phase j x/

if s is a candidate then
if s heard a message from some other candidate
then s goes back to neutral
else s becomes a member

(ii) Convert neutral nodes to workers:

/* second stage of sub-phase j */

if s became a member in the preceding stage then

s executes an (N, 'ylog3 N)-strongly-selective sequence to announce its name
take a record of the names heard from new members
if s is neutral and s has just heard some member’s name then

s becomes a worker

s assigns a member with the smallest name just heard as its representative

sets of neutral nodes, as considered in the end of sub-phases,
are monotonically decreasing, in the sense of inclusion.

At the end of an execution, each node becomes either a
member or a worker or it remains neutral. The set of nodes
that is produced as outcome, and which is to be a maximal
independent one, consists of the nodes that end up as mem-
bers.

Next, we argue about the correctness and efficiency of
FIND- MIS. This procedure operates by nodes exchanging
messages, which successfully arrive to neighbors in the
communication graph once transmitted by a node, by Propo-
sition 3. We may assume that when an execution begins then
phase 0 is has been just completed. We begin with formu-
lating an invariant for a phase i, for 0 <i < 1g A, which is
understood to hold at the end of phase.

Invariant for phase i of procedure FIND- MIS:
Each box of the pivotal grid contains at most (A + 1)/2'
neutral nodes.

Observe that initially the invariant holds for i = 0, by
the properties of pivotal grid, see Sect. 2. Specifically, if a
node belongs to a box, then all other nodes in the box are
its neighbors in the communication graph, so there can be at
most A of them. If the invariant holds for a phase i then it
holds also for phase i + 1 with high probability, which we
discuss next, starting from Lemma 3 through Lemma 6.

Lemma 3 If the invariant holds for a phase of procedure
FIND- MIS, then during a sub-phase of this phase for each
neutral node v the number of neutral neighbors of node v that
become candidates is at most (a + 1)1g N with probability
at least 1 — n™%, for sufficiently large n.

Proof In the beginning of the phase, there are at most
(A + 1)/2/ neutral nodes in each box, by the invariant. For a
sub-phase, each neutral node becomes a candidate with prob-

ability 2 /A. So the expected number of neutral nodes in a
box that become candidates in this sub-phase is at most 2.
Let v be a neutral node. Its neighbors are in at most 25 boxes,
so the expected number of neutral neighbors of node v that
become candidates is at most 50.

Suppose X is the number of successes in a number of
independent Bernoulli trials, with the mean number of suc-
cesses equal to . We use the Chernoff bound which states
that Pr(X > b) <27 P forb > 6u.Leth = clgn, fora > 0.
Then we have that Pr(X > clgn) < n™¢, for sufficiently
large n. Let a random variable X be specifically the num-
ber of neighbors of v that become candidates in a sub-phase.
Choosing ¢ = a+1, we obtain that at least (a+ 1) 1g n neigh-
bors of v become candidates with probability at most n ¢~
This applies to each node in the network with probability at
most n~¢, by the union bound. O

Lemma4 For any a > 0 there exists y > 0 such that if the
invariant holds for a phase of procedure FIND- MIS then each
node that executes a strongly-selective sequence to announce
its name in a sub-phase of the phase is heard by all of its
neighbors with probability at least 1 — n™¢.

Proof For every node, the number of its neighbors that
become candidates in a sub-phase is at most (a + 1)1g N
with probability at least | —n ™%, by Lemma 3. These nodes
will execute a strongly-selective sequence to announce their
names during a sub-phase. By Proposition 5, there exists
c=0(((a+1IgN )3) such that if all the candidates execute
an (N, c)-strongly-selective sequence, then, for each such a
candidate node v, there is a round in which the node v is
heard by all its neighbors. It is sufficient to take y at least
such that ¢ = y 1g3 N. O

Lemma5 For any a > 0 there exists y > 0 such that if
the invariant holds for a phase i < 1g(A + 1) of procedure
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FIND- MIS and there are at least (A+1)/ 21+ peutral nodes
in phase i + 1 in a box then there are no neutral nodes in the
a

box after phase i + 1 with probability at least 1 —n™¢.

