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Abstract

This paper presents three new families of fractional Sobolev spaces and their accom-
panying theory in one dimension. The new construction and theory are based on
a newly developed notion of weak fractional derivatives, which are natural gener-
alizations of the well-established integer order Sobolev spaces and theory. In par-
ticular, two new families of one-sided fractional Sobolev spaces are introduced
and analyzed, and they reveal more insights about another family of so-called sym-
metric fractional Sobolev spaces. Many key theorems/properties, such as density/
approximation theorem, extension theorems, one-sided trace theorem, and various
embedding theorems and Sobolev inequalities in those Sobolev spaces are estab-
lished. Moreover, a few relationships with existing fractional Sobolev spaces are
also uncovered. The results of this paper lay down a solid theoretical foundation for
systematically developing a fractional calculus of variations theory and a fractional
PDE theory as well as their numerical solutions in subsequent works.
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1 Introduction

Fractional Sobolev spaces have been known for many years (cf. [1-3, 17, 23, 29,
30]); they are the cornerstone and provide an important functional setting for
studying boundary value problems of partial differential equations (PDEs) [7,
12, 17, 25, 28]. In recent years, fractional Sobolev spaces, along with fractional
calculus and fractional order differential equations, has garnered a lot of interest
and attention both from the PDE community and in the applied mathematics and
scientific communities. Besides the genuine mathematical interest and curiosity,
this trend has also been driven by intriguing scientific and engineering applica-
tions which give rise to fractional order differential equation models to better
describe the (time) memory effect and the (space) nonlocal phenomena (cf. [4,
5, 11, 13-16, 18, 19, 21, 27] and the references therein). It is the rise of these
applications that revitalizes the field of fractional calculus and fractional differen-
tial equations and calls for further research in the field, including to develop new
numerical methods for solving various fractional order problems.

Historically, the existing fractional order Sobolev spaces were primarily intro-
duced as a functional framework to study boundary value problems of integer
order PDEs in general bounded domains [17] (also see [1, 2, 7, 23]). Although
they have been successfully used to analyze certain fractional order differential
equations (cf. [4, 5, 6, 14, 24] and the references therein), some issues and limita-
tions of using them to study more general fractional order differential equations
have been raised and described (cf. [20, 26]), in particular, when domain-depend-
ent fractional order differential operators are involved.

Motivated by such a challenge/need, in a previous work [9] (also see [8]), the
authors of this paper introduced a new fractional differential calculus theory, in
which the notion of weak fractional derivatives was introduced, and its calculus
rules, such as product and chain rules, and the Fundamental Theorem of Weak
Fractional Calculus (FTWFC) were established. Moreover, many basic properties,
such as linearity, semigroup property, inclusivity, and consistency were proved
and several characterizations of weakly fractional differentiable functions were
explored; including the all-important characterization by smooth functions. The
new weak fractional differential calculus theory serves as a unifying concept in
light of the muddled classical fractional calculus with its numerous (none equiva-
lent) definitions and loss of basic calculus rules. It is our aim to use the newly
introduced weak fractional derivative notion to develop the required function
spaces for studying general fractional order differential equations in a systematic
way similar to that their integer order counterparts have been done.

The primary goal of this paper is to develop some new families of fractional
Sobolev spaces and their accompanying theory in one dimension. Unlike the
existing fractional Sobolev space theories, our construction and theory are based
on the newly developed notion of weak fractional derivatives, that are analogous
to the integer order Sobolev spaces and theory. In particular, two new families
of one-sided domain-dependent fractional Sobolev spaces are introduced and
analyzed, they reveal more insights about another family of so-called symmetric
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fractional Sobolev spaces. As in the integer order case, the focus of this study is
to establish key theorems/properties in those new fractional Sobolev spaces, such
as density/approximation theorem, extension theorems, one-sided trace theorem,
and various embedding theorems and Sobolev inequalities.

It is expected that the results of this paper lay down a solid theoretical foundation
for systematically developing a fractional calculus of variations theory and a frac-
tional PDE theory as well as their numerical solutions in subsequent works.

The paper is organized as follows. In Sect. 2, we introduce some preliminaries,
in particular, we recall two widely used definitions of existing fractional Sobolev
spaces, and the definitions of weak fractional derivatives and their characterizations.
In Sect. 3, we first introduce our new families of fractional Sobolev spaces using
weak fractional derivatives in exactly the same spirit as the integer order Sobolev
spaces were defined. We then collect a few elementary properties of those spaces.
Section 4 is devoted to the establishment of a fractional Sobolev space theory that
is analogous to the theory found in the integer order case, which consists of proving
a density/approximation theorem, extension theorems, a one-sided trace theorem,
various embedding theorems and Sobolev inequalities.

Moreover, a few connections between the new fractional Sobolev spaces and
existing fractional Sobolev spaces are also established. Finally, the paper is con-
cluded by a short summary and a few concluding remarks given in Sect. 5.

2 Preliminaries

Let R :=(—o0, ). Throughout this paper, € denotes either a finite interval
(a,b) C R or the whole real line R. I" : R — R denotes the standard Gamma func-
tion and N stands for the set of all positive integers. In addition, C will be used to
denote a generic positive constant which may be different at different locations and
£ denotes the nth order classical derivative of f for n € N. Unless stated otherwise,
all integrals /a b @(x) dx are understood as Lebesgue integrals. [7(Q2) for 1 <p < o
denotes the standard L” space. (-,-) denotes the standard L’-inner product. Also
throughout this paper we shall use the convention & := Flu] to denote the Fourier
transform of a given function u on R.

Moreover, ~D* and *D* denote, respectively, any left and right (> 0) order clas-
sical fractional derivatives equivalent to the Riemann—Liouville fractional derivative
on the space Cg"(IR); this includes Caputo, Fourier, and Griinwald-Letnikov frac-
tional derivatives (cf. [26], also see [8, Section 2]). £D* denotes either ~D* or *D*.
In the case Q = (a, b), for any ¢ € C°(Q), @ is used to denote the zero extension of
@ toR.

2.1 Two existing definitions of fractional Sobolev spaces
Three major definitions of fractional order Sobolev spaces have been known in the

literature. Below we will only recall two relevant definitions. For the third definition,
we refer the reader to [1, 17] for details.
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Definition 2.1 Let QCR, s> 0, and 1 <p<co. Set m :=[s] and 0 :=5—m.
Define the fractional Sobolev space W*”(£2) by

D" u(x) - D’"u(y)l

W(Q) := {u € W (Q); € QX 9>}7

lx — yI
which is endowed with the norm

1

(Wl + (D"l ) i1 Sp<co,

”u”ﬁ/r,p(g) ‘= Wer(Q) .
lull ey + [D" U] oo () if p= o0,
where
1
JuG)—u@)|” :
[Wone = (fo o 2 ) dudy  if 1 <p <o
Wer(Q) |u@)—u(y)| o —
SUP( yyeax@ " if p = 0.

When p = 2, we set H(Q) := W*2(Q).

When Q =R, the following definition based on the Fourier transform is
popular.

Definition 2.2 Let s > 0 and 1 < p < . Define the Bessel potential space WW(R)
by

Wr®) = {4 € VR ¢ Wl <0, 1<p<w,

where
Wy = [ A +EMIOP & 1<p < o
When p = 2, we set H*(R) := W*2(R).
Remark 2.3
(a) It is well known (cf. [1, 23]) that WSP(Q) and WSP(R) are Banach spaces, and
HS(Q) and HS(IR) are Hilbert spaces.

(b) Itis also well known (cf. [1, 23]) that Hs([R{) and ﬁs(R) are equivalent spaces. In
particular,

Wl & /R 2@ P de. )
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However, WP (R) and Wep (R) are not equivalent spaces for p # 2.

(c) Although the definitions above have some kind of differentiability built in, nei-
ther of them are analogous to the definitions used in the integer order case which
are constructed using weak derivatives.

2.2 Weak fractional derivatives

Like in the integer order case, the idea of [8, 9] to define weak fractional deriva-
tives *D%y of a function u is to specify its action on any smooth compactly sup-
ported function ¢ € Cy°(€), instead of knowing its pointwise values as done in
the classical fractional derivative definitions.

Definition 2.4 Foru € L'(Q),

(i) afunctionv € Llloc(Q) is called the left weak fractional derivative of u if

/ v)@(x) dx = (=1 / ux)*D*p(x)dx Vo € CP (L),
Q Q

we write “D%u = v;
(i) afunctionw € LIIOC(Q) is called the right weak fractional derivative of u if

/ w(x)@(x) dx = (=D / u(x)"D*@(x)dx Vo € C(Q),
Q Q

and we write D% 1= w.
Remark 2.5

(a) Unlike the integer order case, there are numerous nonequivalent definitions of
classical fractional derivatives (cf. [8, 9, 26]). Due to this, we exclusively refer-
ence the weak fractional derivatives D%, which serves as a unifying fractional
derivative concept.

(b) It is easy to check [8, 9] that the above weak fractional derivatives are well
defined. It should also be noted that the above definition appears to be exactly the
same as that of the integer order case, however, there is a foundational difference,
that is, *D“ ¢ are not compactly supported anymore because of the nonlocal pol-
lution effect of fractional order derivatives, which causes all the major difficulties
in the weak fractional differential calculus [9] and in this paper.

We conclude this section by quoting the following characterization theorem
of weak fractional derivatives and the Fundamental Theorem of Weak Fractional
Calculus (FTwFC). Proofs can be found in [8, Theorem 4.1 and 4.2] and [8, The-
orem 4.5], respectively.
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Theorem 2.6 Let Q = (a,b) or R and u € L' (Q). Then, v =D € LIIOC(Q) if and
only if there exists a sequence {uj};:l C C*®(Q) such that up—uin LY (Q) and
iD”uj —>vin LIIOC(Q) as j — oo.

