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Abstract

This paper is concerned with numerical analysis of two fully discrete Chorin-type
projection methods for the stochastic Stokes equations with general non-solenoidal
multiplicative noise. The first scheme is the standard Chorin scheme and the second one
is a modified Chorin scheme which is designed by employing the Helmholtz decom-
position on the noise function at each time step to produce a projected divergence-free
noise and a “pseudo pressure” after combining the original pressure and the curl-free

1
part of the decomposition. An O (k#) rate of convergence is proved for the standard
Chorin scheme, which is sharp but not optimal due to the use of non-solenoidal noise,
where k denotes the time mesh size. On the other hand, an optimal convergence rate

O(k%) is established for the modified Chorin scheme. The fully discrete finite ele-
ment methods are formulated by discretizing both semi-discrete Chorin schemes in
space by the standard finite element method. Suboptimal order error estimates are
derived for both fully discrete methods. It is proved that all spatial error constants

contain a growth factor k3 , where k denotes the time step size, which explains the
deteriorating performance of the standard Chorin scheme when k — 0 and the space
mesh size is fixed as observed earlier in the numerical tests of Carelli et al. (SIAM J
Numer Anal 50(6):2917-2939, 2012). Numerical results are also provided to guage
the performance of the proposed numerical methods and to validate the sharpness of
the theoretical error estimates.
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1 Introduction

This paper is concerned with developing and analyzing Chorin-type projection finite
element methods for the following time-dependent stochastic Stokes problem:

du = [vAu—Vp+fldr + B)dW() as.inDr :=(0,T) x D, (1.1a)
diva =0 a.s.in D, (1.1b)
u(0) =uy a.s.inD, (1.1¢)

where D = (0, L) c R4 (d = 2,3) represents a period of the periodic domain in
R?, u and p stand for respectively the velocity field and the pressure of the fluid, B is
an operator-valued random field, {W(¢); r > 0} denotes an L?(D)-valued Q-Wiener
process, and f is a body force function (see Sect. 2 for their precise definitions). Here we
seek periodic-in-space solutions (u, p) with period L, thatis, u(¢, x + Le;) = u(t, X)
and p(t,x + Le;) = p(t,x) almost surely and for any (¢,x) € (0,7T) X R? and
1 <i <d, where {ei}?: | denotes the canonical basis of RY,

The system (1.1a) is a stochastic perturbation of the deterministic Stokes system
by introducing a multiplicative noise force term B(-)dW(s) and it has been used to
model turbulent fluids (cf. [1,2,18,22]). The stochastic Stokes system is a simplified
model of the full stochastic Navier-Stokes equations by omitting the nonlinear term
(u - V)u in the drift part of the stochastic Navier-Stokes equations. Although the
deterministic Stokes equations is a linear PDE system which has been well studied
in the literature (cf. [15,22] and the references therein), the stochastic Stokes system
(1.1a) is intrinsically nonlinear because the diffusion coefficient B is nonlinear in the
velocity u. Due to the introduction of random forces it has been well known that the
solution of problem (1.1) has very low regularities in time. We refer the reader to
[1,11,19] and the references therein for a detailed account about the well-posedness
and regularities of the solution for system (1.1).

Besides their mathematical and practical importance, the stochastic Stokes (and
Navier-Stokes) equations have been used as prototypical stochastic PDEs for devel-
oping efficient numerical methods and general numerical analysis techniques for
analyzing numerical methods for stochastic PDEs. In that regard several works have
been reported in the literature [3,5,8,9,12,13]. Euler-Maruyama time discretization and
divergence-free finite element space discretization was proposed and analyzed in [9] in
the case of divergence-free noises (i.e., B(u) is divergence-free). Optimal order error
estimates in strong norm for the velocity approximation were obtained. In [12,13] the
authors considered the general noise and analyzed the standard and a modified mixed
finite element methods as well as pressure stabilized methods for space discretization,
suboptimal order error estimates were proved in [12] for the velocity approximation
in strong norm and for the pressure approximation in a time-averaged norm, all these
suboptimal order error estimates were improved to optimal order for a Helmholtz
projection-enhanced mixed finite element in [13] (also see [5] for a similar approach).
It should be noted that the reason for measuring the pressure errors in a time-averaged
norm is because the low regularity of the pressure field which is only a distribution in
general and the numerical tests of [12,13] suggest that these error estimates are sharp.
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In [8] the authors proposed a Chorin time-splitting finite element method for problem
(1.1) and proved a suboptimal convergence rate in strong norm for the velocity approx-
imation in the case of divergence-free noises. In [3] the authors proposed an iterative
splitting scheme for stochastic Navier-Stokes equations and a strong convergence in
probability was established in the 2-D case for the velocity approximation. In a recent
work [4], the authors proposed another time-splitting scheme and proved its strong L?
convergence for the velocity approximation.

Compared to the recent advances on mixed finite element methods [9,12,13],
the numerical analysis of the well-known Chorin projection/splitting scheme for the
stochastic Stokes equations lags behind. To the best of our knowledge, the only anal-
ysis result obtained in [8] is the optimal convergence in the energy norm for the
velocity approximation in the case of divergence-free noises (i.e., B(u) is divergence-
free). Several natural and important questions arise and must be addressed for a better
understanding of the Chorin projection scheme for problem (1.1). Among them are (i)
Does the pressure approximation converge even when the noise is divergence-free?
If so, in what sense and what rate? (ii) Does the Chorin projection scheme converge
(for both the velocity and pressure approximations) for general noises? If so, in what
sense and what rate? (iii) Could the performance of the standard Chorin projection
scheme be improved one way or another in the case of general noises? The primary
objective this paper is to provide a positive answer to each of the above questions.

Asitwas shown in [8], the adaptation of the standard deterministic Chorin projection
scheme to problem (1.1) is straightforward (see Algorithm 1 of Sect. 3). The idea of
the Chorin scheme is to separate the computation of the velocity and pressure at
each time step which is done by solving two decoupled Poisson problems and the
divergence-free constraint for the velocity approximation is enforced by a Helmholtz
projection technique which can be easily obtained using the solutions of the two
Poisson problems. The Chorin scheme also can be compactly rewritten as a pressure
stabilization scheme at each time step as follows (cf. [8]):

i — @ — kAR 4+ kVp" = kT 4 B@H AW, a.s.in Dy, (1.2a)
diva"t! —kap"tt =0 as.in Dy, (1.2b)

Wwp" =0 a.s.on d Dy,
(1.2¢)

where 3, p"*! denotes the normal derivative of p"*! and k is the time step size.

One of advantages of the above Chorin scheme is that the spatial approximation
spaces for @' and p"*! can be chosen independently, so unlike in the mixed finite
element method, they are not required to satisfy an inf-sup condition. Notice that a
time lag on pressure appears in equation (1.2a) which causes most of difficulties in
the convergence analysis (cf. [8,16,20,21]). We also note that the term —kA p"‘H in
equation (1.2b) is known as a pressure stabilization term.

To improve the convergence of the standard Chorin scheme, we adopt a Helmholtz
projection technique as used in [13] (also see [5]). At each time step we first perform
the Helmholtz decomposition B(@") = " + V& and then rewrite (1.2a) as
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ﬁn+1 — 8" = kVAﬁn+1 + kVit = kf”+1 + nnAWn—H a.s.in Dr, (1.3)

where " = p" — k~'&" AW, 1. Our modified Chorin scheme consists of (1.3),
(1.2b)—(1.2c) and the Helmholtz decomposition B(u*?) = 5" 4+ V&”". Since n"
divergence-free, it turns out that the finite element approximation of the modified
Chorin scheme has better convergence properties. Notice that p” can be recovered
from " via the simple algebraic relation p" = r"* + k=YENAW, 41

The main contributions of this paper are summarized below.

e We proved the following error estimates in strong norms for the Chorin- P; finite
element method (see Algorithm 3) for problem (1.1) with general multiplicative
noises:

1

(]E[kZIIU(tm)— h||2]> + n;aX< [” ZV(“(’m)‘“h)H ])

m=0

gc(kﬂhk—z),

M 27\ 2 1 1

(E[kZHP(tm)— n D §C<k1+hk_§),
m=0

where (u(t,), P(t,)) are the solution to problem (1.1) while (uh py) are the
discrete solution of Algorithm 3, see Sects. 2 and 4 for their precise definitions.

e We proposed a modified Chorin-P; finite element method (see Algorithm 4) and
proved the following error estimates in strong norms for problem (1.1) with general
multiplicative noises:

1

s (Elfw — 517+ (=[x vt F])

m=1

<c(kE+n+ktn?),

D+ Ellre-+zal ]

< c(k% +h +k—%h2).

