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Abstract
This paper presents three new families of fractional Sobolev spaces and their accom-
panying theory in one dimension. The new construction and theory are based on 
a newly developed notion of weak fractional derivatives, which are natural gener-
alizations of the well-established integer order Sobolev spaces and theory. In par-
ticular, two new families of one-sided fractional Sobolev spaces are introduced 
and analyzed, and they reveal more insights about another family of so-called sym-
metric fractional Sobolev spaces. Many key theorems/properties, such as density/
approximation theorem, extension theorems, one-sided trace theorem, and various 
embedding theorems and Sobolev inequalities in those Sobolev spaces are estab-
lished. Moreover, a few relationships with existing fractional Sobolev spaces are 
also uncovered. The results of this paper lay down a solid theoretical foundation for 
systematically developing a fractional calculus of variations theory and a fractional 
PDE theory as well as their numerical solutions in subsequent works.
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1  Introduction

Fractional Sobolev spaces have been known for many years (cf. [1–3, 17, 23, 29, 
30]); they are the cornerstone and provide an important functional setting for 
studying boundary value problems of partial differential equations (PDEs) [7, 
12, 17, 25, 28]. In recent years, fractional Sobolev spaces, along with fractional 
calculus and fractional order differential equations, has garnered a lot of interest 
and attention both from the PDE community and in the applied mathematics and 
scientific communities. Besides the genuine mathematical interest and curiosity, 
this trend has also been driven by intriguing scientific and engineering applica-
tions which give rise to fractional order differential equation models to better 
describe the (time) memory effect and the (space) nonlocal phenomena (cf. [4, 
5, 11, 13–16, 18, 19, 21, 27] and the references therein). It is the rise of these 
applications that revitalizes the field of fractional calculus and fractional differen-
tial equations and calls for further research in the field, including to develop new 
numerical methods for solving various fractional order problems.

Historically, the existing fractional order Sobolev spaces were primarily intro-
duced as a functional framework to study boundary value problems of integer 
order PDEs in general bounded domains [17] (also see [1, 2, 7, 23]). Although 
they have been successfully used to analyze certain fractional order differential 
equations (cf. [4, 5, 6, 14, 24] and the references therein), some issues and limita-
tions of using them to study more general fractional order differential equations 
have been raised and described (cf. [20, 26]), in particular, when domain-depend-
ent fractional order differential operators are involved.

Motivated by such a challenge/need, in a previous work [9] (also see [8]), the 
authors of this paper introduced a new fractional differential calculus theory, in 
which the notion of weak fractional derivatives was introduced, and its calculus 
rules, such as product and chain rules, and the Fundamental Theorem of Weak 
Fractional Calculus (FTwFC) were established. Moreover, many basic properties, 
such as linearity, semigroup property, inclusivity, and consistency were proved 
and several characterizations of weakly fractional differentiable functions were 
explored; including the all-important characterization by smooth functions. The 
new weak fractional differential calculus theory serves as a unifying concept in 
light of the muddled classical fractional calculus with its numerous (none equiva-
lent) definitions and loss of basic calculus rules. It is our aim to use the newly 
introduced weak fractional derivative notion to develop the required function 
spaces for studying general fractional order differential equations in a systematic 
way similar to that their integer order counterparts have been done.

The primary goal of this paper is to develop some new families of fractional 
Sobolev spaces and their accompanying theory in one dimension. Unlike the 
existing fractional Sobolev space theories, our construction and theory are based 
on the newly developed notion of weak fractional derivatives, that are analogous 
to the integer order Sobolev spaces and theory. In particular, two new families 
of one-sided domain-dependent fractional Sobolev spaces are introduced and 
analyzed, they reveal more insights about another family of so-called symmetric 
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fractional Sobolev spaces. As in the integer order case, the focus of this study is 
to establish key theorems/properties in those new fractional Sobolev spaces, such 
as density/approximation theorem, extension theorems, one-sided trace theorem, 
and various embedding theorems and Sobolev inequalities.

It is expected that the results of this paper lay down a solid theoretical foundation 
for systematically developing a fractional calculus of variations theory and a frac-
tional PDE theory as well as their numerical solutions in subsequent works.

The paper is organized as follows. In Sect. 2, we introduce some preliminaries, 
in particular, we recall two widely used definitions of existing fractional Sobolev 
spaces, and the definitions of weak fractional derivatives and their characterizations. 
In Sect.  3, we first introduce our new families of fractional Sobolev spaces using 
weak fractional derivatives in exactly the same spirit as the integer order Sobolev 
spaces were defined. We then collect a few elementary properties of those spaces. 
Section 4 is devoted to the establishment of a fractional Sobolev space theory that 
is analogous to the theory found in the integer order case, which consists of proving 
a density/approximation theorem, extension theorems, a one-sided trace theorem, 
various embedding theorems and Sobolev inequalities.

Moreover, a few connections between the new fractional Sobolev spaces and 
existing fractional Sobolev spaces are also established. Finally, the paper is con-
cluded by a short summary and a few concluding remarks given in Sect. 5.

2 � Preliminaries

Let ℝ ∶= (−∞,∞) . Throughout this paper, Ω denotes either a finite interval 
(a, b) ⊂ ℝ or the whole real line ℝ . Γ ∶ ℝ → ℝ denotes the standard Gamma func-
tion and ℕ stands for the set of all positive integers. In addition, C will be used to 
denote a generic positive constant which may be different at different locations and 
f (n) denotes the nth order classical derivative of f for n ∈ ℕ . Unless stated otherwise, 
all integrals ∫ b

a
�(x) dx are understood as Lebesgue integrals. Lp(Ω) for 1 ≤ p ≤ ∞ 

denotes the standard Lp space. (⋅, ⋅) denotes the standard L2-inner product. Also 
throughout this paper we shall use the convention û ∶= F[u] to denote the Fourier 
transform of a given function u on ℝ.

Moreover, −D� and +D� denote, respectively, any left and right 𝛼(> 0) order clas-
sical fractional derivatives equivalent to the Riemann–Liouville fractional derivative 
on the space C∞

0
(ℝ) ; this includes Caputo, Fourier, and Grünwald–Letnikov frac-

tional derivatives (cf. [26], also see [8, Section 2]). ±D� denotes either −D� or +D� . 
In the case Ω = (a, b) , for any � ∈ C∞

0
(Ω) , 𝜑̃ is used to denote the zero extension of 

� to ℝ.

2.1 � Two existing definitions of fractional Sobolev spaces

Three major definitions of fractional order Sobolev spaces have been known in the 
literature. Below we will only recall two relevant definitions. For the third definition, 
we refer the reader to [1, 17] for details.
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Definition 2.1  Let Ω ⊆ ℝ , s > 0 , and 1 ≤ p ≤ ∞ . Set m ∶= [s] and � ∶= s − m . 
Define the fractional Sobolev space W̃s,p(Ω) by

which is endowed with the norm

where

When p = 2 , we set H̃s(Ω) ∶= W̃s,2(Ω).

When Ω = ℝ , the following definition based on the Fourier transform is 
popular.

Definition 2.2  Let s > 0 and 1 ≤ p ≤ ∞ . Define the Bessel potential space Ŵs,p(ℝ) 
by

where

When p = 2 , we set Ĥs(ℝ) ∶= Ŵs,2(ℝ).

Remark 2.3 

(a)	 It is well known (cf. [1, 23]) that W̃s,p(Ω) and Ŵs,p(ℝ) are Banach spaces, and 
H̃s(Ω) and Ĥs(ℝ) are Hilbert spaces.

(b)	 It is also well known (cf. [1, 23]) that H̃s(ℝ) and Ĥs(ℝ) are equivalent spaces. In 
particular, 

W̃s,p(Ω) ∶=

{
u ∈ Wm,p(Ω);

|Dmu(x) −D
mu(y)|

|x − y| 1

p
+�

∈ Lp(Ω × Ω)

}
,

‖u‖ �Ws,p(Ω) ∶=

⎧
⎪⎨⎪⎩

�
‖u‖p

Wm,p(Ω)
+ [Dmu]

p

�W𝜎,p(Ω)

� 1

p

if 1 ≤ p < ∞,

‖u‖Wm,∞(Ω) + [Dmu] �W𝜎,∞(Ω) if p = ∞,

[u] �W𝜎,p(Ω) ∶=

⎧
⎪⎨⎪⎩

�∫
Ω
∫
Ω

�u(x)−u(y)�p
�x−y�1+𝜎p

� 1

p

dxdy if 1 ≤ p < ∞,

sup(x,y)∈Ω×Ω
�u(x)−u(y)�
�x−y�𝜎 if p = ∞.

�Ws,p(ℝ) ∶=
{
u ∈ Lp(ℝ) ∶ [u] �Ws,p(ℝ)

< ∞
}
, 1 ≤ p ≤ ∞,

[u] �Ws,p(ℝ)
∶= �

ℝ

(1 + |𝜉|sp)|û(𝜉)|p d𝜉, 1 ≤ p ≤ ∞.

(1)[u]�Hs(ℝ) ≅ ∫
ℝ

|𝜉|2s|û(𝜉)|2 d𝜉.
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 However, W̃s,p(ℝ) and Ŵs,p(ℝ) are not equivalent spaces for p ≠ 2.
(c)	 Although the definitions above have some kind of differentiability built in, nei-

ther of them are analogous to the definitions used in the integer order case which 
are constructed using weak derivatives.

2.2 � Weak fractional derivatives

Like in the integer order case, the idea of [8, 9] to define weak fractional deriva-
tives ±D�u of a function u is to specify its action on any smooth compactly sup-
ported function � ∈ C∞

0
(Ω) , instead of knowing its pointwise values as done in 

the classical fractional derivative definitions.

Definition 2.4  For u ∈ L1(Ω) , 

	 (i)	 a function v ∈ L1
loc
(Ω) is called the left weak fractional derivative of u if 

 we write −D�u ∶= v;
	 (ii)	 a function w ∈ L1

loc
(Ω) is called the right weak fractional derivative of u if 

 and we write +D�u ∶= w.

Remark 2.5 

(a)	 Unlike the integer order case, there are numerous nonequivalent definitions of 
classical fractional derivatives (cf. [8, 9, 26]). Due to this, we exclusively refer-
ence the weak fractional derivatives ±D� , which serves as a unifying fractional 
derivative concept.

(b)	 It is easy to check [8, 9] that the above weak fractional derivatives are well 
defined. It should also be noted that the above definition appears to be exactly the 
same as that of the integer order case, however, there is a foundational difference, 
that is, ±D𝛼𝜑̃ are not compactly supported anymore because of the nonlocal pol-
lution effect of fractional order derivatives, which causes all the major difficulties 
in the weak fractional differential calculus [9] and in this paper.

We conclude this section by quoting the following characterization theorem 
of weak fractional derivatives and the Fundamental Theorem of Weak Fractional 
Calculus (FTwFC). Proofs can be found in [8, Theorem 4.1 and 4.2] and [8, The-
orem 4.5], respectively.

∫Ω

v(x)𝜑(x) dx = (−1)[𝛼] ∫Ω

u(x)+D𝛼𝜑̃(x) dx ∀𝜑 ∈ C∞
0
(Ω),

∫Ω

w(x)𝜑(x) dx = (−1)[𝛼] ∫Ω

u(x)−D𝛼𝜑̃(x) dx ∀𝜑 ∈ C∞
0
(Ω),
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Theorem 2.6  Let Ω = (a, b) or ℝ and u ∈ L1(Ω). Then, v = ±D�u ∈ L1
loc
(Ω) if and 

only if there exists a sequence 
{
uj
}∞

j=1
⊂ C∞(Ω) such that uj → u in L1(Ω) and 

±D�uj → v in L1
loc
(Ω) as j → ∞.

Theorem  2.7  Let Ω = (a, b) ⊂ ℝ and 0 < 𝛼 < 1. Suppose that u ∈ Lp(Ω) and 
±D�u ∈ Lp(Ω) for some 1 ≤ p < ∞. Then, there holds

where ±I� denote the right/left fractional integral operators (cf. [8, 26]),

and

3 � New families of fractional Sobolev spaces

With weak fractional derivatives in hand, it is natural to define fractional Sobolev 
spaces in the same manner as in the integer order case. The goal of this section is 
exactly to introduce new families of Sobolev spaces based on such an approach.

3.1 � Definitions of new fractional Sobolev spaces

We now introduce our fractional Sobolev spaces using weak fractional derivatives 
as follows.

Definition 3.1  For 𝛼 > 0 , let m ∶= [�] . For 1 ≤ p ≤ ∞ , the left/right fractional 
Sobolev spaces ±W�,p(Ω) are defined by

which are endowed, respectively, with the norms

Definition 3.2  For 𝛼 > 0 and 1 ≤ p ≤ ∞ , the symmetric fractional Sobolev space 
is defined by

(2)u = c1−�
±

��
±
+ ±I�±D�u a.e. in Ω,

−I�f (x) ∶=
1

Γ(�) ∫
x

a

f (y)

(x − y)1−�
dy, +I�f (x) ∶=

1

Γ(�) ∫
b

x

f (y)

(y − x)1−�
dy,

��
−
(x) ∶= (x − a)�−1, ��

+
(x) ∶= (b − x)�−1;

c�
−
∶=

−I� f (a)

Γ(�)
, c�

+
∶=

+I� f (b)

Γ(�)
.

