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Abstract. This paper is concerned with fully discrete finite element approx-

imations of a stochastic nonlinear Schrödinger (sNLS) equation with linear

multiplicative noise of the Stratonovich type. The goal of studying the sNLS
equation is to understand the role played by the noises for a possible delay

or prevention of the collapsing and/or blow-up of the solution to the sNLS

equation. In the paper we first carry out a detailed analysis of the properties
of the solution which lays down a theoretical foundation and guidance for nu-

merical analysis, we then present a family of three-parameters fully discrete
finite element methods which differ mainly in their time discretizations and

contains many well-known schemes (such as the explicit and implicit Euler

schemes and the Crank-Nicolson scheme) with different combinations of time
discetization strategies. The prototypical θ-schemes are analyzed in detail and

various stability properties are established for its numerical solution. An ex-

tensive numerical study and performance comparison are also presented for the
proposed fully discrete finite element schemes.

1. Introduction. This paper is concerned with numerical approximations of the
following initial-boundary value problem for a stochastic nonlinear Schrödinger
(sNLS) equation with linear multiplicative noise of Stratonovich type:

idu+ ∆udt+ λ|u|2udt = u ◦ dW (t) in DT := D × (0, T ), (1)

u = 0 on ∂D × (0, T ), (2)

u(0) = u0 in D, (3)

where W (t) denotes a standard R-valued Brownian motion (i.e., Wiener process)
on a given filtered probability space

(
Ω,F , {Ft : t ≥ 0},P

)
. Moreover, D ⊂ Rd

(d ≥ 1) is a bounded domain, i :=
√
−1 denotes the imaginary unit. λ ∈ R is a
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given parameter. When λ = 0, equation (1) is linear, and it is called respectively
the defocusing and focusing case when λ > 0 and λ < 0. The equation is obviously
nonlinear in both cases. u0 : D×Ω→ C is a given complex-valued initial function.
Hence u : D × (0, T ) × Ω → C is a complex-valued function. By the Stratonovich
to Itô conversion formula, it is easy to verify that (1) has the following equivalent
Itô form:

idu+ ∆udt+ λ|u|2udt+
i

2
udt = udW (t). (4)

Equation (1) without the right-hand noise term is known as the (classical) non-
linear (deterministic) Schrödinger (NLS) equation which arises as the governing
equation for light propagation in nonlinear optical fibers and planar waveguides and
for Bose-Einstein condensates confined to highly anisotropic cigar-shaped traps in
the mean-field regime. Moreover, the NLS equation appears in the studies of small-
amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the
Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in
the focusing regions of the ionosphere; the propagation of Davydov’s alpha-helix
solitons, which are responsible for energy transport along molecular chains; and
many others. Furthermore, the NLS equation appears as one of universal equations
that describe the evolution of slowly varying packets of quasi-monochromatic waves
in weakly nonlinear media that have dispersion. Mathematically, the NLS equa-
tion is a prototypical dispersive wave equation, its solutions exhibit some intriguing
properties such as energy conservation, soliton wave, and possible blow-ups [6, 17].
In particular, we mention the following two conserved quantities (in time):

M (u)(t) := ‖u(t)‖2L2 =

∫
D
|u(t)|2 dx, (5)

H (u)(t) :=

∫
D

(1

2
|∇u(t)|2 − λ

4
|u(t)|4

)
dx. (6)

In other words, M (u) and H (u) are constant functions in t along the solution u of
the deterministic NLS problem.

One of the primary motivations for considering the stochastic counterpart of the
NLS equation is to examine the possible role and mechanism of noise in preventing
or delaying the collapse phenomenon. The special choice of the multiplicative noise
is to maintain the above conserved quantities along the solution of problem (1)–(3)
either P-a.s. or in mean, see Lemma 2.2. Besides developing accurate numerical
methods, another important goal of numerical approximations is to design efficient
numerical methods which are energy-conserved in the sense that numerical solutions
also satisfy the same energy conservation properties as the PDE solution does. It
turns out that it is quite challenging to construct such desired numerical methods
for both deterministic and stochastic problems. As expected, the situation for the
latter case is more difficult.

Numerical analysis for the deterministic NLS equation has been carried out by
many people, various numerical PDE methods such as finite difference and Galerkin-
type methods (including finite element, discontinuous Galerkin and spectral meth-
ods) have been developed and analyzed in the past twenty years, we refer the reader
to [7, 18, 12, 11] and the references therein for a detailed discussion about the re-
cent developments. Numerical approximations of the stochastic NLS equation has
also garnered some attention, several works have been reported in the literature
[4, 5, 8, 9, 10, 13, 14]. In order to make the energy M (unh) is constant in n for
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the numerical solution unh, all these works use the Crank-Nicolson time-stepping

scheme, moreover, the noise term is approximated implicitly by un+1
h ∆Wn+1. Com-

putationally, this is a very expensive and inefficient strategy because the resulting
stiffness matrix changes not only at each time step but also varies for each Monte
Carlo sampling.

To overcome this difficulty, we propose to approximate the noise term explicitly
by unh∆Wn+1, which becomes a source term in the equation for un+1

h so it does not
contribute to the stiffness matrix at the time step tn+1, we then combine this noise
treatment with the explicit discretization and various implicit discretizations of the
drift term to obtain our overall time-stepping schemes. For the spatial discretiza-
tion, we focus on the finite element discretization although it can be replaced by
other Galerkin-type spatial discretization methodologies. It should be noted that
the price for the advantage gained by the explicit treatment of the noise term is
that the energy M and H may not be constant along our numerical solutions,
instead, they may only conserve both energies approximately. Another goal of this
paper is to examine numerically the impact of this relaxed energy conservation on
the quality of the resulted numerical solutions.

The remainder of the paper is organized as follows. In Section 2 we first introduce
some notation and then present a detailed analysis about the weak solution of
problem (1)–(3) which include the derivations of the conserved quantities, high
order stability estimates and Hölder continuity in time in various norms. We note
that most of these results have already been reported in the literature, however, our
derivations and proofs are somewhat different and are easier to follow. Section 3,
which is the main section of this paper, is devoted to the construction and analysis
of our semi-discrete (in time) discretizations for problem (1)–(3). We use the θ-
time schemes to present a detailed stability analysis for their solutions. In Section
4 we briefly describe the finite element spatial discretization for our semi-discrete
(in time) scheme to obtain our fully discrete finite element methods. In Section
5 we present extensive numerical experiment results to illustrate the performance
of the proposed numerical methods and also present a performance comparison
for the proposed fully discrete finite element schemes using different time-stepping
strategies including the explicit and implicit Euler schemes and the Crank-Nicolson
scheme. Finally, we conclude the paper with a short summary given in Section 6.

2. Preliminaries and PDE analysis.

2.1. Notation. The standard function and space notations will be adopted in this
paper, in particular, Hk(D) for k ≥ 0 denotes the complex-valued Sobolev space of
order k and (·, ·) := (·, ·)D denotes the standard inner product of the complex-valued
L2(D) space, namely,

(u, v) :=

∫
D
u(x)v̄(x) dx,

where v̄ denotes the complex conjugate of v. For notation brevity, we also set
‖ · ‖Hk := ‖ · ‖Hk(D). Throughout the paper, unless stated otherwise, C,K will be
used to denote generic positive constants independent of the space and time mesh
sizes h and τ .

2.2. Weak formulation and properties of weak solutions. In this subsection
we define a variational weak solution concept for problem (1)–(3), and establish
a certain properties of the weak solution u of the stochastic Schrödinger problem,
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such as conserved quantities M (u) and H (u), a priori estimates of u in various
norms and Hölder continuity in time with respect to the L2(D)-norm.

Definition 2.1. For every t ∈ [0, T ], there holds P-a.s.

i
(
u(t), v

)
−
∫ t

0

(
∇u(s),∇v

)
ds+ λ

∫ t

0

(
|u(s)|2u(s), v

)
ds+

i

2

∫ t

0

(
u(s), v

)
ds (7)

= i(u0, v) +

∫ t

0

(
u(s), v

)
dW (s), ∀v ∈ H1

0(D).

We start with establishing the following conservation results for the weak solu-
tion.

Lemma 2.2. Let u be a weak solution to problem (7), then there hold

M (u)(t) = M (u0) ∀t ∈ [0, T ], P− a.s. (8)

E
[
H (u)p(s)

]
= E

[
H (u0)p

]
∀t ∈ [0, T ], p ≥ 1. (9)

Proof. Applying Itô’s formula to Φ(u(t)) := ‖u(t)‖2L2 to get

‖u(t)‖2L2 − ‖u0‖2L2 =2<
∫ t

0

(
i∆u(s) + iλ|u(s)|2u(s)− 1

2
u(s), u(s)

)
ds (10)

+ <
∫ t

0

(u(s), u(s)) ds− 2<
∫ t

0

(iu(s)dW (s), u(s)) = 0,

which immediately implies ‖u(t)‖2L2 = ‖u0‖2L2 . Hence, (8) holds.
To show (9), by direct calculations we get

D(H (u)p)(v) =pH (u)p−1
(
<(∇u,∇v)− λ<(|u|2u, v)

)
, (11)

D2(H (u)p)(v, w) =pH (u)p−1
(
<(∇v,∇w)− 2λ<(|u|2v, w)− λ<(u2, vw)

)
(12)

+ p(p− 1)H (u)p−2
(
<(∇u,∇v)− λ<(|u|2u, v)

)
⊗
(
<(∇u,∇w)− λ<(|u|2u,w)

)
.