Theorem 2.7 Let Q= (a,b) CR and 0 < a < 1. Suppose that u € [F(Q) and
*D%u € LP(Q) for some 1 < p < oo. Then, there holds

U= cli_‘”lci + D% ae. inQ, )

where 1% denote the right/left fractional integral operators (cf. [8, 26]),

S B AR i¢) g ] /b o)
’f(X)"r(m/a G-y TR ) G

and
K = — @), KN = (-0
s ._ I°f(a) s . I°f(b)
¢’ = , ¢ = .
- I'(o) + I'(o)

3 New families of fractional Sobolev spaces

With weak fractional derivatives in hand, it is natural to define fractional Sobolev
spaces in the same manner as in the integer order case. The goal of this section is
exactly to introduce new families of Sobolev spaces based on such an approach.

3.1 Definitions of new fractional Sobolev spaces

We now introduce our fractional Sobolev spaces using weak fractional derivatives
as follows.

Definition 3.1 For a > 0, let m := [a]. For 1 < p < oo, the left/right fractional
Sobolev spaces *W*P(Q) are defined by

EWPQ) = {u € W(Q) : *D"u € I(Q)}, 3)
which are endowed, respectively, with the norms

1
(Nl + 15Dl ) ) i1 <p <o,
”M”Wm.oo(g) + ”iDaM”Lm(g) lfp = 0.

”“”rwa-p(g) =

Definition 3.2 For « > 0 and 1 < p < oo, the symmetric fractional Sobolev space
is defined by
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WP (Q) 1= "W (Q) nTW(Q), )
which is endowed with the norm

1
(Wl g+ Ml ) i1 Sp <0 o
]~ wae gy + Nl oo if p=oco.

lellyery =

Remark 3.3 For a > 0, let m := [a] and 6 := a — m. Using the semigroup property
of weak fractional derivatives, it is easy to see that

EWP(Q) = {u € W (Q) : D"(*D°u) € L'(Q)} (7)
and
1
14 1+ Yo p P :
Nl ooy == (”u”W"‘«”(Qﬁ' ID*EDrwl ’(Q>> flsp<o. ()
lullynegy + D" ED W o) if p = co.

3.2 Elementary properties of new fractional Sobolev spaces

Below we gather several basic properties of the newly defined fractional Sobolev
spaces. Since their proofs are straightforward, we omit them to save space and refer
the reader to [8, Section 4] for the details.

Proposition 3.4 Leta > 0,1 < p < o0, and Q C R. Then, |||\« s q) are norms on

EW*P(Q), which are in turn Banach spaces with these norms. Consequently, W*P(Q)
is also a Banach space. Moreover, *W*2(Q) are Hilbert spaces with inner products

(u,v), 1= u,v) + (iD”u, iD”’v) = / uvdx + / DDy dx.
Q Q
We write *tH*(Q) := TW*2(Q) and H*(Q) 1= W*2(Q).
Proposition 3.5 *W*?(Q) is reflexive for 1 < p < oo and separable for1 < p < .

Consequently, the same assertions hold for W*P(Q).

4 Advanced properties of new fractional Sobolev spaces
4.1 Approximation and characterization

In the integer order case, an alternative way to define Sobolev spaces is to use the
completion spaces of smooth functions under chosen Sobolev norms. The goal of this
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subsection is to establish an analogous result for fractional Sobolev spaces introduced
in Sect. 3.1. To this end, we first need to introduce spaces that we refer to as one-side
supported spaces.

For (a, b) C R, we set

“Cy((a,b) 1= {p € C*((a,b))| Ic € (a,b) such that (x) =0 Vx > c},
+C8°((a, b)) :={p € C®°(a,b))|Ac € (a,b) such that p(x) =0 Vx < c}.

Here, we use the notation ‘C8°((a, b)) to represent functions whose support is

not actually a compact subset of (a, b). In particular, if u € ‘C8°((a, b)), then

supp () C [a, c], which is not a compact subset of (a, b). The use of ‘CS" and +C8°

(particularly the direction indication) are chosen so that these spaces will pair with

the appropriate direction-dependent spaces ~W*” and *W*?, respectively. The need

for these and the aforementioned space coupling will become evident in Sect. 4.3.
We now introduce completion spaces using the norms defined in Sect. 3.1.

Definition 4.1 Leta > O0and1 < p < co. We define

@) Eyap () to be the closure in *W*?(Q) of C*(Q) N *W*P(Q),
(ii) +W””’(Q) to be the closure in *W*”(Q) of CX(Q) N *W*(Q),
(iii) W (Q) to be the closure in W*?(Q) of C°°(Q) N WP (Q),
@iv) W0 (Q) to be the closure in W*?(Q) of C8° Q) N WP (Q).

4.1.1 The finite-domain case: Q = (a, b)

The goal of this subsection is to establish the equivalence = yep (Q) = *W*P(Q). This
is analogous to Meyers and Serrin’s celebrated “H = W result (cf. [1, 7, 22]). It turns
out that the proof is more complicated due to more complicated product rule for frac-
tional derivatives.

Lemma 4.2 Let « >0 and 1 < p < 0. Suppose v € Cg"(Q) and u € TWP(Q).
Then, uy € TW*P(Q).

Proof We only give a proof for 0 < a < 1 because the case a > 1 follows immedi-
ately by setting m :=[a] and ¢ := a — m and using the Meyers and Serrin’s cel-
ebrated result.

Since y € C(Q), there exists a compact set K :=supp(y) C Q such
that w € C*(K). Then, there exists 0 <M < oo so that M, =max, |y| and
lwll o) = My < co.Since u € LP(Q), then trivially, we have uy € LF().

It remains to show that *D*(uy) € LP(2). To that end, by [8, Theorem 4.3] for
arbitrarily large m € N, we get
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”iDa(”W)”u’(Q)

<|ED"u - w | i) + chvk “uDby + *R® (u, yr)

Lr(Q)

< My|[*D%ul|, 0, + M, Z |Gl 1

‘U(g) + [[*R5 v o

|Ck| |Q|k_a||u||zﬁ(g)
—a)l'k—a)

< M0||+Dau||U(Q) +M, Z + ”iRi(”’ V’)”U(gz)’

where M, := sup |D*y(x)| taken over 1 < k < m and x € Q. Clearly, M, < oo since
v € CP(Q). Since u, *D*u € LP(Q) and

|G| - 1Q1 (1 + a)|Q|
k—alk—a) (k—a)(k+ DL —k+a)|

the first two terms on the right-hand side of the above inequality are finite.
It remains to show that the remainder term is also finite in L”(€2). To be precise,
we consider the case for ~R% (u, ). By its definition, we get

(—])m+1 X u(y) X ) .
m!I'(—a) (x — y)l+e dy/y 14 (D)(x—2)"dz

|u(y)] m
e a>|/ / Gy T

— —— m—a+1
= A Dira) | M

"R (u, w)()| =

where M, := sup,cq |y (x)|. Since I'(—a) # 0, the coefficient is finite. The same
estimate holds for +R‘fn(u, y) as well. Thus,

M
R (y, < 3 * pm—a+1
” m(u W)”IJ’(Q) - H(m + l)'IF(—a)| |ul ©)

M |Q|m a+1”u”lﬂ(9)
(m + DIm—a + D|T(=a)|T(m — a + 1)

This proves that *D*(uy) € LP(Q), consequently, uy € *W*P(Q). O

We are now ready to state and prove the following fractional counterpart of Mey-
ers and Serrin’s “H = W” result.

Theorem 4.3 Leta > O and1 < p < co. Then, *EW(Q) = TW(Q).

Proof Since *W®*P(Q) are Banach spaces, by the definition, we have

iW‘”’(Q) C *W*?(Q). To show the reverse inclusion *W*?P(Q) D TW*P(Q), it suf-
fices to show that for any € > 0 and u € *W*?(Q), there exists v € C*(Q) such that
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u—v€*Wr(Q)and||u — v||yuq) < €. Thatis, C*(Q)is dense in =W*?(Q). This
will be done in the same fashion as in the integer order case given in [22] (also see
[1, 7]). Below we shall only give a proof for the case 0 < @ < 1 because the case
a > 1 follows similarly.

Fork=1,2...1et

Qk={er:Lﬂ<kdemaﬁQ)>%}
For convenience, let Q_; = Q, = §J. Then,
0={Q: 9 =2,\%.,}

is an open cover of Q. Let {y; };2, be a C*-partition of unity of €2 subordinate to ©®
so that supp(w; ) C ;. Then, v, € C(L}).

1 o ! s
If0<e< T let #, be a C* mollifier satisfying

supp(ng) C {x D x| < ;}
k+ Dk +2)

Evidently, #, * (y/ku) has support in €, +2\§k_2 CC Q. Since yu € TW*P(Q) we

can choose 0 < g, < e such that

3

M, * (yu) — yu ewer@) < 5

Letv= 2121 fe, * (yru). On any U CC Q only finitely many terms in the sum can
fail to vanish. Thus, v € C*(Q). For x € €, we have

k+2 k+2

uw = Y @, v@ =Y (1, ).
J=1 J=1

Therefore,

k+2
Z Me, * (y;u) — wiu
J=1

k+2
<2
=

Setting k — oo and applying the Monotone Convergence theorem yields the desired
result ||u — V||« yyenq) < €. The proof is complete. O

”l/l - V”twa’p(gk) = EWar(Q,)
A S

1
e —mmmm.
cwer ~ S Dk +2)

ne, * (W) = wju

One crucial difference between integer order Sobolev spaces W*?(Q) and frac-
tional order Sobolev spaces TW*P(Q) (for 0 < @ < 1) is that piecewise constant
functions are not dense in the former, but are dense in the latter (see the next the-
orem below). Such a difference helps characterize a major difference between the
fractional order weak derivatives and integer order weak derivatives.