(E[HR(tm) — kY
n=1

where (u(t,), P(t,)) is the solution to problem (1.1) and R(¢) is defined as the
time-average of the pseudo pressure 7 (t) while (u', r;", p;') is the solution of
Algorithm 4, see Sects. 2 and 4 for their precise definitions.

We note that all spatial error constants contain a growth factor k™ 2, which explains the
deteriorating performance of the standard (and modified) Chorin scheme whenk — 0
and the mesh size 4 is fixed as observed in the numerical tests of [8]. The numerical

1
experiments to be given in Sect. 5 indicate that the dependence on factor k™ 2 is sharp.
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The remainder of this paper is organized as follows. In Sect. 2, we first introduce
some space notations and state the assumptions on the initial data and on B as well as
recall the definition of solutions to (1.1). We then state and prove a Holder continuity
property for the pressure p in a time-averaged norm. In Sect. 3, we define the stan-
dard Chorin projection scheme as Algorithm 1 for problem (1.1) in Sect. 3.1 and the
modified Chorin scheme as Algorithm 2 in Sect. 3.2. The highlights of this section
are to prove some uniform (in k) stability estimates which are very useful for error
analysis later. In Sect. 4, we formulate the finite element spatial discretization for both
the standard Chorin and modified Chorin schemes in Algorithm 3 and 4, respectively
and prove the quasi-optimal error estimates for both algorithms as summarized above.
In Sect. 5, we present several numerical experiments to gauge the performance of
the proposed numerical methods and to validate the sharpness of the proved error
estimates.

This paper is a significantly shortened version of [14] where some omitted proofs
and additional remarks and explanations can be found.

2 Preliminaries

Standard function and space notation will be adopted in this paper. Let H(l)(D) denote
the subspace of H! (D) whose R?-valued functions have zero traceon d D, and (-, -) :=

(-, -) p denote the standard L2-inner product, with induced norm || - ||. We also denote
L,’;er(D) and H’;e,(D) as the Lebesgue and Sobolev spaces of the functions that

are periodic and have vanishing mean, respectively. Let (2, F, {F;}, P) be a filtered
probability space with the probability measure P, the o-algebra F and the continuous
filtration {F;} C F. For arandom variable v defined on (2, F, {F;}, P), E[v] denotes
the expected value of v. For a vector space X with norm | - [|[x, and 1 < p <
0o, we define the Bochner space (L”(Q, X); ||U||LP(Q’X)), where |[vllzr,x) =

1
(ElllvlI%1)?. We also define

H:={vell, (D); divv=0inD},
V:={veH,,, (D); divv=0in D}.

We recall from [15] that the (orthogonal) Helmholtz projection Py : Lf? (D) — H

is defined by Pyv = n forevery v € Liw(D), where (n, &) € H x H[Eer(D)/]R is a
unique tuple such that

v=mn+V§,

and§ € H [ie,(D) /R solves the following Poisson problem with the homogeneous
Neumann boundary condition:

AE = divv. @.1)

We also define the Stokes operator A := —PygA : VN Hf,er (D) — HL
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Throughout this paper we assume that B : Lfm(D) — Lfm (D) is a Lipschitz
continuous mapping and has linear growth, that is, there exists a constant C > 0 such
that for all v, w € L% (D)

per

IB(v) —BW)|| = Cllv—wl|, (2.2a)
B < C(1+vl), (2.2b)

Since we shall not explicitly track the dependence of all constants on v, for ease
of the presentation, unless it is stated otherwise, we shall set v = 1 in the rest of the
paper and assume that f € L2(Q; L?,e,(D)). In addition, we shall use C to denote a
generic positive constant which may depend on 7', the datum functions ug and f, and

the domain D but is independent of the mesh parameters 4 and k.

2.1 Variational formulation of the stochastic Stokes equations

We first define the variational solution concept for (1.1) and refer the reader to [10,11]
for a proof of its existence and uniqueness.

Definition 2.1 Given (22, F, {F;},P), let W be an R-valued Wiener process on it.
Suppose ug € L*(RQ,V) and f € L*(Q; L*((0,T); L3,,.(D))). An {F;}-adapted
stochastic process {u(¢); 0 <t < T} is called a variational solution of (1.1) if u €

L*(2; C(10, T]; V) N L*(2; 0, T; H3,, (D)), and satisfies P-a.s. for all 7 € (0, T]

t

(u(®),v) + /0

13
(Vu(s), Vv)ds = (ug, v) +/ (£(s),v) ds
0
t
+/ (Bu®).v)awe) vvev. @3)
0

We cite the following Holder continuity estimates for the variational solution whose
proofs can be found in [8,12].

Lemma 2.1 Suppose ug € L*(2; VNH2,, (D)) andf € L*(; C3 ([0, T1); H),, (D).
Then there exists a constant C = C (D7, ug, £) > 0, such that the variational solution

to problem (1.1) satisfies for s, t € [0, T]

t
E[llu(t) —u(s))?] + E[/ IV (u(r) — u(s)) | dr] <Clt —s], (2.42)

s

E[IV(u() — u(s))?] —HE[/ IA(u(r) - u(s))||2dr] <Cli—s|. (2.4b)

s

Definition 2.1 only defines the velocity u for (1.1), its associated pressure p is subtle
to define. In that regard we quote the following theorem from [13].

Theorem 2.2 Let {u(t); 0 < t < T} be the variational solution of (1.1). There exists a
unique adapted process P € L? (Q, L0, T; H;er(D)/R)) such that (u, P) satisfies
P-a.s. forallt € (0, T]
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t
(u(),v) + f (Vu(s), Vv)ds — (divv, P(1)) (2.52)
0

t t
= (up, v) + / (F(s), v) ds + / (B(u()).v)dW(s) Vv e H), (D:RY),
0 0
(divu,g) =0 V¥q e L{(D):={g €L}, (D): (q.1)=0}. (2.5b)
System (2.5) is a mixed formulation for the stochastic Stokes system (1.1), where

the (time-averaged) pressure P is defined. The distributional derivative p = 2P

W?
which was shown to belong to L! (Q; W’I’OO(O, T; H;er(D)/R)), was defined as the

pressure. Below, we also define another time-averaged “pressure”
t
R(t) := P(1) —/ E(s)dW (s), (2.6)
0

using the Helmholtz decomposition B(u(z)) = n(z) + V&(t), where & € H;L,,(D)/R
P-a.s. such that

(VE(r), V§) = (B(), V$) Vo H), (D). 2.7)

Then, it is easy to check that P-a.s.

t

t t
VR(t) = —u(r) —i—/ u(s)ds +ug —i—/ f(s)ds —i—/ n(s)dW(s) Vte (0,T).
0 0 0
(2.8)
The process {R(t); 0 <t < T} will also be approximated in our numerical methods.

Next, we establish some stability estimates for the velocity u and the pressure P in
the following lemma, its proof can be found in [14, Lemma 2.4].

Lemma 2.3 Suppose that uy € L2(Q2; V). Let (u, P) solve (2.5). Then there exists a
constant C = C (D, ug, f) such that

T
E[ sup ||Vu<t>||2]+E[ / ||Au(s)||2ds} <C, 2.9)
0<t<T 0
sup E[|IVPO)I?] = C. (2.10)
0<t<T

We finish this section by establishing the following Holder continuity result for P.
We also omit its proof here and refer the reader to [14, Lemma 2.5]

Lemma 2.4 Suppose that u € L*(2; C([0,T];V)) N L*(Q:0,T: H3,.(D)), f €
L*(Q;0,T; L2, (D)) and P € L*(Q; L*(0, T; H},,(D/R))). Then, there holds
E[IV(P(s) — PO)I*] < Cls —t| Vs, t €0, T, (2.11)

where the constant C > 0 depends on Dr, ug and f.
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3 Two Chorin-type time-stepping schemes

In this section, we first formulate two Chorin-type semi-discrete-in-time schemes for
problem (1.1). The first scheme is the standard Chorin scheme and the second one is
a Helmholtz decomposition enhanced nonstandard Chorin scheme. We then present
a complete convergence analysis for each scheme which includes establishing their
stability and error estimates in strong norms for both velocity and pressure approxi-
mations.