Applying Itô’s formula to Φ(u(·)) := H (u)p(·) we have

H (u)p(t) = H (u0)p +Mt, (13)

where Mt is the martingale given by

Mt = p

∫ t

0

H (u)p−1(s)<
(
∇u,−iud∇W (s)

)
ds. (14)

Taking expectation on (13), it follows from the martingale property E[Mt] = 0
that

E[H (u)p(t)] = E[H (u0)p]. (15)

Hence, (9) holds. The proof is complete.

Corollary 1. Let u be a weak solution to problem (7) and p ≥ 1 be an integer.
Suppose u0 satisfies E[H (u0)p] <∞ and u0 = 0 on ∂D. Then there hold

sup
t∈[0,T ]

(
E
[
‖∇u(t)‖2pL2

]
− λE

[
‖u(t)‖4pL4

])
≤ K1 := 4pE[H (u0)p], (16)

sup
t∈[0,T ]

E
[
‖u(t)‖2pH1

]
≤ K2 := (4p + 1)E [H (u0)p] +K3

E |λ|E[M (u0)4p]. (17)

where k3
E is the constant in Sobolev embedding L2 ↪→ L4,
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The next lemma establishes an a priori estimate for u in the H2-norm.

Lemma 2.3. Let u be the weak solution to problem (7) with d = 1, assume that
u ∈ L∞(0, T ;Lq(Ω, H2(D)) for any 1 < q < ∞. Then there holds for any integer
p ≥ 1

sup
t∈[0,T ]

E
[
‖u(t)‖2pH2

]
≤ K3, (18)

where

K3 := Kp

(
L(u0)p + 15KE,pK2T

)
e26KE,pK2T + (Kp(K

1
E)p + 1)K2,

L(u0) := ‖∆u0‖2L2 −<
(
∆u0, |u0|2u0

)
,

KE,p := (1 +K1
E + (K2

E)4)p(p− 1)|λ|,

and k1
E is the constant in Sobolev embedding H1(D) ↪→ L6(D), k2

E is the constant in
Sobolev embedding H1 ↪→ L∞, Kp is the constant in inequality (a+ b)p ≤ Kp(a

p +
bp),

Proof. To control the nonlinear term |u|2u in (1), we introduce the Lyapunov func-
tional:

L(v) = ‖∆v‖2L2 + λ<(∆v, |v|2v), ∀v ∈ H2(D). (19)

By Young’s inequality and Sobolev embedding H1(D) ↪→ L6(D), we have

‖∆v‖2pL2 ≤ Kp

(
L(v)p + (K1

E)p|λ|2p‖v‖6pH1

)
, (20)

where Kp is the constant in inequality (2a + b)p ≤ Kp(a
p + bp). For example, it’s

easy to conclude ‖∆v‖2L2 ≤ 2L(v) +
K1

E

2 |λ|
2‖v‖6H1 when p = 1.

We formally apply Itô’s formula to Φ(u(·)) := L(u(·))p to get

L (u (t))
p

= L (u0)
p

+

∫ t

0

DΦ(u(s))
(
i∆udt+ iλ|u|2udt− 1

2
u
)
ds (21)

+
1

2

∫ t

0

Tr
[
D2Φ(u(s))(−iu)(−iu)∗

]
ds

+

∫ t

0

DΦ(u(s))
(
− iudW (s)

)
=: L (u0)

p
+ I1(t) + I2(t) + I3(t).

The first and second order derivatives in (21) are given by

DΦ(u)(v) = DL (u (t))
p

(v) = pL (u)
p−1[

DL(u)(v)
]
, (22)

D2Φ(u)(v, w) = p(p− 1)L(u)p−2
([
DL(u)(v)

]
⊗
[
DL(u)(w)

])
(23)

+ pL(u)p−1
(

2<(∆v,∆w) + 2λ<
(
∆u,w<[ūv]

)
+ 2λ<

(
∆w, u<[ūv]

)
+ 2λ<

(
∆u, u<[v̄w]

)
+ 2λ<

(
∆u, v<[ūw]

)
+ λ

(
∆w, |u|2v

)
+ 2λ<

(
∆v, u<[ūw]

)
+ λ<

(
∆v, |u|2ω

))
for any v, w ∈ C∞0 , andDL(u)(ϑ) = 2<(∆u,∆ϑ)+2λ<

(
∆u, u<[ūϑ]

)
+λ<

(
∆u, |u|2ϑ

)
+λ
(
∆ϑ, |u|2u

)
.
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For notation brevity we use Lp to denote L(u(s))p. Substituting the expres-
sions (22) and (23) of DΦ(u) and D2Φ(u) into I1(t) and I2(t), respectively, and
performing integration by parts, we get the following equality

I1(t) =p(p− 1)

∫ t

0

Lp−1
[
λ=
(
∆u(s),∆(|u(s)|2u(s))

)
(24)

+ λ=
(
∆u(s), u(s)2∆ū(s)

)
− ‖∆u(s)‖2L2

+ λ=
(
∆u(s), |u(s)|4u(s)

)
− λ<

(
∆u(s), |u(s)|2u(s)

)]
ds

=p(p− 1)λ

∫ t

0

Lp−14=
(
∆u(s), u(s)|∇u(s)|2

)
+ 2=

(
∆u(s), ū(s)(∇u(s))2

)
ds− p(p− 1)

∫ t

0

Lp−1‖∆u(s)‖2L2 ds

+ p(p− 1)λ

∫ t

0

Lp−1
(
=
(
∆u(s), |u(s)|4u(s)

)
−<

(
∆u(s), |u(s)|2u(s)

))
ds

=: I11(t) + I12(t) + I13(t),

where we use the identities ∆(|u|2u) = 2|u|2∆u + 4u|∇u|2 + 2ū(∇u)2 + u2∆ū and
the facts that <(∆u,∆(i∆u)) = 0, <(∆u, i|u|2∆u) = 0, <(∆(−i|u|2u), i|u|2u) = 0,
and <[iū|u|2u] = 0.

Taking expectation on both sides of (24) and using the Sobolev embedding H1 ↪→
L∞, Gagliardo-Nirenbery inequality ‖f‖2L∞ ≤ 2‖f‖L2‖∇f‖L2 , Young’s inequality
and equation (20), we get

I11(t) ≤6p(p− 1)|λ|
∫ t

0

Lp−1
(
‖∆u‖L2‖u‖L∞‖∇u‖L∞‖∇u‖L2

)
ds (25)

≤6p(p− 1)|λ|
∫ t

0

Lp−1
(
‖∆u‖

3
2

L2 ·
√

2K2
E‖∇u‖

5
2

L2

)
ds

≤9

2
p(p− 1)|λ|

∫ t

0

Lp−1‖∆u‖2L2 ds

+ 6(K2
E)4p(p− 1)|λ|

∫ t

0

Lp−1‖u‖10
H1 ds

≤
(

9p (p− 1) + (
9

2
K1
E + 6(K2

E)4)(p− 1)2

)
|λ|
∫ t

0

Lp ds

+ 6(K2
E)4(p− 1)|λ|

∫ t

0

‖u‖10p
H1 ds+

9

2
K1
E(p− 1)|λ|

∫ t

0

‖u‖6pH1 ds.

E[I11(t)] ≤9
(
1 +K1

E + (K2
E)4
)
p(p− 1)|λ|

∫ t

0

E[L(u(s))p] ds (26)

+ 6(K2
E)4(p− 1)|λ|

∫ t

0

E[‖u‖10p
H1 ] ds

+
9

2
K1
E(p− 1)|λ|

∫ t

0

E[‖u‖6pH1 ] ds.
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By Young’s inequality and equation (20), we can bound I12(t) as follows:

E[I12(t)] ≤2
(
1 +K1

E

)
p2

∫ t

0

E[L (u(s))
p
] ds+K1

Ep

∫ t

0

E[‖u‖6pH1 ] ds. (27)

Similar to the estimation of I11(t), we can control I13(t) by

I13(t) ≤6p(p− 1)|λ|
∫ t

0

L(u(s))p−1
(
‖∆u‖L2‖u‖5L10 + ‖∆u‖L2‖u‖3L6

)
ds (28)

≤
(
12p(p− 1) + 6K1

E(p− 1)2
)
|λ|
∫ t

0

L(u(s))p ds

+ 3K1
E(p− 1)|λ|

∫ t

0

‖u‖10p
H1 ds+ 9K1

E(p− 1)|λ|
∫ t

0

‖u‖6pH1 ds.

