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Abstract
This paper is concerned with numerical analysis of two fully discrete Chorin-type
projection methods for the stochastic Stokes equations with general non-solenoidal
multiplicative noise. Thefirst scheme is the standardChorin scheme and the secondone
is a modified Chorin scheme which is designed by employing the Helmholtz decom-
position on the noise function at each time step to produce a projected divergence-free
noise and a “pseudo pressure" after combining the original pressure and the curl-free

part of the decomposition. An O(k
1
4 ) rate of convergence is proved for the standard

Chorin scheme, which is sharp but not optimal due to the use of non-solenoidal noise,
where k denotes the time mesh size. On the other hand, an optimal convergence rate

O(k
1
2 ) is established for the modified Chorin scheme. The fully discrete finite ele-

ment methods are formulated by discretizing both semi-discrete Chorin schemes in
space by the standard finite element method. Suboptimal order error estimates are
derived for both fully discrete methods. It is proved that all spatial error constants

contain a growth factor k− 1
2 , where k denotes the time step size, which explains the

deteriorating performance of the standard Chorin scheme when k → 0 and the space
mesh size is fixed as observed earlier in the numerical tests of Carelli et al. (SIAM J
Numer Anal 50(6):2917–2939, 2012). Numerical results are also provided to guage
the performance of the proposed numerical methods and to validate the sharpness of
the theoretical error estimates.
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1 Introduction

This paper is concerned with developing and analyzing Chorin-type projection finite
element methods for the following time-dependent stochastic Stokes problem:

du = [
ν�u − ∇ p + f

]
dt + B(u)dW(t) a.s. in DT := (0, T ) × D, (1.1a)

divu = 0 a.s. in DT , (1.1b)

u(0) = u0 a.s. in D, (1.1c)

where D = (0, L)2 ⊂ R
d (d = 2, 3) represents a period of the periodic domain in

R
d , u and p stand for respectively the velocity field and the pressure of the fluid, B is

an operator-valued random field, {W(t); t ≥ 0} denotes an L2(D)-valued Q-Wiener
process, and f is a body force function (see Sect. 2 for their precise definitions).Herewe
seek periodic-in-space solutions (u, p) with period L , that is, u(t, x+ Lei ) = u(t, x)
and p(t, x + Lei ) = p(t, x) almost surely and for any (t, x) ∈ (0, T ) × R

d and
1 ≤ i ≤ d, where {ei}di=1 denotes the canonical basis of R

d .
The system (1.1a) is a stochastic perturbation of the deterministic Stokes system

by introducing a multiplicative noise force term B(·)dW(s) and it has been used to
model turbulent fluids (cf. [1,2,18,22]). The stochastic Stokes system is a simplified
model of the full stochastic Navier-Stokes equations by omitting the nonlinear term
(u · ∇)u in the drift part of the stochastic Navier-Stokes equations. Although the
deterministic Stokes equations is a linear PDE system which has been well studied
in the literature (cf. [15,22] and the references therein), the stochastic Stokes system
(1.1a) is intrinsically nonlinear because the diffusion coefficient B is nonlinear in the
velocity u. Due to the introduction of random forces it has been well known that the
solution of problem (1.1) has very low regularities in time. We refer the reader to
[1,11,19] and the references therein for a detailed account about the well-posedness
and regularities of the solution for system (1.1).

Besides their mathematical and practical importance, the stochastic Stokes (and
Navier-Stokes) equations have been used as prototypical stochastic PDEs for devel-
oping efficient numerical methods and general numerical analysis techniques for
analyzing numerical methods for stochastic PDEs. In that regard several works have
been reported in the literature [3,5,8,9,12,13]. Euler-Maruyama time discretization and
divergence-free finite element space discretizationwas proposed and analyzed in [9] in
the case of divergence-free noises (i.e., B(u) is divergence-free). Optimal order error
estimates in strong norm for the velocity approximation were obtained. In [12,13] the
authors considered the general noise and analyzed the standard and a modified mixed
finite element methods as well as pressure stabilized methods for space discretization,
suboptimal order error estimates were proved in [12] for the velocity approximation
in strong norm and for the pressure approximation in a time-averaged norm, all these
suboptimal order error estimates were improved to optimal order for a Helmholtz
projection-enhanced mixed finite element in [13] (also see [5] for a similar approach).
It should be noted that the reason for measuring the pressure errors in a time-averaged
norm is because the low regularity of the pressure field which is only a distribution in
general and the numerical tests of [12,13] suggest that these error estimates are sharp.
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In [8] the authors proposed a Chorin time-splitting finite element method for problem
(1.1) and proved a suboptimal convergence rate in strong norm for the velocity approx-
imation in the case of divergence-free noises. In [3] the authors proposed an iterative
splitting scheme for stochastic Navier-Stokes equations and a strong convergence in
probability was established in the 2-D case for the velocity approximation. In a recent
work [4], the authors proposed another time-splitting scheme and proved its strong L2

convergence for the velocity approximation.
Compared to the recent advances on mixed finite element methods [9,12,13],

the numerical analysis of the well-known Chorin projection/splitting scheme for the
stochastic Stokes equations lags behind. To the best of our knowledge, the only anal-
ysis result obtained in [8] is the optimal convergence in the energy norm for the
velocity approximation in the case of divergence-free noises (i.e., B(u) is divergence-
free). Several natural and important questions arise and must be addressed for a better
understanding of the Chorin projection scheme for problem (1.1). Among them are (i)
Does the pressure approximation converge even when the noise is divergence-free?
If so, in what sense and what rate? (ii) Does the Chorin projection scheme converge
(for both the velocity and pressure approximations) for general noises? If so, in what
sense and what rate? (iii) Could the performance of the standard Chorin projection
scheme be improved one way or another in the case of general noises? The primary
objective this paper is to provide a positive answer to each of the above questions.

As itwas shown in [8], the adaptationof the standarddeterministicChorin projection
scheme to problem (1.1) is straightforward (see Algorithm 1 of Sect. 3). The idea of
the Chorin scheme is to separate the computation of the velocity and pressure at
each time step which is done by solving two decoupled Poisson problems and the
divergence-free constraint for the velocity approximation is enforced by a Helmholtz
projection technique which can be easily obtained using the solutions of the two
Poisson problems. The Chorin scheme also can be compactly rewritten as a pressure
stabilization scheme at each time step as follows (cf. [8]):

ũn+1 − ũn − kν�ũn+1 + k∇ pn = kfn+1 + B(ũn)�Wn+1 a.s. in DT , (1.2a)

div ũn+1 − k�pn+1 = 0 a.s. in DT , (1.2b)

∂n p
n+1 = 0 a.s. on ∂DT ,

(1.2c)

where ∂n pn+1 denotes the normal derivative of pn+1 and k is the time step size.
One of advantages of the above Chorin scheme is that the spatial approximation

spaces for ũn+1 and pn+1 can be chosen independently, so unlike in the mixed finite
element method, they are not required to satisfy an inf-sup condition. Notice that a
time lag on pressure appears in equation (1.2a) which causes most of difficulties in
the convergence analysis (cf. [8,16,20,21]). We also note that the term −k�pn+1 in
equation (1.2b) is known as a pressure stabilization term.

To improve the convergence of the standard Chorin scheme, we adopt a Helmholtz
projection technique as used in [13] (also see [5]). At each time step we first perform
the Helmholtz decomposition B(ũn) = ηηηn + ∇ξn and then rewrite (1.2a) as
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ũn+1 − ũn − kν�ũn+1 + k∇rn = kfn+1 + ηηηn�Wn+1 a.s. in DT , (1.3)

where rn = pn − k−1ξn�Wn+1. Our modified Chorin scheme consists of (1.3),
(1.2b)–(1.2c) and the Helmholtz decomposition B(ũn) = ηηηn + ∇ξn . Since ηηηn is
divergence-free, it turns out that the finite element approximation of the modified
Chorin scheme has better convergence properties. Notice that pn can be recovered
from rn via the simple algebraic relation pn = rn + k−1ξn�Wn+1.

The main contributions of this paper are summarized below.

• We proved the following error estimates in strong norms for the Chorin-P1 finite
element method (see Algorithm 3) for problem (1.1) with general multiplicative
noises:

(
E

[
k

M∑

m=0

‖u(tm) − ũmh ‖2
]) 1

2 + max
0≤�≤M

(
E

[∥∥
∥k

�∑

m=0

∇(u(tm) − ũmh )

∥∥
∥
2])

1
2

≤ C
(
k

1
4 + hk− 1

2

)
,

(
E

[
k

M∑

m=0

∥∥∥P(tm) − k
m∑

n=0

pnh

∥∥∥
2])

1
2 ≤ C

(
k

1
4 + hk− 1

2

)
,

where (u(tm), P(tm)) are the solution to problem (1.1) while (ũmh , pmh ) are the
discrete solution of Algorithm 3, see Sects. 2 and 4 for their precise definitions.

• We proposed a modified Chorin-P1 finite element method (see Algorithm 4) and
proved the following error estimates in strong norms for problem (1.1)with general
multiplicative noises:

max
1≤m≤M

(
E

[∥∥u(tm) − ũmh
∥∥2 ]) 1

2 +
(
E

[
k

M∑

m=1

∥∥∇(u(tm), umh )
∥∥2

]) 1
2

≤ C
(
k

1
2 + h + k− 1

2 h2
)
,

(
E

[∥∥∥∥R(tm) − k
m∑

n=1

rnh

∥∥∥∥

2 ]) 1
2 +

(
E

[∥∥∥∥P(tm) − k
m∑

n=1

pnh

∥∥∥∥

2 ]) 1
2

≤ C
(
k

1
2 + h + k− 1

2 h2
)
.

where (u(tm), P(tm)) is the solution to problem (1.1) and R(t) is defined as the
time-average of the pseudo pressure r(t) while (umh , rmh , pmh ) is the solution of
Algorithm 4, see Sects. 2 and 4 for their precise definitions.

We note that all spatial error constants contain a growth factor k− 1
2 , which explains the

deteriorating performance of the standard (and modified) Chorin scheme when k → 0
and the mesh size h is fixed as observed in the numerical tests of [8]. The numerical
experiments to be given in Sect. 5 indicate that the dependence on factor k− 1

2 is sharp.
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The remainder of this paper is organized as follows. In Sect. 2, we first introduce
some space notations and state the assumptions on the initial data and on B as well as
recall the definition of solutions to (1.1). We then state and prove a Hölder continuity
property for the pressure p in a time-averaged norm. In Sect. 3, we define the stan-
dard Chorin projection scheme as Algorithm 1 for problem (1.1) in Sect. 3.1 and the
modified Chorin scheme as Algorithm 2 in Sect. 3.2. The highlights of this section
are to prove some uniform (in k) stability estimates which are very useful for error
analysis later. In Sect. 4, we formulate the finite element spatial discretization for both
the standard Chorin and modified Chorin schemes in Algorithm 3 and 4, respectively
and prove the quasi-optimal error estimates for both algorithms as summarized above.
In Sect. 5, we present several numerical experiments to gauge the performance of
the proposed numerical methods and to validate the sharpness of the proved error
estimates.