Proof Denote x = g,-—ill. Each node in the box decides with
probability }% to become a candidate in phase i + 1. A node

in the box has fewer than 25 - 21 = 50x neighbors in the

communication graph, by the invariant. If exactly one neutral
node in the box becomes a candidate in a sub-phase while
none of its neighbors choose the same then we call it a success
in the box. If a success in a box occurs during a sub-phase
then the node that is a candidate becomes a member and its
neighbors become workers, because the candidate node does
not hear from another candidate and its neighbor nodes learn
of its candidate status during the sub-phase with probability at
least 1 —n 2, by Lemma 4, for a suitable y . The probability
of a success in a sub-phase is at least

11 1 50x 1
(=3 s

where the number p is a constant. There exists a sufficiently
large ¢ > O such that if clgn independent trials are per-
formed, each with the probability p of success, then all of
them are failures with probability at most n~2¢. It suffices to
take y > c. O

Now we are ready to give a fact that summarizes the key
properties of procedure FIND- MIS.

Lemma 6 Foranya > Othereisay > O suchthat procedure
FIND- MIS works in O(log® N log A) rounds and produces

a maximal independent set with probability at least 1 —n ™.

Proof The number of rounds the procedure is executed
is determined by its pseudocode in Fig. 6. There are
Ig(A + 1) phases, each consisting of y 1g N sub-phases. A
sub-phase takes O(log’ N) rounds, because of the length
of the used strongly-selective sequence. This contributes
O(log® N log A) rounds in total.

Next, we argue about the correctness. We show first that
the invariant holds for each phase with probability at least
1—n~¢,forasuitable y > 0. The argument is by induction on
the phase number i. Specifically, conditional on the invariant
holding for a phase, it holds for the next phase with probabil-
ity at least 1 — n—24_for a suitable constant y > 0. The base
of induction occurs for the conceptual phase number 0. The
invariant holds for this phase since each box contains at most
A + 1 nodes by the definitions of A and the pivotal grid. In
the inductive step, we show that if the invariant holds for a
phase i then it holds for the next phase i + 1 with probability
at least 1 — n~24. Consider a box. If there are at most %
neutral vertices in this box then certainly the invariant holds
for the next phase, and otherwise there are at least % ver-
tices in the box. If so then, by Lemma 5, there are no neutral
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vertices after phase i + 1 with probability at least 1 — n =2,

for a suitable constant y > 0. This completes the argument
by induction. The invariant holds for each phase with a prob-
ability that is a product of all these conditional probabilities
for each phase, that is with a probability at least

(1—n2)e@AtD > 1 _JgA4+1) . n2>1—n",

by the Bernoulli’s inequality.

Next we argue that when an execution is completed then
the set of nodes that are members makes a maximal indepen-
dent set, with a suitably high probability. The assumption
is that the invariant is satisfied for each phase. The set of
members after a phase is an independent set of nodes. This
is because when two neighbors are candidates in a sub-phase
then they hear each other’s names in a sub-phase with a high
probability, by Lemma 4, and so retreat to being neutral. To
show that the independent set of members is maximal inde-
pendent, it is enough to demonstrate that no neutral node
remains after an execution is over: this is because then each
node is either a worker or a member, so there is no room
for more members. It suffices to argue that there are no neu-
tral node in every box. Suppose otherwise, that there remain
neutral nodes in a box. Let i be the smallest integer such that
when phase i occurs then the number of neutral nodes in the
box is at least % and at most Az—"{l. By Lemma 5, there
are no neutral nodes in the box after the phase is over with
a probability at least 1 — n =3¢, for a suitable y > 0. Since
there are at most n boxes, the probability of some neutral
nodes surviving all the phases is at most n 2%, by the union
bound.

We conclude that all possible unfavorable events occur
with a probability that is at most n~%, again by the union
bound. O

5.2 Implementing shortcut connecting

We describe a procedure to build a connected dominating set
starting with a maximal independent set by way of imple-
menting shortcut connecting, as it is defined in Sect. 2. This
is done by designating connectors which together with the
independent set make a connected dominating subgraph. It
is assumed that a maximal independent set is given and each
node knows whether it belongs to this set or not. A node in
such an independent set is called a member, to be consis-
tent with the categorization of some nodes as members in
the sense of procedure FIND- MIS. The algorithm is called
CONNECT- To- MIS and its pseudocode is given in Fig. 7. It
is structured as four consecutive parts, which we describe in
detail next.