E[I13(t)] ≤12(1 +K1
E)p(p− 1)|λ|

∫ t

0

E[L(u(s))p] ds (29)

+ 3K1
E(p− 1)|λ|

∫ t

0

E[‖u‖10p
H1 ] ds+ 9K1

E(p− 1)|λ|
∫ t

0

E[‖u‖6pH1 ] ds.

Now we turn to the term I2(t) in (21). Using Cauchy-Schwarz inequality we get

I2(t) =
p

2

∫ t

0

L(u(s))p−1
(

2‖∆u(s)‖2L2 + 3λ<
(
∆u(s), |u(s)|2u(s)

))
ds (30)

≤p
4
|λ|
∫ t

0

L(u(s))p−1
(
‖∆u(s)‖2L2 +K1

E‖u(s)‖6H1

)
ds

+
p

2
|λ|
∫ t

0

L(u(s))p ds,

E[I12(t)] ≤ (1 +K1
E)p(p− 1)|λ|

∫ t

0

E[L(u(s))p] ds+
|λ|
2
K1
E

∫ t

0

E[‖u‖6pH1 ] ds. (31)

On the other hand, by the property of Itô integral, we have E[I3(t)] = 0. Com-
bining above estimates, we get the following inequality:

E [L(u(t))p] ≤L(u0)p + 26KE,p

∫ t

0

E[L(u(s))p]ds (32)

+ 15KE,p

(∫ t

0

E[‖u‖10p
H1 ]ds+

∫ t

0

E[‖u‖6pH1 ]ds
)

≤L(u0)p + 26KE,p

∫ t

0

E[L(u(s))p]ds+ 15KE,pK2T.

where KE,p = (1 +K1
E + (K2

E)4)p(p− 1)|λ|.
Applying Gronwall’s inequality to (32), we obtain

E [L(u(t))p] ≤
(
L(u0)p + 15KE,pK2T

)
e26KE,pK2T . (33)

Now recall (20) and Young’s equality, we have

E
[
‖u‖2pH2

]
=E

[
‖∆u‖2pL2

]
+ E

[
‖u‖2pH1

]
(34)

≤KpE [L(u)p] +Kp(K
1
E)pE

[
‖u‖6pH1

]
+ E

[
‖u‖2pH1

]
≤Kp

(
L(u0)p + 15KE,pK2T

)
e26KE,pK2T + (Kp(K

1
E)p + 1)K2.

Hence, we obtain the desired estimate (18). The proof is complete.
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Theorem 2.4. Let u be the weak solution to problem (7) with d = 1, then there
exists a constant K4 ≡ K4(K2,K3,K

1
E , T ) such that

E
[
‖u(t)− u(s)‖2pL2

]
≤ K4|t− s|p ∀ 0 ≤ s, t ≤ T, (35)

where p ≥ 1 is an integer number. k1
E is the constant in Sobolev embedding

H1(D) ↪→ L6(D), and more especially, K4 =
(
(2 + |λ|2K1

E)K2 + 3(K2 + K3 +

|λ|)|t− s|
)
e2T when p = 1.

Proof. For a fix s ∈ (0, T ], by the definition of weak solution we obtain

i
(
u(t)− u(s), v

)
−
∫ t

s

(∇u(ξ),∇v) dξ + λ

∫ t

s

(
|u(ξ)|2u(ξ), v

)
dξ (36)

+
i

2

∫ t

s

(u(ξ), v) dξ =

∫ t

s

(u(ξ), v) dW (ξ) ∀v ∈ H1
0(D).

Now applying Itô’s formula to Φ(u(t)) := ‖u(t)− u(s)‖2L2 to get

‖u(t)− u(s)‖2L2 +

∫ t

s

‖u(ξ)‖2L2 dξ (37)

= 2=
∫ t

s

(
∇u(ξ)−∇u(s),∇u(ξ)

)
dξ + 2λ=

∫ t

s

(
u(ξ)− u(s), |u(ξ)|2u(ξ)

)
dξ

−<
∫ t

s

(
u(ξ)− u(s), u(ξ)

)
dξ + 2=

∫ t

s

(
u(ξ)− u(s), u(ξ)dW (ξ)

)
=: I + II + III + IV.

We then bound each item on the right-hand side of (37) separately. To bound
I, we use integration by parts and equation (4) to obtain

I =2=
∫ t

s

(
∇u(ξ)−∇u(s),∇u(s)

)
dξ (38)

=2=
∫ t

s

∫
D

∆ū(s)(u(ξ)− u(s)) dξds

=2=
∫ t

s

∫
D

∆ū(s)

∫ ξ

s

(
i∆u(r) + iλ|u(r)|2u(r)− 1

2
u(r)

)
dr dx dξ

− 2=
∫ t

s

∫
D

∆ū(s)

∫ ξ

s

iu(r) dW (r) dx dξ

= : I1 + I2.

We use the stability of solution {u(t); t ∈ [0, T ]} and iterates {un;n = 0, 1, . . . N}
to obtain

I1 = 2=
∫ t

s

∫
D

∆ū(s)

∫ ξ

s

(
i∆u(r) + iλ|u(r)|2u(r)− 1

2
u(r)

)
dr dx dξ (39)

≤ ‖∆u(s)‖2L2 |t− s|2 +

∫ t

s

∫ ξ

s

‖∆u(r)‖2L2 + |λ|‖u(r)‖6L6 +
1

2
‖u(r)‖2L2 dr dξ.
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To estimate I2, we use integration by parts and Young’s inequality to get

I2 =− 2=
∫ t

s

∫
D

∆ū(s)

∫ ξ

s

iu(r) dW (r) dx dξ (40)

=− 2=
∫ t

s

∫
D
ū(s)∆

(∫ ξ

s

iu(r) dW (r)
)
dx dξ

≤‖u(s)‖2L2 |t− s|+
∫ t

s

∥∥∥∫ ξ

s

u(r)dW (r)
∥∥∥2

H2
dξ.

By using Young’s inequality and Sobolev embedding H1(D) ↪→ L6(D), term II
can be bounded as follows:

II =2λ=
∫ t

s

(
u(ξ)− u(s), |u(ξ)|2u(ξ)

)
dξ ≤ 2|λ|

∫ t

s

‖u(ξ)‖3L6‖u(ξ)− u(s)‖L2 dξ

(41)

≤|λ|2
∫ t

s

K1
E‖u(ξ)‖6H1 dξ +

∫ t

s

‖u(ξ)− u(s)‖2L2 dξ.

To bound III , we have

III =−<
∫ t

s

(u(ξ)− u(s), u(ξ)) dξ ≤
∫ t

s

‖u(ξ)‖L2‖u(ξ)− u(s)‖L2 dξ (42)

≤
∫ t

s

‖u(ξ)‖2L2 dξ +

∫ t

s

‖u(ξ)− u(s)‖2L2 dξ.

Now combining these items together, we have

‖u(t)− u(s)‖2L2 ≤‖∆u(s)‖2L2 |t− s|2 +

∫ t

s

∫ ξ

s

‖∆u(r)‖2L2 + |λ|‖u(r)‖6L6 (43)

+
1

2
‖u(r)‖2L2 dr dξ + ‖u(s)‖2L2 |t− s|+

∫ t

s

‖u(ξ)‖2L2 dξ

+ |λ|2
∫ t

s

K1
E‖u(ξ)‖6H1 dξ +

∫ t

s

∥∥∥∫ ξ

s

u(r)dW (r)
∥∥∥2

H2
dξ

+ 2

∫ t

s

‖u(ξ)− u(s)‖2L2 dξ + IV.

Taking the expectation and noticing that IV is a martingale (hence, E[IV ] = 0),
we obtain

E
[
‖u(t)− u(s)‖2L2

]
≤ (2 + |λ|2K1

E)K2 + 3(K2 +K3 + |λ|)|t− s| (44)

+ 2E
[∫ t

s

‖u(ξ)− u(s)‖2L2 dξ

]
.

Thus, an application of Gronwall’s inequality infers

E
[
‖u(t)− u(s)‖2L2

]
≤
(
(2 + |λ|2K1

E)K2 + 3(K2 +K3 + |λ|)|t− s|
)
e2T |t− s|. (45)

Hence, (35) holds for p = 1.
The proof for p ≥ 2 can be carried out by the inductive method. To prove the

assertion for p = 2, we multiply (43) by ‖u(t)−u(s)‖2L2 , use Young’s inequality and
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apply expectation to get

E
[
‖u(t)− u(s)‖4L2

]
≤ K|t− s|2

(
E[‖∆u(s)‖4L2 ] + E[‖u(r)‖12

L6 ] + E[‖u(r)‖4L2 ] (46)

+ E[‖u(ξ)‖12
H1 ]
)

+K

∫ t

s

E
[
‖u(ξ)− u(s)‖2L2

]
dξ

+K|t− s|3
(
E[‖u(r)‖4H2 ]

)2
.