(3)±W�,p(Ω) =
{
u ∈ Wm,p(Ω) ∶ ±

D
�u ∈ Lp(Ω)

}
,

(4)‖u‖±W𝛼,p(Ω) ∶=

⎧⎪⎨⎪⎩

�
‖u‖p

Wm,p(Ω)
+ ‖±D𝛼u‖p

Lp(Ω)

� 1

p

if 1 ≤ p < ∞,

‖u‖Wm,∞(Ω) + ‖±D𝛼u‖L∞(Ω) if p = ∞.
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which is endowed with the norm

Remark 3.3  For 𝛼 > 0 , let m ∶= [�] and � ∶= � − m . Using the semigroup property 
of weak fractional derivatives, it is easy to see that

and

3.2 � Elementary properties of new fractional Sobolev spaces

Below we gather several basic properties of the newly defined fractional Sobolev 
spaces. Since their proofs are straightforward, we omit them to save space and refer 
the reader to [8, Section 4] for the details.

Proposition 3.4  Let 𝛼 > 0, 1 ≤ p ≤ ∞, and Ω ⊆ ℝ. Then, ‖⋅‖±W�,p(Ω) are norms on 
±W�,p(Ω), which are in turn Banach spaces with these norms. Consequently, W�,p(Ω) 
is also a Banach space. Moreover, ±W�,2(Ω) are Hilbert spaces with inner products

We write ±H�(Ω) ∶= ±W�,2(Ω) and H�(Ω) ∶= W�,2(Ω).

Proposition 3.5  ±W�,p(Ω) is reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞. 
Consequently, the same assertions hold for W�,p(Ω).

4 � Advanced properties of new fractional Sobolev spaces

4.1 � Approximation and characterization

In the integer order case, an alternative way to define Sobolev spaces is to use the 
completion spaces of smooth functions under chosen Sobolev norms. The goal of this 

(5)W�,p(Ω) ∶= −W�,p(Ω) ∩ +W�,p(Ω),

(6)‖u‖W𝛼,p(Ω) ∶=

⎧
⎪⎨⎪⎩

�
‖u‖p−W𝛼,p(Ω)

+ ‖u‖p+W𝛼,p(Ω)

� 1

p

if 1 ≤ p < ∞,

‖u‖−W𝛼,∞(Ω) + ‖u‖+W𝛼,∞(Ω) if p = ∞.

(7)±W�,p(Ω) =
{
u ∈ Wm,p(Ω) ∶ D

m(±D�u) ∈ Lp(Ω)
}

(8)‖u‖±W𝛼,p(Ω) ∶=

⎧
⎪⎨⎪⎩

�
‖u‖p

Wm,p(Ω)
+ ‖Dm(±D𝜎u)‖p

Lp(Ω)

� 1

p

if 1 ≤ p < ∞,

‖u‖Wm,∞(Ω) + ‖Dm(±D𝜎u)‖L∞(Ω) if p = ∞.

⟨u, v⟩± ∶= (u, v) +
�
±
D

�u, ±D�v
�
= ∫Ω

uv dx + ∫Ω

±
D

�u±D�v dx.
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subsection is to establish an analogous result for fractional Sobolev spaces introduced 
in Sect. 3.1. To this end, we first need to introduce spaces that we refer to as one-side 
supported spaces.

For (a, b) ⊆ ℝ , we set

Here, we use the notation −C∞
0
((a, b)) to represent functions whose support is 

not actually a compact subset of (a,  b). In particular, if u ∈ −C∞
0
((a, b)) , then 

supp (u) ⊆ [a, c] , which is not a compact subset of (a, b). The use of −C∞
0

 and +C∞
0

 
(particularly the direction indication) are chosen so that these spaces will pair with 
the appropriate direction-dependent spaces −W�,p and +W�,p , respectively. The need 
for these and the aforementioned space coupling will become evident in Sect. 4.3.

We now introduce completion spaces using the norms defined in Sect. 3.1.

Definition 4.1  Let 𝛼 > 0 and 1 ≤ p ≤ ∞ . We define 

	 (i)	 ±W�,p(Ω) to be the closure in ±W�,p(Ω) of C∞(Ω) ∩ ±W�,p(Ω),
	 (ii)	 ±W

�,p

0
(Ω) to be the closure in ±W�,p(Ω) of ±C∞

0
(Ω) ∩ ±W�,p(Ω),

	 (iii)	 W
�,p
(Ω) to be the closure in W�,p(Ω) of C∞(Ω) ∩W�,p(Ω),

	 (iv)	 W
�,p

0
(Ω) to be the closure in W�,p(Ω) of C∞

0
(Ω) ∩W�,p(Ω).

4.1.1 � The finite‑domain case: Ä = (a, b)

The goal of this subsection is to establish the equivalence ±W�,p(Ω) = ±W�,p(Ω) . This 
is analogous to Meyers and Serrin’s celebrated “ H = W ” result (cf. [1, 7, 22]). It turns 
out that the proof is more complicated due to more complicated product rule for frac-
tional derivatives.

Lemma 4.2  Let 𝛼 > 0 and 1 ≤ p < ∞. Suppose � ∈ C∞
0
(Ω) and u ∈ ±W�,p(Ω). 

Then, u� ∈ ±W�,p(Ω).

Proof  We only give a proof for 0 < 𝛼 < 1 because the case 𝛼 > 1 follows immedi-
ately by setting m ∶= [�] and � ∶= � − m and using the Meyers and Serrin’s cel-
ebrated result.

Since � ∈ C∞
0
(Ω) , there exists a compact set K ∶= supp(𝜓) ⊂ Ω such 

that � ∈ C∞(K) . Then, there exists 0 ≤ M < ∞ so that M0 = maxΩ |�| and 
‖𝜓‖L∞(Ω) = M0 < ∞. Since u ∈ Lp(Ω) , then trivially, we have u� ∈ Lp(Ω).

It remains to show that ±D�(u�) ∈ Lp(Ω) . To that end, by [8, Theorem 4.3] for 
arbitrarily large m ∈ ℕ , we get

−C∞
0
((a, b)) ∶= {𝜑 ∈ C∞((a, b)) |∃ c ∈ (a, b) such that 𝜑(x) ≡ 0 ∀x > c},

+C∞
0
((a, b)) ∶= {𝜑 ∈ C∞((a, b)) |∃ c ∈ (a, b) such that 𝜑(x) ≡ 0 ∀x < c}.
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where M1 ∶= sup ||Dk�(x)|| taken over 1 ≤ k ≤ m and x ∈ Ω . Clearly, M1 < ∞ since 
� ∈ C∞

0
(Ω) . Since u, ±D�u ∈ Lp(Ω) and

the first two terms on the right-hand side of the above inequality are finite.
It remains to show that the remainder term is also finite in Lp(Ω) . To be precise, 

we consider the case for −R�
m
(u,�) . By its definition, we get

where M2 ∶= supx∈Ω
||� (m+1)(x)|| . Since Γ(−�) ≠ 0 , the coefficient is finite. The same 

estimate holds for +R�
m
(u,�) as well. Thus,

This proves that ±D�(u�) ∈ Lp(Ω) , consequently, u� ∈ ±W�,p(Ω) . 	�  ◻

We are now ready to state and prove the following fractional counterpart of Mey-
ers and Serrin’s “ H = W ” result.

Theorem 4.3  Let 𝛼 > 0 and 1 ≤ p < ∞. Then, ±W�,p(Ω) = ±W�,p(Ω).

Proof  Since ±W�,p(Ω) are Banach spaces, by the definition, we have 
±W𝛼,p(Ω) ⊆ ±W𝛼,p(Ω) . To show the reverse inclusion ±W𝛼,p(Ω) ⊇ ±W𝛼,p(Ω) , it suf-
fices to show that for any 𝜀 > 0 and u ∈ ±W�,p(Ω) , there exists v ∈ C∞(Ω) such that 

��±D�(u�)��Lp(Ω)
≤ ��±D�u ⋅ ���Lp(Ω) +

�����

m�
k=1

Ck
±Ik−�uDk� + ±R�

m
(u,�)

�����Lp(Ω)
≤ M0

��±D�u��Lp(Ω) +M1

m�
k=1

��Ck
�����

±Ik−�u
���Lp(Ω) + ��±R�

m
(u,�)��Lp(Ω)

≤ M0
��±D�u��Lp(Ω) +M1

m�
k=1

��Ck
�� ⋅ �Ω�k−�‖u‖Lp(Ω)
(k − �)Γ(k − �)

+ ��±R�
m
(u,�)��Lp(Ω),

||Ck
|| ⋅ |Ω|k−𝛼

(k − 𝛼)Γ(k − 𝛼)
=

Γ(1 + 𝛼)|Ω|k−𝛼
(k − 𝛼)Γ(k + 1)|Γ(1 − k + 𝛼)| < ∞,

||−R�
m
(u,�)(x)|| =

|||||
(−1)m+1

m!Γ(−�) �
x

a

u(y)

(x − y)1+�
dy�

x

y

� (m+1)(z)(x − z)m dz
|||||

≤ M2

m!|Γ(−�)| �
x

a �
x

y

|u(y)|
(x − y)1+�

(x − z)m dzdy

=
M2

(m + 1)!|Γ(−�)|
−Im−�+1|u|(x)

��±R𝛼
m
(u,𝜓)��Lp(Ω) ≤

����
M3

(m + 1)!�Γ(−𝛼)�
±Im−𝛼+1�u�����Lp(Ω)

≤ M2�Ω�m−𝛼+1‖u‖Lp(Ω)
(m + 1)!(m − 𝛼 + 1)�Γ(−𝛼)�Γ(m − 𝛼 + 1)

< ∞.



	 X. Feng, M. Sutton    46   Page 10 of 40

u − v ∈ ±W�,p(Ω) and ‖u − v‖±W𝛼,p(Ω) < 𝜀 . That is, C∞(Ω) is dense in ±W�,p(Ω) . This 
will be done in the same fashion as in the integer order case given in [22] (also see 
[1, 7]). Below we shall only give a proof for the case 0 < 𝛼 < 1 because the case 
𝛼 > 1 follows similarly.

For k = 1, 2… let

For convenience, let Ω−1 = Ω0 = � . Then,

is an open cover of Ω . Let {�k}
∞
k=1

 be a C∞-partition of unity of Ω subordinate to Θ 
so that supp

(
𝜓k

)
⊂ Ω�

k
 . Then, �k ∈ C∞

0

(
Ω�

k

)
.

If 0 < 𝜀 < 1

(k+1)(k+2)
 , let �� be a C∞ mollifier satisfying

Evidently, �� ∗
(
�ku

)
 has support in Ωk+2⧵Ωk−2 ⊂⊂ Ω . Since �ku ∈ ±W�,p(Ω) we 

can choose 0 < 𝜀k <
1

(k+1)(k+2)
 such that

Let v =
∑∞

k=1
��k ∗ (�ku) . On any U ⊂⊂ Ω only finitely many terms in the sum can 

fail to vanish. Thus, v ∈ C∞(Ω) . For x ∈ Ωk , we have

Therefore,

Setting k → ∞ and applying the Monotone Convergence theorem yields the desired 
result ‖u − v‖±W𝛼,p(Ω) < 𝜀 . The proof is complete. 	�  ◻

One crucial difference between integer order Sobolev spaces Wk,p(Ω) and frac-
tional order Sobolev spaces ±W�,p(Ω) (for 0 < 𝛼 < 1 ) is that piecewise constant 
functions are not dense in the former, but are dense in the latter (see the next the-
orem below). Such a difference helps characterize a major difference between the 
fractional order weak derivatives and integer order weak derivatives.

Ωk =
{
x ∈ Ω ∶ |x| < k and dist(x, 𝜕Ω) >

1

k

}
.

Θ =
{
Ω�

k
∶ Ω�

k
= Ωk+1 ⧵Ωk−1

}

supp
(
𝜂𝜀
)
⊂

{
x ∶ |x| < 1

(k + 1)(k + 2)

}
.

‖‖‖𝜂𝜀k ∗ (𝜓ku) − 𝜓ku
‖‖‖±W𝛼,p(Ω)

<
𝜀

2k
.

u(x) =

k+2∑
j=1

(�ju)(x), v(x) =

k+2∑
j=1

(
��j ∗ (�ju)

)
(x).

‖u − v‖±W𝛼,p(Ωk) =
����
k+2�
j=1

𝜂𝜀j ∗ (𝜓ju) − 𝜓ju
����±W𝛼,p(Ωk)

≤
k+2�
j=1

���𝜂𝜀j ∗ (𝜓ju) − 𝜓ju
���±W𝛼,p(Ω)

< 𝜀 <
1

(k + 1)(k + 2)
.
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Theorem 4.4  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 ≤ p < ∞ so that 𝛼p < 1. Then, piece-
wise constant functions are dense in ±W�,p(Ω).