X Birkhauser



New families of fractional Sobolev spaces Page 110f40 46

Theorem 4.4 Let Q = (a,b),0 < a < land1 < p < oo so that ap < 1. Then, piece-
wise constant functions are dense in *W*?(Q).

Proof Let € > 0 and u € TW*P((a, b)) for 0 < @ < 1. The case when a > 1 follows

as a direct consequence of the definition of the Riemann-Liouville derivative and

the calculations below. Since C*®((a, b)) is dense in TW*?((a, b)), then there exists

v € C*((a, b)) such that|{u — ||« yer(qp) < % Moreover, choose a piecewise constant

f;ﬁlction w such that sup,, [v(x) —w)| < %max{lb —a|'=® |b—al|} =: M.
en,

llu = wll; =i} + v =wll}

((a,b)) < lu ((a.b)) Lr((a,b))

<- /|v—w|pdx< +< >|b—a|<e
M

Similarly, on noting that #*D*w exists and belongs to LP((a, b)) while incorporating
the assumption on v, we have

”iDa” - iDaW”p)((a b))

< ||+Da” = =Dy + P = DWW iy

< z + ||iD"v - —D”w”p)((a!b)),

and the last term can be bounded as follows:

b
d v(y) —w(y)
*na +*na p —
=D — =Dl ) = / a / (x My "
<&
2M (x a)"l’ 2'
This proves the assertion. O

4.1.2 Infinite domain case: Q = R

The approximation of functions in the fractional Sobolev functions on R is much
easier than the case when Q = (a, b). In this case, all of the legwork has already
been done in the characterization theorem for weak derivatives (see Theorem 2.6).

Theorem 4.5 Leta > 0and1 < p < 0. Then, C°°(IR) is dense in TW*P(R). Hence,
+W‘“’([R) +W‘”’(R) TWP(R).

Proof We only give a proof for the case 0 < @ < 1 since the case a > 1 follows simi-

larly. Let u € *W*?(R). By the same argument used to prove Theorem 2.6 (see [9,
Theorem 3.9]), it follows that there exists a sequence {“j};l C CS"(IR) such that
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u; = uin IP(R) and *D%u; - *D*u in LP(R) because *D*u € LF(R). The proof is
complete. a

4.2 Extension operators

In this subsection, we address the issue of extending Sobolev functions from a finite
domain Q = (a, b) to the real line R. As we shall see below, constructing such an exten-
sion operator in *W*”(2) requires a different process and added conditions relative to
the integer order case. Recall that spaces *W*?(Q) differ greatly from integer Sobolev
spaces due to the following properties: (i) *W®*? is direction-dependent and domain-
dependent; (ii) fractionally differentiable functions inherit singular kernel functions;
(iii) continuity is not a necessary condition for fractional differentiability; (iv) compact
support is a desirable property to dampen the singular effect of the kernel functions
and nonlocality.

Moreover, we also note that due to the nonlocal effect of fractional derivatives, zero
function values may result in nonzero contribution to fractional derivatives, controlling
the nonlocal contributions is also the key in the subsequent analysis.

4.2.1 Extensions of compactly supported functions

We first consider the easy case of compactly supported functions. In this case, we show
that the trivial extension will do the job.

Lemma 4.6 Let Q= (a,b), a>0, and 1<p<oo. If ue*W*(Q) and
K :=supp(u) CC Q, then the trivial extension ii belongs to TW*P(R) and there
exists C = C(a, p,K) > 0 such that

”ﬁ”iww(R) < C“”“rww(g)-

Proof Let {uj}]?‘i1 C C°(L2) be an approximating sequence of u and define

() 1= uj(x)ifxEQ,
YT 00 ifxeR\Q.

Clearly, ||#;]| ;p®) = ll4;ll 1) < 0. Let ¢ € C°(R) and by the integration by parts
formula for classical fractional derivatives (cf. [8, Theorem 2.5]), we get

/ith"(p:/iD“ﬁjqo.
R R

For clarity, let supp(#;) C K C (c,d) CC (a, b) and we look at the left derivative.
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P P P
D = 20y * 0]
” Y L[R) Y u’<(u,b>)+ @) Lr((b,o0))
e |IP o rd u;(y) P
ol [ 7
@by fy e (x— )it
14
(b—a)s

p
<||-p~ H oo _wmar
- ” 4 Lr((a,b)) + ”MJ” (@b) (d — pyp+a-1

Then, there exists C = C(a, p, K) such that

|7
Now, we need to show that the appropriate limits are realized. By construction,

= [[ull+ yar(q) Therefore, lim,_, ., || < o0. Let £ > 0 and choose

J|= Wer(R)

<C Hu .
£Wer(R) Hlzwar(@)

u.
J £ Wap(Q)
sufficiently large m and n so that

|, — ﬁnniww(R) < Cllu, - ”m”rwwg) <E.

&)

Hence, {ﬁj}i: . is a Cauchy sequence in TW*?(R). Since *TW*”(R) is complete, there
exists v € TW*(R) such that u; =~ vin =W*P(R). We claim finally that v = it almost
everywhere. For sufficiently large j, we have that

-, s“a—a” +||u.—v||
” “l/(R) ' D®) ' LR)

= ”u—u” +||17t-—v” <e.
J Lr(Q) J L'(R)

Therefore, v = ii almost everywhere in R. This concludes that the trivial extension &
satisfies the desired properties on compactly supported functions. O

Corollary 4.7 The same result holds for any u € W*P(Q) with the same
construction.

4.2.2 Interior extensions

For any function u € TW*P(Q) and Q' cC Q, we first rearrange u in Q\Q' so that
the rearranged function u* has compact support in Q and coincide with u in Q'. With
the help of such a rearrangement and the extension result of the previous subsection
we then can extend any function u in *W*?(Q) to a function in *W*”(R) with some
preferred properties. We refer to such an extension as an interior extension of u.

Lemma 4.8 Let Q = (a,b) and a > 0. For each Q' CC Q, there exists a compact
set K € Q and a constant C = C(a, K) > 0, such that for every u € *W*P(Q), there
exists u* € TW*P(Q) satisfying

1) u*=uae inQ,
(i) supp(u*) C K,
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(i) N leyery < Clltllsyer -
( ((9))

Proof Again, we only give a proof for the case 0 < a < 1 because the case a > 1
can be proved similarly. Choose Q' cC Q. Let {Bi}f; , be a cover of Q' with a sub-
ordinate partition of unity {wi}f; , € C®(Q) in the sense that supp(y;) C B; for
i=1,2,...,N. Define u* : Q> R by u* :=uy with y :=E?i1 y;. Note that
u* = u almost everywhere on Q' and supp(u*) C K := UB,. We need to show that
u* € TW*r(Q). Of course,

“u*“lﬁ(ﬂ) = ||MW||U(Q) = ””W”m(x) < ||”||U(K) < ”””U’(Q)'

Next, by the product rule for weak fractional derivatives [8, Theorem 4.3], we get

m
D% =ED%u -y + Z C(k, @) I"*uD*y + R (u, y).
k=1

It follows by direct calculations that
=D u* | oy < Cllullsyyariy-

Hence, u* € *W*?P(Q) and there exists C > 0
such that assertion (iii) holds. The proof is complete. |

Now, we are ready to state the following interior extension theorem.

Theorem 4.9 Let Q = (a,b) and a > 0. For each Q' CC Q, there exist a compact
set K C Q and a constant C = C(a, p,K) > 0 so that for every u € *W*P(Q), there
exists a mapping E . TW*P(Q) - *W*(R) so that

(1) Eu=ua.e inQ/,
(i) supp(Eu) C K,
(iii) ||EM||quw(R) < C||M||:ww(sz)~

We call Eu an (interior) extension of u to R.

Proof Foru € *W*P(Q), letu* € *W*?(Q) denote the rearrangement of u as defined
in Lemma 4.8, let K CC Q and C(a, K) be the same as well. Since u#* has a compact
resolvent in Q, we can invoke Lemma 4.6 to conclude that Eu := u* satisfies the
desired properties (i)—(iii) with C = C(a, p, K)C(a, K). The proof is complete. O

Remark 4.10 We emphasize that the extension operator E defined above depends on
the choice of subdomain €', on the other hand, it does not depend on the left or right
direction, consequently, E also provides a valid interior extension operator from the
symmetric space W*? (L) to the symmetric space W*?(R).

X Birkhauser



New families of fractional Sobolev spaces Page 150f40 46

4.2.3 Exterior extensions

In this subsection, we construct a more traditional (exterior) extension so that the
extended function coincides with the original function in the entire domain Q where
the latter is defined. As we alluded to eatlier, if we do not want to pay in part of the
domain, we need to pay with a restriction on the function to be extended.

Lemma 4.11 Let Q = (a,b), 0 <a <1 and 1 £ p < . Assume that ap < 1 and
U ER so that u> p(1 —ap)~! (hence, p > p). Then, for every bounded domain
Q' DD Q, there exists a constant C = C(a,p, u,Q') >0 such that for every
u € TWP(Q) N LH(Q), there exists u* € *W*(Q') such that

(i) ut*=uae inQ,
(i) supp(u*) cc &/,
(1) [lu® || yeo@ry < Cl1llewery + ull gy )-

Proof Let u € TW*?(Q) N L*(Q). For ease of presentation and without loss of the
generality, we only consider the left weak fractional derivative with Q = (0, 1).

Let Q' = (-1,2), {B;}YY, C Q' be a cover of Q and {y;}"" | be a subordinate parti-
tion of unity so that supp(qo,) CcB;fori=1,2,...,N.

Define u™ = u y in ', where

N 0 lfx € (_170)7
=Yy, wE:=qu if x € (0, 1),
i= ux—1) ifxe(,2).