In order to verify this inequality, we may restrict ourselves to the stochastic
integral in (43), since other terms can be easily estimated by Young’s inequality.
By the Burkholder-Davis-Gundy inequalities, we obtain

E

[∫ t

s

∥∥∥∫ ξ

s

u(r)dW (r)
∥∥∥2

H2
‖u(t)− u(s)‖2L2 dξ

]
(47)

≤ E

[∫ t

s

∥∥∥∫ ξ

s

u(r)dW (r)
∥∥∥4

H2
+

1

4
‖u(t)− u(s)‖4L2 dξ

]

≤ 1

4
|t− s|E

[
‖u(t)− u(s)‖4L2

]
+ |t− s|3

(
E
[
‖u(r)‖4H2

])2
,

E
[
=
∫ t

s

(
u(ξ)− u(s), u(ξ)dW (ξ)

)
‖u(t)− u(s)‖2L2

]
(48)

≤
∫ t

s

E
[
‖u(ξ)− u(s)‖2L2‖u(ξ)‖2L2

]
dξ +

1

4
E
[
‖u(t)− u(s)‖4L2

]
≤ 1

2
E
[
‖u(t)− u(s)‖4L2

]
+ |t− s|2E

[
‖u(ξ)‖4L2

]
,

and the leading term in (47) and (48) can be absorbed by the left-hand side of
(46). Therefore, we obtain the desired conclusion in the case p = 2 via the discrete
Gronwall’s inequality.

By repeating this procedure, we can show that the result holds for each p ∈ N.
Hence, (35) holds. The proof is complete.

Remark 1. We note that by using the generalized Hölder inequality, it is easy to
show that the estimates of Corollary 1, Lemma 2.3 and Theorem 2.4 hold for all
1 ≤ p <∞.

3. Semi-discretization in time. In this section we propose a family of three-
parameters θ-time discretization schemes for the weak formulation (7) and establish
some stability estimates for the semi-discrete solutions.

Let τ > 0 be the time step and tn = nτ, n = 0, 1, ..., N , where tN = T and
denote un = u(x, tn). Set U0 = u(t0) be a given H1

0 (D)-valued random variable,
then our θ-schemes for (7) are defined as seeking {Ftn}0≤n≤N -adapted discrete
process {Un ∈ H1

0 (D); 0 ≤ n ≤ N} such that P-a.s.

i
(
Un+1, v

)
− τ
(
∇Ũn+θ1 ,∇v

)
+ λτ

((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , v

)
(49)

+
i

2
τ
(
Ũn+θ3 , v

)
= i
(
Un, v

)
+
(
Un∆Wn+1, v

)
∀v ∈ H1

0 (D),

where Ũn+θi = θiU
n+1 + (1− θi)Un, i = 1, 2, 3 and ∆Wn+1 := W (tn+1)−W (tn) ∼

N (0, τ), 0 ≤ θi ≤ 1 are given parameters. The commonly used those parameters
are listed in Table 1 below.
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Table 1. The comparison between the θ-scheme and other com-
monly used numerical schemes (i = 1, 2, 3).

1 θi = 0 Explicit Euler scheme 3 θi = 1 Implicit Euler scheme

2 θi = 1
2 Crank-Nicolson scheme 4 Others Some hybrid schemes

It is easy to see that (49) is a weak formulation for the random variable Un+1.
Below we shall give a detailed analysis for these θ-schemes in the remaining of this
section. We begin with following uniform estimate for the expectation of the pth
moment of the discrete Hamiltonian H n:

H n :=
1

2
‖∇Un‖2L2 −

λ

4
‖Un‖4L4 .

In order to establish the stability, we need the following assumption on the ranges
of the parameters θi, i = 1, 2, 3.

Assumption 1. Let θ1 ∈ [ 1
2 + c, 1] with c ∈ [c∗, 1

2 ], c∗ > 0. Let θ2 ∈ [ 1
2 , 1] with

λ < 0 or θ2 ∈ [0, 1
2 ] with λ > 0 or θ2 ∈ [0, 1] with λ = 0. Let θ3 ∈ [0, 1].

Theorem 3.1. Let p ≥ 1 be an integer. Fix T = tN > 0 and let θi(i = 1, 2, 3) satisfy
Assumption 1, Then there exists an H1

0 (D)-valued {Ftn}0≤n≤N -adapted solution
{Un; 0, . . . , N} of scheme (49) such that

max
1≤n≤N

E
[
H n

]
+

2θ1 − 1

4
E
[ n∑
l=0

‖∇U l+1 −∇U l‖2L2

]
≤ C1, (50)

max
1≤n≤N

E
[(

H n
)2p]

≤ C2, p ≥ 2, (51)

max
1≤n≤N

E
[
‖Un − Un−1‖2

p

L2

]
≤ C3τ

p, p ≥ 1, (52)

where C1 = C̃
(

2C1
ET + E

[
H 0

])
e6(1+|λ|+c−1)T with C̃ = (1− 3(1 + |λ|)τ)−1, C2 ≡

C2

(
T,C1

E , λ, c,E
[
(H 0)2p])

, C3 ≡ C3(λ,C2, C
1
E) and C1

E is the constant in Sobolev

embedding L4(D) ↪→ L2(D).

Proof. Setting v = Un+1 − Un in (49) and taking the real part that yield

<i
(
Un+1 − Un, Un+1 − Un

)
− τ<

(
∇Ũn+θ1 ,∇Un+1 −∇Un

)
(53)

+ λτ<
((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un+1 − Un

)
=

1

2
=τ
(
Ũn+θ3 , Un+1 − Un

)
+ <

(
Un∆Wn+1, U

n+1 − Un
)
.

By applying identity <(ia, a) = 0, <
(
a(ā − b̄)

)
= 1

2

(
|a|2 − |b|2 + |a − b|2

)
for

a, b ∈ C and Young’s inequality, the terms on the left-hand side of (53) can be
bounded as follows:

τ<
(
∇Ũn+θ1 ,∇Un+1 −∇Un

)
=
τ

2
‖∇Un+1‖2L2 −

τ

2
‖∇Un‖2L2 (54)

+
(2θ1 − 1)

2
τ‖∇Un+1 −∇Un‖2L2 ,
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− λτ<
((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un+1 − Un

)
(55)

= −λ
4
τ‖Un+1‖4L4 +

λ

4
τ‖Un‖4L4 −

(2θ2 − 1)

4
λτ

∫
D

(
|Un+1|2 − |Un|2

)
dx

− (2θ2 − 1)

2
λτ

∫
D

(
θ2|Un+1|2 + (θ2 − 1)|Un|2

)
|Un+1 − Un|2dx

≥ −λ
4
τ‖Un+1‖4L4 +

λ

4
τ‖Un‖4L4 .

Using (54) and (55), equation (53) can be written as follows:

(1

2
‖∇Un+1|2L2 −

1

4
λ‖Un+1‖4L4

)
−
(1

2
‖∇Un‖2L2 −

1

4
λ‖Un‖4L4

)
(56)

+
(2θ1 − 1)

2
‖∇Un+1 −∇Un‖2L2

≤ −1

2
=τ
(
Ũn+θ3 , Un+1 − Un

)
−<

(
Un∆Wn+1, U

n+1 − Un
)

=: II + III.

By using =(ab̄) = −=(bā) for a, b ∈ C and Ũn+θi = 1
2

(
Un+1+Un

)
+ 2θi−1

2

(
Un+1−

Un
)

in (49), the first term on the right-hand side of (56) can by bounded by

II =
1

2
=
(
Un+1 − Un, 1

2

(
Un+1 + Un

)
+

2θ3 − 1

2

(
Un+1 − Un

))
(57)

=
τ

4
<
(
∆Ũn+θ1 , Un+1 + Un

)
− τ

8
=
(
Ũn+θ3 , Un+1 + Un

)
+
τ

4
λ<
((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un+1 + Un

)
− 1

2
<
(
Un∆Wn+1, U

n+1 + Un
)

= : II1 + II2 + II3 + II4.

We now need to bound the right-hand side of (57). For the first term II1, it
follows from integration by parts, Schwarz inequality, Young’s inequality that

II1 =− τ

8
<
(
∇
(
Un+1 + Un

)
+ (2θ1 − 1)∇

(
Un+1 − Un

)
,∇Un+1 +∇Un

)
(58)

≤ (2θ1 − 1)

8
τ‖∇Un‖2L2 ≤

τ

8
‖∇Un‖2L2 .