This paper is a significantly shortened version of [14] where some omitted proofs
and additional remarks and explanations can be found.

2 Preliminaries

Standard function and space notation will be adopted in this paper. LetH1
0(D) denote

the subspace ofH1(D)whoseRd -valued functions have zero trace on ∂D, and (·, ·) :=
(·, ·)D denote the standard L2-inner product, with induced norm ‖ · ‖. We also denote
Lp
per (D) and Hk

per (D) as the Lebesgue and Sobolev spaces of the functions that
are periodic and have vanishing mean, respectively. Let (�,F , {Ft },P) be a filtered
probability space with the probability measure P, the σ -algebra F and the continuous
filtration {Ft } ⊂ F . For a random variable v defined on (�,F , {Ft },P), E[v] denotes
the expected value of v. For a vector space X with norm ‖ · ‖X , and 1 ≤ p <

∞, we define the Bochner space
(
L p(�, X); ‖v‖L p(�,X)

)
, where ‖v‖L p(�,X) :=

(
E[‖v‖p

X ]) 1
p . We also define

H := {
v ∈ L2

per (D); div v = 0 in D
}
,

V := {
v ∈ H1

per (D); div v = 0 in D
}
.

We recall from [15] that the (orthogonal) Helmholtz projectionPH : L2
per (D) → H

is defined by PHv = ηηη for every v ∈ L2
per (D), where (ηηη, ξ) ∈ H × H1

per (D)/R is a
unique tuple such that

v = ηηη + ∇ξ ,

and ξ ∈ H1
per (D)/R solves the following Poisson problem with the homogeneous

Neumann boundary condition:

�ξ = div v. (2.1)

We also define the Stokes operator A := −PH� : V ∩ H2
per (D) → H.
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Throughout this paper we assume that B : L2
per (D) → L2

per (D) is a Lipschitz
continuous mapping and has linear growth, that is, there exists a constant C > 0 such
that for all v,w ∈ L2

per (D)

‖B(v) − B(w)‖ ≤ C‖v − w‖ , (2.2a)

‖B(v)‖ ≤ C
(
1 + ‖v‖) , (2.2b)

Since we shall not explicitly track the dependence of all constants on ν, for ease
of the presentation, unless it is stated otherwise, we shall set ν = 1 in the rest of the
paper and assume that f ∈ L2(�; L2

per (D)). In addition, we shall use C to denote a
generic positive constant which may depend on T , the datum functions u0 and f , and
the domain D but is independent of the mesh parameters h and k.

2.1 Variational formulation of the stochastic Stokes equations

We first define the variational solution concept for (1.1) and refer the reader to [10,11]
for a proof of its existence and uniqueness.

Definition 2.1 Given (�,F , {Ft },P), let W be an R-valued Wiener process on it.
Suppose u0 ∈ L2(�,V) and f ∈ L2(�; L2((0, T ); L2

per (D))). An {Ft }-adapted
stochastic process {u(t); 0 ≤ t ≤ T } is called a variational solution of (1.1) if u ∈
L2

(
�;C([0, T ];V)) ∩ L2

(
�; 0, T ;H2

per (D)
)
, and satisfies P-a.s. for all t ∈ (0, T ]

(
u(t), v

) +
∫ t

0

(∇u(s),∇v
)
ds = (u0, v) +

∫ t

0

(
f(s), v

)
ds

+
∫ t

0

(
B

(
u(s)

)
, v

)
dW (s) ∀ v ∈ V . (2.3)

We cite the followingHölder continuity estimates for the variational solutionwhose
proofs can be found in [8,12].

Lemma 2.1 Suppose u0∈ L2
(
�;V∩H2

per (D)
)
and f ∈ L2(�;C 1

2 ([0, T ]); H1
per (D)).

Then there exists a constant C ≡ C(DT ,u0, f) > 0, such that the variational solution
to problem (1.1) satisfies for s, t ∈ [0, T ]

E
[‖u(t) − u(s)‖2] + E

[∫ t

s
‖∇(

u(τ ) − u(s)
)‖2 dτ

]
≤ C |t − s| , (2.4a)

E
[‖∇(

u(t) − u(s)
)‖2] + E

[∫ t

s
‖A(

u(τ ) − u(s)
)‖2 dτ

]
≤ C |t − s| . (2.4b)

Definition 2.1 only defines the velocity u for (1.1), its associated pressure p is subtle
to define. In that regard we quote the following theorem from [13].

Theorem 2.2 Let {u(t); 0 ≤ t ≤ T } be the variational solution of (1.1). There exists a
unique adapted process P ∈ L2

(
�, L2(0, T ; H1

per (D)/R)
)
such that (u, P) satisfies

P-a.s. for all t ∈ (0, T ]
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(
u(t), v

) +
∫ t

0

(∇u(s),∇v
)
ds − (

div v, P(t)
)

(2.5a)

= (u0, v) +
∫ t

0

(
f(s), v

)
ds +

∫ t

0

(
B

(
u(s)

)
, v

)
dW (s) ∀ v ∈ H1

per (D;Rd) ,

(
divu, q

) = 0 ∀ q ∈ L2
0(D) := {q ∈ L2

per (D) : (q, 1) = 0} . (2.5b)

System (2.5) is a mixed formulation for the stochastic Stokes system (1.1), where
the (time-averaged) pressure P is defined. The distributional derivative p := ∂P

∂t ,
which was shown to belong to L1

(
�;W−1,∞(0, T ; H1

per (D)/R)
)
, was defined as the

pressure. Below, we also define another time-averaged “pressure”

R(t) := P(t) −
∫ t

0
ξ(s) dW (s), (2.6)

using the Helmholtz decomposition B(u(t)) = ηηη(t) + ∇ξ(t), where ξ ∈ H1
per (D)/R

P-a.s. such that

(∇ξ(t),∇φ
) = (

B(u(t)),∇φ
) ∀φ ∈ H1

per (D) . (2.7)

Then, it is easy to check that P-a.s.

∇R(t) = −u(t) +
∫ t

0
u(s) ds + u0 +

∫ t

0
f(s) ds +

∫ t

0
ηηη(s) dW (s) ∀ t ∈ (0, T ).

(2.8)

The process {R(t); 0 ≤ t ≤ T } will also be approximated in our numerical methods.
Next, we establish some stability estimates for the velocity u and the pressure P in

the following lemma, its proof can be found in [14, Lemma 2.4].

Lemma 2.3 Suppose that u0 ∈ L2(�;V). Let (u, P) solve (2.5). Then there exists a
constant C ≡ C(DT ,u0, f) such that

E

[
sup

0≤t≤T
‖∇u(t)‖2

]
+ E

[∫ T

0
‖Au(s)‖2 ds

]
≤ C, (2.9)

sup
0≤t≤T

E

[
‖∇P(t)‖2

]
≤ C . (2.10)

We finish this section by establishing the following Hölder continuity result for P .
We also omit its proof here and refer the reader to [14, Lemma 2.5]

Lemma 2.4 Suppose that u ∈ L2(�;C([0, T ];V)) ∩ L2(�; 0, T ;H2
per (D)), f ∈

L2(�; 0, T ;L2
per (D)) and P ∈ L2(�; L2(0, T ; H1

per (D/R))). Then, there holds

E
[‖∇(

P(s) − P(t)
)‖2] ≤ C |s − t | ∀s, t ∈ [0, T ], (2.11)

where the constant C > 0 depends on DT , u0 and f .
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3 Two Chorin-type time-stepping schemes

In this section, we first formulate two Chorin-type semi-discrete-in-time schemes for
problem (1.1). The first scheme is the standard Chorin scheme and the second one is
a Helmholtz decomposition enhanced nonstandard Chorin scheme. We then present
a complete convergence analysis for each scheme which includes establishing their
stability and error estimates in strong norms for both velocity and pressure approxi-
mations.

3.1 Standard Chorin projection scheme

We first consider the standard Chorin scheme for (1.1), its formulation is a straightfor-
ward adaptation of the well-known scheme for the deterministic Stokes problem and
is given in Algorithm 1 below. As mentioned earlier, the standard Chorin scheme for
(1.1) was already studied in [8] in the special case when the noise is divergence-free
and error estimateswere only obtained for the velocity approximation. In contrast, here
we consider the Chorin scheme for general multiplicative noise and to derive error
estimates in strong norms not only for the velocity but also for pressure approximations
and to achieve a full understanding about the scheme.

3.1.1 Formulation of the standard Chorin scheme

Let M be a (large) positive integer and k := T /M be the time step size. Set t j = jk
for j = 0, 1, 2, · · · , M , then {t j }Mj=0 forms a uniform mesh for (0, T ). The standard
Chorin projection scheme is given as follows (cf. [8,15,22]):

Algorithm 1 Let ũ0 = u0 = u0. For n = 0, 1, 2, · · · , M − 1, do the following three
steps.

Step 1: Given un ∈ L2(�;H) and ũn ∈ L2(�;H1
per (D)), find ũn+1 ∈

L2(�;H1
per (D)) such that P-a.s.

ũn+1 − k�ũn+1 = un + kfn+1 + B(ũn)�Wn+1 in D. (3.1)

Step 2: Find pn+1 ∈ L2(�; H1
per (D)/R) such that P-a.s.

−�pn+1 = −1

k
div ũn+1 in D. (3.2)

Step 3: Define un+1 ∈ L2(�;H) by

un+1 = ũn+1 − k∇ pn+1. (3.3)

Remark 3.1 (a) The above formulation is written in the way in which the scheme is
implemented, it is slightly different from the traditional writing which combines Step
2 and 3 together.
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(b) It is easy to check (ũn+1,un+1, pn+1) satisfies the following system:

ũn+1 − ũn − k�ũn+1 + k∇ pn = kfn+1 + B(ũn)�Wn+1 in D, (3.4a)

div ũn+1 − k�pn+1 = 0 in D, (3.4b)

where ũ0 = u0.

3.1.2 Stability estimates for the standard Chorin method

The goal of this subsection is to establish some stability estimates for Algorithm 1 in
strong norms. These estimates will play an important role in the error estimations for
the fully discrete finite element Chorin scheme to be given in the next section.