Notice that u~ is a periodic extension of u to the right on interval (1, 2).

Trivially, [|lu~ ||y < 2||ull () It remains to prove that u™ is weakly differentia-
ble in L7(Q'). To this end, let {u; };:1 C C(Q) such that u; — uin ~W*P() N LH(€)
as j — oo. Let u; 1= ﬁj_y/ and ﬁz_ is the extension of u; to Q' constructed in the same

way as u_is done above.
Since up—u in L#(Q), by the construction, we have u u —u and u — u” in

LA(Q). Hence {u }°° is bounded in LA(Q'). {~ Du; }°° is bounded in LP(Q)

because “D*u; — D"u in I7(Q). Let M > 0 be such a bound for both sequences.
Now, using the fact that "D"‘ui‘ = ‘D"u].‘ and the definition of uj_, we have
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d [ Mj_()’) r
a/—1 (x =y

2
. — . —
I gy = 17D Wy = [

| < u(y) P 2 Uu(y) g
e e [ |f
o dx (x_y)a 1 (x_y)1+a

Ll
LA S e=p)e
2 rtu(y) i
< |ImD%|)? +/ e
< ImD*ully, 0.1y | (x — y)l+a Y
2 Yuay ’
+/ d ! dy| dx.
P Si (e=p)

Next, we estimate the last two terms above separately. To estimate the second to the
last (middle) term, let v be the Holder conjugate of u, then we have

2 ! uj(}’)
1+a dy
1 o x=y)
2 1 £
dy v
r -
< ””j“Lu((o,l))/1 (/0 (x_y)v(1+a)> dx

2
/ AP |y g
1

p

/4 p
S M ”uj”L“((O,l))

For this term to be finite, pv=' — p(1 + @) > —1 must holds, which implies that

u > p(1 — ap)~!, which is assumed in the statement of the theorem.
Lastly, to bound the final term, using the product rule, we get

/2 4 [
1

dx /, -y e
k—
< ” D% “U((O 1) + ”z Ck u W”U((l 2)

+ 7R} (),

P
dx

(4
< (I D w1, 1+ 101y )
It follows for given € > 0 and sufficiently large m, n,
£y, * p P
=D — *D*u|l}, ) < (Ilu =ty |2 yyeniqy + i = unllu(m) <e. (9

Therefore, there exists v € LP(Q') so that iD“u;—' — vin LP(Q)). It is easy to see then

that v = #*D*u* using the definition of the weak derivative. Hence *D%u* € L (Q).
This completes the proof. a
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Remark 4.12

(a) We note that there is no redundancy in assumption that
u € TWeP(Q) N L*(Q) for u > p(1 —ap)~! because it will be proved in
Sect. 4.3 that *W*”(Q) is not embedded into L#(£2) in general.
(b) It can be proved that the conditions ap < 1 and u € L#(Q) for some p < u < ©
are necessary (given the current calculations).

For the kernel to remain bounded, we must impose the condition
—1 < pv™' — p(1 + a) < 0 which implies that (1 — ap) > pu~".

Thus, it follows from (1 — ap) > O thatap < 1.

This shows that ap < 11is a necessary condition for the integrability of the kernel
function using an estimate as shown above. Moreover, if u = p, then v = p(p — 1)~}
and the inequality —1 < pv~' — p(1 + &) implies that ap < 0, which is a contradic-
tion. Hence,

we must take y > p. In particular, y = oo is allowed though not necessary. We

need only assume that u € L#() with the condition ¢ > p/(1 — ap).

(c) The exact dependencies of C on the parameters @, p, u, and Q' are not made
clear by the above proof. However, one can note that for the left direction,
C < C, + max(dist(Q, '))° where C, is a constant depending on at most a, p,
and 4 and ¢ > 0.

(d) The same result can be proven for u € W*?(Q) N L#(£2). In this case, u :=
taken to be the periodic extension over all of Q'.

—t .
u- 18

Theorem 4.13 Let Q= (a,b), 0<a <1 and 1 <p < 0. Assume that ap <1
and u €R so that u> p(l —ap)~! (hence, u > p). Then, for every bounded
domain Q' DD Q, there exists mappings E, : *W*’(Q) N L*(Q) - *W*P(R) and
C = C(a,p, Q") > 0 such that for any u € *EW*P(Q) N L*(Q),

() E,u=uae. inQ,
(i) supp(E, u) cC &,
i) IELullsyerg) < C(”U”:me(g) + ”u”Lu(Q))'

Proof For any u € TW*”(Q) N L*(Q), let ut € TW*(Q") be the function defined

in Lemma 4.11 and set E u = u*, the trivial extension of u*. It follows from
Lemma 4.6 that E__satisfies the desired properties. The proof is complete. a

Corollary 4.14 The conclusion of Theorem 4.13 also holds for functions in
W*P(Q) N LH*(Q).
4.3 One-side boundary traces and compact embedding

Similar to the integer order case, since functions in Sobolev spaces *W*?((a, b)) are
integrable functions, a natural question is under what condition(s) those functions
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can be assigned pointwise values, especially, at two boundary points x = a, b. Such
a question arises naturally when studying initial and initial-boundary value prob-
lems for fractional order differential equations. It turns out that the situation is more
delicate in the fractional order case because the existence of the kernel functions
creates a hick-up in this pursuit. We shall establish a one-side embedding result for
each of spaces *W*”((a, b)), which then allows us to assign one-side traces for those
functions. First, we establish the following classical characterization of Sobolev
functions.

Proposition 4.15 Lef (a,h) CR,0< a < 1,1 £ p < 050 that ap > 1.

(1) Ifu € “W*P((a,b)), then for any c € (a, b), there exists u € C([c, b]) so that
u = i almost everywhere in [c, b].
(i) Ifu € *W*P((a,b)), then for any c € (a,b), there exists i € C([a, c]) so that
u = i almost everywhere in [a, c].
(iii) Ifu € W*P((a, b)), then there exists it € C([a, b]) so that u = u almost every-
where in [a, b].

Proof We only give a proof for (i) because (ii) follows similarly and (iii) is proved
by combining (i) and (ii). Let u € ~W*P((a, b)) and set u* = ~I*~D*u. Then, for any
@ € Cy((a, b)), it follows by the L7 mapping properties of fractional integrals, clas-

sical fractional integration by parts, and the definition of weak fractional derivatives
(cf. [8, Theorem 2.5 and 2.6]) that

b
/ wrD@dx = / D% dx = / @ D I*"D*udx
a a
:/ @ D*udx = /

b b
= / (u—u)"Dpdx = / 17— u¥)g! d.
a a

Consequently,

Thus, 1'%y — ~I'"*y* = C a.e. in (a, b). It follows from the Fundamental Theorem
of Classical Fractional Calculus (FTcFC, cf. [8, Lemma 3.1]) that u = u* + ~D'~*C
almost everywhere. Choose & = u™ + ~D'-*C, we have that & € C([c, b]) for every
¢ € (a,b) and u = u almost everywhere. O

Remark 4.16 If a function u belongs to *W*?, then any function v = u almost eve-
rywhere must also belong to TW*?. Therefore, we do not differentiate between any
two functions that may only differ from one another on a measure zero set. Proposi-
tion 4.15 asserts that every function u € ~W%*”((a, b)) admits a continuous represent-
ative on [c, b]. When it is helpful, (i.e., giving meaning to u(x) for some x € [c, b])
we replace u with its continuous representative ii. To avoid confusion and eliminate
unnecessary notation, we will still use u to denote the continuous representative.
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Theorem 4.17 Let (a,b) CR,0 < a < land1 < p < 0. Suppose that ap > 1.

@) If ue ~W*(a,b)), then for any c€(ab), the injection
“W*P((a, b)) & C* 7 ([c, b]) is compact.
(i) If ue*W*((a,b)), then for any cé€(a,b), the injection
tWeP((a, b)) & C* 7 ([a, c]) is compact. 1
(iii) Ifu € W*P((a, b)), then the injection W*((a, b)) & C* »([a, b)) is compact.

Proof We only give a proof for (i) because the other two cases follow similarly.

Let B} be the unit ball in “W*?((a, b)) and take u € Bj. Let ¢ € (a,b). For any
two distinct points x,y € [c, b] (assume x > y), by the FTWFC (cf. Theorem 2.7), we
get

T =D%u(z) d

o) = u(y)| = CEEE

e (C ) R () L R O /
y

Y =D%u(z) 3 ~D%u(z) '
« @=2 (-2l

< | l@ -0t - -] + €,

+C,

/X D |10
——2 dz

y (x _ Z)l—a

/y “Du@[(y — ) — (x — 2)17]
a [y —2D(x — )]~

dz|.

+C,

Below we estimate each of the three terms on the right-hand side. Upon noticing
that|c! =] < Cg,a,p““”—waw(g)s

110 = @)™ = 0 = @ < Coupltll-yany )€ = al*x = |
i (11)

S CQ.,a,p”u”*Wa-f’(Q)lx_yl 7,
1

/ (x —z)"1=¥ gy :
y (12)

1
- a—-
< Ca,p“ Da“”yl((a,b)ﬂx -y,

C

a

< Cll™ P ull o apy

T =D%u(z)
i SO
[ T

Y |=D~ _ N-a _ _ N\l-a
Ca/ I"D*u@)||(y - 2) l(jca )| "
a | —2)(x—2)| (13)
_1
S Cop D ull ppapylx = y1° 7.
Substituting (11)—(13) into (10) yields
1
|u(x) = u@)| < Clx=y|*"7 Vx,y € [¢,b], (14)
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where C is a positive constant independent of x and y. Because o — [1) > 0, then B7 is

uniformly equicontinuous in C([c, b]). It follows from Arzela—Ascoli theorem that
B} has compact closure in C* 7 ([c, b]). The proof is complete. O

Remark 4.18

(a) We note that unlike the integer order case, we have proved the above embedding
results directly rather than relying on the infinite domain results and extension
theorem.

