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Abstract—In this paper, a novel way of deriving proportionate
adaptive filters is proposed based on diversity measure mini-
mization using the iterative reweighting techniques well-known
in the sparse signal recovery (SSR) area. The resulting least mean
square (LMS)-type and normalized LMS (NLMS)-type sparse
adaptive filtering algorithms can incorporate various diversity
measures that have proved effective in SSR. Furthermore, by
setting the regularization coefficient of the diversity measure
term to zero in the resulting algorithms, Sparsity promoting
LMS (SLMS) and Sparsity promoting NLMS (SNLMS) are
introduced, which exploit but do not strictly enforce the sparsity
of the system response if it already exists. Moreover, unlike most
existing proportionate algorithms that design the step-size control
factors based on heuristics, our SSR-based framework leads to
designing the factors in a more systematic way. Simulation results
are presented to demonstrate the convergence behavior of the
derived algorithms for systems with different sparsity levels.

Index Terms—adaptive filtering, proportionate adaptation,
sparse system identification, diversity measure minimization,
iterative reweighting

I. INTRODUCTION

In many applications of adaptive filters, the impulse re-
sponses (IRs) to be identified are often sparse or compress-
ible (quasi-sparse), i.e., only a small percentage of the IR
components have a significant magnitude while the rest are
zero or small. Examples include network and acoustic echo
cancellation [1]–[3], acoustic feedback control in hearing aids
[4], [5], etc. Therefore, designing adaptive filters that can
exploit the structural sparsity for performance improvement
over the conventional approaches such as the least mean square
(LMS) and the normalized LMS (NLMS) [6]–[9] has been an
area of great interest over the past few decades.

An early and influential work on identifying sparse IRs
is the proportionate NLMS (PNLMS) algorithm proposed by
Duttweiler [1]. The PNLMS algorithm was developed in an
intuitive way, i.e., the equations used to calculate the step-size
control factors were not based on any optimization criterion
but were based on good heuristics. The main idea behind
the approach is to update each filter coefficient using a step
size proportional to the magnitude of the estimated coefficient.
Variants that also utilize this concept of proportionate adapta-
tion were later proposed and [10] provides a good summary.

The recent progress on sparse signal recovery (SSR) has led
to a number of computational algorithms [11], [12]. Inspired
by the batch estimation techniques in SSR, methods have been

proposed for theoretically justifying the formulation of the
proportionate adaptation scheme in adaptive filters [13], [14],
or even obtaining a general adaptive filtering framework that
incorporates sparsity [15]–[17]. Another class of algorithms,
i.e., the family of sparsity regularization-based approaches
[18]–[22], has also been proposed by adding a sparsity-
inducing penalty to the ordinary LMS objective function.

In this paper, we build on this trend of drawing inspiration
from SSR, and propose a novel way of deriving proportionate
adaptive filters based on minimizing diversity measures using
the well-known iterative reweighting methods [23]. The re-
sulting algorithms can incorporate flexible diversity measures
that have proved effective in SSR. Furthermore, by setting
the regularization coefficient of the diversity measure term to
zero, we introduce the Sparsity promoting LMS (SLMS) and
Sparsity promoting NLMS (SNLMS) that exploit but do not
strictly enforce the sparsity of the system response if it already
exists. The proposed SSR-based framework leads to designing
the step-size control factors for proportionate adaptiation in
a more systematic way, as opposed to most existing propor-
tionate algorithms that design the factors based on heuristics
[1], [10]. Simulation results are presented to demonstrate the
convergence behavior of the derived algorithms for systems
with different levels of sparsity.

II. BACKGROUND

A. Adaptive Filters for System Identification

Let hn = [h0,n, h1,n, ..., hM�1,n]T denote the adaptive
filter of length M at discrete time instant n. Assume the IR
of the underlying system is ho = [ho

0, h
o
1, ..., h

o
M�1]

T , and the
model for the observed or desired signal is dn = uT

nh
o + vn,

where un = [un, un�1, ..., un�M+1]T is the vector containing
the M most recent samples of the input signal un and vn is an
additive noise signal. The output of the adaptive filter uT

nhn is
subtracted from dn to obtain the error signal en = dn�uT

nhn.
The goal in general is to continuously adjust the coefficients of
hn such that eventually hn = ho; i.e., to identify the unknown
system.