Lemma 3.1 The discrete processes {(ũn, pn)}Mn=0
defined in (3.4) satisfy

max
0≤n≤M

E[‖ũn‖2] + E

[ M∑

n=1

‖ũn − ũn−1‖2
]

+ E

[
k

M∑

n=0

‖∇ũn‖2
]

≤ C, (3.5a)

E

[
k

M∑

n=0

‖∇ pn‖2
]

≤ C

k
, (3.5b)

max
0≤n≤M

E[‖∇ũn‖2] + E

[
k

M∑

n=0

‖�ũn‖2
]

≤ C

k
, (3.5c)

where C > 0 depends only on DT , u0, f .

We refer the reader to [14, Lemma 3.1] for a complete proof of this lemma.

3.1.3 Error estimates for the standard Chorin scheme

In this subsection we shall derive some error estimates for the time-discrete processes
generated by Algorithm 1. To the best of our knowledge, these are the first error
estimate results for the standard Chorin scheme in the case general multiplicative
noises. For the sake of brevity, but without loss of the generality, we set f = 0 in this
subsection.

First, we state the following error estimate result for the velocity.

Theorem 3.2 Let {(ũn, pn)}Mn=0 be generated by Algorithm 1, then there exists a pos-
itive constant C which depends on DT ,u0, and f such that

(
E

[
k

M∑

n=0

‖u(tn) − ũn‖2
]) 1

2

+ max
0≤�≤M

(
E

[∥∥∥k
�∑

n=0

∇(u(tn) − ũn)
∥∥∥
2
]) 1

2 ≤ Ck
1
4 . (3.6)
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Proof Let emũ = u(tm) − ũm and Em
p = P(tm) − k

m∑

n=0

pn . Obviously, emũ ∈

L2
(
�;H1

per (D)
)
and Em

p ∈ L2(�; H1
per (D)/R). In addition, from (2.5a), we have

(
u(tm+1), v

) +
m∑

n=0

∫ tn+1

tn

(∇u(s),∇v
)
ds + (

v,∇P(tm+1)
)

(3.7)

= (
u0, v

) +
( m∑

n=0

∫ tn+1

tn

(
B(u(s)) dW (s), v

)
∀v ∈ H1

per (D) a.s.

Applying the summation operator
∑m

n=0 to (3.4a) yields

(
ũm+1, v

) + k
m∑

n=0

(∇ũn+1,∇v
) +

(
k

m∑

n=0

∇ pn, v
)

(3.8)

= (
ũ0, v

) +
( m∑

n=0

∫ tn+1

tn
B(ũn) dW (s), v

)
.

Subtracting (3.8) from (3.7) we get

(
em+1
ũ , v

) + k
( m∑

n=0

∇en+1
ũ ,∇v

)
+ (∇Em

p , v
)

(3.9)

=
m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇v
)
ds − (∇(P(tm+1) − P(tm)), v

)

+
( m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s), v

)
∀v ∈ H1

per (D).

Setting v = em+1
ũ in (3.9) we obtain

‖em+1
ũ ‖2 + k

(m+1∑

n=0

∇enũ,∇em+1
ũ

)
+ (∇Em

p , em+1
ũ

)
(3.10)

=
m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇em+1
ũ

)
ds

− (∇(P(tm+1) − P(tm)), em+1
ũ

)

+
( m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s), em+1

ũ

)
.
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Similarly, by (2.5b) and (3.4b) we get

div enũ + k�pn = 0. (3.11)

Applying the summation
∑m+1

n=0 to (3.11) and then adding ±�P(tm+1) yield

div

(m+1∑

n=0

enũ

)
− �Em+1

p = −�P(tm+1).

Therefore,

div em+1
ũ − �(Em+1

p − Em
p ) = −�(P(tm+1) − P(tm)). (3.12)

Testing (3.12) by any q ∈ L2(�; H1
per (D)/R), we have

(
em+1
ũ ,∇q

) = (∇(Em+1
p − Em

p ),∇q
) − (∇(P(tm+1) − P(tm)),∇q

)
. (3.13)

Choosing q = Em
p in (3.13) gives

(
em+1
ũ ,∇Em

p

) = (∇(Em+1
p − Em

p ),∇Em
p

) − (∇(P(tm+1) − P(tm)),∇Em
p

)
(3.14)

= (∇(Em+1
p − Em

p ),∇Em+1
p

) − ‖∇(Em+1
p − Em

p )‖2
− (∇(P(tm+1) − P(tm)),∇Em

p

)
.

Substituting (3.14) into (3.10) we obtain

‖em+1
ũ ‖2 + k

(m+1∑

n=0

∇enũ,∇em+1
ũ

)
+ (∇(Em+1

p − Em
p ),∇Em+1

p

)

≤
m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇em+1
ũ

)
ds

+ ‖∇(Em+1
p − Em

p )‖2 + (∇(P(tm+1) − P(tm)),∇Em
p

)

+ ‖∇(P(tm+1) − P(tm))‖2 + 1

4
‖em+1

ũ ‖2

+
∥∥∥
∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥
∥

2

+ 1

4
‖em+1

ũ ‖2.

Therefore,
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1

2
‖em+1

ũ ‖2 + k

(m+1∑

n=0

∇enũ,∇em+1
ũ

)
+ (∇(Em+1

p − Em
p ),∇Em+1

p

)
(3.15)

≤
m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇em+1
ũ

)
ds

+ ‖∇(P(tm+1) − P(tm))‖2 + ‖∇(Em+1
p − Em

p )‖2
+ (∇(P(tm+1) − P(tm)),∇Em

p

)

+
∥∥∥∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥∥

2

.

Using the identity 2a(a − b) = a2 − b2 + (a − b)2 in (3.15) yields

1

2
‖em+1

ũ ‖2 + k

2

[∥∥∥
∥

m+1∑

n=0

∇enũ

∥∥∥
∥

2

−
∥∥∥
∥

m∑

n=0

∇enũ

∥∥∥
∥

2

+ ‖∇em+1
ũ ‖2

]
(3.16)

+ 1

2

[‖∇Em+1
p ‖2 − ‖∇Em

p ‖2 + ‖∇(Em+1
p − Em

p )‖2]

≤
m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇em+1
ũ

)
ds

+ ‖∇(P(tm+1) − P(tm))‖2 + ‖∇(Em+1
p − Em

p )‖2
+ (∇(P(tm+1) − P(tm)),∇Em

p

)

+
∥∥∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥
2
.

Next, we apply the summation operator k
∑�

m=0 for 0 ≤ � ≤ M − 1, followed by
applying the expectation operator E[·], to (3.16) to obtain

k
�∑

m=0

E
[‖em+1

ũ ‖2] + E

[∥
∥∥∥k

�+1∑

m=0

∇emũ

∥
∥∥∥

2]
+ k2

�∑

m=0

E
[‖∇em+1

ũ ‖2] (3.17)

+ kE
[‖∇E�+1

p ‖2] + k
�∑

m=0

E
[‖∇(Em+1

p − Em
p )‖2]

≤ 2E

[
k

�∑

m=0

m∑

n=0

∫ tn+1

tn

(∇(u(tn+1) − u(s)),∇em+1
ũ

)
ds

]

+ 2E

[
k

�∑

m=0

‖∇(P(tm+1) − P(tm))‖2
]

+ 2E

[
k

�∑

m=0

‖∇(Em+1
p − Em

p )‖2
]
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+ 2E

[
k

�∑

m=0

(∇(P(tm+1) − P(tm)),∇Em
p

)
]

+ 2E

[
k

�∑

m=0

∥∥∥
m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥
2
]

:= I + II + III + IV + V.

Now we estimate each term on the right-hand side of (3.17) as follows. We refer
the reader to see [14, Theorem 3.2] for the details of the following estimations.

By using the discrete and continuous Hölder inequality estimates (2.4b), (2.9) and
(3.5a), we obtain

I = 2E
[
k

�∑

m=0

( m∑

n=0

∫ tn+1

tn
∇(u(tn+1) − u(s)) ds,∇em+1

ũ

)]

≤ C
(
E

[
k

�∑

m=0

m∑

n=0

∫ tn+1

tn
‖∇(u(tn+1) − u(s))‖2 ds

]) 1
2
(
E

[
k

�∑

m=0

‖∇enũ‖2
])

≤ Ck
1
2 . (3.18)

Next, by using (2.11) we have

II = 2E

[
k

�∑

m=0

‖∇(P(tm+1) − P(tm))‖2
]

≤ Ck. (3.19)

By using (2.11) and the stability estimate (3.5b) we obtain

III ≤ CE

[
k

�∑

m=0

‖∇(P(tm+1) − P(tm))‖2 + Ck3
�∑

m=0

‖∇ pm+1‖2
]

≤ Ck. (3.20)

It follows from the Itô isometry and (2.4a) that

V = 2k
�∑

m=0

E

[ m∑

n=0

∫ tn+1

tn
‖B(u(s)) − B(ũn)‖2 ds

]

≤ Ck
�∑

m=0

k
m∑

n=0

E[‖enu‖2] + Ck
�∑

m=0

m∑

n=0

∫ tn+1

tn
E[‖u(s) − u(tn)‖2] ds

≤ Ck
�∑

m=0

k
m∑

n=0

E[‖enu‖2] + Ck. (3.21)
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To bound term IV, we first derive its rewriting as follows:

IV = 2E

[
k

�∑

m=0

(∇(P(tm+1) − P(tm)),∇Em+1
p

)]

+ 2E

[
k

�∑

m=0

(∇(P(tm+1) − P(tm)),∇(Em
p − Em+1

p )
)]

. (3.22)

By using the summation by parts, the first term above can be rewritten as

2E

[
k

�∑

m=0

(∇(P(tm+1) − P(tm)),∇Em+1
p

)]

= 2kE
[(∇P(t�+1),∇E�+1

p

)] − 2kE

[ �∑

m=0

(∇P(tm),∇(Em+1
p − Em

p )
)]

. (3.23)

Substituting (3.23) into (3.22) yields

IV = 2kE
[(∇P(t�+1),∇E�+1

p

)] − 2kE

[ �∑

m=0

(∇P(tm),∇(Em+1
p − Em

p )
)]

+ 2E

[
k

�∑

m=0

(∇(P(tm+1) − P(tm)),∇(Em
p − Em+1

p )
)]

(3.24)

:= IV1 + IV2 + IV3.