3.1 Standard Chorin projection scheme

We first consider the standard Chorin scheme for (1.1), its formulation is a straightfor-
ward adaptation of the well-known scheme for the deterministic Stokes problem and
is given in Algorithm 1 below. As mentioned earlier, the standard Chorin scheme for
(1.1) was already studied in [8] in the special case when the noise is divergence-free
and error estimates were only obtained for the velocity approximation. In contrast, here
we consider the Chorin scheme for general multiplicative noise and to derive error
estimates in strong norms not only for the velocity but also for pressure approximations
and to achieve a full understanding about the scheme.

3.1.1 Formulation of the standard Chorin scheme

Let M be a (large) positive integer and k := T /M be the time step size. Set t; = jk
forj =0,1,2,---, M, then {tj}f}’lzo forms a uniform mesh for (0, 7). The standard
Chorin projection scheme is given as follows (cf. [8,15,22]):

Algorithm 1 Let @ =u’=ug.Forn=0,1,2,--- ,M — 1, do the following three
steps.
Step 1: Given w" € L*(Q:H) and @ € L*(Q;H,, (D)), find @"*! €
L2($; H}M(D)) such that P-a.s.
it — kARt =" + k" L B@HAW,,  in D. (3.1

(D)/R) such that P-a.s.

er

Step 2: Find p"*! e L*(Q; H;
1
—Apt = —Edivﬁ”“ in D. (3.2)

Step 3: Define w"*! € L?(Q; H) by
't =@t — vt (3.3)
Remark 3.1 (a) The above formulation is written in the way in which the scheme is

implemented, it is slightly different from the traditional writing which combines Step
2 and 3 together.
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(b) It is easy to check (@"+!, u*t!, p"*+1) satisfies the following system:

it — @ — kAR 4 VP = kT B@) AW, inD, (3.4a)
divi"™! —kAp"t =0 inD, (3.4b)

where 1% = uy.

3.1.2 Stability estimates for the standard Chorin method

The goal of this subsection is to establish some stability estimates for Algorithm 1 in
strong norms. These estimates will play an important role in the error estimations for
the fully discrete finite element Chorin scheme to be given in the next section.

Lemma 3.1 The discrete processes {(@", p")}fyzo
defined in (3.4) satisfy

M - M -
Erlla" 2 E ~no_ ~n—1)2 El k Vi 2 < C, 35
omax E[a"%] + [Znu | +E| HZ_(:)II WP | < (3.52)

n=1

A
I

- M - C
Elk vl |? , 3.5b
_;"p"_—k (3.5b)

IA

=~ O

,  (3.5¢)

M -
~n 2 ~n 2
omax E[IVE"|’]+E| k) A"
. n=0 -
where C > 0 depends only on Dr, ug, f.

We refer the reader to [14, Lemma 3.1] for a complete proof of this lemma.
3.1.3 Error estimates for the standard Chorin scheme

In this subsection we shall derive some error estimates for the time-discrete processes
generated by Algorithm 1. To the best of our knowledge, these are the first error
estimate results for the standard Chorin scheme in the case general multiplicative
noises. For the sake of brevity, but without loss of the generality, we set f = 0 in this
subsection.

First, we state the following error estimate result for the velocity.

Theorem 3.2 Ler {(0", p”)},’:”: o be generated by Algorithm 1, then there exists a pos-
itive constant C which depends on Dr, g, and f such that

M }
<E[kz lu(z,) — ﬁ”||2D
n=0

0
2
EHk V(u(t,) —u"
+0;né>§w<[ ;;) (u(z,) —u")
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m
Proof Let €2 = u(,) — " and £ = P(ty) — k Y_ p". Obviously, I
n=0

L*(Q: H},, (D)) and &) € L*(Q; H),,(D)/R). In addition, from (2.5a), we have

per per

In+1

(u(tms1), v +Z/ (Vu(s), Vv) ds + (v, VP (1)) (3.7
1y

1

Int1
= (ug, v) + (Z/, (B(u(s))dW(s),v) Vv e H,,.(D) a.s.

Applying the summation operator Y " to (3.4a) yields

it +k2 at, V)—l—(kzm:Vp",v) (3.8)
n=0

n=0
m (788
= (i, v) + <Z/ B(ﬁ”)dW(s),v).
n=0"n

Subtracting (3.8) from (3.7) we get

(e o) + k(30 Vet vv) + (VgL Y) 69)

n=0

Int1
/ (V@(tng1) —u(s), Vv) ds — (V(P(tms1) — P(tm)), V)
n=0""n

Int
+<Z / 1(B<u(s>)—B<ﬁ">)dW(s),v> Vv e H,,, (D).

Setting v = e’l”H in (3.9) we obtain

m+1
e 112 + k(z ve!, Vem+1) + (Ve ety (3.10)
n=0

In
/ " (V) — uGs), vert) ds
n=0""mn

— (V(P(tms1) — P(tw)), em+l)

(Z f (B(u(s)) — B@") dW(s). e'"“)
tll
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Similarly, by (2.5b) and (3.4b) we get
divey +kAp" =0. (3.11)

Applying the summation 2:7:01 to (3.11) and then adding +=A P (¢,,,+1) yield

m+1
div <Z eg) - Ac‘!;,”"’l = —AP(ty+1).
n=0

Therefore,

divert! — AEMH — M) = —A(P(tns1) — Ptw)). (3.12)

11

Testing (3.12) by any ¢ € L%(Q; H! (D)/R), we have

per
(™. V) = (VEFH =€), Va) = (V(P(nr1) = Ptw)). Vq).  (3.13)
Choosing g = &7 in (3.13) gives

(erth,ver) = (VEFT —&m. VEN) = (V(P(tws1) — P(tw). VEY)  (3.14)
= (VErtt —gm, verth)y —veEptt —em?
— (V(P(ms1) = P(tw)), VE}').

Substituting (3.14) into (3.10) we obtain

m+1
”e11211+1”2 +k<z Veg, Vem+l> + (V(SL"-H _ g;n), VS;"'H)

u
n=0

m Iy
=3[ (V) —ue), e ds

n=0
HIVERT = EMIP + (V(Ptmr1) — P(tw). VE)

1
+ V(P mi1) — Paa))I* + leeg"“ 2

m Int1 2 1
e / Bus) ~ BN AW )| + e

a

Therefore,
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1 m+1
§||eg'+1 I* + k(Z Ve, Vegj“) + (Vg —emy, vertty (3.15)
n=0

Int+1
f (V(u(tns1) — us)), Vel ') ds
In

+ ||V<P<tm+1> — Pta)I* + IVET —m)?
(V<P<rm+1> — P(tw)). VE))

(B(u(S)) - B@")) dW(S)

In

Using the identity 2a(a — b) = a®> — b> + (a — b)* in (3.15) yields

m+1

1
Sles T+ [ Z Vel

m+12 m 2 m+1 my 12
+§[I|V5p I = IVENIZ + IV EST = ENI]

2
o+ IIVeg’“HZ} (3.16)

m

Int1
<[ (V) — o), Ve ds
n=0

+ V(P (tws1) = P + IVEFT — &M
+ (V(P(tms1) — P(tw)). VED)

s [ maen - anawe|’
0

Next, we apply the summation operator k Z;ﬁ:o for0 < ¢ < M — 1, followed by
applying the expectation operator [E[-], to (3.16) to obtain

£+1

Z Ve

14
+EE[IVESP] + & Y E[IVETT — M7
m=0

¢ In+1
< ZE[k > Z/ (V@u(tys1) —u(s)), Verth) ds }
tll

m=0n=0

k i E[lley ™ 117] + [

m=0

] + k2 Z E[|IVes+)?] (3.17)

£
+ 2E[k > IV ) — P(rm))uz] - 2E[k Z vyt — 5;")”2}

m=0 m=0
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4
+ zE[k Y (VP 1) = Plw)), ve,’;’)]

m=0

LT 2
+2E[’<ZHZ / (B(u(s) — B@") dW(s)| }

m=0 n=0""n

=I+IT+IIT+IV+V.