Proof  Let 𝜀 > 0 and u ∈ ±W�,p((a, b)) for 0 < 𝛼 < 1 . The case when 𝛼 > 1 follows 
as a direct consequence of the definition of the Riemann–Liouville derivative and 
the calculations below. Since C∞((a, b)) is dense in ±W�,p((a, b)) , then there exists 
v ∈ C∞((a, b)) such that ‖u − v‖±W𝛼,p((a,b)) <

𝜀

2
 . Moreover, choose a piecewise constant 

function w such that supx∈(a,b) |v(x) − w(x)| < 𝜀

2
max{|b − a|1−𝛼p, |b − a|} =∶ M . 

Then,

Similarly, on noting that ±D�w exists and belongs to Lp((a, b)) while incorporating 
the assumption on v, we have

and the last term can be bounded as follows:

This proves the assertion. 	�  ◻

4.1.2 � Infinite domain case: Ä = ℝ

The approximation of functions in the fractional Sobolev functions on ℝ is much 
easier than the case when Ω = (a, b) . In this case, all of the legwork has already 
been done in the characterization theorem for weak derivatives (see Theorem 2.6).

Theorem 4.5  Let 𝛼 > 0 and 1 ≤ p < ∞. Then, C∞
0
(ℝ) is dense in ±W�,p(ℝ). Hence, 

±W�,p(ℝ) = ±W
�,p

0
(ℝ) = ±W�,p(ℝ).

Proof  We only give a proof for the case 0 < 𝛼 < 1 since the case 𝛼 > 1 follows simi-
larly. Let u ∈ ±W�,p(ℝ) . By the same argument used to prove Theorem 2.6 (see [9, 
Theorem  3.9]), it follows that there exists a sequence 

{
uj
}∞

j=1
⊂ C∞

0
(ℝ) such that 

‖u − w‖p
Lp((a,b))

≤ ‖u − v‖p
Lp((a,b))

+ ‖v − w‖p
Lp((a,b))

<
𝜀

2
+ �

b

a

�v − w�p dx < 𝜀

2
+
�
𝜀

M

�p�b − a� ≤ 𝜀.

‖‖±D𝛼u − ±
D

𝛼w‖‖pLp((a,b))
≤ ‖‖±D𝛼u − ±

D
𝛼v‖‖pLp((a,b)) + ‖‖±D𝛼v − ±

D
𝛼w‖‖pLp((a,b))

<
𝜀

2
+ ‖‖±D𝛼v − ±

D
𝛼w‖‖pLp((a,b)),

‖‖±D𝛼v − ±D𝛼w‖‖pLp((a,b)) = ∫
b

a

||||
d

dx ∫
x

a

v(y) − w(y)

(x − y)𝛼
dy
||||
p

dx

<
(

𝜀

2M

)p

∫
b

a

dx

(x − a)𝛼p
<

𝜀

2
.
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uj → u in Lp(ℝ) and ±D�uj →
±D�u in Lp(ℝ) because ±D�u ∈ Lp(ℝ) . The proof is 

complete. 	�  ◻

4.2 � Extension operators

In this subsection, we address the issue of extending Sobolev functions from a finite 
domain Ω = (a, b) to the real line ℝ . As we shall see below, constructing such an exten-
sion operator in ±W�,p(Ω) requires a different process and added conditions relative to 
the integer order case. Recall that spaces ±W�,p(Ω) differ greatly from integer Sobolev 
spaces due to the following properties: (i) ±W�,p is direction-dependent and domain-
dependent; (ii) fractionally differentiable functions inherit singular kernel functions; 
(iii) continuity is not a necessary condition for fractional differentiability; (iv) compact 
support is a desirable property to dampen the singular effect of the kernel functions 
and nonlocality.

Moreover, we also note that due to the nonlocal effect of fractional derivatives, zero 
function values may result in nonzero contribution to fractional derivatives, controlling 
the nonlocal contributions is also the key in the subsequent analysis.

4.2.1 � Extensions of compactly supported functions

We first consider the easy case of compactly supported functions. In this case, we show 
that the trivial extension will do the job.

Lemma 4.6  Let Ω = (a, b), 𝛼 > 0, and 1 ≤ p < ∞. If u ∈ ±W�,p(Ω) and 
K ∶= supp(u) ⊂⊂ Ω, then the trivial extension ũ belongs to ±W�,p(ℝ) and there 
exists C = C(𝛼, p,K) > 0 such that

Proof  Let {uj}∞j=1 ⊂ C∞
0
(Ω) be an approximating sequence of u and define

Clearly, ‖ũj‖Lp(ℝ) = ‖uj‖Lp(Ω) < ∞ . Let � ∈ C∞
0
(ℝ) and by the integration by parts 

formula for classical fractional derivatives (cf. [8, Theorem 2.5]), we get

For clarity, let supp(uj) ⊂ K ⊆ (c, d) ⊂⊂ (a, b) and we look at the left derivative.

‖ũ‖±W𝛼,p(ℝ) ≤ C‖u‖±W𝛼,p(Ω).

ũj(x) ∶=

{
uj(x) if x ∈ Ω,

0 if x ∈ ℝ⧵Ω.

∫
ℝ

ũj
∓D𝛼𝜑 = ∫

ℝ

±D𝛼 ũj𝜑.
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Then, there exists C = C(�, p,K) such that

Now, we need to show that the appropriate limits are realized. By construction, ���uj
���±W�,p(Ω)

→ ‖u‖±W�,p(Ω). Therefore, limj→∞
‖‖‖ũj

‖‖‖±W𝛼,p(ℝ)
< ∞ . Let 𝜀 > 0 and choose 

sufficiently large m and n so that

Hence, 
{
ũj
}∞

j=1
 is a Cauchy sequence in ±W�,p(ℝ) . Since ±W�,p(ℝ) is complete, there 

exists v ∈ ±W�,p(ℝ) such that uj → v in ±W�,p(ℝ) . We claim finally that v = ũ almost 
everywhere. For sufficiently large j, we have that

Therefore, v = ũ almost everywhere in ℝ . This concludes that the trivial extension ũ 
satisfies the desired properties on compactly supported functions. 	�  ◻

Corollary 4.7  The same result holds for any u ∈ W�,p(Ω) with the same 
construction.

4.2.2 � Interior extensions

For any function u ∈ ±W�,p(Ω) and Ω� ⊂⊂ Ω , we first rearrange u in Ω⧵Ω� so that 
the rearranged function u∗ has compact support in Ω and coincide with u in Ω� . With 
the help of such a rearrangement and the extension result of the previous subsection 
we then can extend any function u in ±W�,p(Ω) to a function in ±W�,p(ℝ) with some 
preferred properties. We refer to such an extension as an interior extension of u.

Lemma 4.8  Let Ω = (a, b) and 𝛼 > 0. For each Ω� ⊂⊂ Ω, there exists a compact 
set K ⊂ Ω and a constant C = C(𝛼,K) > 0, such that for every u ∈ ±W�,p(Ω), there 
exists u∗ ∈ ±W�,p(Ω) satisfying

	 (i)	 u∗ = u a.e. in Ω�,

	 (ii)	 supp(u∗) ⊆ K,

���
−
D

𝛼 ũj
���
p

Lp(ℝ)
=
���
−D𝛼uj

���
p

Lp((a,b))
+
���L(uj)

���
p

Lp((b,∞))

=
���
−
D

𝛼uj
���
p

Lp((a,b))
+ �

∞

b

�����
d

c

uj(y)

(x − y)1+𝛼
dy
����
p

dx

≤ ���
−
D

𝛼uj
���
p

Lp((a,b))
+ ‖uj‖pLp((a,b))

(b − a)
p

q

(d − b)p(1+𝛼)−1
.

‖‖‖ũj
‖‖‖±W𝛼,p(ℝ)

≤ C
‖‖‖uj

‖‖‖±W𝛼,p(Ω)
.

‖‖ũm − ũn
‖‖±W𝛼,p(ℝ)

≤ C‖‖un − um
‖‖±W𝛼,p(Ω)

< 𝜀.

‖ũ − v‖Lp(ℝ) ≤ ���ũ − ũj
���Lp(ℝ) +

���ũj − v
���Lp(ℝ)

=
���u − uj

���Lp(Ω) +
���ũj − v

���Lp(ℝ) < 𝜀.
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	 (iii)	 ‖u∗‖±W�,p(Ω) ≤ C‖u‖±W�,p(Ω).

Proof  Again, we only give a proof for the case 0 < 𝛼 < 1 because the case 𝛼 > 1 
can be proved similarly. Choose Ω� ⊂⊂ Ω . Let {Bi}

N
i=1

 be a cover of Ω� with a sub-
ordinate partition of unity {𝜓i}

N
i=1

⊂ C∞(Ω) in the sense that supp(𝜓i) ⊂ Bi for 
i = 1, 2,… ,N . Define u∗ ∶ Ω → ℝ by u∗ ∶= u� with � ∶=

∑N

i=1
�i . Note that 

u∗ = u almost everywhere on Ω� and supp(u∗) ⊆ K ∶= ∪Bi . We need to show that 
u∗ ∈ ±W�,p(Ω) . Of course,

Next, by the product rule for weak fractional derivatives [8, Theorem 4.3], we get

It follows by direct calculations that

Hence, u∗ ∈ ±W�,p(Ω) and there exists C > 0

such that assertion (iii) holds. The proof is complete. 	�  ◻

Now, we are ready to state the following interior extension theorem.

Theorem 4.9  Let Ω = (a, b) and 𝛼 > 0. For each Ω� ⊂⊂ Ω, there exist a compact 
set K ⊂ Ω and a constant C = C(𝛼, p,K) > 0 so that for every u ∈ ±W�,p(Ω), there 
exists a mapping E ∶ ±W�,p(Ω) → ±W�,p(ℝ) so that

	 (i)	 Eu = u a.e. in Ω�,

	 (ii)	 supp(Eu) ⊆ K,

	 (iii)	 ‖Eu‖±W�,p(ℝ) ≤ C‖u‖±W�,p(Ω).

We call Eu an (interior) extension of u to ℝ.
Proof  For u ∈ ±W�,p(Ω) , let u∗ ∈ ±W�,p(Ω) denote the rearrangement of u as defined 
in Lemma 4.8, let K ⊂⊂ Ω and C(�,K) be the same as well. Since u∗ has a compact 
resolvent in Ω , we can invoke Lemma  4.6 to conclude that Eu ∶= ũ∗ satisfies the 
desired properties (i)–(iii) with C = C(�, p,K)C(�,K) . The proof is complete. 	�  ◻

Remark 4.10  We emphasize that the extension operator E defined above depends on 
the choice of subdomain Ω� , on the other hand, it does not depend on the left or right 
direction, consequently, E also provides a valid interior extension operator from the 
symmetric space W�,p(Ω) to the symmetric space W�,p(ℝ).

‖u∗‖Lp(Ω) = ��u���Lp(Ω) = ��u���Lp(K) ≤ ‖u‖Lp(K) ≤ ‖u‖Lp(Ω).

±
D

�u∗ = ±
D

�u ⋅ � +

m∑
k=1

C(k, �)±Ik−�uDk� + ±R�
m
(u,�).

‖±D�u∗‖Lp(Ω) ≤ C‖u‖±W�,p(Ω).
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4.2.3 � Exterior extensions

In this subsection, we construct a more traditional (exterior) extension so that the 
extended function coincides with the original function in the entire domain Ω where 
the latter is defined. As we alluded to earlier, if we do not want to pay in part of the 
domain, we need to pay with a restriction on the function to be extended.

Lemma 4.11  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 ≤ p < ∞. Assume that 𝛼p < 1 and 
� ∈ ℝ so that 𝜇 > p(1 − 𝛼p)−1 (hence, 𝜇 > p ). Then, for every bounded domain 
Ω� ⊃⊃ Ω, there exists a constant C = C(𝛼, p,𝜇,Ω�) > 0 such that for every 
u ∈ ±W�,p(Ω) ∩ L�(Ω), there exists u± ∈ ±W�,p(Ω�) such that

	 (i)	 u± = u a.e. in Ω,
	 (ii)	 supp(u±) ⊂⊂ Ω�,

	 (iii)	 ‖u±‖±W�,p(Ω�) ≤ C
�‖u‖±W�,p(Ω) + ‖u‖L�(Ω)

�
.

Proof  Let u ∈ ±W�,p(Ω) ∩ L�(Ω) . For ease of presentation and without loss of the 
generality, we only consider the left weak fractional derivative with Ω = (0, 1).

Let Ω� = (−1, 2) , {Bi}
N
i=1

⊂ Ω� be a cover of Ω and {�i}
N
i=1

 be a subordinate parti-
tion of unity so that supp(𝜑i) ⊂ Bi for i = 1, 2,… ,N.