The goal of the first part is for all the non-member nodes
to learn the names of their member neighbors. The members
transmit their own names using a (N, c¢)-strongly-selective
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Fig.7 Pseudocode for a node s.
The (N, c)-strongly-selective

procedure CONNECT-T0O-MIS

sequence is of length O(log N),
where the constant ¢ > 0 is
determined in analysis.
Communication in sub-parts is
by way of executing suitable
strongly-selective sequences

part 1: Non-members learn their neighbors:
if s is a member then it executes a (N, ¢)-strongly selective sequence
else s records the names of member neighbors
part 2: Members learn about other members of distance at most three:
sub 1: any two adjacent non-members exchange information about their member neighbors
sub 2: non-members pass what they have learned in sub-part 1 to member neighbors

part 3: Members choose connectors and notify them:
sub 1: connectors of distance one from their members get notified
sub 2: connectors of distance two from their members get notified
part 4: Nodes learn the neighborhoods in the backbone:
if s belongs to the backbone then
s executes a (N, ¢)-strongly selective sequence
s simultaneously records the names of neighbors heard from

sequence of length O(log N), for a sufficiently large constant
¢ > 0, to be determined in analysis. Every node that is not
a member records the names of members, as they are heard.
The j-th heard name heard by a non-member node is called
the j-th member of this non-member node.

During the second part, members learn about other mem-
bers of distance at most three in the communication graph.
This is done by having each member communicate with its
neighbors and nodes of distance two, as those were learned
in the first part. Let x = O(log’ N) be the length of an
(N, ©(log? N))-strongly-selective sequence, which is the
same sequence as in the implementation of procedure FIND-
MIS. This is organized as two sub-parts such that during the
first sub-part two adjacent nodes that do not belong to the
maximal independent set exchange information about their
neighbors that are members, and during the second sub-part
each node passes this knowledge along with the information
about its own neighbors that are members to the member
neighbors, of whom there are at most 25. The details are
given next.

The first sub-part proceeds as follows. First, each non-
member node v chooses a number ¢, that is ® (A) uniformly
at random from a suitable range, which is determined in
analysis. Time is partitioned into consecutive blocks of
length x, each devoted to executing some (N, ® (log> N))-
strongly-selective sequence by suitable nodes. Additionally,
we join blocks into consecutive groups of 25 blocks each.
Then node v is active during group #, in every round in
[25xt, + 1, ...,25x(ty, + 1)], in the following sense: in the
j-th block of group t,, where 0 < j < 24. More pre-
cisely, in rounds [25xf, + jx + 1,...,25xt, + (j + D)x,
node v transmits its j-th member and its own name using
an (N, ©(log? N))-strongly-selective sequence. Each node
w records all the names heard in this execution. For every
name that u heard, node w records the round number f,
when the name of u# was heard and the node g, who sent it.

The second sub-part proceeds similarly, with the following
modifications. First, each group consists of 49 blocks. This

is because there is at most one member in a box of the pivotal
grid and 49 is an upper bound on the number of boxes con-
taining nodes that are two hops away from a node, as argued
in Sect. 2. Second, each block is associated with some known
member, either in one-hop neighborhood, as learned in the
first part, or in two-hop neighborhood, as learned in the first
sub-part of this second part. In the latter case, such member’s
name, say u, is transmitted along with its associated forward-
ing node g, and the successful round number f,. Third, at
the end of this sub-part, each member w additionally records
all members’ names u heard in this sub-part, together with
one or two node(s) associated with this name, and one or
two, respectively, round number(s) when successful trans-
missions between the node(s) and the member took place. In
case there are many intermediate nodes or pairs thereof, an
arbitrary selection of one such a configuration per amember’s
name is made: for each member’s name u, let g, | denote a
one-hop neighbor and g, » be two-hop neighbor associated
with this name, and let f, ; be associated with a successful
transmission round of node g, ;, for i = 1, 2. In case there
is only one connector associated with a member of name u,
we denote it by g, and its successful round number by f,,
to simplify the notation. These nodes are designated as con-
nectors.