Now we estimate each term on the right-hand side of (3.17) as follows. We refer
the reader to see [14, Theorem 3.2] for the details of the following estimations.

By using the discrete and continuous Holder inequality estimates (2.4b), (2.9) and
(3.5a), we obtain

T= ZE[k XZ: (i /t"“ V(u(tns1) — u(s))ds, Veg”‘)]
In

m=0 n=0
< c(glx i > ft IV @) — w1 dSD%(IE[k é Iveri])
m=0n=0""" 0
< Ck?. a1s)

Next, by using (2.11) we have

14
II= 2E[k D IVP ) P(tm»nz} < Ck. (3.19)

m=0
By using (2.11) and the stability estimate (3.5b) we obtain

4 4
IIT < CE[k DIV PGmr1) = Paa)) I +CE Y[V p" ! ﬂ < Ck. (3.20)

m=0 m=0
It follows from the Itd isometry and (2.4a) that

14

m [71
v=2k E[Z [ B - Ban e ds]
0 n

n=0

m=

14 m 14 m Int1
<Ok kY Bl +Ck 3 ) [ Bllucs) — w1 ds

m=0 n=0 m=0n=0

4 m
< Ck ZkZ]E[HeﬁHZ] + Ck. (3.21)
m=0 n=0
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To bound term IV, we first derive its rewriting as follows:

14

IV = ZE[k Z(V(P(tm_H) — P(tw)), vsl’f“)]
m=0
4

+ ZE[k Z(V(P(th) — P(tm)), V() — 5,’,"+1))i|. (3.22)
m=0
By using the summation by parts, the first term above can be rewritten as

4
ZIE[k D (VP Utnir) = P(tw)), vegl“)}

4
= 2kE[(VP(tey1). VE,T)] 2k]E[Z VP (tw), VENT — 5;’;))]. (3.23)
m=0
Substituting (3.23) into (3.22) yields

14
IV = 2KE[(VP(te41), VES)] ZkE[Z VP (t), V(EMT! — g;l))}

14
+ ZE[k S (VP ) = Plan)), V(E) — 5;,"“))} (324)
m=0

= 1IVy + IVy + IV3.

We now bound each term above. Using the stability (2.10) we get
IVi < CKE[IIVP(te+ )] + ]flE[uvs‘f“uz] < Ck+ E]E[nvg”l I?]. (3.25)
1= £+1 4 4 — 4 p ' :

Expectedly, the term %E[vaﬁﬂ |I*] will be absorbed to the left side of (3.17) later.
To bound term IV, we reuse the estimation from IIT in (3.20) together with the
stability of P given in (2.10) to get

¢ )
v, = C(E[k Y ||VP<tm>||2])% (B[ S v —eni])’ < cid.

" " (3.26)
Using again (3.20) and (2.11) we have

1v; sC]E[k 30 IV (PG = Pt ) P4k 5o IV (EH — 5;,")”2} < Ck.
(3.27)
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Substituting estimates (3.25)—(3.27) into (3.24) yields
IV < Ck? + ]fE[nvg”‘ 1] (3.28)
< 1 » . .

Now, substituting the estimates forI, II, III, IV, Vinto(3.17)and using the
notation X¢ = k anzo E[lleg %] we obtain

l+1 l
2
X! —HE[Hk Yover |+ &S vertt?
m=0 m=0

14 12
3
+ZIVES P+ YD IVERT eI = okt ek Y xm
m=0 m=0

Thus, it follows from the discrete Gronwall inequality that

2
] < Ck? exp(Cty),

£+1
x4 E[Hk Z Vey
m=0

which yields the desired error estimate for the velocity approximation. O
Next, we derive an error estimate for the pressure approximation.

Theorem 3.3 Let {(0"™, p’")}f‘n"’:0 be generated by Algorithm 1. Then, there exists a
positive constant C which depends on Dt , g, f, and B such that

2T\ 3 1
D < Ck7, (3.29)

<E[k % H P(t,) — k i P
m=0 n=0

where 8 denotes the stochastic inf-sup constant (see below).

Proof We first recall the following inf-sup condition (cf. [6]):

sup (q, div v)

oy ZBlal Vg e L, (DR, (3.30)
veH}m(D) Vv

where B is a positive constant.
Below we reuse all the notations from Theorem 3.2. From the error equation (3.9)

we obtain for all v € H}, o (D)
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(Ep divy) = (et v) + <kZVeg“, VV) + (V(P(tms1) — P(tm)), V)
n=0
(3.31)

m Int1
- (Z/ V(@u(t,4+1) —u(s)) ds, VV)
n=0"1n
m Int1
- (Z/ (B(u(s)) —B@") dwi(s), v).
tn

n=0

By using Schwarz and Poincaré inequalities on the right side of (3.31), we get

(&, divy) < Clleg ™ IVvl + Vvl (3.32)

m
(Y vert!
n=0

m Int1
> [ vt -~ uends
n=0"mn

+ CIIV(P(tmy1) — Pt IVl

+ Vvl

+C (Vv

m Iyl
3 / " Bu(s) — B dw(s)
n t)l

Applying (3.30) yields

Em divv
BIEN < sup (& divy)
veH),, (D) Vvl

m
kZVeg+1

n=0
+ CIIV(P (tms1) — Pl

(3.33)

Int1

3 / V(i) — uls)) ds
n=0""

< Clert +‘

+C

m Int1
E / (B(u(s)) —B@")) dW(s)
In

Next, squaring both sides of (3.33) followed by applying operators k anzo and E[],
we obtain

m
k Z Vngrl

n=0
2]

m (78]
> / Vu(tyy1) — u(s)) ds
n=0 In

2
] (3.34)

I4 l I4
,32E[k > oley ||2] < CE[k > ||e{~;’+1||2} +Ck Y EH
m=0 m=0 m=0
I4
+Ck Yy IE[
m=0
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4
+ Ck Y E[IV(P(tmg1) — P(tw))|]
m=0

]

It remains to bound each term on the right side above. We refer the reader to see the
details of the proof in [14, Theorem 3.3] using Theorem 3.2. We only state the final
results below.

¢
+Ck Y E[
m=0

m Int1
> [ e - @ awe)
n=0"mn

=I+ITI+IIT+IV+V.

4
ﬂzE[k Z ||5,’,"||2] <Ck forl<e¢<M. (3.35)
m=0

The proof is complete. O

Remark 3.2 1t is interesting to point out that the above proof uses the technique from
the (non-splitting) mixed method error analysis although Chorin scheme is a splitting
scheme.

We conclude this subsection by stating two stability estimates for (@™, p") in high
norms as immediate corollaries of the above error estimates, they will be used in
the next section in deriving error estimates for a fully discrete finite element Chorin
method. We note that these stability estimates improve those given in Lemma 3.1 and
may not be obtained directly without using the above error estimates.

Corollary 3.4 Under the assumptions of Theorem 3.2, there exists a positive constant
C which depends on D, gy and £ such that

M m 2
E[kZ kY Vp" ]gc, (3.36)
m=0 n=0
m 2 M m 2
El £y va” E|k k) AR C. 3.37
s el v | el e Jseen

We refer the reader to [14, Corollary 3.4] for a detailed proof.

3.2 A modified Chorin projection scheme

In this subsection, we consider a modification of Algorithm 1 which was already
pointed out in [8] but did not analyze there. The modification is to perform a Helmholtz
decomposition of B(@™) at each time step which allows us to eliminate the curl-free
partin Step 1 of Algorithm 1, this then results in a divergent-free Helmholtz projected
noise. The goal of this subsection is to present a complete convergence analysis for
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the modified Chorin scheme which includes deriving stronger error estimates for both
velocity and pressure approximations than those for the standard Chorin scheme. We
note that this Helmholtz decomposition enhancing technique was also used in [13] to
improve the standard mixed finite element method for (1.1).