Define u− = u
−
� in Ω� , where

Notice that u− is a periodic extension of u to the right on interval (1, 2).
Trivially, ‖u−‖Lp(Ω�) ≤ 2‖u‖Lp(Ω) . It remains to prove that u− is weakly differentia-

ble in Lp(Ω�) . To this end, let {uj}∞j=1 ⊂ C∞(Ω) such that uj → u in −W�,p(Ω) ∩ L�(Ω) 
as j → ∞ . Let u−

j
∶= u

−

j
� and u−

j
 is the extension of uj to Ω� constructed in the same 

way as u− is done above.
Since uj → u in L�(Ω) , by the construction, we have u−

j
→ u

− and u−
j
→ u− in 

L�(Ω�) . Hence, {u−
j
}∞
j=1

 is bounded in L�(Ω�) . {−D�uj}
∞
j=1

 is bounded in Lp(Ω) 
because −D�uj →

−D�u in Lp(Ω) . Let M > 0 be such a bound for both sequences.
Now, using the fact that −D�u−

j
= −D�u−

j
 and the definition of u−

j
 , we have

� ∶=

N�
i=1

�i, u
−
(x) ∶=

⎧⎪⎨⎪⎩

0 if x ∈ (−1, 0),

u if x ∈ (0, 1),

u(x − 1) if x ∈ (1, 2).
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Next, we estimate the last two terms above separately. To estimate the second to the 
last (middle) term, let � be the Hölder conjugate of � , then we have

For this term to be finite, p𝜈−1 − p(1 + 𝛼) > −1 must holds, which implies that 
𝜇 > p(1 − 𝛼p)−1 , which is assumed in the statement of the theorem.

Lastly, to bound the final term, using the product rule, we get

It follows for given 𝜀 > 0 and sufficiently large m, n,

Therefore, there exists v ∈ Lp(Ω�) so that ±D�u±
j
→ v in Lp(Ω�) . It is easy to see then 

that v = ±D�u± using the definition of the weak derivative. Hence ±D�u± ∈ Lp(Ω�) . 
This completes the proof. 	�  ◻

‖−D�u−
j
‖p
Lp(Ω�)

= ‖−D�u−
j
‖p
Lp(Ω�)

= �
2

−1

�����
d

dx �
x

−1

u−
j
(y)

(x − y)�

�����

p

dx

≤ �
1

0

�����
d

dx �
x

0

uj(y)

(x − y)�
dy
�����

p

dx + �
2

1

������
1

0

uj(y)

(x − y)1+�
dy
�����

p

dx

+ �
2

1

�����
d

dx �
x

1

uj�

(x − y)�
dy
�����

p

dx

≤ ‖−D�uj‖pLp((0,1)) + �
2

1

������
1

0

uj(y)

(x − y)1+�
dy
�����

p

dx

+ �
2

1

�����
d

dx �
x

1

uj�

(x − y)�
dy
�����

p

dx.

�
2

1

�����
1

0

uj(y)

(x − y)1+�
dy
����
p

dx

≤ ‖uj‖pL�((0,1)) �
2

1

�
�

1

0

dy

(x − y)�(1+�)

� p

�

dx

≤ Mp‖uj‖pL�((0,1)) �
2

1

x
p

�
−p(1+�) + (x − 1)

p

�
−p(1+�) dx.

�
2

1

�����
d

dx �
x

1

uj(y)�(y)

(x − y)�
dy
�����

p

dx

≤ ‖−D�uj‖pLp((0,1)) + ���
m�
k=1

Ck
−Ik−�uj D

k�
���
p

Lp((1,2))

+ ‖−R�
m
(uj,�)‖p

Lp((1,2))

≤ C
�
‖−D�uj‖pLp((0,1)) + ‖uj‖pLp((0,1))

�
.

(9)‖±D𝛼u±
m
− ±

D
𝛼u±

n
‖p
Lp(Ω�)

≤ C
�
‖um − un‖p±W𝛼,p(Ω)

+ ‖um − un‖pL𝜇(Ω)
�
< 𝜀.
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Remark 4.12 

(a)	 We note that there is no redundancy in assumption that
	   u ∈ ±W�,p(Ω) ∩ L�(Ω) for 𝜇 > p(1 − 𝛼p)−1 because it will be proved in 

Sect. 4.3 that ±W�,p(Ω) is not embedded into L�(Ω) in general.
(b)	 It can be proved that the conditions 𝛼p < 1 and u ∈ L�(Ω) for some p < 𝜇 ≤ ∞ 

are necessary (given the current calculations).

For the kernel to remain bounded, we must impose the condition 
−1 < p𝜈−1 − p(1 + 𝛼) < 0 which implies that (1 − 𝛼p) > p𝜇−1.

Thus, it follows from (1 − 𝛼p) > 0 that 𝛼p < 1.
This shows that 𝛼p < 1 is a necessary condition for the integrability of the kernel 

function using an estimate as shown above. Moreover, if � = p , then � = p(p − 1)−1 
and the inequality −1 < p𝜈−1 − p(1 + 𝛼) implies that 𝛼p < 0 , which is a contradic-
tion. Hence,

we must take 𝜇 > p . In particular, � = ∞ is allowed though not necessary. We 
need only assume that u ∈ L�(Ω) with the condition 𝜇 > p∕(1 − 𝛼p) . 

(c)	 The exact dependencies of C on the parameters � , p, � , and Ω� are not made 
clear by the above proof. However, one can note that for the left direction, 
C ≤ C0 +max(dist(Ω,Ω�))� where C0 is a constant depending on at most � , p, 
and � and 𝜎 > 0.

(d)	 The same result can be proven for u ∈ W�,p(Ω) ∩ L�(Ω) . In this case, u ∶= u
± is 

taken to be the periodic extension over all of Ω�.

Theorem  4.13  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 ≤ p < ∞. Assume that 𝛼p < 1 
and � ∈ ℝ so that 𝜇 > p(1 − 𝛼p)−1 (hence, 𝜇 > p ). Then, for every bounded 
domain Ω� ⊃⊃ Ω, there exists mappings E± ∶ ±W�,p(Ω) ∩ L�(Ω) → ±W�,p(ℝ) and 
C = C(𝛼, p,Ω�) > 0 such that for any u ∈ ±W�,p(Ω) ∩ L�(Ω),

	 (i)	 E±u = u a.e. in Ω,
	 (ii)	 supp(E±u) ⊂⊂ Ω�,

	 (iii)	 ‖E±u‖±W�,p(ℝ) ≤ C
�‖u‖±W�,p(Ω) + ‖u‖L�(Ω)

�
.

Proof  For any u ∈ ±W�,p(Ω) ∩ L�(Ω) , let u± ∈ ±W�,p(Ω�) be the function defined 
in Lemma  4.11 and set E±u = ũ± , the trivial extension of u± . It follows from 
Lemma 4.6 that E± satisfies the desired properties. The proof is complete. 	�  ◻

Corollary 4.14  The conclusion of Theorem  4.13 also holds for functions in 
W�,p(Ω) ∩ L�(Ω).

4.3 � One‑side boundary traces and compact embedding

Similar to the integer order case, since functions in Sobolev spaces ±W�,p((a, b)) are 
integrable functions, a natural question is under what condition(s) those functions 



	 X. Feng, M. Sutton    46   Page 18 of 40

can be assigned pointwise values, especially, at two boundary points x = a, b . Such 
a question arises naturally when studying initial and initial-boundary value prob-
lems for fractional order differential equations. It turns out that the situation is more 
delicate in the fractional order case because the existence of the kernel functions 
creates a hick-up in this pursuit. We shall establish a one-side embedding result for 
each of spaces ±W�,p((a, b)) , which then allows us to assign one-side traces for those 
functions. First, we establish the following classical characterization of Sobolev 
functions.

Proposition 4.15  Let (a, b) ⊂ ℝ, 0 < 𝛼 < 1, 1 ≤ p ≤ ∞ so that 𝛼p > 1.

	 (i)	 If u ∈ −W�,p((a, b)), then for any c ∈ (a, b), there exists ū ∈ C([c, b]) so that 
u = ū almost everywhere in [c, b].

	 (ii)	 If u ∈ +W�,p((a, b)), then for any c ∈ (a, b), there exists ū ∈ C([a, c]) so that 
u = ū almost everywhere in [a, c].

	 (iii)	 If u ∈ W�,p((a, b)), then there exists ū ∈ C([a, b]) so that u = ū almost every-
where in [a, b].

Proof  We only give a proof for (i) because (ii) follows similarly and (iii) is proved 
by combining (i) and (ii). Let u ∈ −W�,p((a, b)) and set u∗ = −I�−D�u . Then, for any 
� ∈ C∞

0
((a, b)) , it follows by the Lp mapping properties of fractional integrals, clas-

sical fractional integration by parts, and the definition of weak fractional derivatives 
(cf. [8, Theorem 2.5 and 2.6]) that

Consequently,

Thus, −I1−�u − −I1−�u∗ = C a.e. in (a, b). It follows from the Fundamental Theorem 
of Classical Fractional Calculus (FTcFC, cf. [8, Lemma 3.1]) that u = u∗ + −D1−�C 
almost everywhere. Choose ū = u∗ + −D1−𝛼C , we have that ū ∈ C([c, b]) for every 
c ∈ (a, b) and u = ū almost everywhere. 	�  ◻

Remark 4.16  If a function u belongs to ±W�,p , then any function v = u almost eve-
rywhere must also belong to ±W�,p . Therefore, we do not differentiate between any 
two functions that may only differ from one another on a measure zero set. Proposi-
tion 4.15 asserts that every function u ∈ −W�,p((a, b)) admits a continuous represent-
ative on [c, b]. When it is helpful, (i.e., giving meaning to u(x) for some x ∈ [c, b] ) 
we replace u with its continuous representative ū . To avoid confusion and eliminate 
unnecessary notation, we will still use u to denote the continuous representative.

∫
b

a

u∗+D�� dx = ∫
b

a

�−D�u∗ dx = ∫
b

a

�−D�−I�−D�u dx

= ∫
b

a

�−
D

�u dx = ∫
b

a

u+D�� dx.

0 = ∫
b

a

(u − u∗)+D�� dx = ∫
b

a

−I1−�(u − u∗)�� dx.
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Theorem 4.17  Let (a, b) ⊂ ℝ, 0 < 𝛼 < 1 and 1 < p < ∞. Suppose that 𝛼p > 1.

	 (i)	 I f  u ∈ −W�,p((a, b)), t h e n  fo r  a ny  c ∈ (a, b), t h e  i n j e c t i o n 
−W�,p((a, b)) ↪ C

�− 1

p ([c, b]) is compact.
	 (ii)	 I f  u ∈ +W�,p((a, b)), t h e n  fo r  a ny  c ∈ (a, b), t h e  i n j e c t i o n 

+W�,p((a, b)) ↪ C
�− 1

p ([a, c]) is compact.
	 (iii)	 If u ∈ W�,p((a, b)), then the injection W�,p((a, b)) ↪ C

�− 1

p ([a, b]) is compact.

Proof  We only give a proof for (i) because the other two cases follow similarly.
Let B−

1
 be the unit ball in −W�,p((a, b)) and take u ∈ B−

1
 . Let c ∈ (a, b) . For any 

two distinct points x, y ∈ [c, b] (assume x > y ), by the FTwFC (cf. Theorem 2.7), we 
get

Below we estimate each of the three terms on the right-hand side. Upon noticing 
that �c1−�

−
� ≤ CΩ,�,p‖u‖−W�,p(Ω),

Substituting (11)–(13) into (10) yields

(10)

||u(x) − u(y)|| =
||||c

1−�
−

[(x − a)�−1 − (y − a)�−1] + C� �
x

y

−D�u(z)

(x − z)1−�
dz

+ C� �
y

a

−D�u(z)

(x − z)1−�
−

−D�u(z)

(y − z)1−�
dz
||||

≤ |||c
1−�
−

[(x − a)�−1 − (y − a)�−1]
||| + C�

|||||�
x

y

−D�u(z)

(x − z)1−�
dz
|||||

+ C�

|||||�
y

a

−D�u(z)[(y − z)1−� − (x − z)1−�]

[(y − z)(x − z)]1−�
dz
|||||
.

(11)
���c

1−�
−

[(x − a)�−1 − (y − a)�−1]
��� ≤ CΩ,�,p‖u‖−W�,p(Ω)�� − a��−1�x − y�
≤ CΩ,�,p‖u‖−W�,p(Ω)�x − y��− 1

p ,

(12)
C�

������
x

y

−D�u(z)

(x − z)1−�
dz
�����
≤ C�‖−D�u‖Lp((a,b))

�����
x

y

(x − z)−q(1−�) dz
����
1

q

≤ C�,p‖−D�u‖Lp((a,b))�x − y��− 1

p ,

(13)
C� �

y

a

�−D�u(z)���(y − z)1−� − (x − z)1−���
�(y − z)(x − z)�1−� dz

≤ C�,p‖−D�u‖Lp((a,b))�x − y��− 1

p .

(14)|u(x) − u(y)| ≤ C|x − y|�− 1

p ∀x, y ∈ [c, b],
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where C is a positive constant independent of x and y. Because 𝛼 −
1

p
> 0 , then B−

1
 is 

uniformly equicontinuous in C([c, b]). It follows from Arzelà–Ascoli theorem that 
B−
1
 has compact closure in C�− 1

p ([c, b]) . The proof is complete. 	�  ◻

Remark 4.18 

(a)	 We note that unlike the integer order case, we have proved the above embedding 
results directly rather than relying on the infinite domain results and extension 
theorem.