We now bound each term above. Using the stability (2.10) we get

IV1 ≤ CkE
[‖∇P(t�+1)‖2

] + k

4
E

[‖∇E�+1
p ‖2] ≤ Ck + k

4
E

[‖∇E�+1
p ‖2]. (3.25)

Expectedly, the term k
4E

[‖∇E�+1
p ‖2] will be absorbed to the left side of (3.17) later.

To bound term IV2, we reuse the estimation from III in (3.20) together with the
stability of P given in (2.10) to get

IV2 ≤ C
(
E

[
k

�∑

m=0

‖∇P(tm)‖2
]) 1

2
(
E

[
k

�∑

m=0

‖∇(Em+1
p − Em

p )‖2
]) 1

2 ≤ Ck
1
2 .

(3.26)

Using again (3.20) and (2.11) we have

IV3 ≤CE

[
k

∑�
m=0 ‖∇(P(tm+1)−P(tm))‖2+k

∑�
m=0 ‖∇(Em+1

p − Em
p )‖2

]
≤ Ck.

(3.27)
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Substituting estimates (3.25)–(3.27) into (3.24) yields

IV ≤ Ck
1
2 + k

4
E

[‖∇E�+1
p ‖2]. (3.28)

Now, substituting the estimates for I, II, III, IV, V into (3.17) and using the
notation X� = k

∑�
m=0 E[‖emũ ‖2] we obtain

X�+1 + E

[∥∥∥k
�+1∑

m=0

∇emũ

∥∥∥
2 + k2

�∑

m=0

‖∇em+1
ũ ‖2

+ 3k

4
‖∇E�+1

p ‖2 + k
�∑

m=0

‖∇(Em+1
p − Em

p )‖2
]

≤ Ck
1
2 + Ck

�∑

m=0

Xm .

Thus, it follows from the discrete Gronwall inequality that

X�+1 + E

[∥∥∥k
�+1∑

m=0

∇emũ

∥∥∥
2] ≤ Ck

1
2 exp(Ct�),

which yields the desired error estimate for the velocity approximation. 
�

Next, we derive an error estimate for the pressure approximation.

Theorem 3.3 Let {(ũm, pm)}Mm=0 be generated by Algorithm 1. Then, there exists a
positive constant C which depends on DT ,u0, f, and β such that

(
E

[
k

M∑

m=0

∥∥
∥P(tm) − k

m∑

n=0

pn
∥∥
∥
2
]) 1

2 ≤ Ck
1
4 , (3.29)

where β denotes the stochastic inf-sup constant (see below).

Proof We first recall the following inf-sup condition (cf. [6]):

sup
v∈H1

per (D)

(
q, div v

)

‖∇v‖ ≥ β ‖q‖ ∀q ∈ L2
per (D)/R, (3.30)

where β is a positive constant.
Below we reuse all the notations from Theorem 3.2. From the error equation (3.9)

we obtain for all v ∈ H1
per (D)
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(
Em
p , div v

) = (
em+1
ũ , v

) +
(
k

m∑

n=0

∇en+1
ũ ,∇v

)
+ (∇(P(tm+1) − P(tm)), v

)

(3.31)

−
( m∑

n=0

∫ tn+1

tn
∇(u(tn+1) − u(s)) ds,∇v

)

−
( m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s), v

)
.

By using Schwarz and Poincaré inequalities on the right side of (3.31), we get

(
Em
p , div v

) ≤ C‖em+1
ũ ‖‖∇v‖ +

∥∥∥∥k
m∑

n=0

∇en+1
ũ

∥∥∥∥‖∇v‖ (3.32)

+
∥
∥∥∥

m∑

n=0

∫ tn+1

tn
∇(u(tn+1) − u(s)) ds

∥
∥∥∥‖∇v‖

+ C‖∇(P(tm+1) − P(tm))‖‖∇v‖

+ C

∥∥
∥∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥
∥∥‖∇v‖

Applying (3.30) yields

β‖Em
p ‖ ≤ sup

v∈H1
per (D)

(
Em
p , div v

)

‖∇v‖ (3.33)

≤ C‖em+1
ũ ‖ +

∥∥∥
∥k

m∑

n=0

∇en+1
ũ

∥∥∥
∥ +

∥∥∥
∥

m∑

n=0

∫ tn+1

tn
∇(u(tn+1) − u(s)) ds

∥∥∥
∥

+ C‖∇(P(tm+1) − P(tm))‖

+ C

∥∥∥
∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥
∥.

Next, squaring both sides of (3.33) followed by applying operators k
∑�

m=0 and E[·],
we obtain

β2
E

[
k

�∑

m=0

‖Em
p ‖2

]
≤ CE

[
k

�∑

m=0

‖em+1
ũ ‖2

]
+ Ck

�∑

m=0

E

[∥∥∥∥k
m∑

n=0

∇en+1
ũ

∥∥∥∥

2]
(3.34)

+ Ck
�∑

m=0

E

[∥∥
∥∥

m∑

n=0

∫ tn+1

tn
∇(u(tn+1) − u(s)) ds

∥∥
∥∥

2]
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+ Ck
�∑

m=0

E
[‖∇(P(tm+1) − P(tm))‖2]

+ Ck
�∑

m=0

E

[∥∥∥∥

m∑

n=0

∫ tn+1

tn
(B(u(s)) − B(ũn)) dW (s)

∥∥∥∥

2]

:= I + II + III + IV + V.

It remains to bound each term on the right side above. We refer the reader to see the
details of the proof in [14, Theorem 3.3] using Theorem 3.2. We only state the final
results below.

β2
E

[
k

�∑

m=0

‖Em
p ‖2

]
≤ Ck

1
2 for 1 ≤ � ≤ M . (3.35)

The proof is complete. 
�
Remark 3.2 It is interesting to point out that the above proof uses the technique from
the (non-splitting) mixed method error analysis although Chorin scheme is a splitting
scheme.

We conclude this subsection by stating two stability estimates for (ũm, pm) in high
norms as immediate corollaries of the above error estimates, they will be used in
the next section in deriving error estimates for a fully discrete finite element Chorin
method. We note that these stability estimates improve those given in Lemma 3.1 and
may not be obtained directly without using the above error estimates.

Corollary 3.4 Under the assumptions of Theorem 3.2, there exists a positive constant
C which depends on DT ,u0 and f such that

E

[
k

M∑

m=0

∥
∥∥∥k

m∑

n=0

∇ pn
∥
∥∥∥

2]
≤ C, (3.36)

max
0≤m≤M

E

[∥∥∥
∥k

m∑

n=0

∇ũn
∥∥∥
∥

2]
+ E

[
k

M∑

m=0

∥∥∥
∥k

m∑

n=0

�ũn
∥∥∥
∥

2]
≤ C . (3.37)

We refer the reader to [14, Corollary 3.4] for a detailed proof.

3.2 Amodified Chorin projection scheme

In this subsection, we consider a modification of Algorithm 1 which was already
pointed out in [8] but did not analyze there. Themodification is to perform aHelmholtz
decomposition of B(ũm) at each time step which allows us to eliminate the curl-free
part in Step 1 of Algorithm 1, this then results in a divergent-free Helmholtz projected
noise. The goal of this subsection is to present a complete convergence analysis for
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the modified Chorin scheme which includes deriving stronger error estimates for both
velocity and pressure approximations than those for the standard Chorin scheme. We
note that this Helmholtz decomposition enhancing technique was also used in [13] to
improve the standard mixed finite element method for (1.1).

3.2.1 Formulation of the modified Chorin scheme

For ease of the presentation, we assume W (t) is a real-valued Wiener process and
independent of the spatial variable. The case of more general W (t) can be dealt with
similarly. The modified Chorin scheme is given as follows.

Algorithm 2 Set ũ0 = u0 = u0. For m = 0, 1, · · · , M − 1, do the following five
steps.

Step 1: Given ũm ∈ L2(�,H1
per (D)), find ξm ∈ L2(�, H1

per (D)/R) such that
P-a.s.

�ξm = div B(ũm) in D. (3.38)

Step 2:Setηηηmũ = B(ũm)−∇ξm . Givenum ∈ L2(�,H) and ũm ∈ L2(�,H1
per (D)),

find ũm+1 ∈ L2(�,H1
per (D)) such that P-a.s.

ũm+1 − k�ũm+1 = um + kfm+1 + ηηηmũ �Wm+1 in D. (3.39)

Step 3: Find rm+1 ∈ L2(�, H1
per (D)/R) such that P-a.s.

−�rm+1 = −1

k
div ũm+1 in D. (3.40a)

Step 4: Define um+1 ∈ L2(�,H) as

um+1 = ũm+1 − k∇rm+1 in D. (3.41)

Step 5: Define the pressure approximation pm+1 as

pm+1 = rm+1 + 1

k
ξm�Wm+1 in D. (3.42)

Remark 3.3 It follows from (2.2b) and (3.38) that the Helmholtz projection ηηηmũ can be
bounded in terms of ũm as follows:

‖ηηηmũ ‖L2 ≤ ‖B(ũm)‖L2 + ‖∇ξmũ ‖L2 ≤ 2‖B(ũm)‖L2 ≤ C‖ũm‖L2 (3.43)
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3.2.2 Stability estimates for the modified Chorin scheme

In this subsection we first state some stability estimates for Algorithm 2. We then
recall the Euler-Maruyama scheme for (1.1) and its stability and error estimates from
[13], which will be utilized as a tool in the stability and error analysis of the modified
Chorin scheme in the next subsection.

Lemma 3.5 The discrete processes {(ũm, rm)}Mm=0 defined by Algorithm 2 satisfy

max
0≤m≤M

E[‖ũm‖2] + E

[ M∑

m=1

‖ũm − ũm−1‖2
]

+ E

[
k

M∑

m=0

‖∇ũm‖2
]

≤ C, (3.44a)

E

[
k2

M∑

m=0

‖∇rm‖2
]

≤ C, (3.44b)

where C is a positive constant which depends on DT ,u0 and f .

Since the proof of this lemma follows the same lines as those of Lemma 3.1. We
omit the proof to save space.

Next, we recall the Helmholtz enhanced Euler-Maruyama scheme for (1.1) which
was proposed and analyzed in [13]. This scheme will be used as an auxiliary scheme
in our error estimates for the velocity and pressure approximations of Algorithm 2 in
the next subsection. The Euler-Maruyama scheme reads as

(vm+1 − vm) − k�vm+1 + k∇qm+1 = kfm+1 + ηηηmv �Wm+1 in D, (3.45a)

div vm+1 = 0 in D, (3.45b)

where ηηηmv = B(vm) − ∇ξmv denotes the Helmholtz projection of B(vm).
It was proved in [13] that the following stability and error estimates hold for the

solution of the above Euler-Maruyama scheme.