3.2.1 Formulation of the modified Chorin scheme
For ease of the presentation, we assume W (¢) is a real-valued Wiener process and

independent of the spatial variable. The case of more general W (¢) can be dealt with
similarly. The modified Chorin scheme is given as follows.

Algorithm 2 Set i’ = u’ = ug. Form = 0,1,--- , M — 1, do the following five
steps.
Step 1: Given " € L*(Q,H]}, (D)), find " € L*(Q, H),,(D)/R) such that
P-a.s.
AE™ =divB@") inD. (3.38)

Step 2: Setn = B(W")—VE™ . Givenu™ € L*(Q, H) andu™ € L3(Q, H},er(D)),
find @™t e L%(Q, H}W (D)) such that P-a.s.

" — kAR = u" + kT P AW,y in D. (3.39)

Step 3: Find r"+! € L>(Q, H]

per (D)/R) such that P-a.s.
—ArH = —%div a”t! inD. (3.40a)
Step 4: Define u"*! € L2(Q, H) as
u =@t — kvt i D. (3.41)
Step 5: Define the pressure approximation p”*! as

1
prtl =ty %émAWmH in D. (3.42)

Remark 3.3 It follows from (2.2b) and (3.38) that the Helmholtz projection n can be
bounded in terms of u™ as follows:

lng Iz < IB@™)lI2 + IVEG 2 < 2IB@™)| 2 < Cll0"™ || 2 (3.43)
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3.2.2 Stability estimates for the modified Chorin scheme

In this subsection we first state some stability estimates for Algorithm 2. We then
recall the Euler-Maruyama scheme for (1.1) and its stability and error estimates from
[13], which will be utilized as a tool in the stability and error analysis of the modified
Chorin scheme in the next subsection.

Lemma 3.5 The discrete processes {(0'™, r”‘)},’:l”_0 defined by Algorithm 2 satisfy

M M
E[|d"|*] + E i — a2 | Bl kS pvam 2| < 3.44
omax E(I&"°]+ [leu @R |+ mz_on 2| <c. (3.4dn)

m=1

M
IE|:k2 > ||Vr’”||2:| < C, (3.44b)

m=0
where C is a positive constant which depends on Dt ,ug and f.

Since the proof of this lemma follows the same lines as those of Lemma 3.1. We
omit the proof to save space.

Next, we recall the Helmholtz enhanced Euler-Maruyama scheme for (1.1) which
was proposed and analyzed in [13]. This scheme will be used as an auxiliary scheme
in our error estimates for the velocity and pressure approximations of Algorithm 2 in
the next subsection. The Euler-Maruyama scheme reads as

V" vy — k AV 4 kg = T T AW, inD, (3.45a)
divv™tl =0 inD, (3.45b)
where 0} = B(v"") — V&" denotes the Helmholtz projection of B(v"").

It was proved in [13] that the following stability and error estimates hold for the
solution of the above Euler-Maruyama scheme.

Lemma 3.6 The discrete processes {(v"", q’”)}ffzo
defined by (3.45) satisfy

M M _
érrlnanMIE[vaHz] + E[Z v — v’"—1||2] + E[k SIvvR] s, 346w

m=1 m=0

0

M
Ogna;(M]E[an’"nz] + E[Z(HV(V’" —vrh? 4 k||Avm||2) <C, (3.46b)

m=1

M -
2
E[kX;)lqumll |=c. 3o
m=

where C is a positive constant which depends on Dt,ug and f.
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Remark 3.4 We note that to ensure the stability estimate (3.46b) is the only reason for
restricting to the periodic boundary condition in this paper.

Lemma 3.7 There hold the the following error estimates for the discrete processes
(O, g™ -

Jmax (E[fut,) —v"IP])

1

M 1
+<E[k > V@) — vf")||2D T < oVE, (3.47a)
m=0

2oy 1
Dz < CcVk (3.47b)

14
R——
m=0

for0 < £ < M. Where C is a positive constant which depends on D, ugy and f.

3.2.3 Error estimates for the modified Chorin scheme

The goal of this subsection is to derive error estimates for both the velocity and
pressure approximations generated by Algorithm 2. The anticipated error estimates are
optimal to compare with those for the standard Chorin scheme proved in the previous
subsection. We note that our error estimate for the velocity approximation recovers
the same estimate obtained in [8, Theorem 3.1] although the analysis given here is a
lot simpler. On the other hand, the error estimate for the pressure approximation is
apparently new. The main idea of the proofs of this subsection is to use the Euler-
Maruyama scheme analyzed in [13] as an auxiliary scheme which bridges the exact
solution of (1.1) and the discrete solution of Algorithm 2.

The follow theorem gives an error estimate in strong norms for the velocity approx-
imation.

Theorem 3.8 Ler {(0"™, p’")}n"f:0 be the solution of Algorithm 2 and {(u(t), P(t)); 0 <
t < T} be the solution of (1.1). Then there holds the following estimate:

1
~m 2 2
omax, (E[IIU(tm) —u’ D (3.48)
1

M 1
+ (E[k > IV - ﬁ'”>||2D2 < vk,

m=0

where C is a positive constant which depends on D7, ug and f.

We refer the reader to [14, Theorem 3.8] for a detailed proof. We also note that in
that proof, only one auxiliary scheme (i.e., (3.45)) was used, while the proof given in
[8, Theorem 3.1] required to use two auxiliary schemes to carry out the proof.

An immediate corollary of the above error estimate is the following stronger sta-
bility estimates for {(@"”, ")}, which may not be obtainable directly and will play
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an important role in the error analysis of fully discrete counterpart of Algorithm 2 in
the next section. We skip its proof and refer the reader to [14, Corollary 3.9] for a
complete proof.

Corollary 3.9 There exists C > 0 which depends on Dt ,ug and £ such that

M
~m 2 ~m 2
ogfnagxM]E[”V“ [ ]+E[k2 | AR | } <C, (3.49a)
m=0
M
E[k > ||vr’"||2} <cC. (3.49b)
m=0

Similarly, the following estimate holds for {u”}.

Corollary 3.10 There exists C > 0 which depends on Dt,ug and £ such that

M 2
pmax (E[llutn) — umnz])% + (E[k X_;) u(ty) —u™ ||2]) < CVk. (3.50)

The proof of (3.50) readily follows from (3.41) and Theorem (3.8) as well as the
estimate (3.49b).

Next, we derive error estimates for the pressure approximations " and p”* gener-
ated by Algorithm 2. First, we state the following lemma.

Lemma 3.11 Ler {r™ };}4‘;[:0 be generated by Algorithm 2. Then, there exists a constant
C > 0 depending on Dr, vy, f and B such that for0 <€ < M

(<

Proof The idea of the proof is to utilize the inf-sup condition (3.30). Testing (3.41) by

any v € L*(Q: H},,, (D)), we obtain

2 1
])2 < CcVk. (3.51)

14
k Z(rm _ rm—l)
m=1

k(rm+1, diVV) — (um—H _ ﬁm+1’ V),

k(r’”, diVV) = (u’" —u”, V).
Then, subtracting the above equations yields
k(rm Tt = divy) = (@™t —u™) — @t —am), v). (3.52)
Applying the summation operator Zﬁlzo forO0 < ¢ <M — 11t0(3.52), we get
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£
(k o™ =y, div v) = (@ —u% — @*! - a%,v) (3.53)
m=0

1
e, —e V)

< C(llegt I+ leSt v,

where e} and e’ are the same as defined in the preceding subsection and we have

used the fact that u® — % = 0.
Finally, by using the inf-sup condition (3.30) and then taking the expectation we
get

’ ZE[H" i(’m“ - ’m)ﬂ < C(E[lef™ 17+ E[les™ 1)),
m=0

which and the estimates for eﬁ“ and e§+l infer the desired estimate (3.51). The proof
is complete. O

We then are ready to state the following error estimate result for r™.