In the third part, members inform connectors chosen in
the second part. Similarly as in the second part, this is car-
ried out in two sub-parts, with first connectors of distance
one and then of distance two becoming informed. In the
first sub-part, every member node w transmits according to a
(N, c)-strongly-selective sequence of length O(log N), for
a sufficiently large constant ¢ > 0, precisely 121 times,
one after another. The number 121 is an upper bound on
the number of member nodes in any 3-hop neighborhood. In
the j-th execution of a (N, c¢)-strongly-selective sequence,
node w transmits its j-th heard member u#’s name along with
its associated connector g, and round value f,, or a pair of
connectors g 1, 8,2 and round numbers f, 1 and f, 2. Upon
receiving such a message containing only one connector g,
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and a value f,, connector g, records that it is a connec-
tor from member u to member w, as well as the successful
round f,, when forwarding took place. Upon receiving such a
message containing two connectors g, 1 and g, 2 and values
fu.1 and fy 2, connector g, 1 records that it is a connector
from a member u, via node g, 2, to a member w, as well
as the successful round f;,,1 when the forwarding from it to
the member w took place. In the second sub-part, only such
connectors g, 1 are active in relaying messages. Similarly
as in the first sub-part, they use a (NN, ¢)-strongly-selective
sequence of length O(log N), for a sufficiently large constant
¢ > 0, precisely 121 times one after another. In the j-th exe-
cution of the (N, c)-strongly-selective sequence, node g, 1
transmits its j-th heard associated connector g, » for the
member u, along with its associated pair of members # and w
and round value f; ». Upon receiving such a message, con-
nector g, 2 records that it is a connector from the member u
to the member w, via node g, 1, as well as the successful
round f;, » when the forwarding from it to the connector g,
took place. A non-member node is in the backbone when it
is a connector to some pair of members.

In the final fourth part, all backbone nodes, both members
and connectors, learn their neighborhoods in the backbone. In
order to accomplish it, they transmit their own names using
an (N, c)-strongly-selective sequence of length O(log N),
for a sufficiently large constant ¢ > 0. Each backbone node
records all the receives names as its neighbors in the back-
bone.

Lemma 7 Procedure CONNECT- TO- MIS builds a connected
dominating subnetwork satisfying all the specifications of a
backbone in O(Alog’ N) time with high probability, when
starting with a maximal independent set of nodes.

Proof 1t is sufficient to show that the algorithm CONNECT-
To- MIS implements shortcut connecting in wireless net-
works, which makes Propositions 1 and 4 applicable. This
follows from the fact that an execution of CONNECT- ToO-
MIS is a systematic enlargement of a maximal independent
set of nodes according to the requirements for shortcut
connecting. We rely on the property that nodes add edges
by sending messages to neighbors in the communication
graph, which always arrive successfully, by Proposition 3.
A detailed argument follows.

The first part makes each non-member learn the names of
all its member neighbors. There are at most 25 such neigh-
bors, since there is at most one member in a box of the pivotal
grid. If the constant ¢ is sufficiently large, than executing
a (N, c)-strongly-selective sequence of length O(log N) is
sufficient to achieve this task, by Proposition 5.

During the second part, each member obtains either direct
or relayed information from each of its one- or two-hop
neighbors, about their at most 121 member neighbors, each of
distance at most three from the member. By letting each non-
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member node to choose a random number in range ®(A),
for a sufficiently large range proportional to A, in every box
of the pivotal grid, there are O(log N) nodes that selected the
same round, with high probability. In order to allow each of
these nodes to transmit alone, an (N, @(log3 N))-strongly-
selective sequence of length x = O(log’ N) can be used,
by Proposition 5 for b = O(log N) active nodes per box
with high probability, by an argument similar to that in the
proof of Lemma 5. This applies to both sub-parts. Addition-
ally, a factor of 25 guarantees that in the first sub-part such
situations will occur at least 25 times, so each non-member
node will be able to successfully transmit all the names of
its member neighbors. There might be at most 49 members
of one or two hops away from a node. The second sub-part
accomplishes its goal for similar reasons. This results in each
member learning at most 121 other members of at most three
hops away, together with at most two connectors.

In the third part, each member needs to send to at most
two connectors the information summarizing what it learned
about other members of distance at most three away. To
accomplish this, the members execute an (N, c)-strongly-
selective sequence of length O(log N) in the first sub-part,
similarly as in part one, each time for a different name of
such a member, repeating for at most 121 names. In the sec-
ond sub-part, each connector that receives such a message
addressed to it, in which it occurs with another connector,
relays this message to the other connector using the same
procedure as in the first sub-part. Each node could be cho-
sen as a connector to at most 121 pairs of members, hence
repeating the (N, c)-strongly-selective sequence 121 times,
each time for a different pair of members for which it was
chosen as a connector, is sufficient for relaying all such mes-
sages to all two-hop connectors. Proposition 5 is used, for a
constant number z of active nodes per box, these being only
members and connectors, to guarantee a successful message
exchange between the neighboring pairs of active nodes.