(b)	 From the above calculations we observe that when c1−�
±

= 0 , the injection can 
be extended to the initial boundary so that ±W�,p((a, b)) ↪ C

�− 1

p ([a, b]) . In fact, 
c1−�
±

= 0 implies that any singularity at the initial boundary is prevented; we 
denote this space by 

The above embedding theorem motivates us to introduce the following defini-
tion of trace operators.

Definition 4.19  Define trace operators −T ∶ −W�,p((a, b)) → ℝ by −Tu = −Tu|x=b ∶= u(b) 
and +T ∶ +W�,p((a, b)) → ℝ by +Tu = +Tu|x=a ∶= u(a).

It should be noted that the above proof demonstrates that we can confirm the 
following trace inequality:

4.3.1 � Zero trace spaces

With the help of the trace operators in spaces ±W�,p(Ω) , we can define and char-
acterize different spaces with zero trace. First, we explicitly define the zero-trace 
spaces and a new norm for these spaces.

Definition 4.20  Let Ω = (a, b) , 0 < 𝛼 < 1 and 1 < p < ∞ . Suppose that 𝛼p > 1 . 
Define

and the norm ‖u‖±W
�,p

0
(Ω) ∶= ‖±D�u‖Lp(Ω) for 1 < p < ∞.

(15)±W̊𝛼,p(Ω) ∶= {u ∈ ±W𝛼,p(Ω) ∶ c1−𝛼
±

= 0}.

(16)�±Tu� ≤ C‖u‖±W�,p(Ω).

±W
�,p

0
(Ω) ∶= {u ∈ ±W�,p(Ω) ∶ ±Tu = 0},

W
�,p

0
(Ω) ∶= {u ∈ W�,p(Ω) ∶ −Tu = 0 and +Tu = 0};



New families of fractional Sobolev spaces﻿	 Page 21 of 40     46 

Proposition 4.21 ‖u‖±W
�,p

0
(Ω) defines a norm.

Proof  The only thing we need to show is 0 = ‖±D�u‖Lp(Ω) if and only if u = 0 . The 
other properties are immediately clear by the properties of the weak fractional deriv-
ative and the Lp norm. Of course, if u = 0 , then as a direct consequence of the defi-
nition of weak fractional derivatives, ±D�u = 0 and hence ‖±D�u‖Lp(Ω) = 0 . To see 
the converse, assume ‖±D�u‖Lp(Ω) = 0 . Then, ±D�u = 0 almost everywhere in Ω , 
implying that u must be in the kernel space of the derivative. Thus, u = C��

±
 for any 

C ∈ ℝ . Taking into consideration that ±Tu = 0 , it follows that u = 0 . 	�  ◻

In an effort to characterize the above spaces, our goal is to link these spaces 
with the completion spaces introduced in Sect.  4.1. As our notion of traces is 
one-sided, this makes the use of one-sided approximations spaces (i.e., ±C∞

0
(Ω) ) 

sensible.

Lemma 4.22  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 < p < ∞. Suppose that 𝛼p > 1. If 
u ∈ ±W�,p(Ω) ∩ ±C∞

0
(Ω), then u ∈ ±W

�,p

0
(Ω).

Proof  Let u ∈ ±W�,p(Ω) ∩ ±C∞
0
(Ω) . Consider the sequence uj ∶= � 1

j

∗ u with � 
being the standard mollifier. Then, uj ∈

±W�,p(Ω) ∩ ±C∞
0
(Ω) and uj → u in 

±W�,p(Ω) . Thus, u ∈ ±W
�,p

0
(Ω) . 	�  ◻

The next two theorems give characterizations of the zero trace spaces.

Theorem  4.23  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 < p < ∞. Suppose that 𝛼p > 1. 
Then, ±W�,p

0
(Ω) = ±W

�,p

0
(Ω) and W�,p

0
(Ω) = W

�,p

0
(Ω).

Proof  Let u ∈ ±W
�,p

0
(Ω) . Then, there exists {uj}∞j=1 ⊂

±C∞
0
(Ω) so that uj → u in 

±W�,p(Ω) . It follows that ±Tuj = 0 and uj → u uniformly on [c, b] or [a, c] for every 
c ∈ (a, b) . Consequently, ±Tu = 0 . Thus, ±W𝛼,p

0
(Ω) ⊂ ±W

𝛼,p

0
(Ω).

Conversely, let u ∈ ±W
�,p

0
(Ω) . We want to show that there exists {un} ⊂ ±C∞

0
(Ω) 

such that un → u in ±W�,p(Ω) . For ease of presentation and without loss of the gen-
erality, let Ω = (0, 1) and we only consider the left space. Fix a function � ∈ C∞(ℝ) 
such that

and |�(x)| ≤ |x| . Choose {uj}∞j=1 ⊂ C∞(Ω) so that uj → u in −W�,p(Ω) and define the 
sequence un

j
∶= (1∕n)�(nuj) . We can show that un

j
→ un in Lp((0, 1)) . Moreover, 

using the chain rule (cf. [8, Theorem 4.4]), we get

�(x) ∶=

{
0 if |x| ≤ 1,

x if |x| ≥ 2,
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where

Hence, {un
j
}∞
j=1

 is a bounded sequence in −W�,p((0, 1)) . Thus, there exists 
vn ∈ Lp((0, 1)) so that −D�un

j
⇀ vn in Lp((0, 1)) as j → ∞ . It can easily be shown 

using the weak derivative definition that vn = −D�un . Hence {un}∞
n=1

 belongs to 
−W�,p((0, 1)) . On the other hand, since −Tu = 0 , then un ∈ −C∞

0
((0, 1)) . Finally, it is 

a consequence of Lebesgue Dominated Convergence theorem that un → u in 
−W�,p((0, 1)) . Thus, u ∈ −W

�,p

0
((0, 1)) . The proof is complete. 	�  ◻

Theorem  4.24  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 < p < ∞. Suppose that 𝛼p > 1. 
Then, W

�,p

0
(Ω) = W

�,p

0
(Ω).

Proof  The same construction and proof used for the one-sided closure spaces in 
Theorem 4.23 can be used for the symmetric result W�,p

0
= W

�,p

0
 . 	�  ◻

At this point, we have gathered sufficient tools to prove a crucial characteriza-
tion result and a pair of integration by parts formula for functions in the sym-
metric fractional Sobolev spaces W�,p(Ω) . Similar integration by parts formula in 
±W�,p(Ω) will be presented in a subsequent section.

Proposition 4.25  Let Ω = (a, b). If u ∈ W
�,p

0
(Ω), then +T−I�u = −T+I�u = 0. That 

is, c1−�
+

= c1−�
−

= 0.

Proof  Let u ∈ W
�,p

0
(Ω) . It follows that u ∈ C(Ω) . Then, we have

‖−D�un
j
‖Lp((0,1)) = 1

n

�����
�(nuj)

nuj

−
D

�nuj +
−R�

0

�
nuj,

�(nuj)

nuj

������Lp((0,1))
≤ 1

n

�����
�(nuj)

nuj

−
D

�nuj

�����

p

Lp((0,1))

+
1

n

�����
−R�

0

�
nuj,

�(nuj)

nuj

������Lp((0,1))
≤ ‖−D�uj‖pLp((0,1)) +

1

n

�����
−R�

0

�
nuj,

�(nuj)

nuj

������Lp((0,1))
,

‖‖‖‖‖
−R�

0

(
nuj,

�(nuj)

nuj

)‖‖‖‖‖

p

Lp((0,1))

= �
1

0

|||||�
x

0

nuj(y)

(x − y)1+�

(
�(nuj)(x)

nuj(x)
−

�(nuj)(y)

nuj(y)

)
dy
|||||

p

dx

≤ �
1

0

(
�

x

0

|uj(y)|
(x − y)1+�

2n|uj(x) − uj(y)|
|uj(y)| dy

)p

dx

≤ 2pnp �
1

0

(
�

x

0

dy

(x − y)�

)p

dx ≤ 2pnp.
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The other trace follows similarly. 	�  ◻

Proposition 4.26  Let Ω ⊂ ℝ, 𝛼 > 0 and 1 ≤ p, q < ∞. Suppose that 𝛼p > 1 and 
𝛼q > 1. Then, for any u ∈ W�,p(Ω) and v ∈ W�,q(Ω), there holds the following inte-
gration by parts formula:

Proof  We only give a proof for 0 < 𝛼 < 1 because the other cases follow similarly. 
By Theorems  4.3 and 4.17, there exist {uj}

∞
j=1

⊂ C∞(Ω) ∩ C(Ω) and 
{vk}

∞
k=1

⊂ C∞(Ω) ∩ C(Ω) such that uj → u in W�,p(Ω) and vk → v in W�,q(Ω) . It fol-
lows by the classical integration by parts that

This completes the proof. 	�  ◻

Remark 4.27  We have used the fact that u and v are continuous up to the boundary 
of Ω to apply the classical integration by parts formula. Due to the inability to guar-
antee this for functions in the one-sided spaces ±W�,p(Ω) , we postpone presenting a 
similar result in those spaces to Sect. 4.6.1.

4.4 � Sobolev and Poincaré inequalities

The goal of this subsection is to extend the well known Sobolev and Poincaré 
inequalities for functions in W1,p(Ω) to the fractional Sobolev spaces ±W�,p(Ω) . 
We shall present the extensions separately for the infinite domain Ω = ℝ and 
the finite domain Ω = (a, b) because the kernel functions have a very different 
boundary behavior in the two cases, which in turn results in different inequali-
ties in these two cases.

Two tools that will play a crucial role in our analysis are the Lp mapping prop-
erties of the fractional integral operators (cf. [8, Theorem 2.6]), and the FTwFC 
(cf. Theorem 2.7).

lim
x→a

�����
x

a

u(y)

(x − y)1−�
dy
���� = lim

x→a

�����
x−a

0

u(x − z)

z1−�
dz
����

≤ lim
x→a

‖u‖L∞(Ω) �
x−a

0

dz

z1−�

= lim
x→a

‖u‖L∞(Ω)(x − a)� = 0.

(17)∫Ω

u±D�v dx = (−1)[�] ∫Ω

v∓D�u dx.

∫Ω

u∓D�v dx = lim
j,k→∞∫Ω

uj
∓D�vk dx

= lim
j,k→∞∫Ω

vk
±D�uj dx = ∫Ω

v±D�u dx.
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4.4.1 � The infinite domain case: Ä = ℝ

Due to the flexibility of the choice of 0 < 𝛼 < 1 , the validity of a Sobolev inequal-
ity in the fractional order case has more variations depending on the range of p. 
Precisely, we have

Theorem  4.28  Let 0 < 𝛼 < 1 and 1 < p < 1

𝛼
. Then, there exists a constant C > 0 

such that for any u ∈ L1(ℝ) ∩ ±W�,p(ℝ).

p∗ is called the fractional Sobolev conjugate of p.

Proof  It follows from the density/approximation theorem that there exists a sequence 
{uj}

∞
j=1

⊂ C∞
0
(ℝ) so that uj → u in ±W�(ℝ) . Note that by construction, we also have 

uj → u in L1(ℝ) . Then, by the FTcFC (cf. [8, Theorem 3.2]), we get

By the Lp mappings properties of fractional integrals (cf. [8, Theorem 2.6]), we have

Consequently,

Hence, {uj}∞j=1 is a Cauchy sequence in Lp∗(ℝ) . Therefore, there exists a function 
v ∈ Lp

∗

(ℝ) so that uj → v in Lp∗ (ℝ) . Recall that we also have uj → u in Lp(ℝ) . More-
over, for every � ∈ C∞

0
(ℝ)

Thus, v = u almost everywhere and

The proof is complete. 	�  ◻

Remark 4.29  By the simple scaling argument, which considers the scaled function 
u�(x) ∶= u(�x) for 𝜆 > 0 , it is easy to verify that 𝛼p < 1 is a necessary condition for 
the inequality to hold in general. Similarly, the Poincaré inequality does not hold in 
general, as in the integer order case, when Ω = ℝ.

(18)‖u‖Lp∗ (ℝ) ≤ C‖±D�u‖Lp(ℝ), p∗ ∶=
p

1 − �p
.

uj(x) =
±I�±D�uj(x) ∀x ∈ ℝ.

‖uj‖Lp∗(ℝ) = ‖±I𝛼±D𝛼uj‖Lp∗(ℝ) ≤ C‖±D𝛼uj‖Lp(ℝ) < ∞.

‖um − un‖Lp∗(ℝ) ≤ C‖±D�um − ±
D

�un‖Lp(ℝ) → 0 as m, n → ∞.

∫
ℝ

v∓D�� dx = lim
j→∞∫

ℝ

uj
∓D�� dx = lim

j→∞∫
ℝ

±
D

�uj� dx

= ∫
ℝ

±
D

�u� dx = ∫
ℝ

u∓D�� dx.