Theorem 3.12 Let {rm}ffzo be generated by Algorithm 2 and R(t) be defined in (2.6).
Then there exists a constant C > 0 depending on Dr,ug,f and B such hat for
0<t<M

¢ 2 %
(IEI:HR(tg)—erm D < CVk. (3.54)

m=0

Proof Letey = v" —ua™. Subtracting (3.45) from (3.4a) and then testing the resulting
equation by v € L*(Q:; H! (D)), we obtain

per

(e ! — e, v) +k(Vest!, vv) — k(g™ — ™, divv) (3.55)
= (07 = 1) AWin1, V).

Applying the summation operator anzo to (3.55) for0 < ¢ < M — 1 yields

¢ ¢
(k Xz(élmJrl —r'"), divv) = (efi:rl —ed v) + (k Z Veg’H, Vv) (3.56)
m=0

m=0
14
- (Z (ny _ng)AWm-H»V)
m=0
=I+4+II+IIT.

To the end, we bound each term on the right-hand side of (3.56). We suggest the
reader to see the details of these estimations in [14, Theorem 3.12]. Here, we just state
the final result below.
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29\ 1
]) < cVk. (3.57)

(<

The proof is completed by applying the triangular inequality, Lemma 3.11 and (3.47b).
O

£
kY (@t =)
m=0

Corollary 3.13 Let {p™} ,/Z’ o be generated by Algorithm 2. Then, there exists a constant

C > 0 which depends on Dr,ug, f and B such that for0 < £ <M

)4
(o1
m=0

The proof follows readily from Theorem 3.12 and the relationship between P (¢)
and R(t) and between p™ and r'™", see [14, Corollary 3.13] for the details.

27\ 3
]) < ck. (3.58)

4 Fully discrete finite element methods

In this section, we formulate and analyze finite element spatial discretization for Algo-
rithm 1 and 2. To the end, let 7; be a quasi-uniform triangulation of the polygonal
(d = 2) or polyhedral (d = 3) bounded domain D. We introduce the following two
basic Lagrangian finite element spaces:

Vi ={p € C(D); ¢, € Pe(K) VK €Ty}, (4.1)
Xy ={¢p € C(D); ¢, € Pe(K) VYK € Ty}, 4.2)

where P;(K) (£ > 1) denotes the set of polynomials of degree less than or equal to £
over the element K € 7j,. The finite element spaces to be used to formulate our finite
element methods are defined as follows:

H), = [V N H), (D)I*, Ly=VyNL3,(D)/R, Sy=XyNL3,(D)/R.
4.3)
In addition, we introduce spaces
V, = L*(2,Hy), W, =L*, L. (4.4)
Recall that the L2-projection P} : [Lfm(D)]d — Hj, is defined by
(@ —Ppg.5) =0 VicH, 4.5)
and the H'-projection Pﬁ : H;er (D)/R — Ly is defined by
(VX =Ppx).Vn) =0 Ve L. (4.6)
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It is well known [6] that 732 and 73;} satisfy following estimates:

lp — PRpll +hIV(® — Pip)ll < Ch*||gplly2 V¢ € Hy, (D), .7

lx = Paxl +hIVG =Pyl < Ch*Ixllg2 Vx € Hy,, /RN H, (D).
(4.8)

per

For the clarity we only consider Pj-finite element space in this section (i.e., £ = 1),
the results of this section can be easily extended to high order finite elements.

4.1 Finite element methods for the standard Chorin scheme

Approximating the velocity space and pressure space respectively by the finite element
spaces H;, and Lj in Algorithm 1, we then obtain the fully discrete finite element
version of the standard Chorin scheme given below as Algorithm 3. We also note that
a similar algorithm was proposed in [8].

Algorithm 3 Letn > 0. Set ﬁh = P,?uo Forn =0, 1,2, --- do the following steps:

Step 1: Givenul! € L*(Q2, Hy,) and &} € L>(Q, Hy), find i} ™' € L2(Q, Hj,) such
that P-a.s.

(@ va) + (VI V) 4.9)
= (UZ, Vh) + k(fn+l, Vh) + (B(ﬁZ)AWn+1, VVh) Vv;, € Hy,.

Step 2: Find pi'™' € L2(Q, Ly) such that P-a.s.
1, .
(Vpith, V) = E(uZH, Vo)  Véu € Ly, (4.10)
Step 3: Define u} ' € L2(Q, Hy) by

As mentioned in Sect. 1, eliminating u” in (4.9) using (4.10), we obtain

@ — @y, vy + kvartt vvy) (4.12a)
+k(Vpp,ve) = k(ET vi) + B@DAWut1, Vi) Vv, € Hy,
@, Ven) = k(Vpit Vo) Veu € Ly (4.12b)

Next, we state the stability estimates for {(u};, pj )},’:4 o in the following lemma,
which will be used in the fully discrete error analysis later. Since its proof follows
from the same lines of that for Lemma 3.1, we omit it to save space.
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Lemma 4.1 Let {(11, pZ)}l’:”:O be generated by Algorithm 3, then there holds
M
T W — a2+ E R IVEr”?| < 4.13
omax (5171 + [};w 1” |+ Zn Wl =C, @3

C
[k Z ||Vp,,||2} - (@413D)

where C is a positive constant depending only on Dr, ug, and f.

The following theorem provides an error estimate in a strong norm for the finite
element solution of Algorithm 3.

Theorem 4.2 Ler {(ﬁ ’")}M o and {(W}', p; )} o be generated respectively by
Algorithm 1 and Algorithm 3. Then under the assumptions of Lemmas 3.1, 4.1 and
Corollary 3.4 there holds

1

M 2
(e[ o pa - a1 @14
m=0

s, (e v@ - ') <l + ),

where C = C(Dr, ug, f) is a positive constant.

Proof The proofis conceptually similar to that of Theorem 3.2. Setting eﬁmh =" —uy

and &), =: p" — p;'. Without loss of the generality, we assume eg = 0and 8211 =0
because they are of high order accuracy, hence are negligible.
First, applying the summation operator ', to (4.12a), we obtain

m+1

@ v, +k<2 Vuh,VVh> +k(ZVph,vh) 4.15)

n=0 n=0

m
= (ufva) + (Y B@ADAW, 1. vi) Vv, €
n=0

Subtracting (3.8) from (4.15) yields the following error equations:

m+1

s Jrlc(nZ(:)Ve~ vVh)+k(ZVsp,, ) (4.16)

n=0

= (X B@) ~B@)AW1.vi) ¥V € Hy,
n=0

('"+1 Veén) =k(Velt Ven) Ve € L. (4.17)
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Choosing v, = P}?eg’;l e’f’+1 omtl. gm — ;' — P}?ﬁ?, then (4.16) becomes

m+1

e % + k(z Vel vert) + k(Z vep, Plentl) @)

m—+1
_ (egzh+1’0m+1) + k(z Veﬁh, V0m+1)

n=0

+ (o B@) - B@)AW,i1, Plentt).
n=0

Setting ¢y = Y-1Lo Pyep, = Ypo &, — Lnmo §" in (4.17), where £ = p" =Py p",
we obtain

('”“ Zv ) ( mt1 ZVPhsph> (4.19)

n=0

In addition, by using the properties of 732— and Pé-projection we have
m
(Z Vel Ple m+‘> = k(Z Ven, entt) - (Z Ve, 0" (420
- (Z VPLen, . eut) + k(z Ve, entl) - k(Z ven, .0 1)
n=0
m
K2 (Ve Z VPie, ) + k(z V" eprtt) — k(3 vep,.0m)
n=0 n=0

2( 1 mH 1 ) 1 1 1
=k*(Veptt, Paeh, ) — K2 (Ventt v entt)
+k(év%‘”, "’“) k(Xz: e, 0"")

m+1 m+1

= k2 (vept!, prh) K2 (vept, ng )

m
— k2( m+l V’P;}SZII:H + k(z vEn, em+1) k(z ph’em—&-l)
n=0 n=0

Moreover, by using the orthogonality property of 73/1, we have

—k* (et VPyentl) = —k2(V(nt! — Prey,). VP! (4.21)
+ VPP = K2V Py et 2,
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which helps to reduce (4.20) into

m m+1 m+1
k(Z Vel | Oet"“) = K2(Vep Y0 e ) —k(Veptt, YO ve") @422)
n=0 n=0

n=0

_’_k2||v7)}18m+1” +k(z V%-n m+1)

’lll
n=0

- k(é ven,.0m).