For the second term II2, by Young inquality we have

II2 =− τ

16
=
((
Un+1 + Un

)
+ (2θ3 − 1)

(
Un+1 − Un

)
, Un+1 + Un

)
(59)

≤ (2θ3 − 1)

16
τ
(
‖∇Un+1‖2L2 + ‖∇Un‖2L2

)
≤ τ

16

(
‖∇Un+1‖2L2 + ‖∇Un‖2L2

)
.
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Similar to (55), it follows from Young’s inequality that

II3 =
τ

4
λ<
((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un+1 + Un

)
(60)

=
λ

16
τ‖Un+1‖4L4 −

λ

16
τ‖Un‖4L4 +

(2θ2 − 1)

16
λτ

∫
D

(
|Un+1|2 − |Un|2

)
dx

+
(2θ2 − 1)

8
λτ

∫
D

(
θ2|Un+1|2 + (θ2 − 1)|Un|2

)
|Un+1 − Un|2dx

≤ λ

16
τ‖Un+1‖4L4 .

By using <(ab̄) = <(bā) for a, b ∈ C, Young’s inequality and Sobolev embedding
L4(D) ↪→ L2(D), II4 can be estimated by

II4 ≤−
1

2
<
(
Un∆Wn+1, U

n+1 − Un
)

(61)

≤1

8
‖Un+1 − Un‖2L2 +

1

8
τ‖Un‖4L4 +

1

2τ
C1
E‖∆Wn+1‖4L∞ .

where C1
E is constant from ‖Un‖4L2 ≤ C1

E‖Un‖4L4 .

Again, by using <(ab̄) = <(bā) for a, b ∈ C and Ũn+θi = 1
2

(
Un+1 + Un

)
+

2θi−1
2

(
Un+1 − Un

)
in (49), the stochastic integral III can be estimated by

III =− 1

τ
<
(
Un+1 − Un, Un∆Wn+1

)
(62)

==
(
∆Ũn+θ1 , Un∆Wn+1

)
+

1

2
<
(
Ũn+θ3 , Un∆Wn+1

)
+ λ=

((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un∆Wn+1

)
= : III1 + III2 + III3.

We now estimate the three terms in (62) separately. For the first term III1, by
integration by parts and Young’s inequality we have

III1 =− θ1=
(
∇Un+1 −∇Un,∇Un∆Wn+1

)
(63)

≤ (2θ1 − 1)

4
‖∇Un+1 −∇Un‖2L2 +

θ2
1

2θ1 − 1
‖∇Un‖2L2‖∆Wn+1‖2L∞

≤ (2θ1 − 1)

4
‖∇Un+1 −∇Un‖2L2 +

1

c
‖∇Un‖2L2‖∆Wn+1‖2L∞ .

It follows from Young’s inequality and Sobolev embedding L4(D) ↪→ L2(D) that

III2 =
θ3

2
<
(
Un+1 − Un, Un∆Wn+1

)
+

(1− θ3)

2
<
(
Un, Un∆Wn+1

)
(64)

≤1

8
‖Un+1 − Un‖2L2 +

1

8
τ‖Un‖4L4 + C1

E

1

2τ
‖∆nW‖4L∞ +M1

t ,

where M1
t is the martingale given by

M1
t =

(1− θ3)

2
<
(
Un, Un∆Wn+1

)
. (65)
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For term III3, by Young inequality we have

III3 =λθ2=
(
θ2|Un+1|2Un+1 + (1− θ2)|Un|2Un, Un∆Wn+1

)
(66)

≤θ2(1 + 2θ2)

4
τ‖Un+1‖4L4 +

θ2(3− 2θ2)

4τ
‖Un‖4L4‖∆Wn+1‖4L∞

≤3

4
τ‖Un+1‖4L4 +

2

τ
‖Un‖4L4‖∆Wn+1‖4L∞ .

Combining (53)-(66) we get

H n+1 −H n +
(2θ1 − 1)

4
‖∇Un+1 −∇Un‖2L2 (67)

≤ τ

16
‖∇Un+1‖2L2 +

3τ

16
‖∇Un‖2L2 +

1

c
‖∇Un‖2L2‖∆Wn+1‖2L∞

+
( λ

16
+

3

4

)
τ‖Un+1‖4L4 +

1

4
τ‖Un‖4L4 +

2

τ
‖Un‖4L4‖∆Wn+1‖4L∞

+ C1
E

1

τ
‖∆Wn+1‖4L∞ +

1

4
‖Un+1 − Un‖2L2 +M1

t .

Next, we need to bound ‖Un+1−Un‖2L2 , which appears in the two estimates (61)
and (67). For this purpose, we set v = Un+1 − Un in (49) and take the imaginary
part, it follows from Young’s inequality that

‖Un+1 − Un‖2L2 = τ=
(
∇Ũn+θ1 ,∇Un+1 −∇Un

)
(68)

− 1

2
<τ
(
Ũn+θ3 , Un+1 − Un

)
− λτ=

((
θ2|Un+1|2

+ (1− θ2)|Un|2
)
Ũn+θ2 , Un+1 − Un

)
+ =

(
Un∆Wn+1, U

n+1 − Un
)

=: IV1 + IV2 + IV3 + IV4.

By using equality Ũn+θi = 1
2

(
Un+1 +Un

)
+ 2θi−1

2

(
Un+1−Un

)
, Young’s inequality

and Sobolev embedding L4(D) ↪→ L2(D) and the estimates that

IV1 =τ=
(1

2
∇
(
Un+1 + Un

)
+

2θ1 − 1

2
∇
(
Un+1 − Un

)
,∇Un+1 −∇Un

)
=τ=

(
∇Un+1,∇Un

)
≤ τ

2
‖∇Un+1‖2L2 +

τ

2
‖∇Un‖2L2 ,

IV2 =− 1

2
<τ
(1

2

(
Un+1 + Un

)
+

2θ3 − 1

2

(
Un+1 − Un

)
, Un+1 − Un

)
≤τ

8
‖Un‖4L4 +

τ

8
C1
E ,

IV3 =λτ=
(
θ2|Un+1|2Un+1 + (1− θ2)|Un|2Un+1, Un

)
≤|λ|τ‖Un+1‖4L4 + |λ|τ‖Un‖4L4 ,

IV4 ≤
1

2
‖Un+1 − Un‖2L2 +

τ

4
‖Un‖4L4 +

1

4τ
C1
E‖∆Wn+1‖4L∞ ,

we have

‖Un+1 − Un‖2L2 ≤ τ
(
‖∇Un+1‖2L2 + ‖∇Un‖2L2

)
+ 2|λ|τ‖Un+1‖4L4 (69)

+ (2|λ|+ 1)τ‖Un‖4L4 +
1

4
C1
Eτ +

1

2τ
C1
E‖∆Wn+1‖4L∞ .
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Combining estimates (67) and (69), we obtain

H n+1 −H n +
(2θ1 − 1)

4
‖∇Un+1 −∇Un‖2L2 (70)

≤ 5τ

16
‖∇Un+1‖2L2 +

7τ

16
‖∇Un‖2L2 +

1

c
‖∇Un‖2L2‖∆Wn+1‖2L∞

+
( 9

16
|λ|+ 3

4

)
τ
(
‖Un+1‖4L4 + ‖Un‖4L4

)
+

2

τ
‖Un‖4L4‖∆Wn+1‖4L∞

+
1

16
C1
Eτ +

9

8τ
C1
E‖∆Wn+1‖4L∞ +M1

t .

Summing over the index from l = 0 to n and applying expectations on both sides,
and using the fact that E[M1

t ] = 0, we get

E
[
H n+1

]
− E

[
H 0

]
+

2θ1 − 1

4
E
[
‖∇Un+1 −∇Un‖2L2

]
(71)

≤ 3(1 + |λ|)τ
n∑
l=0

E
[
H l+1

]
+ 3(1 + |λ|+ c−1)τ

n∑
l=0

E
[
H l
]

+ 2C1
ET.

The discrete Gronwall’s inequality then leads to

E
[
H n+1

]
+

2θ1 − 1

4

n∑
l=0

E
[
‖∇U l+1 −∇U l‖2L2

]
≤ C̃e6(1+|λ|+c−1)T . (72)

where C̃ = (1− 3(1 + |λ|)τ)−1
(
2C1

ET + E
[
H 0

])
. Hence, assertion (50) holds.

To show (51), we employ an inductive argument. Multiply (70) by H n+1 and
take expectations, using the identity (a−b)a = 1

2

(
a2−b2 +(a−b)2

)
, where a, b ∈ R,

Young’s inequality and the embedding L4(D) ↪→ L2(D), we get

1

2
E
[
(H n+1)2

]
− 1

2
E
[
(H n)2

]
+

1

4
E
[
(H n+1 −H n)2

]
(73)

≤ (8 + 3|λ|)τE
[
(H n+1)2

]
+ (11 + 3|λ|+ c−1)τE

[
(H n)2

]
+ (C1

E)(1 + C1
E)τ.