‖u‖Lp∗ (ℝ) ≤ C‖±D�u‖Lp(ℝ).
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4.4.2 � The finite‑domain case: Ä = (a, b)

One key difference between the infinite domain case and the finite domain case is that 
the domain-dependent kernel functions ��

−
(x) ∶= (x − a)�−1 and ��

+
(x) ∶= (b − x)�−1 

( 0 < 𝛼 < 1 ) do not vanish in the latter case. Since both kernel functions are singular 
now, they must be “removed” from any function u ∈ ±W�,p(Ω) to obtain the desired 
Sobolev and Poincaré inequalities for u.

Theorem  4.30  Let 0 < 𝛼 < 1 and 1 ≤ p < 1

𝛼
. Then, there exists a constant 

C = C(Ω, 𝛼, p) > 0 such that

Proof  It follows by the Lp mapping properties of the fractional integrals (cf. [8, The-
orem 2.6]) and the FTwFC (cf. Theorem 2.7) that

Since Ω = (a, b) is finite, the desired inequality (19) follows from the above inequal-
ity and an application of Hölder’s inequality. The proof is complete. 	�  ◻

Remark 4.31  An important consequence of the above theorem is that it illustrates 
the need for u ∈ L�(Ω) with 𝜇 > p∗ in the extension theorem (cf. Theorem  4.13) 
because the fractional Sobolev spaces ±W�,p(Ω) may not embed into L�(Ω) for 
𝜇 > p∗ in general.

Repeating the first part of the above proof (with slight modifications), we can eas-
ily show the following Poincaré inequality in fractional order spaces ±W�,p(Ω).

Theorem  4.32  (Fractional Poincaré) Let 0 < 𝛼 < 1 and 1 ≤ p < ∞. Then, there 
exists a constant C = C(𝛼,Ω) > 0 such that

It is worth noting that no restriction on p with respect to � is imposed in Theo-
rem 4.32 because no embedding result for fractional integrals is used in the proof. 
The Eq. (20) is the fractional analogue to the well known Poincaré inequality

where uΩ ∶= |Ω|−1 ∫
Ω
u dx [7]. In the space W1,p(Ω) , a specific kernel function (a 

constant, i.e., uΩ ), that depends on u, is subtracted from the function u. In (20), 
the analogue to this constant kernel function, which must be subtracted from u, is 
c1−�
±

��
±
 , where the dependence on u is hidden in c1−�

±
.

Moreover, to obtain a fractional analogue to the traditional Poincaré inequality

(19)‖u − c1−�
±

��
±
‖Lr(Ω) ≤ ‖±D�u‖Lp(Ω) ∀ 1 ≤ r ≤ p∗.

‖u − c1−�
±

��
±
‖Lp∗ (Ω) = ‖±I�±D�u‖Lp∗ (Ω) ≤ C‖±D�u‖Lp(Ω).

(20)‖u − c1−�
±

��
±
‖Lp(Ω) ≤ C‖±D�u‖Lp(Ω) ∀u ∈ ±W�,p(Ω).

(21)‖u − uΩ‖Lp(Ω) ≤ C‖Du‖Lp(Ω) ∀u ∈ W1,p(Ω)

(22)‖u‖Lp(Ω) ≤ C‖Du‖Lp(Ω) ∀u ∈ W
1,p

0
(Ω),
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we have two options. The first one is to simply impose the condition u ∈ ±W̊𝛼,p(Ω) 
(see (15)). It is an easy corollary of Theorem 4.32 that

From the perspective of Poincaré inequalities, this condition is comparable to a 
mean-zero condition imposed on the Sobolev space W1,p(Ω) . To establish the second 
set of conditions under which the estimate (23) can hold, we first need to establish 
the following lemma.

Lemma 4.33  Let Ω = (a, b) and 0 < 𝛼 < 1. If u ∈ W�,p(Ω), then c1−�
+

∶= +I�u(b) = 0 
and c1−�

−
∶= −I�u(a) = 0.

Proof  Let u ∈ W�,p(Ω) . It follows that u ∈ C(Ω) . Then, a quick calculation yields

A similar calculation can be done for c1−�
+

 . The proof is complete. 	�  ◻

Now we can formalize the desired Poincaré inequality.

Theorem 4.34  Let Ω ⊂ ℝ, 0 < 𝛼 < 1, and 1 < p < ∞. Then, there exists a constant 
C = C(𝛼,Ω) > 0 such that

Proof  The proof follows as a direct consequence of the FTwFC (cf. Theorem 2.7), 
Lemma 4.33, and the stability estimate for fractional integrals. 	�  ◻

Another question may come to mind is whether such an estimate can be 
established in the one-sided zero-trace spaces ±W�,p

0
(Ω) . Functions belonging to 

±W
�,p

0
(Ω) do not guarantee that c1−�

±
= 0 . Hence, ±W𝛼,p

0
(Ω) ⊄ ±W̊𝛼,p(Ω) and such 

an inequality does not hold in ±W�,p

0
(Ω) in general.

4.5 � The dual spaces ±W−˛,q(Ä) and W−˛,q(Ä)

In this subsection, we assume that 1 ≤ p < ∞ and 1 < q ≤ ∞ so that 1∕p + 1∕q = 1

.

Definition 4.35  We denote ±W−�,q(Ω) as the dual space of ±W̊𝛼,p

0
(Ω) and W−�,q(Ω) 

as the dual space of W�,p

0
(Ω) . When p = 2 , we set ±H−𝛼(Ω) ∶= ±W̊

−𝛼,2
0

(Ω) and 
H−�(Ω) ∶= W−�,2(Ω).

It is our aim to fully characterize these spaces; as is well known in the case of 
integer order Sobolev dual spaces, W−1,q(Ω) (cf. [3]), in particular, for q = 2.

(23)‖u‖Lp(Ω) ≤ C‖±D𝛼u‖Lp(Ω) ∀u ∈ ±W̊𝛼,p(Ω).

c1−�
−

= lim
x→a

�����
x

a

u(y)

(x − y)1−�
dy
���� ≤ lim

x→a
‖u‖L∞(Ω)(x − a)� = 0.

(24)‖u‖Lp(Ω) ≤ C‖±D�u‖Lp(Ω) ∀u ∈ W�,p(Ω).
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We will begin with the symmetric spaces since the presentation is more natural and 
easily understood than that for the one-sided spaces. It is a consequence of Proposi-
tions 4.25 and 4.21 that

where these injections are continuous for 1 ≤ p < ∞ and dense for 1 < p < ∞ since 
W

�,p

0
(Ω) and Lp(Ω) are reflexive in this range. To formally characterize the elements 

of W−�,q(Ω) , we present the following theorem.

Theorem 4.36  Let F ∈ W−�,q(Ω). Then, there exists three functions, f0, f1, f2 ∈ Lq(Ω) 
such that

and

When Ω ⊂ ℝ bounded, we can take f0 = 0.

Proof  Consider the product space E = Lp(Ω) × Lp(Ω) × Lp(Ω) equipped with the 
norm

where h = [h0, h1, h2] . The map T ∶ W
�,p

0
(Ω) → E defined by

is an isometry from W�,p

0
(Ω) into E. Given the space (G, ‖ ⋅ ‖E) be the image of W�,p

0
 

under T ( G = T(W
�,p

0
(Ω) )) and T−1 ∶ G → W

�,p

0
(Ω) . Let F ∈ W−�,q(Ω) be a con-

tinuous linear functional on G defined by F(h) = ⟨F, T−1h⟩ . By the Hahn-Banach 
theorem, it can be extended to a continuous linear functional S on all of E with 
‖S‖E∗ = ‖F‖ . By the Riesz representation theorem, we know that there exists three 
functions f0, f1, f2 ∈ Lq(Ω) such that

Moreover, we have

W
𝛼,p

0
(Ω) ⊂ Lp(Ω) ⊂ W−𝛼,q(Ω)

(25)⟨F, u⟩ = ∫Ω

f0u dx + ∫Ω

f1
−
D

�u dx + ∫Ω

f2
+
D

�u dx ∀ u ∈ W
�,p

0
(Ω)

(26)‖F‖W−�,q(Ω) = max
�
‖f0‖Lq(Ω), ‖f1‖Lq(Ω), ‖f2‖Lq(Ω)

�
.

‖h‖E = ‖h0‖Lp(Ω) + ‖h1‖Lp(Ω) + ‖h2‖Lp(Ω),

T(u) = [u, −D�u, +D�u]

⟨S, h⟩ = ∫Ω

f0h0 dx + ∫Ω

f1h1 dx + ∫Ω

f2h2 dx ∀ h = [h0, h1, h2] ∈ E.
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Upon taking the supremum, we are left with

Furthermore, we have

When Ω is bounded, recall that ‖u‖p
W

�,p

0

= ‖−D�u‖p
Lp(Ω)

+ ‖+D�u‖p
Lp(Ω)

 . Then, we can 
repeat the same argument with E = Lp(Ω) × Lp(Ω) and T(u) = [−D�u, +D�u] . The 
proof is complete. 	�  ◻

Remark 4.37 

(a)	 The functions f0, f1, f2 are not uniquely determined by F.
(b)	 We write F = f0 +

+D�f1 +
−D�f2 whenever (25) holds. Formally, this is a con-

sequence of integration by parts in the right-hand side of (25).
(c)	 The first assertion of Proposition 25 also holds for continuous linear functionals 

on W�,p(Ω) ( 1 ≤ p < ∞) . That is, for every F ∈ (W�,p(Ω))∗ , 

 for some functions f0, f1, f2 ∈ Lq(Ω).

Of course, the above results also hold for functions in H−�(Ω) . However, in this 
case, the use of the inner product and Hilbert space structure allows for improved 
presentation and richer characterization. We state them in the following proposition.

Proposition 4.38  Let F ∈ H−�(Ω). Then,

Proof  We begin with an altered proof of (25) for the special case p = 2 . Not only is 
the proof illustrative, but we will also refer to components of it to prove necessary 
assertions of this proposition.

�⟨S, h⟩�
‖h‖E =

1

‖h‖E
�����Ω

f0h0 dx + �Ω

f1h1 dx + �Ω

f2h2 dx
����

≤ 1

‖h‖E
�
‖f0‖Lq(Ω)‖h0‖Lp(Ω) + ‖f1‖Lq(Ω)‖h1‖Lp(Ω) + ‖f2‖Lq(Ω)‖h2‖Lp(Ω)

�

≤ max

�
‖f0‖Lp(Ω), ‖f1‖Lp(Ω), ‖f2‖Lp(Ω)

�
.

‖S‖E∗ = max
�
‖f0‖Lp(Ω), ‖f1‖Lp(Ω), ‖f2‖Lp(Ω)

�
.

⟨S, Tu⟩ = ⟨F, u⟩ = ∫Ω

f0u dx + ∫Ω

f1
−
D

�u dx + ∫Ω

f2
+
D

�u dx ∀ u ∈ W
�,p

0
(Ω).

⟨F, u⟩ = ∫Ω

f0u dx + f1
−
D

�u dx + f2
+
D

�u dx ∀ u ∈ W�,p(Ω)

(27)‖F‖H−�(Ω) = inf

⎧⎪⎨⎪⎩

�
∫Ω

2�
i=0

�fi�2 dx
� 1

2

; f0, f1, f2 ∈ L2(Ω) satisfy (4.17)

⎫⎪⎬⎪⎭
.
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For any u, v ∈ H�
0
(Ω) , we define the inner product

Given F ∈ H−�(Ω) , it follows from Riesz Representation theorem that there exists a 
unique u ∈ H�

0
(Ω) so that ⟨F, v⟩ = (u, v) for all v ∈ H�

0
(Ω) ; that is

Taking

then (25) holds.
It follows by (25) that there exists g0, g1, g2 ∈ L2(Ω) so that

Thus, taking v = u in (28) and combing that with (29) and (30) yield

It follows from (25) and the dual norm definition that for ‖v‖H�
0
(Ω) ≤ 1,

Setting v = u∕‖u‖H�
0
(Ω) in (28), we deduce that

Therefore, (27) must hold. The proof is complete. 	�  ◻

Remark 4.39  Similar to the integer order case, we define the action of 
v ∈ L2(Ω) ⊂ H−𝛼(Ω) on any u ∈ H�

0
(Ω) by

That is to say that given v ∈ L2(Ω) ⊂ H−𝛼(Ω) , we associate it with the bounded lin-
ear functional v ∶ H�

0
(Ω) → ℝ defined by ⟨v, u⟩ = v(u) = ∫

Ω
vu . It is easy to check 

that this mapping is in fact continuous/bounded on H�
0
(Ω).

(u, v) = ∫Ω

(
uv + −

D
�u−D�v + +

D
�u+D�v

)
dx.

(28)⟨F, v⟩ = ∫Ω

�
uv + −

D
�u−D�v + +

D
�u+D�v

�
dx ∀ v ∈ H�

0
(Ω).

(29)f0 = u, f1 =
−
D

�u, f2 =
+
D

�u,

(30)⟨F, v⟩ = ∫Ω

�
g0v + g1

−
D

�v + g2
+
D

�v
�
dx ∀v ∈ H�

0
(Ω).

�Ω

f 2
0
+ f 2

1
+ f 2

2
= �Ω

(
u2 + (−D�u)2 + (+D�u)2

)
dx

= �Ω

(
g0u + g1

−
D

�u + g2
+
D

�u
)
dx ≤ �Ω

(
g2
0
+ g2

1
+ g2

2

)
dx.