(b) From the above calculations we observe that when ci‘“ = 0, the injection can
be extended to the initial boundary so that *W*”((a, b)) < C" " #([a, b]). In fact,

c}:‘" = 0 implies that any singularity at the initial boundary is prevented; we

denote this space by

EWEP(Q) 1= {u € TWP(Q) : 77 =0). (15)

+

The above embedding theorem motivates us to introduce the following defini-
tion of trace operators.

Definition 4.19 Define trace operators ~T : ~W”((a,b)) » R by ~Tu = ~Tu| _, := u(b)
and *T : *W*P((a,b)) > Rby *Tu = *Tul|,_, 1= u(a).

It should be noted that the above proof demonstrates that we can confirm the
following trace inequality:

[*Tu] < Clltlleyeriey. (10

4.3.1 Zero trace spaces
With the help of the trace operators in spaces *W*?(£), we can define and char-
acterize different spaces with zero trace. First, we explicitly define the zero-trace

spaces and a new norm for these spaces.

Definition 4.20 Let Q = (a,b), 0 <a <1 and 1 < p < . Suppose that ap > 1.

Define
in’P(Q) ={ue*wWP(Q) : *Tu =0},
Wg”’(Q) ={ueW*”Q): Tu=0and *Tu = 0};
and the norm ||u||in~p(Q) 1= [[FD%l| gy for 1 < p < oo
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Proposition 4.21 ”ulliwgﬂ(g) defines a norm.

Proof The only thing we need to show is 0 = ||*D%ul|;,q, if and only if u = 0. The
other properties are immediately clear by the properties of the weak fractional deriv-
ative and the I” norm. Of course, if # = 0, then as a direct consequence of the defi-
nition of weak fractional derivatives, *D*u = 0 and hence ||*Du|| g, = 0. To see
the converse, assume ||*Du|| ;) = 0. Then, *D*u = 0 almost everywhere in Q,
implying that # must be in the kernel space of the derivative. Thus, u = Ck¢ for any
C € R. Taking into consideration that *7u = 0, it follows that u = 0. O

In an effort to characterize the above spaces, our goal is to link these spaces
with the completion spaces introduced in Sect. 4.1. As our notion of traces is
one-sided, this makes the use of one-sided approximations spaces (i.e., *C;°(£2))
sensible.

Lemma 4.22 Let Q =(a,b), 0 <a <1 and 1 <p < co. Suppose that ap > 1. If
u € *WH(Q)N*=Cr(Q), thenu € in)"p(Q).

Proof Let u € *W*?(Q) N *Cy (). Consider the sequence u; :=n1 * u with 5
being the standard mollifier. Then, u; € *W*(Q)N*CF(Q) and u; > u in

£Wor(Q). Thus, u € WP (Q). O
The next two theorems give characterizations of the zero trace spaces.

Theorem 4.23 Let Q = (a,b), 0 <a <1 and 1 <p < 0. Suppose that ap > 1.
Then, “—’WS”’ Q) = in’p Q) and Wg’p Q) = Wg Q).

Proof Let u € iW"’P (Q). Then, there exists {u;}?) C*CF(Q) so that u; > u in

EWEr(Q). It follows that +Tu =0 and up > u umformly on [c, b] or [a, c] for every
¢ € (a, b). Consequently, +Tu = 0. Thus, +W‘”(Q) CEW P (Q).

Conversely, let u € +Wap (). We want to show that there exists {u"} C *C(Q)
such that " — u in TW*? (Q). For ease of presentation and without loss of the gen-
erality, let Q = (0, 1) and we only consider the left space. Fix a function ¢ € C®(R)

such that
_fo ifkl<1,
P = {x if x| > 2,
and |@(x)| < |x|. Choose {uj}]i‘i] C C(Q) so that u; » u in “W*?(Q) and define the

sequence u;? =(1 /n)(p(nuj). We can show that uJ’.’ — u" in [7((0,1)). Moreover,
using the chain rule (cf. [8, Theorem 4.4]), we get
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1

- @(nu;)
"D M 0.1y = -

I’lI/tj

o(nu;)
_D“nuj + _Rg <nuj, / >

nuj

Lr((0,1))
@(nu;) d
=D

J
nu;

p(nu;)
1 _Rg (nui, ! >
n 7 nu;

J

+
Lr((0,1))

p(nu;)
4 I "R} <nuj, - >

vy T, i

1
“n

Lr((0,1))

s

Lr((0,1))

<7Dl

where

o @(nu;)

R0 <nu]-, - >

(A T72(CRD)
B /1 * () ((p(nuj)(X) ~ (p(nu,-)(y)> d
o |Jo =\ (o) nu;(y)

S/l< )] 2n)u(x) — u ()] dy)pdx
o \Jo (x—y'te lu; (0

1 X p
<orpp / ( dy > dx < 27nP.
0 0 x—=y»*

Hence, {uj’.’ }J?‘zl is a bounded sequence in ~W*P((0,1)). Thus, there exists
Vvt e IP((0, 1)) so that ‘D”uj’f — V" in L7((0, 1)) as j — oo. It can easily be shown
using the weak derivative definition that v' = "D*". Hence {u"}>, belongs to
“W*P((0, 1)). On the other hand, since “Tu = 0, then u,, € ‘CS"((O, 1)). Finally, it is
a consequence of Lebesgue Dominated Convergence theorem that 4" — u in
“W*P((0, 1)). Thus, u € “W,”((0, 1)). The proof is complete. O

P

Theorirpp4.24 Let Q= (a,b), 0<a<1and 1 <p < oo. Suppose that ap > 1.
Then, WO’ Q) = Wg‘p (Q).

Proof The same construction and proof used for the one-_s%xded closure spaces in
Theorem 4.23 can be used for the symmetric result Wg™” = W . |

At this point, we have gathered sufficient tools to prove a crucial characteriza-
tion result and a pair of integration by parts formula for functions in the sym-
metric fractional Sobolev spaces W*#(Q). Similar integration by parts formula in
*We*P(Q) will be presented in a subsequent section.

Proposition 4.25 Ler Q = (a,b). If u € W"(Q), then *T~1*u = ~T*I*u = 0. That
is, ci‘“ =cl-*=0.

Proof Letu € W;"(Q). It follows that u € C (Q). Then, we have
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X X—a
/ ”—(Y)dy‘ = lim / Mxr=2) 4
a (x=y)t= x=al fo 7l
X—a
. dz
< lim ||u”L°°(Q)/ T
X—=a 0 Z

= lim ||u| () (x — a@)* = 0.
X—=a

lim

X=a

The other trace follows similarly. O

Proposition 4.26 Let QC R, a >0 and 1 < p,q < . Suppose that ap > 1 and
ag > 1. Then, for any u € W*P(Q) and v € W*1(Q), there holds the following inte-
gration by parts formula:

/ uED% dx = (=) / viD*udx. (17)
Q Q
Proof We only give a proof for 0 < & < 1 because the other cases follow similarly.
By Theorems 4.3 _and 4.17, there exist {uj }j?'il CC®(Q)NC(Q) and
{vili2, € C®(Q) N C(Q) such that u; — u in W*P(Q) and v — v in W*9(Q). It fol-
lows by the classical integration by parts that

/uiD“vdx: lim /ujiD“vkdx
Q k= Jq

= lim /vkiD“ujdx=/ViD”udx.
Jrk—o0 Q Q
This completes the proof. O

Remark 4.27 We have used the fact that u and v are continuous up to the boundary
of Q to apply the classical integration by parts formula. Due to the inability to guar-
antee this for functions in the one-sided spaces *W*”(Q), we postpone presenting a
similar result in those spaces to Sect. 4.6.1.

4.4 Sobolev and Poincaré inequalities

The goal of this subsection is to extend the well known Sobolev and Poincaré
inequalities for functions in W'?(Q) to the fractional Sobolev spaces TW*"(Q).
We shall present the extensions separately for the infinite domain Q = R and
the finite domain Q = (a, b) because the kernel functions have a very different
boundary behavior in the two cases, which in turn results in different inequali-
ties in these two cases.

Two tools that will play a crucial role in our analysis are the I’ mapping prop-
erties of the fractional integral operators (cf. [8, Theorem 2.6]), and the FTwFC
(cf. Theorem 2.7).
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4.4.1 The infinite domain case: Q = R

Due to the flexibility of the choice of 0 < a < 1, the validity of a Sobolev inequal-
ity in the fractional order case has more variations depending on the range of p.
Precisely, we have

Theorem 4.28 [et 0 <a<land1 <p< i Then, there exists a constant C > 0
such that for any u € L'(R) N TW*(R).

__P
=l

el ) < C”iDaU”U(R)s P (18)

p* is called the fractional Sobolev conjugate of p.

Proof Tt follows from the density/approximation theorem that there exists a sequence
{u; }J?’;l C CP(R) so that u; — u in *W*(R). Note that by construction, we also have

u; — win L'(R). Then, by the FTcFC (cf. [8, Theorem 3.2]), we get
u(x) = *1"*Du(x) Vx € R,
By the I” mappings properties of fractional integrals (cf. [8, Theorem 2.6]), we have
N ll ey = IFI=D il oy < CIFD il ey < 00
Consequently,
e, = wll ey < CIIFDw,y = *Du, llpwy = 0 as m,n — 0.

Hence, {uj }Ji’il is a Cauchy sequence in L*(R). Therefore, there exists a function

v € I7"(R) so that u; — v in [/ (R). Recall that we also have u; — u in L7(R). More-
over, for every ¢ € Cy°(R)

/viD“qodx =lim [ 4 D%dx=lim | *D"u;pdx
R

J—oo R Jj—oo

R
=/iD"u(pdx=/u¢D“(pdx.
R R

Thus, v = u almost everywhere and
”u”l}’*(R) S C||iD“u||U)(R).