In order to verify this inequality, we may restrict ourselves to the martingale term
M1
t defined in (65), since other terms can be easily estimated by Young’s inequality.

By the independency property of increments of the Wiener process, we obtain

E
[
M1
t H n+1

]
=

(1− θ3)

2
E
[(

H n+1 −H n
)
<
∫
D
|Un|2∆nWds

]
(74)

≤1

4
E
[(

H n+1 −H n
)2]

+
1

16
E
[
‖Un‖4L4

]
τ +

1

4
C1
Eτ

and the leading term may be absorbed by the left-hand side of (73). Therefore, we
prove (51) for the case p = 2 via discrete Gronwall’s inequality. By repeating this
procedure, we can show (51) holds for each p ∈ N.

To show (52), taking expectation on (69) yields

E
[
‖Un+1 − Un‖2L2

]
≤τ
(
E
[
‖∇Un+1‖2L2

]
+ E

[
‖∇Un‖2L2

])
(75)

+ (2|λ|+ 1)τ
(
E
[
‖Un+1‖4pL4

]
+ E

[
‖Un‖4pL4

])
+ C1

Eτ

≤
(
(1 + |λ|)C1 + C1

E

)
τ.
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Again, we employ the inductive argument for p ≥ 2. Multiplying (69) by ‖Un+1 −
Un‖2L2 , we get

‖Un+1 − Un‖4L2 ≤ 8τ2
(
‖∇Un+1‖4L2 + ‖∇Un‖4L2

)
+

1

τ2
(C1

E)2‖∆Wn+1‖8L∞ (76)

+ 8(|λ|+ 1)2τ2
(
‖Un+1‖8L4 + ‖Un‖8L4

)
+

1

4
(C1

E)2τ2.

Then taking expectation yields

E
[
‖Un+1 − Un‖4L2

]
≤
(
44(|λ|+ 1)2C2 + 2(C1

E)2
)
τ2. (77)

Hence, (52) holds for p = 2. By repeating this procedure, we can show (52) holds
for each p ∈ N. The proof is complete.

Next, we establish some stability estimates for the expectation of H1-norm of
iterates {Un; 0 ≤ n ≤ N}.

Theorem 3.2. Let p ≥ 1 be an integer. Fix T = tN > 0 and let θi(i = 1, 2, 3)
satisfy Assumption 1. Then there exists an H1

0 (D)-valued {Ftn}0≤n≤N -adapted
solution {Un; 0, . . . , N} of scheme (49) such that

max
1≤n≤N

E
[
‖Un‖2

p

L2

]
≤ C4, (78)

where C4 ≡
(
T, |λ|, E

[
‖U0‖2L2

])
.

Proof. Setting v = Un+1 in (49) and taking the imaginary part, using identity
<
(
a(ā− b̄)

)
= 1

2

(
|a|2 − |b|2 + |a− b|2

)
for a, b ∈ C, =

(
Un∆Wn+1, U

n
)

= 0, Schwarz
and Young’s inequality, we obtain

1

2
‖Un+1‖2L2 −

1

2
‖Un‖2L2 +

1

2
‖Un+1 − Un‖2L2 (79)

= τ=
(
∇Ũn+θ1 ,∇Un+1

)
− λτ=

((
θ2|Un+1|2 + (1− θ2)|Un|2

)
Ũn+θ2 , Un+1

)
− 1

2
τ<
(
Ũn+θ3 , Un+1

)
+ =

(
Un∆Wn+1, U

n+1 − Un
)

=: I1 + I2 + I3 + I4.

Taking expectation on (79) and using the fact that

I1 =τ(1− θ1)=
(
∇Un,∇Un+1

)
≤ τ

2
‖∇Un+1‖2L2 +

τ

2
‖∇Un‖2L2 ,

I2 =− τλ(1− θ2)=
(
θ2|Un+1|2Un + (1− θ2)|Un|2∇Un+1, Un+1

)
,

≤τ |λ|‖Un+1‖4L4 + τ |λ|‖Un‖4L4 ,

I3 =− τ

2
θ3‖Un+1‖2L2 −

τ

2
(1− θ3)<

(
Un, Un+1

)
,

≤τ
4
‖Un+1‖2L2 +

τ

4
‖Un‖2L2 ,

I4 ≤
1

4
‖Un+1 − Un‖2L2 + ‖Un‖2L2‖∆Wn+1‖2L∞ ,

we get

‖Un+1‖2L2 − ‖Un‖2L2 +
1

2
‖Un+1 − Un‖2L2 (80)

≤ τ‖∇Un+1‖2L2 + τ‖∇Un‖2L2 + 2τ |λ|‖Un+1‖4L4 + 2τ |λ‖Un‖4L4

+
τ

2
‖Un+1‖2L2 +

τ

2
‖Un‖2L2 + 2‖Un‖2L2‖∆Wn+1‖2L∞ .
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After summing over the index from l = 0 to n and applying expectations on both
sides of (80), we obtain

E
[
‖Un+1‖2L2

]
− E

[
‖U0‖2L2

]
≤ 8(1 + |λ|)C1T + 3τ

n∑
l=0

E
[
‖U l‖2L2

]
. (81)

The discrete Gronwall’s inequality then leads to

E
[
‖Un+1‖2L2

]
≤
(
8(1 + |λ|)C1T + E

[
U0‖2L2

])
e3T . (82)

We again employ the inductive argument for p ≥ 2. To obtain the result for p = 2,
we multiply (80) by ‖Un+1‖2L2 , using the identity (a− b)a = 1

2

(
a2 − b2 + (a− b)2

)
,

where a, b ∈ R, and Young’s inequality, we get the desired estimate for p = 2. By
repeating this procedure, we can show (78) holds for each p ∈ N. The proof is
complete.

Corollary 2. Let p ≥ 1 be an integer and d = 1. Fix T = tN > 0 and let θi(i =
1, 2, 3) satisfy Assumption 1. Then there exists an H1

0 (D)-valued {Ftn}0≤n≤N -
adapted solution {Un; 0, . . . , N} of scheme (49) such that

max
1≤n≤N

E
[
‖Un‖2

p

H1

]
≤ C5, (83)

where C5 = (1 + C1
E)C4 + 2pC1.

Remark 2. We note that by using the generalized Hölder inequality, it is easy to
show that the estimates of Theorem 3.1 and 3.2, and Corollary 2 also hold when
the power 2p is replaced by any real number 1 ≤ q <∞.

4. Fully discrete finite element methods. In order to obtain fully discrete
numerical methods for problem (1), we need to discretize scheme (49) in the spatial
variables. Here we briefly describe finite element methods for this purpose although
other Galerkin-type methods can also be used.

Let Th be a quasi-uniform triangulation of D. We define the finite element space

V rh :=
{
vh ∈ H1(D) : vh|K ∈ Pr(K) ∀K ∈ Th

}
,

where Pr(K) denotes the space of all polynomials of degree not exceeding a given
positive integer r on K ∈ Th. Then our fully discrete finite element methods for
problem (1) are defined by seeking an Ftn -adapted V rh -valued process {Unh }(n =
0, 1, ..., N) such that P-almost surely

i
(
Un+1
h , vh)− τ

(
∇Ũn+θ1

h ,∇vh
)

+ λτ
((
θ2|Un+1

h |2 + (1− θ2)|Unh |2
)
Ũn+θ2
h , vh

)
(84)

+
i

2
τ
(
Ũn+θ3
h , vh

)
= i
(
Unh , vh) +

(
Unh∆Wn+1, vh

)
∀vh ∈ V rh ,

where Ũn+θi
h = θiU

n+1
h + (1− θi)Unh (i = 1, 2, 3) and ∆Wn+1 := W (n+ 1)−W (n) ∼

N (0, τ). We choose U0
h = Phu

0 to complement (84), where Ph : L2(D) → V rh
denotes the L2 projection operator defined by(

Phw, vh
)

=
(
w, vh

)
∀vh ∈ V rh .

In the next section we shall provide numerical tests for all combinations of θi (i =
1, 2, 3) given in Table 1.
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5. Numerical experiments. In this section, we present several one-dimensional
numerical experiments to test the performance of the proposed fully discrete finite
element methods with r = 1, i.e., V rh is the linear finite element space. For the
nonlinear solver, Newton’s method is used in all our numerical tests.

By introducing a parameter σ > 0 which measures the size of the noise, we first
consider the following stochastic cubic nonlinear Schrödinger equation:

idu+ ∆udt+ λ|u|2udt = σu ◦ dW (t) in (−L,L)× (0, T ],

u|t=0 = u0 in (−L,L), with L = 20.
(85)

We choose λ and u0 = sech(x) exp(2ix) so that the exact solution of the determin-
istic nonlinear Schrödinger problem (σ = 0) is given by

u(x, t) = sech(x− 4t) exp(i(2x− 3t)). (86)

This example contains a soliton wave and is often used as a benchmark for meansur-
ing the effectiveness of numerical methods for the deterministic NLS equation; see
[16, 19, 15].