Substituting (4.22) into (4.18) and rearranging terms yield

m+1 m+1
e 1% + k(Z vel Ve'"“) e (Vegh“, 3 Vegh) (4.23)
n=0 n=0
2 l 1,2
+ VPl
m+1
—kz(w"’“ sz )+k(chve 1 Zg )
m+1
+ k(z Ve, 0" ) 4 (et 0m ) k(Y el ver )
n=0 n=0

+ (Do B@E" — B@;) AW, P!,

n=0

Next, we use the identity 2a(a — b) = a? — b? + (a — b)? to create telescoping
sums on the left side of (4.23), then followed by taking the expectation and applying
the summation k anzo for0 < ¢ < M to get

i E[ e 1] + IE[HkZVew
—IE[Hk;)Vth
—E[ie Y (Ve ngVs")] e 3 (e 3 Zg )]

]E[k2 i(i Vggh’9m+1>] [kn; m+1 0m+1 ]

m=0 n=0

T+ %ij E[IVep ] @24)

14
2 k3
|+ 5 D E[Ivent 12 + 209 Pien 1]
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£ m+l
+E[k2 E@(}; ve! | W,mﬂ)]
+k i E[(i(B(ﬁn) —B@@)) AW, 41, p}?gﬂﬂ)]
=0 n=0
=1 _’"_1 -+ VL

It remains to bound each term on the right side of (4.24), we refer to the proof of
[14, Theorem 4.2] for the details and only quote its final estimate below.

) 41 o2 L
{41 m+1
X IE[HkZVe~ ] T Z]E[nw ] (4.25)
m=0
4
3k 27 3%3
—E[Hk Z Vel ] = D E[Ivel 7]
n=0 m=0

)4

+1 Y E[IVPep 7]

m=0

1 Ch? ¢
<Ck?+4+ — +Ck X",
< + =t mg)

where X! =k 3¢ [||e |I2]. The desired error estimate (4.14) then follows from
an application of the dlscrete Gronwall inequality to (4.25). The proof is complete. O

Next, we state an error estimate result for the pressure approximation generated
by Algorithm 3 in a time-averaged fashion. Recall that an important advantage of
Chorin-type schemes is to allow the use of a pair of independent finite element spaces
which are not required to satisfy a discrete inf-sup condition, a price for this advantage
is to make error estimates for the pressure approximations become more complicated
even in the deterministic case. The idea for circumventing the difficulty is to utilize
the following perturbed inf-sup inequality (cf. [17]): there exists § > 0 independent
of h > 0, such that

[(qn, div vi)]?

— + R IVarl>  Yaqn € Sh. (4.26)
VhGH; ||VVh||

= Ll <

which was also used in [13] to derive an error estimate for a pressure-stabilization
scheme for (1.1).

Theorem 4.3 Under the assumptions of Theorem 4.2, there exists a positive constant
C = C(Dr,ug,ft, ) such that

( [kZHkZ (r" = p})

m=1

Dé < c(k% + hk—%), (4.27)
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Proof We reuse all the notations from the proof of Theorem 4.2. First, from the error
equations (4.16) we have

m m-+1
(k 3 en div vh) (e2t! vp) + (k 3 e, VVh) (4.28)
n=0 n=0
m
~ (B — B AW, ) Vv € Hy,
n=0

Using the Schwarz inequality on the right-hand side of (4.28) yields

m+1

m
‘(k 3 en div vh>‘ Cle Vvl + Hk 3 ver
n=0 n=0

4B - B@) AW 171
n=0

(4.29)

Next, using (4.26) we conclude that

2
‘(kzn o€ [,/,dwvh)‘
< sup
vpeHy ||VVh||2

(4.30)

52 Hk28

n=0

" 2
2
-1y Ve,
n=0

m+1
< Clle™ |2 + ch Y Vel
- uy uy
n=0

+ C”i(B(ﬁ") — B() AW,y H2
n=0

Then, applying operators k anzo and E[-] on both sides we obtain

2 4 m
} < hZIE[k ZH"ZV%

+CkZE ||e’"+l 2]
m=0

2
} 431

1 14 m
FEE k3,
m=0  n=0

m+1

+Ck Z E[”k Z ve!

]

+ Ck Z E[(\Z(B(u") B AW,

=TI+ II+ITI+IV.
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After bounding each terms on the right-hand side of (4.31) (see [14, Theorem 4.3] for
the details) by using Theorem 4.2, we obtain the desired estimate.. O

We are now ready to state the following global error estimate theorem for Algorithm
3 which is a main result of this paper.

Theorem 4.4 Under the assumptions of Theorems 3.2, 3.3 and Theorems 4.2 and 4.3,
there hold the following error estimates:

1 1

<E[k % u(t,) — ﬁgﬂ)z n OE}%(E[Hk Xl: V(uty) — @) ])2 (4.32)
m=0 - m=0

< c(zﬁ +hk*%),

zDé < c(k% n hk—%), (4.33)

M m
<E[k S|P -kYp
m=0 n=0
where C = C(Dr, ug, £, B, 8) is positive constant independent of k and h.

4.2 Finite element methods for the modified Chorin scheme
In this subsection, we first formulate a finite element spatial discretization for Algo-

rithm 2 and then present a complete convergence analysis by deriving error estimates
which are stronger than those obtained above for the standard Chorin scheme.

Algorithm 4 Letm > 0. Set uh = Ph ug. Form =0, 1, 2, - - - do the following steps:
Step 1: For given o} € L*(Q2, Hy), find &' e L% (%, Sh) by solving the following
Poisson problem: for P-a.s.

(Ve V) = (B, Vo) Vo € Sh. (4.34)

Step2: Set nfy = B(W")— V&' For givenu)' € L*(Q,Hy) andu)" € L*(Q, Hy),
find ﬁZ"H € L*(Q2, Hy) by solving the following problem: for P-a.s.

@+ vi) + k(VErt, vy,) (4.35)
= (uh , Vh) + k(fm+1, vh) + (nghAWmH, Vh) Vv, € Hy.

Step 3: Find r,’l’“rl € L*(, Ly,) by solving the following Poisson problem: for
P-a.s.

1
(V7 V) = L (@1 Ven) Ve < L. (4.36)

Step 4: Define u}'*! € L?(Q, Hy) by
wi = —evr (4.37)

@ Springer



Stoch PDE: Anal Comp

Step 5: Define pi"t! € L%(Q2, L) by

1
PRt = AW, (4.38)

Since each step involves a coercive problem, hence, Algorithm 4 is well defined.
The next theorem establishes a convergence rate for the finite element approximation
of the velocity field. Since the proof follows the same lines as those in the proof of
Theorem 4.2, we omit it to save space.

Theorem 4.5 Let {0 }M o and {uy! }M o be generated respectively by Algorithm 2 and
4.
Then, there exists a constant C = C (D, ug, f) > 0 such that

5 M 5
ér:naé(M(]E[llﬁ”’ — i ||2]) + (E[km; V@ — ﬁ?)HzD (4.39)
< C(«/E+h +h2k—%).

In the next theorem, we establish an error estimate for the pressure approximation
of the modified Chorin finite element method given by Algorithm 4.