The proof is complete. O

Remark 4.29 By the simple scaling argument, which considers the scaled function
u;(x) :=u(ix) for A > 0, it is easy to verify that ap < 11is a necessary condition for
the inequality to hold in general. Similarly, the Poincaré inequality does not hold in
general, as in the integer order case, when Q = R.
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4.4.2 The finite-domain case: Q = (a, b)

One key difference between the infinite domain case and the finite domain case is that
the domain-dependent kernel functions x“(x) := (x —a)*" and k%(x) := (b —x)*"!
(0 < @ < 1) do not vanish in the latter case. Since both kernel functions are singular
now, they must be “removed” from any function u € *TW*”(Q) to obtain the desired
Sobolev and Poincaré inequalities for u.

Theorem 4.30 et O0<a <1 and 1 <p< i Then, there exists a constant
C=CQ,a,p) > 0 such that
[|lu — Cl_a’(;”U(Q) < “iDaM”U(Q) Vi<r<p" 19)

+

Proof 1t follows by the L” mapping properties of the fractional integrals (cf. [8, The-
orem 2.6]) and the FTWFC (cf. Theorem 2.7) that

1—
”u — Ci aKi“U’*(Q) = ”ilaiDaM“D;*(Q) < C”iDau”L/)(Q).

Since Q = (a, b) is finite, the desired inequality (19) follows from the above inequal-
ity and an application of Holder’s inequality. The proof is complete. O

Remark 4.31 An important consequence of the above theorem is that it illustrates
the need for u € L#(Q) with u > p* in the extension theorem (cf. Theorem 4.13)
because the fractional Sobolev spaces *W*”() may not embed into L#(Q) for
u > p*in general.

Repeating the first part of the above proof (with slight modifications), we can eas-
ily show the following Poincaré inequality in fractional order spaces *W*”(Q).

Theorem 4.32 (Fractional Poincaré) Let 0 < a < 1 and 1 < p < oo. Then, there
exists a constant C = C(a, Q) > 0 such that

lu = k2 o) < CIFD Ul Y € *WH(Q). (20)

It is worth noting that no restriction on p with respect to a is imposed in Theo-
rem 4.32 because no embedding result for fractional integrals is used in the proof.
The Eq. (20) is the fractional analogue to the well known Poincaré inequality

lu = ugll;pq) < CliDullpq) Yu € WP (Q) [@3))

where ug 1= |Q|™" [, udx [7]. In the space W'¥(Q), a specific kernel function (a
constant, i.e., ug), that depends on u, is subtracted from the function u. In (20),
the analogue to this constant kernel function, which must be subtracted from u, is
c!~*k?, where the dependence on u is hidden in ¢!~

Moreover, to obtain a fractional analogue to the traditional Poincaré inequality

lull iy < CliDull iy Vu € Wy (<), (22)
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we have two options. The first one is to simply impose the condition u € EWer(Q)
(see (15)). It is an easy corollary of Theorem 4.32 that

lull ey < CIED ullypq  Yu € W P(Q). (23)

From the perspective of Poincaré inequalities, this condition is comparable to a
mean-zero condition imposed on the Sobolev space W!(Q). To establish the second
set of conditions under which the estimate (23) can hold, we first need to establish
the following lemma.

Lemma4.33 Letr Q = (a,b) and 0 < a < 1. If u € W*P(Q), then ci‘” = 1%ub) =0
and c'=* 1= "I%u(a) =0

Proof Letu € W*P(Q). It follows thatu € C (ﬁ). Then, a quick calculation yields

[ o] < tim - 0 =0

A similar calculation can be done for c}r“". The proof is complete. O

= lim

X—=a

Now we can formalize the desired Poincaré inequality.

Theorem4.34 Let Q CR,0< a < 1,and1 < p < 0. Then, there exists a constant
C = C(a, Q) > 0 such that

lullp) < CIIFD ullypq) Yu € WH(Q). (24)

Proof The proof follows as a direct consequence of the FTWFC (cf. Theorem 2.7),
Lemma 4.33, and the stability estimate for fractional integrals. O

Another question may come to mind is whether such an estimate can be
established in the one-sided zero-trace spaces *W,, “’(Q). Functions belonging to

W7 (Q) do not guarantee that c,”* = 0. Hence, Wap(Q) ¢ *W*P(Q) and such
an 1nequahty does not hold in +W” () in general.

4.5 The dual spaces *W~%9(Q) and W~-%9(Q)

In this subsection, we assume that ] <p < ccand1 < g < oosothatl/p+1/g=1
Definition 4.35 We denote TW~%4(Q) as the dual space of in’p (Q) and W—*4(Q)
as the dual space of W;”(Q). When p =2, we set *TH™*(Q) := “—'W(;"’Z(Q) and

H™ Q) := W-*(Q).

It is our aim to fully characterize these spaces; as is well known in the case of
integer order Sobolev dual spaces, W~19(Q) (cf. [3]), in particular, for g = 2.
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We will begin with the symmetric spaces since the presentation is more natural and
easily understood than that for the one-sided spaces. It is a consequence of Proposi-
tions 4.25 and 4.21 that

WEP(Q) € L2(Q) € W™I(Q)

where these injections are continuous for 1 < p < oo and dense for 1 < p < oo since
Wg P(€) and LP(Q) are reflexive in this range. To formally characterize the elements
of W=*4(Q), we present the following theorem.

Theorem 4.36 Let FF € W=*4(Q). Then, there exists three functions, f,.f,.f, € L4(Q)
such that

(F,u)=/f0udx+/f1_D"udx+/f2+D“udx Vue W' Q) (25
Q Q Q
and

Nl w-eagq) = max{ Woll oy Vi ll Loy 12 ll Loy } (26)
When Q C R bounded, we can take f, = 0.

Proof Consider the product space E = L[P(L2) X [P(Q) X LP(Q) equipped with the
norm

21l = Aol iy + A1 p ) + 2l 1)
where h = [hy, by, hy]. The map T : W;"(Q) — E defined by
T(w) = [u, D%u, *D"u]

is an isometry from W (Q) into E. Given the space (G, || - |) be the image of Wy
under T (G = T(W,"(Q))) and T~' : G — W"(Q). Let F € W™*4(Q) be a con-
tinuous linear functional on G defined by F(h) = (F,T~'h). By the Hahn-Banach
theorem, it can be extended to a continuous linear functional S on all of E with
IS|lg- = ||F|l- By the Riesz representation theorem, we know that there exists three
functions fy, f|,f, € L(€) such that

(S,h)=/f0hodx+/f1h,dx+/f2h2dx Vh=[hy, h, hy] €E.
Q Q Q

Moreover, we have
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(S, h)| 1
= Johodx+ [ fihydx+ [ foh, dx‘
Al lAllgl/e Q Q

1
< ||h|| <Ilfo||m(g)llhollmg)+ Wi ll oy 1 ll iy + Illequ(g)Ilhzllmgz))

< max { 1yl Wi s Wiallro -

Upon taking the supremum, we are left with

111 = max{ Wyl W v Wallira, -

Furthermore, we have

(S,Tu):(F,u):/foudx+/f1_D"’udx+/f2+’Daudx Yue W' (Q).
Q Q Q

When Q is bounded, recall that||u||p o = =" D"ullu,(g) + ||+D“u||U(Q) Then, we can
repeat the same argument with E = L/’(Q) x [P(Q) and T(u) = [T D*u, *D*u]. The
proof is complete. O
Remark 4.37

(a) The functions f, f;,f, are not uniquely determined by F.

(b) We write F = f, + TD%; + ~D%f, whenever (25) holds. Formally, this is a con-
sequence of integration by parts in the right-hand side of (25).

(c) The first assertion of Proposition 25 also holds for continuous linear functionals
on W*?(Q) (1 < p < ). That is, for every F € (W*”(Q))*,

(F,uy = /f()udx+f1_Daudx+f2+'D”udx Yu e W (Q)
Q
for some functions f, f;,f, € L1(€).

Of course, the above results also hold for functions in H~%(€). However, in this
case, the use of the inner product and Hilbert space structure allows for improved
presentation and richer characterization. We state them in the following proposition.

Proposition 4.38 Let F € H™*(Q). Then,

IF]| g-o(q = inf </ Z £ > s fosfiofo € LA(Q) satisfy (4.17) ¢ (27)

Proof We begin with an altered proof of (25) for the special case p = 2. Not only is
the proof illustrative, but we will also refer to components of it to prove necessary
assertions of this proposition.
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For any u,v € Hg(€2), we define the inner product
(u,v) = /(uv + "D D% + +D"u+D"v) dx.
Q

Given F € H™%(Q), it follows from Riesz Representation theorem that there exists a
unique u € H{j(Q) so that (F,v) = (u,v) for all v € Hj(Q); that is

(F,v) = /g(uv + " Du" D% + +D“u+’D"‘v) dx Vve HjQ). (28)
Taking

fo=u fi="D, f="D, (29)

then (25) holds.
It follows by (25) that there exists g, g1, g, € L*(€) so that

(F,v) = /Q(gov +8, D'v+g,"D%)dx Vv € HJ(Q). (30)
Thus, taking v = u in (28) and combing that with (29) and (30) yield
/Qfo2 + 4= /Q(u2 + (CDu)* + (*Du)?) dx
= /Q(gou +g, D'u+g,"Du) dx < '/Q(g(z) +g+g5) dr.