5.1. Mass and energy conservations. We first demonstrate the differences of
these numerical schemes by their performances on preserving the mass- and energy-
conservation. When σ = 0, (85) reduces to a deterministic nonlinear Schrödinger
equation. It is well known that the deterministic problem admits the following
invariant quantities:

Mλ(u) =

∫
D

|u(x)|2 dx, (87)

Hλ(u) =

∫
D

(1

2
|∇u(x)|2 − λ

4
|u(x)|2

)
dx. (88)

In our multiplicative stochastic case, if W (t) is real-valued, Mλ(u) is again con-
served. The special form of the discretization of the nonlinear term ensures that in
the deterministic case, the discrete mass

Mh(t) =

∫
Ω

|Uh(t)|2dx, (89)

and the discrete energy

Hh(t) =
1

2

∫
Ω

|∇Uh(t)|2dx− λ

4

∫
Ω

|Uh(t)|4dx. (90)

are exactly conserved. These are important physical properties for “good” numer-
ical methods to preserve and are used as a criteria for developing such numerical
methods.

The evolution of mass and energy of the numerical solutions with σ = 0 is
presented in Figure 1 with τ = 0.05 and h = 0.2. The evolution of the expectation
of the mass E[Mh] and energy E[Hh] of the numerical solutions with σ = 0.05 is
presented in Figure 2 with τ = 0.05, h = 0.2. The classical Monte Carlo method
with M = 500 realizations is used to compute the expectation. It is shown the
effectiveness of the proposed the Crank-Nicolson scheme (θi = 1

2 , i = 1, 2, 3) in
preserving mass and energy.
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Figure 1. Evolution of mass Mh(t)−Mh(0) and energy Hh(t)−
Hh(0), with σ = 0 and τ = 0.05, h = 0.2.

Figure 2. Evolution of mass E[Mh(t)] − E[Mh(0)] and energy
E[Hh(t)] − E[Hh(0)], with σ = 0.05, τ = 0.05, h = 0.2 and M =
500.

5.2. Preserving the shape of a soliton. In order to verify the validity of different
θ schemes, the differences of these numerical schemes are then analyzed by their
performances on preserving preserving the shape of a soliton. In the deterministic
case (σ = 0), the graph of |u(x, t)| is a soliton propagating towards right. Its shape
remains unchanged for all t ≥ 0 as shown in Figure 3. The graphs of numerical
solutions given by several different numerical methods with σ = 0 using the same
mesh sizes are presented in Figures 4.

The numerical results show the effectiveness of the Crank-Nicolson scheme (θi =
1
2 , i = 1, 2, 3) in preserving the shape of the soliton. We do not include the explicit
method which explodes for large time, while the implicit method is heavily damped
and eventually drops to zero. For other hybrid schemes, they either decay or in-
crease, but the speed is much slower than Euler methods. It should be noted that
the Crank-Nicolson scheme (θi = 1

2 , i = 1, 2, 3) performs best in preserving mass
and energy conservations. Then, we choose this scheme to analyze the effects of
stochastic noises on the numerical results.

After having confirmed the validity of the Crank-Nicolson scheme (θi = 1
2 , i =

1, 2, 3), we like to understand the effects of noise on the PDE solution. Figure 5
displays the trajectories for different values of σ > 0. The evolution of the amplitude
|U | is also presented. For small noise, in Figure 5(a) and (b), we see that the wave
is not strongly perturbed and the noise does not prevent the propagation. On the
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Figure 3. Soliton propagation when t ∈ [0, 2]: graph of the exact
solution |u(·, t)| with σ = 0.

Figure 4. Soliton propagation when t ∈ [0, 2]: numerical solutions
with σ = 0, h = 0.2 and ∆t = 0.025.

other hand, when the noise level is high, Figure 5(c) shows that the wave profile
is destroyed by noise. To have a better understanding of what happens, we use
another representation of the solution and plot different level curves of the wave
amplitude. The result is shown in Figure 5(d). We observe that the propagation
is not stopped although the amplitude is very high. This simulation suggests that
the noise has a large influence on the speed of the wave.

5.3. Convergence rates. We solve problem (85) by the proposed θ method and
compare the numerical solutions with the reference solution.

We first consider the case σ = 0. The time discretization errors are presented
in Figure 6, where we use a sufficiently small spatial mesh h = 2L/2000 so that
the error from spatial discretization is negligibly small in observing the temporal
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contour of |u(t, x)|
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Figure 5. Plots in (x, t) plane of |U | for one trajectory: (a) σ=
0.001, (b) σ= 0.1, (c) σ= 0.5, (d) contour plot of |U | for σ = 0.5
(multiplicative noise).

Figure 6. Rates of convergence with τ ∈ {2−i; 1 ≤ i ≤ 5}. left:
σ = 0, T = 0.1 , right: σ = 0.05, T = 0.5.

convergence rates. Figure 6 shows convergence rate 2 for the L2-error of the Crank-
Nicolson scheme (θi = 1

2 , i = 1, 2, 3); the order drops to 1 for the implicit Euler

scheme (θi = 1, i = 1, 2, 3) and the Hybrid scheme 2 with θ1 = 1, θ2 = 1
2 , θ3 = 1

2 .
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The situation is different in the stochastic case when σ = 0.05 as shown in 6, the
order of strong convergence for the above three θ schemes drops from approximately
1 to 0.5.

5.4. Sensitivity to the time step. This test is to analyze the sensitivity of dif-
ferent schemes to the time step τ . For this purpose, we choose λ = −1 and σ = 0.05
with the initial condition u0 as

u0 = sin(πx). (91)

We take h = 2−5, τ = 2−i(i = 6, 7, 8), T = 2 and the computational domain is [0, 1].
We note that the initial data results in conservation of L2-norm of the numerical
solutions in the deterministic case. Hence, it can be used as an index to measure
the differences between different numerical schemes. Since the explicit Euler scheme
is unstable. Here we only consider the other four numerical schemes, and plot the
variation of the solution E[M n

h ] in Figure 7 and E[H n
h ] in Figure 8 under different

time step sizes. As expected, we use the classical Monte Carlo method with M = 500
realizations to compute the expectation.
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Figure 7. The sensitivity of E[M n
h ] in different subdomains

using different time step sizes. (a) Crank-Nicolson scheme : θi =
1
2 , i = 1, 2, 3; (b) Implicit Euler scheme : θi = 1, i = 1, 2, 3 ; (c)

Hybrid scheme 1: θ1 = 1
2 , θ2 = 1, θ3 = 1

2 ; (d) Hybrid scheme 2:

θ1 = 1, θ2 = 1
2 , θ3 = 1

2 .
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Figure 8. The sensitivity of E[H n
h ] in different subdomains using

different time step sizes. (a) Crank-Nicolson scheme : θi = 1
2 , i =

1, 2, 3; (b) Implicit Euler scheme : θi = 1, i = 1, 2, 3 ; (c) Hybrid
scheme 1: θ1 = 1

2 , θ2 = 1, θ3 = 1
2 ; (d) Hybrid scheme 2: θ1 =

1, θ2 = 1
2 , θ3 = 1

2 .

It should be noted that because of the particularity of the chosen exact solutions,
most of the numerical schemes are always decaying, except for the explicit Euler
scheme (θi = 0, i = 1, 2, 3) and the Crank-Nicolson scheme (θi = 1

2 , i = 1, 2, 3).
On the other hand, if λ or initial data changes, the hybrid schemes will either be
decaying or just exploding, except for the implicit Euler scheme , which is always
decaying. For example, let λ = 1 in this test, the scheme with θ1 = 1

2 , θ2 = 1 and

θ3 = 1
2 presents a rapid increase, but its increase speed is far less than that of the

explicit Euler scheme (θi = 0, i = 1, 2, 3), as shown in Figure 9.
Based on the properties of the stable solitons, we conclude that the Crank-

Nicolson scheme (θi = 1
2 , i = 1, 2, 3) is the only accurate numerical scheme in the

family, and other numerical schemes are always decaying or unstable. For those
unstable schemes, the only way to control their deterioration is to control the time
step size τ . However, the deterioration cannot be avoided even if the time step
is very small, because the solution will blow up when the total simulation time T
becomes sufficiently large.