Lemma 3.6 The discrete processes {(vm, qm)}Mm=0
defined by (3.45) satisfy

max
0≤m≤M

E
[‖vm‖2] + E

[ M∑

m=1

‖vm − vm−1‖2
]

+ E

[
k

M∑

m=0

‖∇vm‖2
]

≤ C, (3.46a)

max
0≤m≤M

E

[
‖∇vm‖2

]
+ E

[ M∑

m=1

(
‖∇(vm − vm−1)‖2 + k‖Avm‖2

)]
≤ C, (3.46b)

E

[
k

M∑

m=0

‖∇qm‖2
]

≤ C, (3.46c)

where C is a positive constant which depends on DT ,u0 and f .
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Remark 3.4 We note that to ensure the stability estimate (3.46b) is the only reason for
restricting to the periodic boundary condition in this paper.

Lemma 3.7 There hold the the following error estimates for the discrete processes
{(vm, qm)}Mm=0:

max
0≤m≤M

(
E

[‖u(tm) − vm‖2]) 1
2

+
(
E

[
k

M∑

m=0

‖∇(u(tm) − vm)‖2
]) 1

2 ≤ C
√
k, (3.47a)

(
E

[∥∥∥∥R(t�) − k
�∑

m=0

qm
∥∥∥∥

2]) 1
2 ≤ C

√
k (3.47b)

for 0 ≤ � ≤ M. Where C is a positive constant which depends on DT ,u0 and f .

3.2.3 Error estimates for the modified Chorin scheme

The goal of this subsection is to derive error estimates for both the velocity and
pressure approximations generated byAlgorithm 2. The anticipated error estimates are
optimal to compare with those for the standard Chorin scheme proved in the previous
subsection. We note that our error estimate for the velocity approximation recovers
the same estimate obtained in [8, Theorem 3.1] although the analysis given here is a
lot simpler. On the other hand, the error estimate for the pressure approximation is
apparently new. The main idea of the proofs of this subsection is to use the Euler-
Maruyama scheme analyzed in [13] as an auxiliary scheme which bridges the exact
solution of (1.1) and the discrete solution of Algorithm 2.

The follow theorem gives an error estimate in strong norms for the velocity approx-
imation.

Theorem 3.8 Let {(ũm, pm)}Mm=0 be the solution of Algorithm2and {(u(t), P(t)); 0 ≤
t ≤ T } be the solution of (1.1). Then there holds the following estimate:

max
0≤m≤M

(
E

[
‖u(tm) − ũm‖2

]) 1
2

(3.48)

+
(
E

[
k

M∑

m=0

‖∇(u(tm) − ũm)‖2
]) 1

2 ≤ C
√
k,

where C is a positive constant which depends on DT ,u0 and f .
We refer the reader to [14, Theorem 3.8] for a detailed proof. We also note that in

that proof, only one auxiliary scheme (i.e., (3.45)) was used, while the proof given in
[8, Theorem 3.1] required to use two auxiliary schemes to carry out the proof.

An immediate corollary of the above error estimate is the following stronger sta-
bility estimates for {(ũm, rm)}, which may not be obtainable directly and will play
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an important role in the error analysis of fully discrete counterpart of Algorithm 2 in
the next section. We skip its proof and refer the reader to [14, Corollary 3.9] for a
complete proof.

Corollary 3.9 There exists C > 0 which depends on DT ,u0 and f such that

max
0≤m≤M

E[‖∇ũm‖2] + E

[
k

M∑

m=0

‖�ũm‖2
]

≤ C, (3.49a)

E

[
k

M∑

m=0

‖∇rm‖2
]

≤ C . (3.49b)

Similarly, the following estimate holds for {um}.
Corollary 3.10 There exists C > 0 which depends on DT ,u0 and f such that

max
0≤m≤M

(
E[‖u(tm) − um‖2]) 1

2 +
(
E

[
k

M∑

m=0

‖u(tm) − um‖2
]) 1

2 ≤ C
√
k. (3.50)

The proof of (3.50) readily follows from (3.41) and Theorem (3.8) as well as the
estimate (3.49b).

Next, we derive error estimates for the pressure approximations rm and pm gener-
ated by Algorithm 2. First, we state the following lemma.

Lemma 3.11 Let {rm}Mm=0 be generated by Algorithm 2. Then, there exists a constant
C > 0 depending on DT ,u0, f and β such that for 0 ≤ � ≤ M

(
E

[∥∥∥∥k
�∑

m=1

(rm − rm−1)

∥∥∥∥

2]) 1
2 ≤ C

√
k. (3.51)

Proof The idea of the proof is to utilize the inf-sup condition (3.30). Testing (3.41) by
any v ∈ L2(�;H1

per (D)), we obtain

k
(
rm+1, div v

) = (
um+1 − ũm+1, v

)
,

k
(
rm, div v

) = (
um − ũm, v

)
.

Then, subtracting the above equations yields

k
(
rm+1 − rm, div v

) = (
(um+1 − um) − (ũm+1 − ũm), v

)
. (3.52)

Applying the summation operator
∑�

m=0 for 0 ≤ � ≤ M − 1 to (3.52), we get
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(
k

�∑

m=0

(rm+1 − rm), div v
)

= (
(u�+1 − u0) − (ũ�+1 − ũ0), v

)
(3.53)

= (
e�+1
u − e�+1

ũ , v
)

≤ C
(‖e�+1

u ‖ + ‖e�+1
ũ ‖)‖∇v‖,

where emu and emũ are the same as defined in the preceding subsection and we have
used the fact that u0 − ũ0 = 0.

Finally, by using the inf-sup condition (3.30) and then taking the expectation we
get

β2
E

[∥∥∥k
�∑

m=0

(rm+1 − rm)

∥∥∥
2
]

≤ C
(
E

[‖e�+1
u ‖2] + E

[‖e�+1
ũ ‖2]

)
,

which and the estimates for e�+1
u and e�+1

ũ infer the desired estimate (3.51). The proof
is complete. 
�

We then are ready to state the following error estimate result for rm .

Theorem 3.12 Let {rm}Mm=0 be generated by Algorithm 2 and R(t) be defined in (2.6).
Then there exists a constant C > 0 depending on DT ,u0, f and β such hat for
0 ≤ � ≤ M

(
E

[∥∥
∥∥R(t�) − k

�∑

m=0

rm
∥∥
∥∥

2]) 1
2 ≤ C

√
k. (3.54)

Proof Let emũ = vm − ũm . Subtracting (3.45) from (3.4a) and then testing the resulting
equation by v ∈ L2(�;H1

per (D)), we obtain

(
em+1
ũ − emũ , v

) + k
(∇em+1

ũ ,∇v
) − k

(
qm+1 − rm, div v

)
(3.55)

= ((
ηηηmv − ηηηmũ

)
�Wm+1, v

)
.

Applying the summation operator
∑�

m=0 to (3.55) for 0 ≤ � ≤ M − 1 yields

(
k

�∑

m=0

(qm+1 − rm), div v
)

= (
e�+1
ũ − e0ũ, v

) +
(
k

�∑

m=0

∇em+1
ũ ,∇v

)
(3.56)

−
( �∑

m=0

(
ηηηmv − ηηηmũ

)
�Wm+1, v

)

= I + II + III.

To the end, we bound each term on the right-hand side of (3.56). We suggest the
reader to see the details of these estimations in [14, Theorem 3.12]. Here, we just state
the final result below.
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(
E

[∥
∥∥∥k

�∑

m=0

(qm+1 − rm)

∥
∥∥∥

2]) 1
2 ≤ C

√
k. (3.57)

The proof is completed by applying the triangular inequality, Lemma 3.11 and (3.47b).

�

Corollary 3.13 Let {pm}Mm=0 be generated by Algorithm 2. Then, there exists a constant
C > 0 which depends on DT ,u0, f and β such that for 0 ≤ � ≤ M

(
E

[∥∥∥∥P(t�) − k
�∑

m=0

pm
∥∥∥∥

2]) 1
2 ≤ C

√
k. (3.58)

The proof follows readily from Theorem 3.12 and the relationship between P(t)
and R(t) and between pm and rm , see [14, Corollary 3.13] for the details.

4 Fully discrete finite element methods

In this section, we formulate and analyze finite element spatial discretization for Algo-
rithm 1 and 2. To the end, let Th be a quasi-uniform triangulation of the polygonal
(d = 2) or polyhedral (d = 3) bounded domain D. We introduce the following two
basic Lagrangian finite element spaces:

Vh = {φ ∈ C(D); φ|K ∈ P�(K ) ∀K ∈ Th}, (4.1)

Xh = {φ ∈ C(D); φ|K ∈ P�(K ) ∀K ∈ Th}, (4.2)

where P�(K ) (� ≥ 1) denotes the set of polynomials of degree less than or equal to �

over the element K ∈ Th . The finite element spaces to be used to formulate our finite
element methods are defined as follows:

Hh = [Vh ∩ H1
per (D)]d , Lh = Vh ∩ L2

per (D)/R, Sh = Xh ∩ L2
per (D)/R.

(4.3)

In addition, we introduce spaces

Vh = L2(�,Hh), Wh = L2(�, Lh). (4.4)

Recall that the L2-projection P0
h : [L2

per (D)]d → Hh is defined by

(φ − P0
hφ, ξ) = 0 ∀ξ ∈ Hh (4.5)

and the H1-projection P1
h : H1

per (D)/R → Lh is defined by

(
(∇(χ − P1

hχ),∇η
) = 0 ∀η ∈ Lh . (4.6)

123



Stoch PDE: Anal Comp

It is well known [6] that P0
h and P1

h satisfy following estimates:

‖φ − P0
hφ‖ + h‖∇(φ − P0

hφ)‖ ≤ C h2‖φ‖H2 ∀φ ∈ H2
per (D), (4.7)

‖χ − P1
hχ‖ + h‖∇(χ − P1

hχ)‖ ≤ C h2‖χ‖H2 ∀χ ∈ H1
per/R ∩ H2

per (D).

(4.8)

For the clarity we only consider P1-finite element space in this section (i.e., � = 1),
the results of this section can be easily extended to high order finite elements.

4.1 Finite elementmethods for the standard Chorin scheme

Approximating the velocity space and pressure space respectively by the finite element
spaces Hh and Lh in Algorithm 1, we then obtain the fully discrete finite element
version of the standard Chorin scheme given below as Algorithm 3. We also note that
a similar algorithm was proposed in [8].