This is repeated one more time in part four to assure that
both the members and the connectors will know about the
other nodes that are either members or connectors and that
are in their range. The argument for correctness is similar to
the one in part one, except that instead of at most one member
in each box of the pivotal grid we have a constant number of
backbone nodes in a box. O

5.3 Implementing local algorithms

The nodes in a backbone use local algorithms INTRAy and
INTER . Both INTRA 7 and INTER 7 are deterministic, though
the latter is pre-computed by a randomized algorithm.
Algorithm INTRA g facilitates communication among the
nodes in the backbone. It schedules all members and con-
nectors to transmit using some (N, c¢)-strongly-selective
sequence of length O(log N), for sufficiently large con-
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stant ¢ > 0. One run is executed for preprocessing to
confirm neighboring backbone nodes. Additionally, if a non-
backbone node does not have its associated backbone node
yet, which is its representative node, then it selects the
smallest among the heard names in the backbone as its rep-
resentative.

Algorithm INTERy facilitates communication between
the nodes not in the backbone and their representatives
in the backbone. It is specified as follows. We refer to
the length of an (N, © (log> N))-strongly-selective sequence
by x = O(og’ N). Each non-backbone node selects a
number ¢ in the range [1, y] uniformly at random, where
y = ©(AlogN), with a sufficiently large constant in
front of A, and it transmits its own name by executing
an (N, ©(log® N))-strongly-selective sequence in rounds
[t-x+1, t-x+x]. A backbone node records the names of the
associated non-backbone nodes from which it receives such
message as a potential representative. After time y - x, each
backbone node arranges all its associated nodes into a list
and processes it as follows. For each associated node on the
list, it executes some (N, ¢)-strongly-selective sequence of
length z = O(log N), for sufficiently large constant ¢ > 0,
transmitting the associated node’s name whenever scheduled.
These executions occur for every node on the list one after
another. The part is completed within Az rounds, as at most
A associated nodes are on the list. Each associated node v
remembers its position on the list of associated nodes of its
potential representative, denoted o,,, upon receiving a mes-
sage addressed to it from such a backbone node.

Algorithm INTRAg facilitates communication among
neighbors in a backbone. It is defined as follows: every non-
backbone node v transmits according to a (N, ¢)-strongly-
selective sequence of length z in rounds [0y, -2+ 1, 0, - 2+ z].
The component o, makes it possible to schedule all the
workers to avoid collisions at their shared representatives,
as already determined, while the (N, ¢)-strongly-selective
sequence component facilitates avoiding clashes between a
constant number of backbone neighbors.

Lemma 8 The local algorithms are successfully constructed
in O(Alog’ N) rounds with high probability. INTRAy oper-
ates in O(log N) time and INTERy operates in O(Alog N)
time.

Proof By Proposition 3, messages are exchanged between
neighbors in the communication graph. Proposition 5 guar-
antees a successful message exchange between neighboring
pairs of backbone nodes, as their number per box is con-
stant. Next, we argue about computing algorithms INTER g
and INTRAy associated with the backbone.

Random selections allow for all non-backbone nodes
to avoid collisions at their potential representatives with
high probability, while an (N, ® (log® N))-strongly-selective
sequence allows to avoid clashes between O(log N) non-

backbone nodes of different potential representatives with
high probability, since the density of backbone nodes is con-
stant per box. One auxiliary execution of INTERy allows to
assign by each non-backbone node its representative in the
backbone, as it can hear all its neighbors in the backbone due
to the fact that there is a constant number of them.

A schedule for algorithm INTRAg can be found simi-
larly as for part two of CONNECT- TO- MIS. Selecting a
random number and a strongly-selective sequence allows
each backbone node to hear all the names of neighboring non-
backbone nodes with high probability. Backbone nodes send
acknowledgements to their non-backbone neighbors using
the same (N, c)-strongly-selective sequence as in the sched-
ule of INTERy, such that all non-backbone nodes receive
them.

Algorithm INTRAy makes non-backbone nodes trans-
mit, each using an (N, c)-strongly-selective sequence, in the
order determined by the list created during the first part
of procedure CONNECT- TO- MIS, see Fig. 7. Correctness
follows by the property that each execution of an (N, ¢)-
strongly-selective sequence is associated with a set of pairs
involving backbone and non-backbone nodes. Hence, due to
a constant density per boxes of the pivotal grid, applying the
strongly-selective sequence guarantees successful deliveries
of each of these pairs, by Proposition 5.