‖F‖H−�(Ω) ≤
�
�Ω

�
f 2
0
+ f 2

1
+ f 2

2

�
dx

� 1

2

.

‖F‖H−�(Ω) =

�
∫Ω

�
f 2
0
+ f 2

1
+ f 2

2

�
dx

� 1

2

.

(31)⟨v, u⟩ = ∫Ω

vu dx.
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Now we turn our attention to dual spaces of one-sided Sobolev spaces. The situ-
ation in this case is more complicated. This is due to the fact that there are several 
variations of the parent spaces ±W�,p of which we might consider. To be specific, we 
consider a space W where

Thus, we want to know which of these spaces produces a dual space that can be 
characterized in similar fashion as for the symmetric space W�,p

0
.

To answer this question, we first proposed that to prove a rich characterization of 
dual spaces, we must first have the continuous and dense inclusion W ⊂ Lp ⊂ W∗ for 
appropriate ranges of p. In fact, it is necessary to have the inequality ‖u‖Lp ≤ C‖u‖W 
for every u ∈ W . More or less, this question is informed by the existence of fractional 
Poincaré inequalities in W. It is known that in general, ‖u‖Lp(Ω) ≰ C‖±D𝛼u‖Lp(Ω) for 
every u ∈ ±W�,p(Ω) and u ∈ ±W

�,p

0
 , and note ±W𝛼,p

0
(Ω) ̸↪ ±W̊𝛼,p(Ω) ). For these rea-

sons, we are left to characterize the dual space ±W−𝛼,q(Ω) ∶= (±W̊𝛼,p(Ω))∗.
It is easy to see that there holds

where the injections are continuous for 1 ≤ p < ∞ and dense for 1 < p < ∞ since 
±W̊𝛼,p(Ω) is reflexive in this range.

Now we are well equipped to characterize ±W−�,q(Ω) . For brevity, we will state 
the results and omit the proofs since each of them can be done using the same tech-
niques as used in the symmetric case for the spaces W−�,q(Ω) and H−�(Ω).

Theorem 4.40  Let F ∈ ±W−�,q(Ω). Then, there exists two functions, f0, f1 ∈ Lq(Ω) 
such that

and

Proposition 4.41  Let F ∈ ±H−�(Ω). Then,

Remark 4.42  Similar to the symmetric case, we define the action of 
v ∈ L2(Ω) ⊂ ±H−𝛼(Ω) on any u ∈ ±H̊𝛼(Ω) by

W ∈
{
±W𝛼,p, ±W

𝛼,p

0
, ±W̊𝛼,p, ±W̊

𝛼,p

0

}
.

(32)±W̊𝛼,p(Ω) ⊂ Lp(Ω) ⊂ ±W−𝛼,q(Ω),

(33)⟨F, u⟩± = ∫Ω

�
f0u + f1

±
D

𝛼u
�
dx ∀ u ∈ ±W̊𝛼,p(Ω)

(34)‖F‖±W−�,q(Ω) = max
�
‖f0‖Lq(Ω), ‖f1‖Lq(Ω)

�
.

(35)

‖F‖±H−�(Ω) = inf

��
∫Ω

�
f 2
0
+ f 2

1

�
dx

� 1

2

; f0, f1 ∈ L2(Ω) satisfying (4.25)

�
.

(36)⟨v, u⟩ = ∫Ω

vu dx.
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4.6 � Relationships between fractional Sobolev spaces

In this subsection, we establish a few connections between the newly defined 
fractional Sobolev spaces ±W�,p(Ω) and W�,p(Ω) with some existing fractional 
Sobolev spaces recalled in Sect. 2.1. Before doing that, we first address the issues 
of their consistency over subdomains, inclusivity across orders of differentiabil-
ity, and their consistency with the existing integer order Sobolev spaces.

Proposition 4.43  Let Ω = (a, b), 0 < 𝛼 < 𝛽 < 1 and 1 ≤ p < ∞. If u ∈ ±W�,p(Ω), 
then u ∈ ±W�,p(Ω).

Proof  By the FTwFC (cf. Theorem 2.7), we have
u = c

1−�
± ��

± + ±I�±D�u and by the inclusivity result for weak fractional 
derivatives,

±D�u exists and is given by

It follows by direct estimates that there exists C = C(Ω, �, �, p) so that

The proof is complete. 	�  ◻

Remark 4.44  This inclusivity property is trivial in the integer order Sobolev spaces, 
but may not be so in fractional Sobolev spaces due to lack of a universal semigroup 
property for fractional derivatives. However, in our case, the proof is not difficult 
thanks to the FTwFC.

Unlike the integer order case, the consistency on subdomains is more difficult 
to establish in the spaces ±W�,p . The following proposition and its accompanying 
proof provide further insight to the effect of domain-dependent derivatives and 
their associated kernel functions.

Proposition 4.45  Let Ω = (a, b), 𝛼 > 0, 1 < p < ∞, 𝜇 > p(1 − 𝛼p)−1. Suppose that 
u ∈ ±W�,p(Ω) ∩ L�(Ω). Then, for any Ω� = (c, d) ⊂ Ω, u ∈ ±W�,p(Ω�).

Proof  Since (c, d) ⊂ (a, b) , it is easy to see that ‖u‖Lp((c,d)) ≤ ‖u‖Lp((a,b)) . Thus, we 
only need to show that u has a weak derivative on (c, d) that belongs to Lp((c, d)).

Choose {uj}∞j=1 ⊂ C∞((a, b)) so that uj → u in ±W�,p((a, b)) . It follows that 
uj ∈ C∞([c, d]) and for any � ∈ C∞

0
((c, d)) there holds for the left derivative

±
D

�u = c
1−�
± ��−�

± + ±I�−�±D�u

= c
1−�
± ��

±�
−�
±

+ ±I�−�±D�u

= (u − ±I�±D�u)�−�
±

+ ±I�−�±D�u.

‖±D�u‖Lp(Ω) ≤ C‖u‖±W�,p(Ω).
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Then, we want to show that there exists v ∈ Lp((c, d)) such that

Note that
cD

�
x
uj(x) = aD

�
x
uj(x) − aD

�
c
uj(x).

Using this decomposition, we get

which is bounded if and only if 𝜇 > p(1 − 𝛼p)−1 . Choosing j sufficiently large, we 
have that the sequence cD�

x
uj is bounded in Lp((c, d)) . Therefore, there exists a func-

tion v ∈ Lp((c, d)) and a subsequence (still denoted by cD�
x
uj ) so that cD�

x
uj ⇀ v . It 

follows that

Hence u ∈ −W�,p((c, d)) . Similarly, we can prove that the conclusion also holds for 
the right derivative. The proof is complete. 	�  ◻

4.6.1 � Consistency with W1,p(Ä)

Our aim here is to show that there exists a consistency between our newly defined 
fractional Sobolev spaces and the integer order Sobolev spaces. To this end, we need 
to show that there is a consistency between fractional order weak derivatives and 
integer order weak derivatives, which is detailed in the lemma below.

Lemma 4.46  Let Ω ⊆ ℝ, 0 < 𝛼 < 1 and 1 ≤ p < ∞. Suppose u ∈ W1,p(Ω). Then, for 
every � ∈ C∞

0
(Ω), ±D��(u) = −±I1−�[� �(u)Du] ∈ Lp(Ω).

Proof  Let u ∈ W1,p(Ω) ∩ ±W�,p(Ω) . By the density/approximation theorem, there 
exists {uj}∞j=1 ⊂ C∞(Ω) such that uj → u in W1,p(Ω) . Then, we have

∫
d

c

u+D�� dx = lim
j→∞∫

d

c

ujxD
�
d
� dx = lim

j→∞∫
d

c
cD

�
x
uj� dx.

lim
j→∞∫

d

c
cD

�
x
uj� dx = ∫

d

c

v� dx.

‖cD�
x
uj‖pLp((c,d)) = ‖aD�

x
uj − aD

�
c
uj‖pLp((c,d))

≤ ‖aD�
x
uj‖pLp((a,b)) + �

d

c

������
c

a

uj(y)

(x − y)1+�
dy
�����

p

dx

≤ ‖aD�
x
uj‖pLp((a,b)) + ‖uj‖pL�((a,c)) �

d

c

�
�

c

a

dy

(x − y)�(1+�)

� p

�

dx

≤ ‖aD�
x
uj‖pLp((a,b)) + ‖uj‖pL�((a,c)) �

d

c

(x − a)
p

�
−p(1+�) + (x − c)

p

�
−p(1+�) dx,

∫
d

c

u+D�� dx = lim
j→∞∫

d

c
cD

�
x
uj� dx = ∫

d

c

v� dx.
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Next, we claim that ±I1−�[� �(uj)Duj] →
±I1−�[� �(u)Du] in Lp(Ω) where D denotes 

the integer weak derivative. Our claim follows because

which converges to zero by the assumptions on � and on {uj}∞j=1 and the chain rule in 
W1,p(Ω) . The proof is complete. 	�  ◻

Remark 4.47  The identity ±D��(u) = −±I1−�[� �(u)Du] ∈ Lp(Ω) can be regarded as 
a special fractional chain rule, which also explains why there is no clean fractional 
chain rule in general.

Our first consistency result will be one that allows us to make no assumption 
on the relationship between � and p. However, a restriction on function spaces 
must be imposed, which will be shown later to be a price to pay without imposing 
any restriction on the relationship between � and p.

Theorem  4.48  Let Ω ⊂ ℝ, 0 < 𝛼 < 1 and 1 ≤ p < ∞. Then, W1,p

0
(Ω) ⊂ ±W𝛼,p(Ω). 

Hence, W1,p

0
(Ω) ⊂ W𝛼,p(Ω).

Proof  Let u ∈ W
1,p

0
(Ω) . By the density/approximation theorem, there exists 

{uj}
∞
j=1

⊂ C∞
0
(Ω) such that uj → u in W1,p(Ω) . Then, we have

Next, by the boundedness of ±I1−� , we get

which converges to zero by the choice of {uj}∞j=1 . Setting j → ∞ in the above equa-
tion yields that ±D�u = −±I1−�Du . Thus,

The proof is complete. 	�  ◻

∫Ω

�(u)∓D�� dx = lim
j→∞∫Ω

�(uj)
∓D�� dx

= lim
j→∞

(−1)∫Ω

� �(uj)Duj
∓I1−�� dx

= lim
j→∞

(−1)∫Ω

±I1−�[� �(uj)Duj]� dx.

‖±I1−�[� �(uj)Duj] −
±I1−�[� �(u)Du]‖Lp(Ω) ≤ C‖� �(uj)Duj − � �(u)Du‖Lp(Ω)

∫Ω

u∓D�� dx = lim
j→∞∫Ω

uj
∓D�� dx = lim

j→∞
(−1)∫Ω

Duj
∓I1−�� dx

= lim
j→∞

(−1)∫Ω

±I1−�Duj� dx.

‖±I1−�Duj − ±I1−�Du‖Lp(Ω) ≤ C‖Duj −Du‖Lp(Ω),

‖±D𝛼u‖Lp(Ω) = ‖±I1−𝛼Du‖Lp(Ω) ≤ C‖Du‖Lp(Ω) < ∞.
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Remark 4.49  Substituting ℝ in place of Ω and C∞
0
(ℝ) in place of C∞

0
(ℝ) , respec-

tively, in the above proof, we can conclude that W1,p(ℝ) ⊂ ±W𝛼,p(ℝ) for all 
0 < 𝛼 < 1 and 1 ≤ p < ∞.

To see that the need for zero boundary traces is a necessary condition, we con-
sider the function u ≡ 1 . With Ω = (a, b) is a finite domain, it is easy to check 
that u is weakly differentiable with the weak derivative coinciding with the Rie-
mann–Liouville derivative, that is, −D�1 = Γ(1 − �)−1(x − a)−� and a similar for-
mula holds for the right weak derivative. It is easy to show that ‖±D𝛼1‖Lp((a,b)) < ∞ 
if and only if 𝛼p < 1 . Therefore, the inclusion W1,p((a, b)) ⊂ ±W𝛼,p((a, b)) may not 
hold in general. However, the next theorem shows that the inclusion does hold in 
general provided that 𝛼p < 1.

Theorem  4.50  Let Ω = (a, b), 0 < 𝛼 < 1 and 1 ≤ p < ∞. Suppose that 𝛼p < 1. 
Then, W1,p(Ω) ⊂ ±W𝛼,p(Ω). Hence, W1,p(Ω) ⊂ W𝛼,p(Ω) when 𝛼p < 1.

Proof  We only give a proof for W1,p(Ω) ⊂ −W𝛼,p(Ω) because the inclusion W1,p(Ω) 
⊂ +W𝛼,p(Ω) can be proved similarly.

Let u ∈ W1,p((a, b)) . By the density/approximation theorem, there exists a 
sequence {uj}∞j=1 ⊂ C∞((a, b)) ∩ C([a, b]) so that uj → u in W1,p((a, b)) ∩ C([a, b]).