Theorem 4.6 Let {r’"}M  and {r}! }m | be generated respectively by Algorithm 2 and
4. Then, there exists a constant C = C (D, ug, £, 8) > 0 such that

([ Z(V =)

Proof Letey =u™ —uy' and &;" = r™ —r)". Itis easy to check that (e}, ;") satisfies
the following error equation:

1
Dz §C<ﬁ+h+h2k‘5). (4.40)

(7 — 8 vy) + (VeI Vvy) + (Ve vy) (4.41)
= (% —n% )AWm_H,Vh) Vv, € Hy.
( i iy

Applying the summation operator anzo (0<€<M-—1)to(4.41)yields

12 4
(k > e, div vh> = (et — el vi) + <k > Vet vVh) (4.42)
m=0

m=0

4
— (Z(n? - n?h)AWmH,Vh).

m=0

It remains to bound terms on the right-hand side, which we refer to the proof of [14,
Theorem 4.6] for the details and only quote the final estimate below.
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4 V4
(k > e div vh> < CE[lle5™ %] + E[k > lvept! ||2]
m=0

m=0

4 4
+ CE[k > lley ||2} + th[k > Ve ||2} +Ch’.

m=0 m=0

The desired estimate (4.40) follows from an application of (4.26), Theorem 4.5 and
using Step 3 of Algorithm 2 and 4. The proof is complete. O

Corollary 4.7 Let {pm}M | and {p}} }M | be generated respectively by Algorithm 1
and 2. Then, there exists a positive constant C = C(Dr, g, £, §) such that

2 1
( [H Z(pm—ph Dz 5C(«/E+h+h2k—i). (4.43)

Proof Since the proof follows the same lines as those of the proof for Corollary 3.13,
we only highlight the main steps. By definition of {p"™} and {pj}'}, we have

Term I can be bounded using Theorem 4.6. To bound IT, by It6 isometry,
(3.38) and (4.34), Poincaré inequality, Lipschitz continuity of B, and Theorem 4.5,
we get

IA

) (4.44)

é:frl’;)AWm-i-l

M
kY ("
m=1

I+ IT.

E[z1]* = E|k i €™ — e | < C<k+h2 + E)
— h — k °

The proof is complete. O

We conclude this section by stating the following global error estimate theorem for
Algorithm 4, which is another main result of this paper.

Theorem 4.8 Let (u, P) be the solution of (1.1) and {(wj, r}", p,'q")}nﬂf | be the solution

of Algorithm 4. Then, there exists a constant C = C(Dr,uy, £, B, 8) > 0 such that

max (B[ uts,) - | )7 (E [kZ||u<rm>—~Z’|| ])7
sc(«/%+h+h2kz),
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D) Cllreo-czal )

§C<ﬁ+h+h2k‘5).

(E[HR(rm) — kY ry
n=1

Remark 4.1 The above error estimates are of the same nature as those obtained in [12]
for the standard Euler-Maruyama mixed finite element method. On the other hand, the
error estimates obtained in [13] for the Helmholtz enhanced Euler-Maruyama mixed

1
finite element method do not have the growth term h2k~2.

5 Numerical experiments

In this section, we present two 2-D numerical tests to guage the performance of the
proposed numerical methods/algorithms. The first test is to verify the convergent
rates proved in Theorem 4.4 for Algorithm 3 while the second test is to validate the
convergent rates proved in Theorem 4.8.

In both tests the computational domain is chosen as D = (0, 1) x (0, 1), the
P; — P; equal-order pair of finite element spaces are used for spatial discretization,
the constant source function f = (1, 1) is applied, the terminal time is 7 = 1, the fine
time and space mesh sizes kg = ﬁ and h = % are used to compute the numerical
true solution, and the number of realizations is set as N, = 500 for the first test and
N, = 800 for the second one. Moreover, to evaluate errors in strong norms, we use
the following numerical integration formulas: forany 0 <m < M

1 N, 1
EN = (]E[Hu(tm) - uZ’(k)HZD; ~ (Nlp ;”u;l"(ko, we) —uy' (k, wz)”z)% ;
M %
e = (E[k > Jutn) — uz%k)nz])
(1 :;20 U " " 2 2
. <N—,, 3k 2o o0 ) )
M " 27\ 2
eM = (]E[k S|P =k pio)| D
m=0 n=0
TR M i * 2\ 2
~ (N—PZ(kZHkomeo,ww kX Pt ] )) .

lzl m:O n=1

Test 1 In this test, the nonlinear multiplicative noise function B is chosen as B(u) =
10((uf + 3, (3 + 1)%) and the initial value ug = (0, 0)T. Moreover, we choose
R’ -valued Wiener process W with increments satisfying
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Fig.1 Convergence rates of the time discretization for the velocity (left) and pressure (right) approximations

by Algorithm 3 in the £ ﬁ’l qv horm and £ ]1,‘4 v horm respectively

J
AWpi1 = W (tyi1. %) = Wt x) = ko D ajre Bl (5.0
j.£=0

where x = (x1, x2) € D, ,8;.”( ~ N(0, 1) and {e; ¢(x)};,¢ are orthonormal functions
defined by e; ¢(x) = gj,£||gj,£||_l with

gj,e(x1, x2) = sin(jmx) sin(£mr x2) 5.2)

1 .
and Aj ¢ = (H—[)z”gj,eﬂ- In this test, we set J =2, v = 1.

Figure 1 displays the convergence rates of the time discretization produced by Algo-

rithm 3 (and Algorithm 1) using different time step size k. The left figure shows the

M
u,av

right graph shows the same convergence rate in the £ g”’av -norm for the pressure approx-
imation, both match the theoretical rates proved in our theoretical error estimates.

1. . L .
convergence rate O (k#) in the £ . -norm for the velocity approximation, while the

Next, we want to verify that the dependence of the error bounds on the factor k7 s
valid. To the end, we fix h = % and use again different time step size k. The numerical
results in Fig. 2 shows that the errors for both the velocity and pressure approximations
increase as the time step size decreases, which proves that the error bounds are indeed
proportional to some negative power of k.

To verify the sharpness of the error bounds on the factor k_%, we implement Algo-
rithm 3 using different pairs (k, /), which satisfy the relation 2 ~ k, and display the
numerical results in Fig. 3. We observe }1 order convergence rate for both the velocity
and pressure approximations as predicted in Theorem 4.4.

Test 2 We use the same test problem as in Test 1 to validate the theoretical error esti-
mates for our modified Chorin scheme given by Algorithm 4. However, the nonlinear
multiplicative noise functions is chosen as B(u) = ((u% + 1)%, (u% + 1)%). It should
be noted that a similar numerical experiment was done in [8]. However, only the
velocity approximation was analyzed and tested, no convergent rate for the pressure
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Fig. 2 Errors the velocity approximation (left) in € norm and the pressure approximation (right) in

u,av

&M norm by Algorithm 3

p.av

——EM, ——E)
100 1.0.25 100 _,L.(].Z-'i
10"
10"
102 /
102

102 10" 102 101

Fig. 3 Convergence rates in the 8{‘,’{ av orm for the velocity (left) approximation and the £ {}’{av norm for
the pressure (right) approximation by Algorithm 3 under the mesh condition & ~ k

approximation was proved or tested in [8]. Here we want to emphasize the optimal
convergence rate for the pressure approximation in the time-averaged norm.

Figure 4 displays the % order convergence rate in time for both the velocity and
pressure approximations by Algorithm 4 as predicted by Theorem 4.8. We note that
the velocity error is measured in the strong norm and the pressure error is measured
in a time-averaged norm.

Similar to Test 1, we want to test whether the dependence of the error bounds on

the factor k=2 is valid and sharp. To the end, we use the same strategy as we did in
Test 1, namely, we fix mesh size h = 21—0 and decrease time step size k. As expected,
we observe that the errors blow up as shown in Fig. 5.

Finally, Fig. 6 shows the % order convergence rate for both the velocity and pressure
approximations by Algorithm 4 when the time step size k and the space mesh size &
satisfy the balancing condition 7 & /k, which verifies the sharpness of the dependence

of the error bounds on on the factor k=2 as predicted by Theorem 4.8.
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Fig. 4 Convergence rates of the time discretization for the velocity in strong norm (left) and pressure in

time-averaged norm (right) by Algorithm 4
——EX,
08
0.6 ]
0.4r ]

0.2

0.25

M
u

0.2r

o
by
[4]

0.1k

0 2 4 6 8 0 2 4 6 8
%1078 <103

Fig. 5 Errors for the velocity approximation in strong norm (left) and pressure approximation in time-
averaged norm (right) by Algorithm 4
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Fig.6 Convergence rates for the velocity approximation in strong norm (left) and pressure approximation
in time-averaged norm (right) under the mesh condition & ~ v/k
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