The time this computation takes is determined by the dura-
tions of all parts. Performance bounds of algorithms INTRA g
and INTERy follow from their specifications. A strongly-
selective sequence is of length O(log N). Algorithm INTER i
uses it no more than A times. O

5.4 Combining ingredients into a backbone

An algorithm that builds a backbone from a synchronized
start is called BACKBONE- SYNCHRONIZED- START. Its pseu-
docode is in Fig. 5. The algorithm begins by executing
FIND- MIS, which produces a maximal independent set. This
is followed by CONNECT- TO- MIS, which works with the
maximal independent set produced by FIND- MIS. Finally,
a backbone is completed by augmenting nodes with local
algorithms, as specified in Sect. 5.3.

Theorem 2 Algorithm BACKBONE- SYNCHRONIZED- START
builds a backbone in O(Alog’ N) rounds with high prob-
ability, such that INTRAy operates in O(log N) time and
INTERy in O(Alog N) time.

Proof The first stages produces a maximal independent set
with high probability, by Lemma 6. Given a success of the
first stage, the second stage constructs a connected domi-
nating set that satisfies the specifications of a backbone, by
Lemma 7. The time to construct local algorithms and their
performance bounds follow from Lemma 8. O
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6 Backbone from general start

We build on algorithms presented in Sects. 4 and 5 to obtain
a general distributed algorithm to construct a backbone. This
algorithm is called BACKBONE- GENERAL- START. Its pseu-
docode in given in Fig. 8.

We assume that an arbitrary set of nodes is activated to
start an execution. An activated node begins by executing
algorithm FIND- MIS from Sect. 5.1. During an execution, if
anode not originally activated receives a message, it ignores
it and does not join yet. The outcome maximal independent
set is nonempty, since the initial set S of awoken nodes is
non-empty.

Next, each node in the obtained maximal independent set
initiates an execution of TRAVERSE- TO- BROADCAST from
Sect. 4.3 with itself as source. This may create multiple
tokens that traverse the network concurrently. Each token
carries its source name, to which we refer as the token’s
name. The tokens compete for survival by comparing their
names. When tokens visit nodes, they leave a name behind
as a trace of visit. A token that comes to a node formerly
visited by other tokens is compared, by the name it brings,
to the previous visitors.

A token carries a round number, which is interpreted as
a round by which a full synchronization of the network will
be accomplished, as determined by its originator. We want
nodes to maintain consistency of such synchronization times.
This is done by following the proposal of a “highest bidder,”
understood as a token of the maximum name seen so far. The
source nodes initialize this with their own tokens, while the
others nodes wait for a token to visit.

When processing messages generated in tokens traver-
sals, all nodes participate. If there is a conflict between
two messages needed to be sent at the same round then a
message for the token with a greater source name takes prece-
dence. To process received tokens, a node refers to a variable
max-name. Once a node obtains a token, it proceeds in one
of the following ways:

(i) if this is a first token ever received then the node
sets max-name to the name of the token, adopts the
proposed round number propagated by the token and
proceeds to facilitate this token’s further traversal by
sending the required messages;

(i1) if this is a token with a smaller name than max-name
then this token is destroyed by the node not sending
messages to facilitate the token’s further traversal;

(iii) if this is a token with a name greater than max-name
then the node sets max-name to the name of the vis-
iting token, adopts the information propagated by the
token, and proceeds to facilitate this token’s further
traversal by sending the suitable messages.

@ Springer

If there is a node that keeps a token’s name and the associated
information it carries then we say that the token is operative
at the node. It is critical to have a bound on the number of
tokens that are operative in nodes’ neighborhoods, since each
active node may contribute to collisions by generating mes-
sages needed for the corresponding token’s traversal. This is
reflected in the size of strongly-selective sequences used to
resolve collisions.

Lemma 9 There is a constant upper bound on the number of
tokens that are operative in a box of the pivotal grid at any
round.