6. Conclusion. In this paper we propose a family of fully discrete finite element
methods for a stochastic nonlinear Schrödinger (sNLS) equation with multiplicative
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Figure 9. The different increasing speeds between the Euler Ex-
plicit scheme (θi = 0, i = 1, 2, 3) and the Hybrid scheme 1 with
(θ1 = 1

2 , θ2 = 1, θ3 = 1
2 ).

noises of the Stratonovich type. We prove various properties of the solution to the
sNLS problem such as conserved quantities and Hölder continuity in time with
respect to the spatial L2-norm. A highlight of this paper is to establish various
stability properties for the proposed numerical schemes. Better understanding and
more insights about several prototypical schemes (such as the explicit and implicit
Euler schemes and the Crank-Nicolson scheme and other hybrid schemes) are also
obtained through the stability analysis and numerical simulations. An efficient
Monte Carlo Newton nonlinear solver is also designed to solve the resulting finite
element systems. Numerical results are provided to present performance comparison
between different schemes and to numerically study the influence of noise on the
dynamics of the numerical solutions.

It should be noted that not every commonly used scheme is useful for the sto-
chastic nonlinear Schrödinger equation, and the Crank-Nicolson scheme is the only
accurate numerical scheme in the family. The explicit Euler scheme is unstable, the
implicit Euler scheme is always decaying and most of the other hybrid schemes will
either be decaying or exploding, but the speed is far less than that of the explicit
Euler scheme. For those unstable schemes (such as the implicit Euler scheme and
other hybrid schemes with different θi), the only way to control their deterioration
is to control the time step size τ . Also, the total simulation time T should be limited
before the blow-up occurs because the deterioration cannot be avoided.

Finally, our analysis and simulations show that the multiplicative noise has dif-
ferent levels of influence on the solution dynamics. For small noise (i.e., when
σ � 1), the expectation of the stochastic solution behaves the same as its deter-
ministic counterpart, which is expected. On the other hand, for large noise (i.e.,
when σ ≥ 1), this is no longer the case. Our numerical simulations suggest that the
expectation of the stochastic solution could experience some fluctuation, shifting,
and rotation for large noise. Also, our simulations show that the noise has a large
influence on the speed of the solution wave.
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Acknowledgments. This work was completed while the second author was visit-
ing the University of Tennessee at Knoxville (UTK), the author would like to thank
the Mathematics Department of UTK for its support and hospitality.

REFERENCES

[1] V. Barbu, M. Rockner and D. Zhang, Stochastic nonlinear Schrödinger equations, Nonlinear

Anal., 136 (2016), 168–194.
[2] A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes, J. Funct.

Anal., 13 (1973), 195–222.

[3] A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in H1, Stoch.
Anal. Appl., 21 (2003), 97–126.

[4] A. de Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear

Schrödinger equation, Numer. Math., 96 (2004), 733–770.
[5] A. de Bouard and A. Debussche, Weak and strong order of convergence of a semi-discrete

scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54 (2006),
369–399.

[6] J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations , AMS, Providence, Rhode

Island, 1999.
[7] W. Cai, J. Li and Z. Chen, Unconditional convergence and optimal error estimates of the

Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation, Advances in

Comp. Math., 42 (2016), 1311–1330.
[8] C. Chen, J. Hong and A. Prohl, Convergence of a θ-scheme to solve the stochastic nonlinear

Schrödinger equation with Stratonovich noise, Stoch PDE: Anal. Comp., 4 (2016), 274–318.

[9] J. Cui, J. Hong and Z. Liu, Strong convergence rate of finite difference approximations for
stochastic cubic Schrödinger equations, J. Diff. Eqns., 263 (2017), 3687–3713.

[10] A. Debussche and L. Di Menza, Numerical simulation of focusing stochastic nonlinear

Schrödinger equations, Physica D , 162 (2002), 131–154.
[11] X. Feng, B. Li and S. Ma, High-order mass- and energy-conserving SAV–Gauss collocation

finite element methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., (to
appear).

[12] X. Feng, H. Liu and S. Ma, Mass- and energy-conserved numerical schemes for nonlinear

Schrödinger equations, Commun. Comput. Phys., 26 (2019), 1365–1396.
[13] J. Liu, Order of convergence of splitting schemes for both deterministic and stochastic non-

linear Schrödinger equations, SIAM J. Numer. Anal., 51 (2013), 1911–1932.

[14] J. Liu, Mass-preserving splitting scheme for the stochastic Schrödinger equation with multi-
plicative noise, IMA. J. Numer. Anal., 33 (2013), 1469–1479.

[15] W. Lu, Y. Huang and H. Liu, Mass preserving discontinuous Galerkin methods for Schrödinger

equations, J. Comput. Phys., 282 (2015), 210–226.
[16] N. Taghizadeh, M. Mirzazadeh and F. Farahrooz, Exact solutions of the nonlinear Schrödinger

equation by the first integral method, J. Math. Anal. Appl., 374 (2011), 549–553.

[17] T. Tao, Nonlinear Dispersive Equations , AMS, Providence, Rhode Island, 2006.
[18] J. Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear

Schrödinger equation, J. Scient. Comp., 60 (2014), 390–407.
[19] Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equa-

tions, J. Comput. Phys., 205 (2005), 72–97.

Received January 2021; revised April 2021.

E-mail address: xfeng@math.utk.edu

E-mail address: maisie.ma@connect.polyu.hk

http://www.ams.org/mathscinet-getitem?mr=MR3474409&return=pdf
http://dx.doi.org/10.1016/j.na.2016.02.010
http://www.ams.org/mathscinet-getitem?mr=MR0348841&return=pdf
http://dx.doi.org/10.1016/0022-1236(73)90045-1
http://www.ams.org/mathscinet-getitem?mr=MR1954077&return=pdf
http://dx.doi.org/10.1081/SAP-120017534
http://www.ams.org/mathscinet-getitem?mr=MR2036364&return=pdf
http://dx.doi.org/10.1007/s00211-003-0494-5
http://dx.doi.org/10.1007/s00211-003-0494-5
http://www.ams.org/mathscinet-getitem?mr=MR2268663&return=pdf
http://dx.doi.org/10.1007/s00245-006-0875-0
http://dx.doi.org/10.1007/s00245-006-0875-0
http://www.ams.org/mathscinet-getitem?mr=MR1691575&return=pdf
http://dx.doi.org/10.1090/coll/046
http://www.ams.org/mathscinet-getitem?mr=MR3571207&return=pdf
http://dx.doi.org/10.1007/s10444-016-9463-2
http://dx.doi.org/10.1007/s10444-016-9463-2
http://www.ams.org/mathscinet-getitem?mr=MR3498984&return=pdf
http://dx.doi.org/10.1007/s40072-015-0062-x
http://dx.doi.org/10.1007/s40072-015-0062-x
http://www.ams.org/mathscinet-getitem?mr=MR3670034&return=pdf
http://dx.doi.org/10.1016/j.jde.2017.05.002
http://dx.doi.org/10.1016/j.jde.2017.05.002
http://www.ams.org/mathscinet-getitem?mr=MR1886808&return=pdf
http://dx.doi.org/10.1016/S0167-2789(01)00379-7
http://dx.doi.org/10.1016/S0167-2789(01)00379-7
http://www.ams.org/mathscinet-getitem?mr=MR3997385&return=pdf
http://dx.doi.org/10.4208/cicp.2019.js60.05
http://dx.doi.org/10.4208/cicp.2019.js60.05
http://www.ams.org/mathscinet-getitem?mr=MR3072234&return=pdf
http://dx.doi.org/10.1137/12088416X
http://dx.doi.org/10.1137/12088416X
http://www.ams.org/mathscinet-getitem?mr=MR3119724&return=pdf
http://dx.doi.org/10.1093/imanum/drs051
http://dx.doi.org/10.1093/imanum/drs051
http://www.ams.org/mathscinet-getitem?mr=MR3291449&return=pdf
http://dx.doi.org/10.1016/j.jcp.2014.11.014
http://dx.doi.org/10.1016/j.jcp.2014.11.014
http://www.ams.org/mathscinet-getitem?mr=MR2729241&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2010.08.050
http://dx.doi.org/10.1016/j.jmaa.2010.08.050
http://dx.doi.org/10.1090/cbms/106
http://www.ams.org/mathscinet-getitem?mr=MR3225788&return=pdf
http://dx.doi.org/10.1007/s10915-013-9799-4
http://dx.doi.org/10.1007/s10915-013-9799-4
http://www.ams.org/mathscinet-getitem?mr=MR2132303&return=pdf
http://dx.doi.org/10.1016/j.jcp.2004.11.001
http://dx.doi.org/10.1016/j.jcp.2004.11.001
mailto:xfeng@math.utk.edu
mailto:maisie.ma@connect.polyu.hk

	1. Introduction
	2. Preliminaries and PDE analysis
	2.1. Notation
	2.2. Weak formulation and properties of weak solutions

	3. Semi-discretization in time
	4. Fully discrete finite element methods
	5. Numerical experiments
	5.1. Mass and energy conservations
	5.2. Preserving the shape of a soliton
	5.3. Convergence rates
	5.4. Sensitivity to the time step

	6. Conclusion
	Acknowledgments
	REFERENCES