The classic LMS and NLMS algorithms can be derived from
the following unconstrained optimization problem using an
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objective function Jn(h) of the instantaneous error1 [6]:

min
h

Jn(h) , e2n =
⇣
dn � uT

nh
⌘2

. (1)

Applying the stochastic gradient descent which utilizes a
first order approximation results in the LMS [7]:

hn+1 = hn �
µ

2
rhJn(hn) = hn + µunen, (2)

where rh denotes the gradient operator with respect to h and
µ > 0 is the step size.

Applying the stochastic regularized Newton’s method which
utilizes a second order approximation gives the NLMS [8]:

hn+1 = hn � µ
⇣
r2

hJn(hn) + 2�I
⌘�1
rhJn(hn)

= hn +
µunen

uT
nun + �

,
(3)

where r2
h denotes the Hessian operator with respect to h, I

denotes the identity matrix, and � > 0 is a small regularization
constant for preventing singularity.

B. Diversity Measure Minimization for SSR

The concept of SSR is to search for sparse solutions to
an underdetermined system of linear equations y = Ax,
where A 2 RN⇥M represents an overcomplete dictionary
with rank(A) = N and N < M , x 2 RM is the underlying
sparse representation, and y 2 RN is the measurement vector.
A popular approach is to consider the following diversity
measure minimization problem:

min
x

ky �Axk22 + �G(x), � > 0, (4)

where G(·) is the general diversity measure weighted by � that
induces sparsity in its argument. We further define a separable
diversity measure that has the form G(x) =

PM�1
i=0 g(xi),

where g(·) has the following properties:

Property 1: g(t) is symmetric, i.e., g(t) = g(�t) = g(|t|);
Property 2: g(|t|) is monotonically increasing with |t|;
Property 3: g(0) is finite;
Property 4: g(t) is strictly concave in |t| or t2.

The iterative reweighting methods [23] are popular tech-
niques for solving (4). By introducing a weighted `2 [24],
[25] or `1 [26] norm term as an upper bound for G(x) in each
iteration, they form and solve for a new optimization problem
accordingly to approach the optimal solution [23]. We briefly
review the reweighted `2 method here as we will be using it for
deriving adaptive filtering algorithms that incorporate sparsity.

To apply the iterative reweighted `2 approach, first note that
the function g(t) has to be concave in t2 for Property 4; i.e.,
it satisfies g(t) = f(t2), where f(z) is concave for z 2 R+.

1One can also derive the algorithms by using the expected value of the
error function and then replacing the gradient/Hessian by the instantaneous
gradient/Hessian as an estimate [6]–[8]. We utilize the direct approach because
of the simplicity and to shorten the derivation.

Assume at the k-th iteration we have an estimate x(k). Then
the estimate of the next iteration k + 1 is given as:

x(k+1) = argmin
x

ky �Axk22 + �
���(W(k))�1x

���
2

2
, (5)

where W(k) = diag{w(k)
i } with

w(k)
i =

 
df(z)

dz

����
z=(x(k)

i )2

!� 1
2

, (6)

and d denotes the differential operator. In each iteration k, the
matrix W(k) provides a surrogate function as an upper bound
for the objective function in (4).2 Sequentially minimizing the
surrogate functions allows the algorithm to produce more focal
estimates as optimization progresses [23].

III. INCORPORATING SPARSITY INTO ADAPTIVE FILTERS

To incorporate sparsity into the adaptive filtering frame-
work, we propose to add the general diversity measure G(h) =PM�1

i=0 g(hi) to the ordinary objective function Jn(h) in (1)
as:

min
h

Jn(h) + �G(h), (7)

where � is the regularization coefficient. Inspired by the con-
ceptual similarity with SSR, we show that by upper bounding
G(h) in (7) with a weighted `2 norm term, both LMS-type
and NLMS-type sparse adaptive filters can be derived. Thus,
instead of (7), we consider the following problem:

min
h

Jn(h) + �
���W�1

n h
���
2

2
, (8)

where Wn = diag{wi,n}3 and each wi,n is computed based
on the current estimate hi,n, depending on the choice of the
diversity measure G(·). Observing the similarity between (5)
and (8), we make the following correspondences: x(k)  ! hn

and W(k)  !Wn. Then the relationship between (5) and (6)
suggests the following update rule for Wn in (8):

wi,n =

0

@df(z)

dz

����
z=h2

i,n

1

A
� 1

2

, (9)

where f(·) is a function depending on the g(·) used.
Recall that in (5) for SSR, in the k-th iteration the matrix

W(k) is updated as a function of x(k) to create a new upper
bound for G(x). Similarly, in the adaptive filtering case here,
we propose to utilize hn at time n for computing the matrix
Wn to form a new upper bound for G(h) accordingly. The
whole concept, similar to the reweighting techniques in SSR,
has now been applied to adaptive filtering where the upper
bound evolves and adapts over time.