Proof Tokens start their traversal originating at nodes of a
maximal independent set. There is a most one node per box
in this set, since the nodes in a box induce a clique in the
communication graph. If a token arrives at a node then the
node establishes its children in the breadth-then-depth tree.
This means that each node in the box learns about this token’s
arrival and if this token arrives to a child in the box while a
token with a larger name has already visited the box then the
smaller token gets destroyed. A token may arrive through
a node’s neighbor, and a node has neighbors in at most 25
boxes. If we start with at most one operative token in each
box then this leads to an invariant that there are at most 25
operative tokens in a box at all times. O

A token with the largest name eventually becomes the
only survivor. Its traversal activates the whole network and
synchronizes the nodes to begin a target algorithm in the
same round. This algorithm is BACKBONE- SYNCHRONIZED-
START from Sect. 5.4, which constructs a backbone.

Theorem 3 Algorithm BACKBONE- GENERAL- START cre-
ates a backbone network, for any set of initially activated
nodes, in O(nlog> N + Alog’ N) rounds with high prob-
ability. The total number of random bits per node is
poly-logarithmic in N, and the associated local algorithms
backbone algorithms operate in the same times as produced
by algorithm BACKBONE- SYNCHRONIZED- START.

Proof The algorithm resorts to the procedures that were
already discussed so it suffices to revisit their performance
bounds and the assumptions under which they are valid.
Procedure FIND- MIS works in O(log® N log A) rounds and
produces a maximal independent set with high probability, by
Lemma 6. Algorithm TRAVERSE- TO- BROADCAST accom-
plishes a single-source broadcast from a single-node start in
O(nlog? N) rounds with high probability, with each node
generating O(log® N) random bits, by Theorem 1. These
bounds remain valid with multiple tokens. This is because
of a constant upper bound on the number of tokens operative
that are operative in a box of the pivotal grid in any round, by
Lemma 9. Algorithm BACKBONE- SYNCHRONIZED- START
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algorithm BACKBONE-GENERAL-START

stage 1: active nodes execute procedure FIND-MIS
stage 2: each node in the maximal independent set executes TRAVERSE-T0O-BROADCAST

using a dedicated token

stage 3: all nodes execute BACKBONE-SYNCHRONIZED-START at the same round

Fig.8 Active nodes start from the beginning, while the other nodes join after contacted by a node visited by a token. The surviving token imposes
on all the nodes a round number to be used to start executing BACKBONE- SYNCHRONIZED- START simultaneously

finds a backbone in O(A log’ N) rounds with high proba-
bility, by Theorem 2. These bounds added together make
O@nlog?> N +log Nlog A + Alog’ N) = O(nlog’? N +
Alog’ N) rounds with high probability. O

7 Conclusion

We developed algorithms for broadcasting and building
a backbone in the model of weak-sensitivity and weak-
connectivity of wireless networks, where nodes do not know
their position in a coordinate system. This extends the related
results obtained for the case when nodes can refer to their
coordinates in the plane, as obtained by Jurdzifiski and
Kowalski [20] and Jurdzinski et al. [26].

Jurdzinski et al. [26] showed a lower bound
Q(min{DA, n}) on time performance of broadcast and
wake-up in wireless networks with a single-node start. Com-
bining it with the performance of algorithm for building a
backbone we developed demonstrates that preprocessing a
network, in order to synchronize the nodes such that they can
start an execution simultaneously, decreases the expected-
time performance requirements for some communication
tasks in wireless networks, for the model of weak sensitivity
and weak connectivity.

Algorithms for a weak-sensitivity weak-connectivity
SINR regime can be compared to those developed for a
related model of (geometric) radio networks. Radio networks
allow for randomized broadcast algorithms of running time
proportional to the diameter D such that other parameters
contribute sub-linear factors, see Kowalski and Pelc [28]
and Czumaj and Rytter [8]. Solutions for SINR networks
have to efficiently combine methods of resolving collisions
not only coming from simultaneously transmitting neighbors
in the communication graph but also interferences coming
from other parts of the network. Broadcast requires time
Q (min{D A}) in a weak-sensitivity weak-connectivity SINR
model.

The concept of pivotal grid defined in terms of a coordinate
system in a plane but it only serves the purpose to argue about
correctness and performance bounds of algorithms but does
notimpact actions of nodes. It would be interesting to develop
algorithms to build a backbone with comparable performance

bounds in general metric spaces, such as bounded-growth
ones.

Backbones provide natural infrastructure of wireless net-
works. It would be interesting to explore leveraging back-
bones to support dynamic communication tasks, such as
periodic broadcast, convergecast, and routing.
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