Algorithm 3 Let n ≥ 0. Set ũ0h = P0
hu0. For n = 0, 1, 2, · · · do the following steps:

Step 1:Given unh ∈ L2(�,Hh) and ũnh ∈ L2(�,Hh), find ũ
n+1
h ∈ L2(�,Hh) such

that P-a.s.

(
ũn+1
h ,vh

) + k
(∇ũn+1

h ,∇vh
)

(4.9)

= (
unh, vh

) + k
(
fn+1, vh

) + (
B(ũnh)�Wn+1,∇vh

) ∀vh ∈ Hh .

Step 2: Find pn+1
h ∈ L2(�, Lh) such that P-a.s.

(∇ pn+1
h ,∇φh

) = 1

k

(
ũn+1
h ,∇φh

) ∀φh ∈ Lh . (4.10)

Step 3: Define un+1
h ∈ L2(�,Hh) by

un+1
h = ũn+1

h − k∇ pn+1
h . (4.11)

As mentioned in Sect. 1, eliminating un in (4.9) using (4.10), we obtain

(ũn+1
h − ũnh, vh) + k(∇ũn+1

h ,∇vh) (4.12a)

+ k(∇ pnh , vh) = k
(
fn+1, vh

) + (B(ũnh)�Wn+1, vh) ∀vh ∈ Hh,

(ũn+1
h ,∇φh) = k(∇ pn+1

h ,∇φh) ∀φh ∈ Lh . (4.12b)

Next, we state the stability estimates for {(ũnh, pnh)}Mn=0 in the following lemma,
which will be used in the fully discrete error analysis later. Since its proof follows
from the same lines of that for Lemma 3.1, we omit it to save space.
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Lemma 4.1 Let {(ũnh, pnh)}Mn=0 be generated by Algorithm 3, then there holds

max
0≤n≤M

E[‖ũnh‖2] + E

[ M∑

n=1

‖ũnh − ũn−1
h ‖2

]
+ E

[
k

M∑

n=0

‖∇ũnh‖2
]

≤ C, (4.13a)

E

[
k

M∑

n=0

‖∇ pnh‖2
]

≤ C

k
, (4.13b)

where C is a positive constant depending only on DT , u0, and f .

The following theorem provides an error estimate in a strong norm for the finite
element solution of Algorithm 3.

Theorem 4.2 Let {(ũm, pm
)}Mm=0 and {(ũmh , pmh )}Mm=0 be generated respectively by

Algorithm 1 and Algorithm 3. Then under the assumptions of Lemmas 3.1, 4.1 and
Corollary 3.4 there holds

(
E

[
k

M∑

m=0

∥∥ũm − ũmh
∥∥2

]) 1
2

(4.14)

+ max
0≤�≤M

(
E

[∥∥∥k
�∑

n=1

∇(ũn − ũnh)
∥∥∥
2])

1
2 ≤ C

(
k

1
4 + hk− 1

2

)
,

where C ≡ C(DT ,u0, f) is a positive constant.

Proof The proof is conceptually similar to that of Theorem3.2. Setting emũh =: ũm−ũmh
and εmph =: pm − pmh . Without loss of the generality, we assume e0ũh = 0 and ε0ph = 0
because they are of high order accuracy, hence are negligible.

First, applying the summation operator
∑m

n=0 to (4.12a), we obtain

(
ũm+1
h , vh

) + k
(m+1∑

n=0

∇ũnh,∇vh
)

+ k
( m∑

n=0

∇ pnh , vh
)

(4.15)

= (
u0h, vh

) +
( m∑

n=0

B(ũnh)�Wn+1, vh
)

∀vh ∈ Hh .

Subtracting (3.8) from (4.15) yields the following error equations:

(
em+1
ũh

, vh
) + k

(m+1∑

n=0

∇enũh ,∇vh
)

+ k
( m∑

n=0

∇εnph , vh
)

(4.16)

=
( m∑

n=0

(B(ũn) − B(ũnh))�Wn+1, vh
)

∀vh ∈ Hh,

(
em+1
ũh

,∇φh
) = k

(∇εm+1
ph ,∇φh

) ∀φh ∈ Lh . (4.17)
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Choosing vh = P0
he

m+1
ũh

= em+1
ũh

− θθθm+1; θθθm = ũmh − P0
h ũ

m
h , then (4.16) becomes

‖em+1
ũh

‖2 + k
(m+1∑

n=0

∇enũh ,∇em+1
ũh

)
+ k

( m∑

n=0

∇εnph ,P
0
h e

m+1
ũh

)
(4.18)

= (
em+1
ũh

, θθθm+1) + k
(m+1∑

n=0

∇enũh ,∇θθθm+1
)

+
( m∑

n=0

(B(ũn) − B(ũnh))�Wn+1,P0
h e

m+1
ũh

)
.

Settingφh = ∑m
n=0 P1

hε
n
ph = ∑m

n=0 εnph −
∑m

n=0 ξn in (4.17), where ξn = pn−P1
h p

n ,
we obtain

(
em+1
ũh

,

m∑

n=0

∇P1
hε

n
ph

)
= k

(
∇εm+1

ph ,

m∑

n=0

∇P1
hε

n
ph

)
(4.19)

In addition, by using the properties of P0
h− and P1

h -projection we have

k

( m∑

n=0

∇εnph ,P
0
he

m+1
ũh

)
= k

( m∑

n=0

∇εnph , e
m+1
ũh

)
− k

( m∑

n=0

∇εnph , θθθ
m+1

)
(4.20)

= k
( m∑

n=0

∇P1
hε

n
ph , e

m+1
ũh

)
+ k

( m∑

n=0

∇ξn, em+1
ũh

)
− k

( m∑

n=0

∇εnph , θθθ
m+1

)

= k2
(
∇εm+1

ph ,

m∑

n=0

∇P1
hε

n
ph

)
+ k

( m∑

n=0

∇ξn, em+1
ũh

)
− k

( m∑

n=0

∇εnph , θθθ
m+1

)

= k2
(
∇εm+1

ph ,

m+1∑

n=0

∇P1
hε

n
ph

)
− k2

(∇εm+1
ph ,∇P1

hε
m+1
ph

)

+ k
( m∑

n=0

∇ξn, em+1
ũh

)
− k

( m∑

n=0

∇εnph , θθθ
m+1

)

= k2
(
∇εm+1

ph ,

m+1∑

n=0

∇εnph

)
− k2

(
∇εm+1

ph ,

m+1∑

n=0

∇ξn
)

− k2
(∇εm+1

ph ,∇P1
hε

m+1
ph

) + k
( m∑

n=0

∇ξn, em+1
ũh

)
− k

( m∑

n=0

∇εnph , θθθ
m+1

)
.

Moreover, by using the orthogonality property of P1
h , we have

−k2
(∇εm+1

ph ,∇P1
hε

m+1
ph

) = −k2
(∇(εm+1

ph − P1
hεph ),∇P1

hε
m+1
ph

)
(4.21)

+ k2‖∇P1
hε

m+1
ph ‖2 = k2‖∇P1

hε
m+1
ph ‖2,
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which helps to reduce (4.20) into

k

( m∑

n=0

∇εnph ,P
0
h e

m+1
ũh

)
= k2

(
∇εm+1

ph ,

m+1∑

n=0

∇εnph

)
− k2

(
∇εm+1

ph ,

m+1∑

n=0

∇ξn
)

(4.22)

+ k2‖∇P1
hε

m+1
ph ‖2 + k

( m∑

n=0

∇ξn, em+1
ũh

)

− k
( m∑

n=0

∇εnph , θθθ
m+1

)
.

Substituting (4.22) into (4.18) and rearranging terms yield

‖em+1
ũh

‖2 + k
(m+1∑

n=0

∇enũh ,∇em+1
ũh

)
+ k2

(
∇εm+1

ph ,

m+1∑

n=0

∇εnph

)
(4.23)

+ k2‖∇P1
hε

m+1
ph ‖2

= k2
(
∇εm+1

ph ,

m+1∑

n=0

∇ξn
)

+ k
(
div em+1

ũh
,

m∑

n=0

ξn
)

+ k
( m∑

n=0

∇εnph , θθθ
m+1

)
+ (

em+1
ũh

, θθθm+1) + k
(m+1∑

n=0

∇enũh ,∇θθθm+1
)

+
( m∑

n=0

(B(ũn) − B(ũnh))�Wn+1,P0
h e

m+1
ũh

)
.

Next, we use the identity 2a(a − b) = a2 − b2 + (a − b)2 to create telescoping
sums on the left side of (4.23), then followed by taking the expectation and applying
the summation k

∑�
m=0 for 0 ≤ � < M to get

k
�∑

m=0

E
[‖em+1

ũh
‖2] + 1

2
E

[∥∥∥k
�+1∑

n=0

∇enũh

∥
∥∥
2] + k2

2

�∑

m=0

E

[
‖∇em+1

ũh
‖2

]
(4.24)

+ k

2
E

[∥∥∥k
�+1∑

n=0

∇εnph

∥∥∥
2] + k3

2

�∑

m=0

E

[
‖∇εm+1

ph ‖2 + 2‖∇P1
hε

m+1
ph ‖2

]

= E

[
k3

�∑

m=0

(
∇εm+1

ph ,

m+1∑

n=0

∇ξn
)]

+ E

[
k2

�∑

m=0

(
div em+1

ũh
,

m∑

n=0

ξn
)]

+ E

[
k2

�∑

m=0

( m∑

n=0

∇εnph , θθθ
m+1

)]
+ E

[
k

�∑

m=0

(
em+1
ũh

, θθθm+1)
]
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+ E

[
k2

�∑

m=0

(m+1∑

n=0

∇enũh ,∇θθθm+1
)]

+ k
�∑

m=0

E

[( m∑

n=0

(B(ũn) − B(ũnh))�Wn+1,P0
h e

m+1
ũh

)]

:= I + · · · + VI.

It remains to bound each term on the right side of (4.24), we refer to the proof of
[14, Theorem 4.2] for the details and only quote its final estimate below.