Then, for any � ∈ C∞
0
((a, b)) , using the integration by parts formula and the rela-

tionship between the Riemann–Liouville and Caputo derivatives, we get

Taking the limit j → ∞ on both sides yields

Hence, −D�u almost everywhere in (a, b) and is given by

It remains to verify that −D�u ∈ Lp((a, b)) , which can be easily done for 𝛼p < 1 
using the formula above for the weak derivative and the mapping properties of the 
fractional integral operators. The proof is complete. 	�  ◻

Remark 4.51  (37) suggests the following definitions of the weak fractional Caputo 
derivatives for any u ∈ W1,1(Ω):

∫
b

a

uj(x)xD
�
b
�(x) dx = ∫

b

a
aD

�
x
uj(x)�(x) dx

= ∫
b

a

(
uj(a)

Γ(1 − �)(x − a)�
+ aI

1−�
x

Duj(x)

)
�(x) dx.

∫
b

a

u(x)xD
�
b
�(x) dx = ∫

b

a

(
u(a)

Γ(1 − �)(x − a)�
+ aI

1−�
x

Du(x)

)
�(x) dx.

(37)−
D

�u =
u(a)

Γ(1 − �)(x − a)�
+ aI

1−�
x

Du(x).

(38)−
C
D

�u(x) ∶= aI
1−�
x

Du(x) a.e. in Ω,
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and then we have almost everywhere in Ω

We conclude this section with an integration by parts formula for functions in one-
sided Sobolev spaces. The need to wait until now for such a formula will be evident in 
the assumptions.

Proposition 4.52  Let Ω ⊂ ℝ, 𝛼 > 0, 1 ≤ p < ∞. Suppose that u ∈ ±W�,p(Ω), 
v ∈ W

1,q

0
(Ω), and w ∈ W1,q(Ω). Then, there holds

Moreover, if 𝛼q < 1, there holds

Proof  We only give a proof for (42) when 0 < 𝛼 < 1 . The other cases and (43) can 
be showed similarly. Choose {uj}∞j=1 ⊂ C∞(Ω) and {vk}∞k=1 ⊂ C∞

0
(Ω) such that uj → u 

in ±W�,p(Ω) and vk → v in W1,q(Ω) . By Theorem 4.48, we have v ∈ ∓W�,q(Ω) . It fol-
lows that

This completes the proof. 	�  ◻

4.6.2 � The case p = 1 and Ä = ℝ

First, by doing a change of variables, we get for any � ∈ C∞
0
(ℝ)

(39)+
C
D

�u(x) ∶= xI
1−�
b

Du(x) a.e. in Ω,

(40)−
C
D

�u(x) ∶= −
D

�u(x) −
u(a)

Γ(1 − �)(x − a)�
,

(41)+
C
D

�u(x) ∶= +
D

�u(x) −
u(b)

Γ(1 − �)(b − x)�
.

(42)∫Ω

v±D�u dx = (−1)[�] ∫Ω

u∓D�v dx.

(43)∫Ω

w±
D

�u dx = (−1)[�] ∫Ω

u∓D�w dx.

∫Ω

u∓D�v dx = lim
j,k→∞∫Ω

uj
∓D�vk dx

= lim
j,k→∞∫Ω

vk
±D�uj dx = ∫Ω

v±D�uj dx.

−D��(x) =
1

Γ(1 − �)

d

dx ∫
x

−∞

�(y)

(x − y)�
dy =

1

Γ(1 − �)

d

dx ∫
∞

0

t−��(x − t) dt

=
1

Γ(1 − �) ∫
∞

0

t−���(x − t) dt =
�

Γ(1 − �) ∫
x

−∞

�(x) − �(t)

(x − t)1+�
dt.
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Similarly,

These equivalent formulas will be used in the proof of the next theorem.

Theorem 4.53  Let 0 < 𝛼 < 1. Then, �W𝛼,1(ℝ) ⊆ ±W𝛼,1(ℝ).

Proof  Let u ∈ W̃�,1(ℝ) . Recall that C∞
0
(ℝ) is dense in W̃�,1(ℝ) . Then, there exists a 

sequence {uj}∞j=1 ⊂ C∞
0
(ℝ) such that uj → u in W̃�,1(ℝ) as j → ∞ . We only give a 

proof of the inclusion for the left fractional Sobolev space because the proof for the 
other case follows similarly.

Using the above equivalent formula for left derivatives, we get

By the property of {uj}∞j=1 , we conclude that 
[
uj
]
�W𝛼,1(ℝ)

→ [u] �W𝛼,1(ℝ) < ∞.
Let 𝜀 > 0 , for sufficiently large m, n ∈ ℕ , we have

Hence, {uj}∞j=1 is a Cauchy sequence in ±W�,1(ℝ) . Thus, there exists v ∈ ±W�,1(ℝ) 
such that uj → v in ±W�,1(ℝ) . By the property of {uj}∞j=1 , there holds uj → u in L1(ℝ) . 
On the other hand, the convergence in ±W�,1(ℝ) implies that uj → v in L1(ℝ) . Thus, 
u = v almost everywhere in ℝ and yielding that u ∈ ±W�,1(ℝ) . 	� ◻

Remark 4.54  We conjecture that the above inclusion is strict. However, an example 
to prove this conjecture remains out of reach.

4.6.3 � The case p = 2 and Ä = ℝ

This section extends the above equivalence result of two fractional Sobolev spaces 
to the case when p = 2 . As we will see, p = 2 is special in the sense that it is the 
only case in which the equivalence of the space Ĥ�(ℝ) defined by the Fourier trans-
form (and its inverse) and the space H̃�(ℝ) holds. Recall that Ŵ�,p(ℝ) ≠ W̃�,p(ℝ) for 
p ≠ 2 (cf. [1, 3]).

+D��(x) =
�

Γ(1 − �) ∫
∞

x

�(t) − �(x)

(t − x)1+�
dt.

‖‖‖
−
D

�uj
‖‖‖L1(ℝ) =

‖‖‖
−D�uj

‖‖‖L1(ℝ) = C� �
ℝ

|||||�
x

−∞

uj(x) − uj(y)

(x − y)1+�
dy
|||||
dx

≤ C� �
ℝ
�

x

−∞

|uj(x) − uj(y)|
|x − y|1+� dydx

≤ C� �
ℝ
�
ℝ

|uj(x) − uj(y)|
|x − y|1+� dydx

= C�

[
uj
]
W̃�,1(ℝ)

.

‖‖±D𝛼um − ±
D

𝛼un
‖‖L1(ℝ) = ‖‖‖

±
D

𝛼
[
um − un

]‖‖‖L1(ℝ) ≤
[
um − un

]
�W𝛼,1(ℝ)

< 𝜀.
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Lemma 4.55  Let 0 < 𝛼 < 1 and � ∈ C∞
0
(ℝ). Then, ‖FD��‖L2(ℝ) ≅ [�]

H̃�(ℝ).

Proof  Let 𝜑̂ = F(𝜑) . It follows from Plancherel theorem and (1) that

Taking the square root of each side, we obtain the desired result. 	�  ◻

Theorem 4.56  Let 0 < 𝛼 < 1. Then, ±Hs(ℝ) = H̃s(ℝ).

Proof  Step 1: Suppose u ∈ ±H�(ℝ) . Since C∞
0
(ℝ) is dense in ±H�(ℝ) , then there 

exists a sequence 
{
uj
}∞

j=1
⊂ C∞

0
(ℝ) such that uj → u in ±H�(ℝ).

Then, by Lemma 4.55, we get

Consequently,

Thus, {uj}∞j=1 is a Cauchy sequence in H̃�(ℝ) . Since H̃�(ℝ) is a Banach space, there 
exists v ∈ H̃�(ℝ) so that uj → v in H̃�(ℝ) ; in particular, uj → v in L2(ℝ) . By assump-
tion, uj → u in L2(ℝ) . Therefore, v = u a.e. in ℝ and u ∈ H̃�(ℝ).

Step 2: Let u ∈ H̃�(ℝ) . By the approximation theorem, there exists a sequence 
{uj}

∞
j=1

⊂ C∞
0
(ℝ) such that uj → u in H̃�(ℝ) . Then, by Lemma 4.55, we get

It implies that

Hence {uj}∞j=1 is a Cauchy sequence in ±H�(ℝ) . Since ±H�(ℝ) is a Banach space, 
there exists v ∈ ±H�(ℝ) so that uj → v in ±H�(ℝ) ; in particular, uj → v in L2(ℝ) . By 
assumption uj → u in L2(ℝ) . Therefore, v = u a.e. and u ∈ ±H�(ℝ) . 	�  ◻

‖FD𝛼𝜑‖2
L2(ℝ)

= ‖F−1[(i𝜉)𝛼𝜑̂]‖2
L2(ℝ)

= ‖(i𝜉)𝛼𝜑̂‖2
L2(ℝ)

= ∫
ℝ

�i𝜉�2𝛼�𝜑̂(𝜉)�2 d𝜉 = ∫
ℝ

�𝜉�2𝛼�𝜑̂(𝜉)�2 d𝜉
≅ [u]�H𝛼(ℝ).

���uj
���
2

H̃�(ℝ)
=
���uj

���
2

L2(ℝ)
+
�
uj
�2
H̃�(ℝ)

≤ ���uj
���
2

L2(ℝ)
+ C‖FD�uj‖2L2(ℝ)

=
���uj

���
2

L2(ℝ)
+ C

���
±
D

�uj
���
2

L2(ℝ)
≤ C

���uj
���
2

±H�(ℝ)
.

‖um − un‖H̃�(ℝ) ≤ C‖um − un‖±H�(ℝ) → 0 as m, n → ∞.

‖uj‖2±H�(ℝ)
= ‖uj‖2L2(ℝ) + ‖±D�uj‖2L2(ℝ)
= ‖uj‖2L2(ℝ) + ‖FD�uj‖2L2(ℝ)
≤ ‖uj‖2L2(ℝ) + C[uj]

2

H̃�(ℝ)
.

‖um − un‖±H�(ℝ) ≤ C‖um − un‖H̃�(ℝ) → 0 as m, n → ∞.
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Remark 4.57 

(a)	 The above result immediately infers that the equivalences
	   ±H�(ℝ) = H̃�(ℝ) = Ĥ�(ℝ).
(b)	 We note that −H�(ℝ) = +H�(ℝ) , however, this does not mean that the left and 

right weak derivatives of the same function are the same or equivalent but rather 
two spaces contain the same set of functions. For example, consider any func-
tion u ∈ H�(ℝ) ∩ C∞

0
((−1, 1)) such that u(x) ≥ 0 for every x ∈ ℝ . Due to the 

nonlocality of the weak fractional derivatives, −D�u(x) = 0 for every x ≤ −1 
and −D𝛼u(x) > 0 for every x ≥ −1 . Conversely, +D�u(x) = 0 for every x ≥ 1 and 
+D�u(x) ≤ 1 . Clearly, we see that −D�u(x) ≠ +D�u(x) for every x ∈ ℝ despite 
each belonging to L2(ℝ).

(c)	 We conjecture that ±W�,p(ℝ) ≠ Ŵ�,p(ℝ) , but ±W�,p(ℝ) = W̃�,p(ℝ) for p ≠ 2 and 
0 < 𝛼 < 1.

(d)	 It can easily be shown that the equality ±W�,p(Ω) = W̃�,p(Ω) cannot hold in 
general. It was proved that when 𝛼p > 1 , ±D�C ∉ ±W�,p(Ω) . However, constant 
functions always belong to W̃�,p(Ω) . In general, �W𝛼,p(Ω) ⊄ ±W𝛼,p(Ω) . For the 
same reason, �W𝛼,p(Ω) ⊄ W𝛼,p(Ω) when 𝛼p > 1 . This simple example shows that 
the fractional derivative definition is fundamentally different from the (double) 
integral term resembling a difference quotient in the seminorm of W̃�,p(Ω) . If an 
equivalence exists on the finite domain, it is our conjecture that for 𝛼p < 1 , the 
spaces W�,p(Ω) and W̃�,p(Ω) are the two spaces that should be comparable.

5 � Conclusion

In this paper, we introduced three families of new fractional Sobolev spaces based 
on the newly developed weak fractional derivative notion in [8, 9]; they were defined 
in the exact same manner as done for the integer order Sobolev spaces. Many impor-
tant theorems and properties, such as density theorem, extension theorems, one-
sided trace theorem, various embedding theorems and Sobolev inequalities, inte-
gration by parts formulas and dual-space characterizations in those Sobolev spaces 
were established. Moreover, a few relationships, including equivalences and differ-
ences, with existing fractional Sobolev spaces were also established.

These newly developed theories of weak fractional differential calculus and frac-
tional order Sobolev spaces lay down a solid theoretical foundation for systemati-
cally and rigorously developing a fractional calculus of variations theory and a frac-
tional PDE theory in [10]. Furthermore, it is expected that these works will aid in the 
development of efficient numerical methods in the fractional calculus of variations 
and fractional PDEs. Moreover, we hope this work will stimulate more research on 
and applications of fractional calculus and fractional differential equations, includ-
ing the extensions to higher dimension, in the near future.
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