Before proceeding, we reparameterize the problem in terms
of the scaled variable q:

q , W�1
n h, (10)

2Note that we will use a practical assumption that the diagonal matrix
W(k) is positive definite at each iteration. This can be shown to hold for a
wide variety of diversity measures used in SSR.

3Again, the positive definiteness of the diagonal matrix Wn is assumed.
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in which Wn is used as the scaling matrix. This step, similarly
utilized in [4], [13], [16], can be interpreted as performing
the affine scaling transformation (AST) commonly employed
by the interior point approach to solving linear and nonlinear
programming problems [27]. In the optimization literature,
AST-based methods transform the original problem into an
equivalent one, in which the current point is favorably posi-
tioned at the center of the feasible region [28], thus expediting
the optimization process.

Using (10) for the objective function in (8) and performing
minimization with respect to q, that is:

min
q

J`2
n (q) , Jn(Wnq) + �kqk22 , (11)

then we transform the problem into a new form. To proceed,
we define the a posteriori AST variable at time n:

qn|n , W�1
n hn (12)

and the a priori AST variable at time n:

qn+1|n , W�1
n hn+1. (13)

In the following, we show that by applying the stochastic
gradient descent and regularized Newton’s method to (11),
along with using (12) and (13), both LMS-type and NLMS-
type sparse adaptive filtering algorithms can be derived.

A. LMS-Type Sparse Adaptive Filtering Algorithm

We formulate a recursive update by using the stochastic
gradient descent in the q domain:

qn+1|n = qn|n �
µ

2
rqJ

`2
n (qn|n). (14)

Using the chain rule, (10), and (12), we can show the gradient
term:

rqJ
`2
n (qn|n) = WnrhJn(hn) + 2�qn|n

= �2Wnunen + 2�qn|n.
(15)

Substituting (15) into (14) leads to:

qn+1|n = (1� µ�)qn|n + µWnunen. (16)

Multiplying both sides of (16) by Wn and using the relation-
ships (12) and (13), we will get back to the h domain:

hn+1 = (1� µ�)hn + µW2
nunen. (17)

This is the update rule of the generalized LMS-type sparse
adaptive filtering algorithm using reweighted `2.

B. NLMS-Type Sparse Adaptive Filtering Algorithm

For the reweighted `2 problem (11) we can also consider the
stochastic regularized Newton’s method option to formulate
the recursive update in the q domain:

qn+1|n = qn|n � µ
⇣
r2

qJ
`2
n (qn|n) + 2�I

⌘�1
rqJ

`2
n (qn|n).

(18)

Using the chain rule, (10), and (12), we can show the Hessian
term:

r2
qJ

`2
n (qn|n) = Wnr2

hJn(hn)Wn + 2�I

= 2Wnunu
T
nWn + 2�I.

(19)

Substituting (19) and (15) into (18) results in:

qn+1|n =

0

@I� µ�

�+ �

"
I� WnunuT

nWn

uT
nW

2
nun + �+ �

#1

Aqn|n

+
µWnunen

uT
nW

2
nun + �+ �

,

(20)
where we have applied the matrix inversion lemma to simplify
terms and avoid matrix inversion.

Multiplying both sides of (20) by Wn and using the
relationships (12) and (13), we will get back to the h domain:

hn+1 = (I� µ��n)hn +
µW2

nunen
uT
nW

2
nun + �+ �

, (21)

where for simplicity we have let:

�n =
1

�+ �

"
I� W2

nunuT
n

uT
nW

2
nun + �+ �

#
. (22)

This is the update rule of the generalized NLMS-type sparse
adaptive filtering algorithm using reweighted `2.