1

2
X�+1 + 3

8
E

[∥∥∥k
�+1∑

n=0

∇enũh

∥∥∥
2] + k2

4

�∑

m=0

E

[
‖∇em+1

ũh
‖2

]
(4.25)

+ 3k

8
E

[∥∥∥k
�+1∑

n=0

∇εnph

∥
∥∥
2] + 3k3

8

�∑

m=0

E
[‖∇εm+1

ph ‖2]

+ k3
�∑

m=0

E
[‖∇P1

hε
m+1
ph ‖2]

≤ Ck
1
2 + Ch2

k
+ Ck

�∑

m=0

Xm,

where X� = k
∑�

m=0 E
[‖emũh‖2

]
. The desired error estimate (4.14) then follows from

an application of the discrete Gronwall inequality to (4.25). The proof is complete. 
�
Next, we state an error estimate result for the pressure approximation generated

by Algorithm 3 in a time-averaged fashion. Recall that an important advantage of
Chorin-type schemes is to allow the use of a pair of independent finite element spaces
which are not required to satisfy a discrete inf-sup condition, a price for this advantage
is to make error estimates for the pressure approximations become more complicated
even in the deterministic case. The idea for circumventing the difficulty is to utilize
the following perturbed inf-sup inequality (cf. [17]): there exists δ > 0 independent
of h > 0, such that

1

δ2
‖qh‖2 ≤ sup

vh∈Hh

|(qh, div vh)|2
‖∇vh‖2 + h2‖∇qh‖2 ∀ qh ∈ Sh , (4.26)

which was also used in [13] to derive an error estimate for a pressure-stabilization
scheme for (1.1).

Theorem 4.3 Under the assumptions of Theorem 4.2, there exists a positive constant
C ≡ C(DT ,u0, f, δ) such that

(
E

[
k

M∑

m=0

∥∥
∥k

m∑

m=1

(
pn − pnh

)∥∥
∥
2
]) 1

2 ≤ C
(
k

1
4 + hk− 1

2

)
, (4.27)
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Proof We reuse all the notations from the proof of Theorem 4.2. First, from the error
equations (4.16) we have

(
k

m∑

n=0

εnph , div vh
)

= (
em+1
ũh

, vh
) +

(
k
m+1∑

n=0

∇enũh ,∇vh
)

(4.28)

−
( m∑

n=0

(B(ũn) − B(ũnh))�Wn+1, vh
)

∀vh ∈ Hh .

Using the Schwarz inequality on the right-hand side of (4.28) yields

∣∣∣
(
k

m∑

n=0

εnph , div vh
)∣∣∣ = C‖em+1

ũh
‖‖∇vh‖ +

∥∥∥k
m+1∑

n=0

∇enũh

∥∥∥‖∇vh‖ (4.29)

+ C
∥∥
∥

m∑

n=0

(B(ũn) − B(ũnh))�Wn+1

∥∥
∥‖∇vh‖.

Next, using (4.26) we conclude that

1

δ2

∥∥∥k
m∑

n=0

εnph

∥∥∥
2 − h2

∥∥∥k
m∑

n=0

∇εnph

∥∥∥
2 ≤ sup

vh∈Hh

∣∣
∣
(
k

∑m
n=0 εnph , div vh

)∣∣
∣
2

‖∇vh‖2 (4.30)

≤ C‖em+1
ũh

‖2 + C
∥∥∥k

m+1∑

n=0

∇enũh

∥∥∥
2

+ C
∥
∥∥

m∑

n=0

(B(ũn) − B(ũnh))�Wn+1

∥
∥∥
2
.

Then, applying operators k
∑�

m=0 and E[·] on both sides we obtain

1

δ2
E

[
k

�∑

m=0

∥∥∥k
m∑

n=0

εnph

∥∥∥
2
]

≤ h2E

[
k

�∑

m=0

∥∥∥k
m∑

n=0

∇εnph

∥∥∥
2
]

(4.31)

+ Ck
�∑

m=0

E
[‖em+1

ũh
‖2]

+ Ck
�∑

m=0

E

[∥∥∥k
m+1∑

n=0

∇enũh

∥
∥∥
2]

+ Ck
�∑

m=0

E

[∥∥∥
m∑

n=0

(B(ũn) − B(ũnh))�Wn+1

∥∥∥
2]

:= I + II + III + IV.
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After bounding each terms on the right-hand side of (4.31) (see [14, Theorem 4.3] for
the details) by using Theorem 4.2, we obtain the desired estimate.. 
�

Weare now ready to state the following global error estimate theorem forAlgorithm
3 which is a main result of this paper.

Theorem 4.4 Under the assumptions of Theorems 3.2, 3.3 and Theorems 4.2 and 4.3,
there hold the following error estimates:

(
E

[
k

M∑

m=0

‖u(tm) − ũmh ‖2
]) 1

2 + max
0≤�≤M

(
E

[∥∥
∥k

�∑

m=0

∇(u(tm) − ũmh )

∥∥
∥
2])

1
2

(4.32)

≤ C
(
k

1
4 + hk− 1

2

)
,

(
E

[
k

M∑

m=0

∥∥∥P(tm) − k
m∑

n=0

pnh

∥∥∥
2])

1
2 ≤ C

(
k

1
4 + hk− 1

2

)
, (4.33)

where C ≡ C(DT ,u0, f, β, δ) is positive constant independent of k and h.

4.2 Finite elementmethods for themodified Chorin scheme

In this subsection, we first formulate a finite element spatial discretization for Algo-
rithm 2 and then present a complete convergence analysis by deriving error estimates
which are stronger than those obtained above for the standard Chorin scheme.

Algorithm 4 Let m ≥ 0. Set ũ0h = P0
hu0. For m = 0, 1, 2, · · · do the following steps:

Step 1: For given ũmh ∈ L2(�,Hh), find ξmh ∈ L2(�, Sh) by solving the following
Poisson problem: for P-a.s.

(∇ξmh ,∇φh
) = (

B(ũmh ),∇φh
) ∀φh ∈ Sh . (4.34)

Step 2:Set ηηηmũh
= B(ũmh )−∇ξmh . For givenumh ∈ L2(�,Hh) and ũmh ∈ L2(�,Hh),

find ũm+1
h ∈ L2(�,Hh) by solving the following problem: for P-a.s.

(
ũm+1
h , vh

) + k
(∇ũm+1

h ,∇vh
)

(4.35)

= (
umh , vh

) + k
(
fm+1, vh

) + (
ηηηmũh

�Wm+1, vh
) ∀ vh ∈ Hh .

Step 3: Find rm+1
h ∈ L2(�, Lh) by solving the following Poisson problem: for

P-a.s.

(∇rm+1
h ,∇φh

) = 1

k

(
ũm+1
h , ∇φh

) ∀φh ∈ Lh . (4.36)

Step 4: Define um+1
h ∈ L2(�,Hh) by

um+1
h = ũm+1

h − k∇rm+1
h . (4.37)
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Step 5: Define pm+1
h ∈ L2(�, Lh) by

pm+1
h = rm+1

h + 1

k
ξmh �Wm+1. (4.38)

Since each step involves a coercive problem, hence, Algorithm 4 is well defined.
The next theorem establishes a convergence rate for the finite element approximation
of the velocity field. Since the proof follows the same lines as those in the proof of
Theorem 4.2, we omit it to save space.

Theorem 4.5 Let {ũm}Mm=0 and {ũmh }Mm=0 be generated respectively by Algorithm 2 and
4.

Then, there exists a constant C ≡ C(DT ,u0, f) > 0 such that

max
1≤m≤M

(
E

[‖ũm − ũmh ‖2]
) 1

2 +
(
E

[
k

M∑

m=1

‖∇(ũm − ũmh )‖2
]) 1

2

(4.39)

≤ C

(√
k + h + h2k− 1

2

)
.

In the next theorem, we establish an error estimate for the pressure approximation
of the modified Chorin finite element method given by Algorithm 4.

Theorem 4.6 Let {rm}Mm=1 and {rmh }Mm=1 be generated respectively by Algorithm 2 and
4. Then, there exists a constant C ≡ C(DT ,u0, f, δ) > 0 such that

(
E

[∥
∥∥∥k

M∑

m=1

(rm − rmh )

∥
∥∥∥

2]) 1
2 ≤ C

(√
k + h + h2k− 1

2

)
. (4.40)

Proof Let εεεmũ = ũm − ũmh and εmr = rm −rmh . It is easy to check that (εεε
m
ũ , εmr ) satisfies

the following error equation:

(
εεεm+1
ũ − εεεmũ , vh

) + k
(∇εεεm+1

ũ , ∇vh
) + k

(∇εmr , vh
)

(4.41)

= (
(ηηηmũ − ηηηmũh

)�Wm+1, vh
) ∀ vh ∈ Hh .

Applying the summation operator
∑�

m=0 (0 ≤ � ≤ M − 1) to (4.41) yields

(
k

�∑

m=0

εmr , div vh

)
= (

εεε�+1
ũ − εεε0ũ, vh

) +
(
k

�∑

m=0

∇εεεm+1
ũ ,∇vh

)
(4.42)

−
( �∑

m=0

(ηηηmũ − ηηηmũh
)�Wm+1, vh

)
.

It remains to bound terms on the right-hand side, which we refer to the proof of [14,
Theorem 4.6] for the details and only quote the final estimate below.
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(
k

�∑

m=0

εmr , div vh

)
≤ CE

[‖εεε�+1
ũ ‖2] + E

[
k

�∑

m=0

‖∇εεεm+1
ũ ‖2

]

+ CE

[
k

�∑

m=0

‖εεεmũ ‖2
]

+ h2E

[
k

�∑

m=0

‖∇εmr ‖2
]

+ Ch2.

The desired estimate (4.40) follows from an application of (4.26), Theorem 4.5 and
using Step 3 of Algorithm 2 and 4. The proof is complete. 
�
Corollary 4.7 Let {pm}Mm=1 and {pmh }Mm=1 be generated respectively by Algorithm 1
and 2. Then, there exists a positive constant C ≡ C(DT ,u0, f, δ) such that

(
E

[∥∥∥∥k
M∑

m=1

(pm − pmh )

∥∥∥∥

2]) 1
2 ≤ C

(√
k + h + h2k− 1

2

)
. (4.43)

Proof Since the proof follows the same lines as those of the proof for Corollary 3.13,
we only highlight the main steps. By definition of {pm} and {pmh }, we have

∥∥∥∥k
M∑

m=1

(pm − pmh )

∥∥∥∥ ≤
∥∥∥∥k

M∑

m=1

(rm − rmh )

∥∥∥∥ +
∥∥∥∥

M∑

m=1

(ξmũ − ξmũh
)�Wm+1

∥∥∥∥ (4.44)

=: I + II.

Term I can be bounded using Theorem 4.6. To bound II, by Itô isometry,
(3.38) and (4.34), Poincaré inequality, Lipschitz continuity of B, and Theorem 4.5,
we get

E[II]2 = E

[
k

M∑

m=1

‖ξm − ξmh ‖2
]

≤ C

(
k + h2 + h4

k

)
.

The proof is complete. 
�
We conclude this section by stating the following global error estimate theorem for

Algorithm 4, which is another main result of this paper.