It follows from (25) and the dual norm definition that for ||v|| @ S 1,

1N ey < </Q(fo2 +f12 +f22) dx>2'

Setting v = u/||ul| HY(Q) in (28), we deduce that

11l ey = </Q(fo2 +f12 +f22) dx>2'

Therefore, (27) must hold. The proof is complete. O

Remark 4.39 Similar to the integer order case, we define the action of
veEL(Q)CH*Q)onanyu € H(€2) by

(v,u):/gvudx. 31)

That is to say that given v € L*(Q) C H™*(Q), we associate it with the bounded lin-
ear functional v : Hj(2) — R defined by (v, u) = v(u) = fQ vu. It is easy to check
that this mapping is in fact continuous/bounded on H{j(£2).
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Now we turn our attention to dual spaces of one-sided Sobolev spaces. The situ-
ation in this case is more complicated. This is due to the fact that there are several
variations of the parent spaces *W*? of which we might consider. To be specific, we
consider a space W where

We (oW 2w e e,

Thus, we want to know which of these spaces produces a dual space that can be
characterized in similar fashion as for the symmetric space W,

To answer this question, we first proposed that to prove a rich characterization of
dual spaces, we must first have the continuous and dense inclusion W C I ¢ W* for
appropriate ranges of p. In fact, it is necessary to have the inequality |[u||;, < C||u||y
for every u € W. More or less, this question is informed by the existence of fractional
Poincaré inequalities in W. It is known that in general, [|u|[,, © £ C||ED%u|| ) for
every u € W*P(Q) and u € *W;”, and note =W"(Q) % +W‘“’(Q)) For these rea-
sons, we are left to characterize the dual space +W“" A(Q) 1= (+W“P(Q))*

It is easy to see that there holds

WeP(Q) € LP(Q) C *WI(Q), (32)
where the injections are continuous for 1 < p < oo and dense for 1 < p < oo since
*W*P(Q) is reflexive in this range.

Now we are well equipped to characterize *W~*4(Q). For brevity, we will state

the results and omit the proofs since each of them can be done using the same tech-
niques as used in the symmetric case for the spaces W~*4(Q2) and H~*(Q).

Theorem 4.40 Let F € TW=*4(Q). Then, there exists two functions, fy,f; € L1(€2)
such that

(F,u), = / (fou +fi*Du) dx Vu € *W*P(Q) 33)
Q

and

1 lle-eacy = max{ Wollusay 1 s |- (34)

Proposition 4.41 Let F € *H *(Q). Then,

Wl p-aery = inf{ ( /Q (3 +1£7) dx> ° fofi € LA(Q) satisfying (4.25) }

(35)
Remark 4.42 Similar to the symmetric case, we define the action of
v € L*(Q) C TH*(Q) on any u € *H*(Q) by

(v,u) = /vudx. (36)
Q
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4.6 Relationships between fractional Sobolev spaces

In this subsection, we establish a few connections between the newly defined
fractional Sobolev spaces *W*”(Q) and W*P(Q) with some existing fractional
Sobolev spaces recalled in Sect. 2.1. Before doing that, we first address the issues
of their consistency over subdomains, inclusivity across orders of differentiabil-
ity, and their consistency with the existing integer order Sobolev spaces.

Proposition 4.43 Let Q = (a,b),0<a<f<land1 <p < oo. If u € WP (Q),
thenu € TW*P(Q).

Proof By the FTWFC (cf. Theorem 2.7), we have
u=c, "kl +£P*DPy and by the inclusivity result for weak fractional
derivatives,

*+D%u exists and is given by

D% = c 7 i + 2o phy
ﬂ 13 - +7f—a+
t ia +I/i a+Dﬂu
= (u —=PED ﬂu)lc;“ + x[f-exphy.

It follows by direct estimates that there exists C = C(Q, a, f, p) so that
”iDau”U(Q) < C||”||twﬁw<9)-

The proof is complete. O

Remark 4.44 This inclusivity property is trivial in the integer order Sobolev spaces,
but may not be so in fractional Sobolev spaces due to lack of a universal semigroup
property for fractional derivatives. However, in our case, the proof is not difficult
thanks to the FTwFC.

Unlike the integer order case, the consistency on subdomains is more difficult
to establish in the spaces *W*?. The following proposition and its accompanying
proof provide further insight to the effect of domain-dependent derivatives and
their associated kernel functions.

Proposition 4.45 Let Q = (a,b),a > 0,1 < p < o0, u > p(1 — ap)~'. Suppose that
u € EW*P(Q) N L*(Q). Then, for any Q' = (c,d) C Q,u € *TW*P(Q").

Proof Since (c,d) C (a,b), it is easy to see that |[ullp«cq) < 14l p(ap))- Thus, we
only need to show that u has a weak derivative on (c, d) that belongs to L”((c, d)).

Choose {y; }J?'il C C*((a,b)) so that u; — u in *W*P((a,b)). It follows that
u; € C*([c,d]) and for any ¢ € C;°((c,d)) there holds for the left derivative
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d d d
/ uD"pdx = lim / u; D dx = lim / Diu;pdx.
¢ jooo f. oo J.

Then, we want to show that there exists v € L”((c, d)) such that

d d
lim/ CD;’ujgodxz/ v dx.
j—)DO c c
Note that

L.D}"C‘uj(x) = D%u;(x) — uDguj(x).

a=x"j
Using this decomposition, we get

p P _ o a P
||L'Dxuj”U((c,d)) = ”anu' - “DCMjH P ((c.d))
a£re wy»
<Dl 4 / 7
laDitll L 0 e | Js @=y)ita Y

d c dy IC)
oy P P _—
< NaD3uill iy + ”Mj”LI‘((a,c))/C </a (x — y)v(1+a)> dr

d
L_ p_
< ” Dau'“P + ”u]”I’ / (x—a) p(1+“)+(x—c)v p(1+a) dx,
¢

@ x"J L ((a,b)) L#((a,c))

which is bounded if and only if 4 > p(1 — ap)~!. Choosing j sufficiently large, we
have that the sequence .D{u; is bounded in L”((c, d)). Therefore, there exists a func-
tion v € LP((c,d)) and a subsequence (still denoted by .Dfu;) so that .Dfu; — v. It

follows that
d d d
/ utD%*@dx = lim Diujpdx = / v dx.
C J= c c

Hence u € “W*”((c, d)). Similarly, we can prove that the conclusion also holds for
the right derivative. The proof is complete. a

4.6.1 Consistency with W'P(Q)

Our aim here is to show that there exists a consistency between our newly defined
fractional Sobolev spaces and the integer order Sobolev spaces. To this end, we need
to show that there is a consistency between fractional order weak derivatives and
integer order weak derivatives, which is detailed in the lemma below.

Lemma4.46 LetQ CR,0 < a < landl < p < oo.Suppose u € W' (Q). Then, for
everyy € C(Q),*D*y(u) = —= 1"y’ (u)Du] € L’ (Q).

Proof Let u € W'P(Q) n *W*P(Q). By the density/approximation theorem, there
exists {u;} 2, C C*(Q) such thatu; - uin WP (Q). Then, we have

X Birkhauser



New families of fractional Sobolev spaces Page330f40 46

/w(u)’_’D“(pdxz lim/u/(uj)j'D“(pdx
Q Iz Jo
= lim(-1) / ' (u)Du;"1' " dx
Jj—oo Q

= lim(-1) [ *I'""*[y/(u))Du;]¢p dx.
J— o0 Q

Next, we claim that *I'=* [y (u)Du;] — *I'=*[y'(u)Du] in L(Q) where D denotes
the integer weak derivative. Our claim follows because

=1 [y’ () Du;] = 1" [y )YDulll gy < Cllw’ (u)Du; — ' W Dull 1
which converges to zero by the assumptions on y and on {y; }Jf’zl and the chain rule in

W'?(Q). The proof is complete. m|

Remark 4.47 The identity *D%y () = —*1'"*[y’(u)Du] € LP(Q) can be regarded as
a special fractional chain rule, which also explains why there is no clean fractional
chain rule in general.

Our first consistency result will be one that allows us to make no assumption
on the relationship between a and p. However, a restriction on function spaces
must be imposed, which will be shown later to be a price to pay without imposing
any restriction on the relationship between « and p.

Theorem 4.48 Let QCR,0<a<1landl <p < oco. Then, Wé’P(Q) C TW*P(Q).
Hence, W,”(Q) € W*(Q).

Proof Let u € Wé”g (QQ). By the density/approximation theorem, there exists
{u;}2, € C(Q) such thatu; — u in WP (Q). Then, we have

/ wWD@dx = lim [ uFD*@dx = lim(-1) [ DuI'"“@dx
Q J= Q

7 Jo

= lim(=1) [ *I'""*Du;ep dx.
Jj— Q

Next, by the boundedness of */ I e get
||ill_aDuj — ill_apullua(g) S C”D’/ll - Du”U(Q)’

which converges to zero by the choice of {uj}]i'il. Setting j — oo in the above equa-
tion yields that D%y = —*]'~*Dy. Thus,

1_
D" ull iy = 1" Dtll 1y < CllDtll g < 0.

The proof is complete. O
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Remark 4.49 Substituting R in place of Q and C°(R) in place of C°(R), respec-
tively, in the above proof, we can conclude that W'*(R) c *W*P(R) for all
O<a<landl <p < oo

To see that the need for zero boundary traces is a necessary condition, we con-
sider the function u = 1. With Q = (a,b) is a finite domain, it is easy to check
that u is weakly differentiable with the weak derivative coinciding with the Rie-
mann-Liouville derivative, that is, “D*1 =T'(1 — @)"!(x — )™ and a similar for-
mula holds for the right weak derivative. It is easy to show that [[=D1]| ), < o
if and only if ap < 1. Therefore, the inclusion WP ((a, b)) € *TW*P((a, b)) may not
hold in general. However, the next theorem shows that the inclusion does hold in
general provided that ap < 1.

Theorem 4.50 Let Q =(a,b), 0<a <1 and 1 < p < oo. Suppose that ap < 1.
Then, W'?(Q) Cc TW*P(Q). Hence, W' (Q) C W*P(Q) when ap < 1.