Theorem 4.8 Let (u, P) be the solution of (1.1) and {(ũmh , rmh , pmh )}Mm=1 be the solution
of Algorithm 4. Then, there exists a constant C ≡ C(DT ,u0, f, β, δ) > 0 such that

max
1≤m≤M

(
E

[∥∥u(tm) − ũmh
∥∥2 ]) 1

2 +
(
E

[
k

M∑

m=1

∥∥u(tm) − ũmh
∥∥2

]) 1
2

≤ C

(√
k + h + h2k− 1

2

)
,
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(
E

[∥∥
∥∥R(tm) − k

m∑

n=1

rnh

∥∥
∥∥

2 ]) 1
2

+
(
E

[∥∥
∥∥P(tm) − k

m∑

n=1

pnh

∥∥
∥∥

2 ]) 1
2

≤ C

(√
k + h + h2k− 1

2

)
.

Remark 4.1 The above error estimates are of the same nature as those obtained in [12]
for the standard Euler-Maruyama mixed finite element method. On the other hand, the
error estimates obtained in [13] for the Helmholtz enhanced Euler-Maruyama mixed

finite element method do not have the growth term h2k− 1
2 .

5 Numerical experiments

In this section, we present two 2-D numerical tests to guage the performance of the
proposed numerical methods/algorithms. The first test is to verify the convergent
rates proved in Theorem 4.4 for Algorithm 3 while the second test is to validate the
convergent rates proved in Theorem 4.8.

In both tests the computational domain is chosen as D = (0, 1) × (0, 1), the
P1 − P1 equal-order pair of finite element spaces are used for spatial discretization,
the constant source function f = (1, 1) is applied, the terminal time is T = 1, the fine
time and space mesh sizes k0 = 1

4096 and h = 1
50 are used to compute the numerical

true solution, and the number of realizations is set as Np = 500 for the first test and
Np = 800 for the second one. Moreover, to evaluate errors in strong norms, we use
the following numerical integration formulas: for any 0 ≤ m ≤ M

EEEm
u :=

(
E

[
‖u(tm) − umh (k)‖2

]) 1
2 ≈

(
1

Np

Np∑

�=1

∥∥umh (k0, ω�) − umh (k, ω�)
∥∥2

) 1
2

,

EEEM
u,av :=

(
E

[
k

M∑

m=0

‖u(tm) − umh (k)‖2
]) 1

2

≈
(

1

Np

Np∑

�=1

(
k

M∑

m=0

∥∥umh (k0, ω�) − umh (k, ω�)
∥∥2

)) 1
2

,

EM
p,av :=

(
E

[
k

M∑

m=0

∥∥∥P(tm) − k
m∑

n=0

pnh(k)
∥∥∥
2])

1
2

≈
(

1

Np

Np∑

�=1

(
k

M∑

m=0

∥∥∥k0

tm
k0∑

n=1

pnh(k0, ω�) − k

tm
k∑

n=1

pnh(k, ω�)

∥∥∥
2)) 1

2

.

Test 1 In this test, the nonlinear multiplicative noise function B is chosen as B(u) =
10

(
(u21 + 1)

1
2 , (u22 + 1)

1
2
)
and the initial value u0 = (0, 0)�. Moreover, we choose

R
J -valued Wiener process W with increments satisfying
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Fig. 1 Convergence rates of the time discretization for the velocity (left) and pressure (right) approximations
by Algorithm 3 in the EEEM

u,av norm and EM
p,av norm respectively

�Wm+1 = W J (tm+1, x) − W J (tm, x) = k0

J∑

j,�=0

√
λ j,� e j,�(x)βm

j,�, (5.1)

where x = (x1, x2) ∈ D, βm
j,� ∼ N (0, 1) and {e j,�(x)} j,� are orthonormal functions

defined by e j,�(x) = g j,�‖g j,�‖−1 with

g j,�(x1, x2) = sin( jπx1) sin(�πx2) (5.2)

and λ j,� = 1
( j+�)2

‖g j,�‖. In this test, we set J = 2, ν = 1.

Figure 1 displays the convergence rates of the time discretization produced by Algo-
rithm 3 (and Algorithm 1) using different time step size k. The left figure shows the

convergence rate O(k
1
4 ) in the EEEM

u,av-norm for the velocity approximation, while the
right graph shows the same convergence rate in theEM

p,av-norm for the pressure approx-
imation, both match the theoretical rates proved in our theoretical error estimates.

Next, we want to verify that the dependence of the error bounds on the factor k− 1
2 is

valid. To the end, we fix h = 1
20 and use again different time step size k. The numerical

results in Fig. 2 shows that the errors for both the velocity and pressure approximations
increase as the time step size decreases, which proves that the error bounds are indeed
proportional to some negative power of k.

To verify the sharpness of the error bounds on the factor k− 1
2 , we implement Algo-

rithm 3 using different pairs (k, h), which satisfy the relation h ≈ k, and display the
numerical results in Fig. 3. We observe 1

4 order convergence rate for both the velocity
and pressure approximations as predicted in Theorem 4.4.

Test 2 We use the same test problem as in Test 1 to validate the theoretical error esti-
mates for our modified Chorin scheme given by Algorithm 4. However, the nonlinear

multiplicative noise functions is chosen as B(u) = (
(u21 + 1)

1
2 , (u22 + 1)

1
2
)
. It should

be noted that a similar numerical experiment was done in [8]. However, only the
velocity approximation was analyzed and tested, no convergent rate for the pressure
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Fig. 2 Errors the velocity approximation (left) in EEEM
u,av norm and the pressure approximation (right) in

EM
p,av norm by Algorithm 3

Fig. 3 Convergence rates in the EEEM
u,av norm for the velocity (left) approximation and the EM

p,av norm for
the pressure (right) approximation by Algorithm 3 under the mesh condition h ≈ k

approximation was proved or tested in [8]. Here we want to emphasize the optimal
convergence rate for the pressure approximation in the time-averaged norm.

Figure 4 displays the 1
2 order convergence rate in time for both the velocity and

pressure approximations by Algorithm 4 as predicted by Theorem 4.8. We note that
the velocity error is measured in the strong norm and the pressure error is measured
in a time-averaged norm.

Similar to Test 1, we want to test whether the dependence of the error bounds on

the factor k− 1
2 is valid and sharp. To the end, we use the same strategy as we did in

Test 1, namely, we fix mesh size h = 1
20 and decrease time step size k. As expected,

we observe that the errors blow up as shown in Fig. 5.
Finally, Fig. 6 shows the 1

2 order convergence rate for both the velocity and pressure
approximations by Algorithm 4 when the time step size k and the space mesh size h
satisfy the balancing condition h ≈ √

k, which verifies the sharpness of the dependence

of the error bounds on on the factor k− 1
2 as predicted by Theorem 4.8.
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Fig. 4 Convergence rates of the time discretization for the velocity in strong norm (left) and pressure in
time-averaged norm (right) by Algorithm 4

Fig. 5 Errors for the velocity approximation in strong norm (left) and pressure approximation in time-
averaged norm (right) by Algorithm 4

Fig. 6 Convergence rates for the velocity approximation in strong norm (left) and pressure approximation
in time-averaged norm (right) under the mesh condition h ≈ √

k
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7. Brzeźniak, Z., Carelli, E., Prohl, A.: Finite element based discretizations of the incompressible Navier–

Stokes equations with multiplicative random forcing. IMA J. Numer. Anal. 33, 771–824 (2013)
8. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible

Stokes equations. SIAM J. Numer. Anal. 50(6), 2917–2939 (2012)
9. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–

Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)
10. Chow,P.-L.: Stochastic Partial Differential Equations, Chapman and Hall/CRC, (2007)
11. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press,

Cambridge (1992)
12. Feng,X.,Qiu,H.:Analysis of fully discretemixedfinite elementmethods for time-dependent stochastic

Stokes equations with multiplicative noise. J. Sci. Comput. 88, 31 (2021). https://doi.org/10.1007/
s10915-021-01546-4

13. Feng, X., Prohl, A., Vo, L.: Optimally convergent mixed finite element methods for the stochastic
stokes equations. IMA J. Numer. Anal. 41(3), 2280–2310 (2021)

14. Feng, X., Vo, L.: Analysis of Chorin-type projection methods for the stochastic Stokes equations with
general multiplicative noises. arXiv:2010.15297 [math.NA] (2020)

15. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York
(1986)

16. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows.
Comput. Methods Appl. Mech. Engrg. 195, 6011–6045 (2006)

17. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid
mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation
of the Stokes problem accomodating equal order interpolation. Comput. Meth Appl. Mech. Eng. 59,
85–99 (1986)

18. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic
forcing. Ann. Math. 164, 993–1032 (2006)

123

http://arxiv.org/abs/1801.03548
http://arxiv.org/abs/1906.11778v2
https://doi.org/10.1007/s10915-021-01546-4
https://doi.org/10.1007/s10915-021-01546-4
http://arxiv.org/abs/2010.15297


Stoch PDE: Anal Comp

19. Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochasticNavier–Stokes
equations. Appl. Math. Optim. 48, 195–210 (2003)

20. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-
Stokes Equations, Advances in Numerical Mathematics. B.G. Teubner, Stuttgart (1997)

21. Rannacher, R.: On Chorin’s projection method for the incompressible Navier-Stokes Equations. The
Navier-Stokes Equations II - Theory andNumericalMethods. Lecture Notes inMathematics, vol 1530,
Springer, Berlin, Heidelberg, (1992)

22. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, 2nd ed., AMS Chelsea Pub-
lishing, Providence, RI, (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Xiaobing Feng1 · Liet Vo1

B Xiaobing Feng
xfeng@utk.edu

Liet Vo
lvo6@vols.utk.edu

1 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA

123

http://orcid.org/0000-0002-9191-9092

	Analysis of Chorin-type projection methods for the stochastic Stokes equations with general multiplicative noise
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Variational formulation of the stochastic Stokes equations

	3 Two Chorin-type time-stepping schemes
	3.1 Standard Chorin projection scheme
	3.1.1 Formulation of the standard Chorin scheme
	3.1.2 Stability estimates for the standard Chorin method
	3.1.3 Error estimates for the standard Chorin scheme

	3.2 A modified Chorin projection scheme
	3.2.1 Formulation of the modified Chorin scheme
	3.2.2 Stability estimates for the modified Chorin scheme
	3.2.3 Error estimates for the modified Chorin scheme


	4 Fully discrete finite element methods
	4.1 Finite element methods for the standard Chorin scheme
	4.2 Finite element methods for the modified Chorin scheme

	5 Numerical experiments
	Acknowledgements
	References