Proof We only give a proof for W!'*(Q) c ~W*P(Q) because the inclusion W'?(Q)
C TW*P(Q) can be proved similarly.
Let u € W'"((a,b)). By the density/approximation theorem, there exists a
sequence {uj }]i‘zl C C*((a, b)) N C([a, b]) so that up = u in W'((a, b)) n C([a, b]).
Then, for any ¢ € C°((a, b)), using the integration by parts formula and the rela-
tionship between the Riemann—Liouville and Caputo derivatives, we get

/ 14,(0), D p(x) dx = / D10 (x) dx

_ u;(a) g, dx
- [ (s + atpu oty

Taking the limit j — oo on both sides yields

’ u(a) l-a
‘/L; M(X) D¢ (P(X) dx = / <m + ulx Du(x)) (p(x) dx.

Hence, ~“D*u almost everywhere in (a, b) and is given by

P C) B
Du_F(l—a)(x—a)“+”I" Du(x). 37)

It remains to verify that ~D*u € L”((a, b)), which can be easily done for ap < 1
using the formula above for the weak derivative and the mapping properties of the
fractional integral operators. The proof is complete. O

Remark 4.51 (37) suggests the following definitions of the weak fractional Caputo
derivatives for any u € WH(Q):

“Du(x) := I Du(x) ae. inQ, (38)
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D u(x) 1= 1,""Du(x) ae. inQ, (39)

and then we have almost everywhere in

D u(x) = "D u(y) - % (40)
EDu(x) 1= D u(x) - u(b) @1)

T —a)b-xe°

We conclude this section with an integration by parts formula for functions in one-
sided Sobolev spaces. The need to wait until now for such a formula will be evident in
the assumptions.

Proposition 4.52 Let QCR, a >0, 1 <p < oo. Suppose that u € TW*(Q),
v € W(Q), and w € W9(Q). Then, there holds

/ VvED U dx = (=)l / uFD" dx. (42)
Q Q
Moreover, if aq < 1, there holds
/ wED%udx = (-1 / uTD*w dx. (43)
Q Q

Proof We only give a proof for (42) when 0 < @ < 1. The other cases and (43) can
be showed similarly. Choose {u; } , CC*(Q)and {v; }}? | € CP () such thatu; — u

in TW*P(Q) and v;, - vin wh ‘1(9) By Theorem 4.48, we have v € FW*(Q). It fol-
lows that

/ wDdx = hm u;TD", dx
Q

j—)OO Q

= lim vkiD"u]»dx=/viD“uj dx.
' Q

Jk—oo Q

This completes the proof. a

4.6.2 Thecasep = 1andQ = R

First, by doing a change of variables, we get for any ¢ € C°(R)

cpan L d [T ey d a
D(p(x)_l"(l—a)dx _Goe y_F(l—a)dx/ % p(x — 1) dt

_ 1 ® e e ) — 9@
_—F(l—a)/o ' (x—1nde= a)/ o pita dr.
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Similarly,

+Da(p(x) — F(la_ a) / (t) - ()C)

(t — x)l-Hx
These equivalent formulas will be used in the proof of the next theorem.
Theorem 4.53 Let 0 < a < 1. Then, W=(R) C *W*(R).

Proof Let u € W*!(R). Recall that CP(R) is dense in W1 (R). Then, there exists a
sequence {uj}]?’:l C CP(R) such that u; - u in W*I(R) as j — co. We only give a
proof of the inclusion for the left fractional Sobolev space because the proof for the
other case follows similarly.

Using the above equivalent formula for left derivatives, we get

*u(x) — ui(y)
[ 2= 28l = | ] i ol
JLr®) L ®) R |/ e (x—y)lte
T u(x) = u; ()l
<C, // Y —— dydx
|X y|1+a
|u; () — ;)|
<C, dydx
|)C y|1+a

]W"‘(R)

By the property of {u;} 2 we conclude that[ ]WQI(R) (] ar gy < 0.
Let € > 0, for sufficiently large m,n € N, we have

[0 = D%, sy = [ [ = ]

LR < [u, — ] el ®)

Hence, {u; }°° is a Cauchy sequence in *TW*!(R). Thus, there exists v € TW*!(R)
such that u; — vin *W*!(R). By the property of {u;}% 2, there holds u; > uin L'(R).

On the other hand, the convergence in *W*!(R) implies that u; = vin L'(R). Thus,
u = v almost everywhere in R and yielding that u € TW*!(R). O

Remark 4.54 We conjecture that the above inclusion is strict. However, an example
to prove this conjecture remains out of reach.

4.6.3 Thecasep =2andQ =R

This section extends the above equivalence result of two fractional Sobolev spaces
to the case when p =2. As we will see, p =2 is special in the sense that it is the
only case in which the equivalence of the space H*(R) defined by the Fourier trans-
form (and its inverse) and the space H*(R) holds. Recall that W*?(R) # W*?(R) for
p # 2 (cf. [1, 3]).
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Lemma4.55 Ler0 < a < land ¢ € C7(R). Then, ||fD”‘(p||Lz(R) = [@lfam)-
Proof Let @ = F(g). It follows from Plancherel theorem and (1) that
”]:Da(p”LZ(R) - ||F [(lf)a¢] “LZ(R) - ||(l§)a¢I|L2(R)
= [ liero@ P = [ 1eio@PR o
R R
= [M]H“(R)'
Taking the square root of each side, we obtain the desired result. O

Theorem 4.56 Let0 < a < 1. Then, *H*(R) = H*(R).

Proof Step 1: Suppose u € *H*(R). Since C3’(R) is dense in *H*(R), then there
exists a sequence {u } C CP(R) such thatu; — uin *H*(R).

Then, by Lemma 4. 55, we get

2
— Fna
”uf| He®) “uf L2[®) [ J]H"(R> = ” L2[®) + ClI D% ”LZ(R)
2 2 2
= “u + C||iD"’u- < C“u )
J L2(R) J L2(R) J +Ha(R)
Consequently,

”le - un”F['I(R) S C“um - un”iH”(IR) - 0 asm,n — 0.

Thus, {u } is a Cauchy sequence | in INJ"’(IR) Since I~{"’(IR) is a Banach space, there

exists v € H“(R) so that up—v in H“(IR) in particular, U —>v in L>(R). By assump-
tion, u; — uin L*(R). Therefore v=uae inRandu € H“(R)

Step 2: Letu € H"(R) By the approximation theorem, there exists a sequence
{u }J= C C°°(|R) such thatu_ — uin H“(R) Then, by Lemma 4.55, we get

+ DI
+ 17 D%ulI;

2
JUL2(R) + Cly, ]H“(R)

2
”ujlltHa([R) “M “LZ(R) JN2(R)
= “M “LZ(R)

< llulI7

JULA(R)

It implies that

”um - un”iH"(R) < C”um - Mn”]T]a(R) -0 asm,n — 0.

Hence {u }°° is a Cauchy sequence in *H*(R). Since *H*(R) is a Banach space,
there ex1sts v € TH*(R) so that up—v in TH*(R); in particular, up—>v in L*(R). By
assumption u; — u in L*(R). Therefore v=ua.e.andu € +H”‘(IR) O
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Remark 4.57

(a) The above result immediately infers that the equivalences
£H*(R) = H*R) = H*(R).

(b) We note that “H*(R) = TH*(R), however, this does not mean that the left and
right weak derivatives of the same function are the same or equivalent but rather
two spaces contain the same set of functions. For example, consider any func-
tion u € H*(R) N C(‘;°((—1, 1)) such that u(x) > 0 for every x € R. Due to the
nonlocality of the weak fractional derivatives, “D%u(x) = 0 for every x < —1
and ~D%u(x) > 0 for every x > —1. Conversely, * D*u(x) = 0 for every x > 1and
+D%u(x) < 1. Clearly, we see that ~“D*u(x) # *D*u(x) for every x € R despite
each belonging to L*(R). R _

(¢) We conjecture that =W*?(R) # W*P(R), but *tW*?(R) = W*?(R) for p # 2 and
O<a<l ~

(d) It can easily be shown that the equality TW*?(Q) = W*?(Q) cannot hold in
general. It was proved that when ap > 1,*D*C & *W*?(Q). However, constant
functions always belong to W*?(Q). In general, W*P(Q) ¢ *W*?(Q). For the
same reason, W*P(Q) ¢ W*P(Q) when ap > 1. This simple example shows that
the fractional derivative definition is fundamentally different from the (double)
integral term resembling a difference quotient in the seminorm of W*?(Q). If an
equivalence exists on the finite domain, it is our conjecture that for ap < 1, the
spaces W*P(Q) and W*P(Q) are the two spaces that should be comparable.

5 Conclusion

In this paper, we introduced three families of new fractional Sobolev spaces based
on the newly developed weak fractional derivative notion in [8, 9]; they were defined
in the exact same manner as done for the integer order Sobolev spaces. Many impor-
tant theorems and properties, such as density theorem, extension theorems, one-
sided trace theorem, various embedding theorems and Sobolev inequalities, inte-
gration by parts formulas and dual-space characterizations in those Sobolev spaces
were established. Moreover, a few relationships, including equivalences and differ-
ences, with existing fractional Sobolev spaces were also established.

These newly developed theories of weak fractional differential calculus and frac-
tional order Sobolev spaces lay down a solid theoretical foundation for systemati-
cally and rigorously developing a fractional calculus of variations theory and a frac-
tional PDE theory in [10]. Furthermore, it is expected that these works will aid in the
development of efficient numerical methods in the fractional calculus of variations
and fractional PDEs. Moreover, we hope this work will stimulate more research on
and applications of fractional calculus and fractional differential equations, includ-
ing the extensions to higher dimension, in the near future.
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