C. Discussion

It is worth mentioning that there is considerable difference
between the proposed algorithms derived from (8) and the
existing SSR algorithms based on (5): the SSR techniques are
batch estimation methods for recovering the underlying sparse
representation, while the proposed algorithms are specifically
tailored for the adaptive filtering scenario. We would also
like to point out that it is not so straightforward to obtain
the iteration schemes (17) and (21) if one does not consider
the change of variables (10). This step, similar to the AST
commonly employed in the optimization literature, is thus of
great importance for obtaining the proposed algorithms. Note
that the above procedure can be extended to other reweighting
strategies, e.g., the reweighted `1 framework, for deriving a
different class of algorithms.

IV. SPARSITY PROMOTING ALGORITHMS

An interesting situation arises when we consider the limiting
case of �! 0+. For the algorithms (17) and (21), by setting
� = 0 we see the terms with � as a scaling factor vanish,
leading to the following Sparsity promoting LMS (SLMS):

hn+1 = hn + µW2
nunen, (23)

and Sparsity promoting NLMS (SNLMS):

hn+1 = hn +
µW2

nunen
uT
nW

2
nun + �

. (24)
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Even with � = 0, the SLMS and SNLMS still have a diagonal
matrix term W2

n on the gradient to leverage sparsity. This
indeed realizes proportionate adaptation similar to PNLMS-
type algorithms. From the objective function perspective, (7)
indicates a trade-off between estimation quality and solution
sparsity as controlled by �. In the limiting case of � ! 0+,
the objective function exerts diminishing impact on enforcing
sparsity on the solution, meaning that eventually no sparse
solution is favored over other possible solutions. Interestingly,
the SLMS and SNLMS, because of their proportionate nature
similar to the PNLMS-type algorithms, are capable of speed-
ing up convergence without compromising estimation quality
should sparsity be present. This will be later supported by
experimental results in Section V.

It is worth noting the fact that we can utilize � = 0 to obtain
the SLMS and SNLMS could be attributed to the change of
variables (10), which is similar to the concept of AST that
belongs to the family of interior-point methods [28]. Due to
the use of (10), optimization is performed in the q domain
rather than in the h domain, allowing the use of the limiting
case of �! 0+. This does not apply to existing regularization-
based algorithms developed in the original variable domain,
e.g., [18]–[22]. Setting � = 0 in these algorithms reduces to
the ordinary LMS without benefiting from sparsity.

For the design of the step-size control factors, many popular
diversity measures in SSR can be used to instantiate the
algorithms for updating Wn. We present an example using
the p-norm-like diversity measure [27] with g(hi) = |hi|p,
0 < p  2. Using (9) leads to the update rule for Wn:

wi,n =

✓
2

p

⇣��hi,n

��+ c
⌘2�p

◆ 1
2

. (25)

Note that we have added a small regularization constant c >
0 for avoiding algorithm stagnation and instability. In (25),
the parameter p controls the behavior of the adaptive filtering
algorithms: using p ! 1 in (25) results in a step-size control
factor close to that of the PNLMS, while letting p = 2 recovers
the LMS/NLMS. The parameter p thus plays the role for fitting
the sparsity levels of the systems.

In practice, we have found it helpful to perform normal-
ization to the matrix term W2

n for stability purposes, i.e., to
replace W2

n in (23) and (24) with Sn where:

Sn =
W2

n
1
M tr (W2

n)
, (26)

and tr(·) denotes the matrix trace. Similar steps of normaliza-
tion can also be seen in other proportionate algorithms [10].
Note that the normalization (26) also applies to the generalized
algorithms (17) and (21).

V. SIMULATION RESULTS

The proposed algorithms are evaluated using computer
simulations in MATLAB. We considered three system IRs as
shown in Fig. 1 that represent different sparsity levels: quasi-
sparse, sparse, and dispersive systems, respectively. Each of

the IRs has 256 taps. For demonstrating convergence behavior,
experiments were conducted to obtain the mean squared error
(MSE) learning curves, i.e., the ensemble average of e2n as a
function of iteration n. The ensemble averaging was performed
over 1000 independent Monte Carlo runs for obtaining each
MSE curve. The adaptive filter length was 256 and the
coefficients were initialized with all zeros. The input signal
un and the noise vn were zero mean white Gaussian processes
with variance 1 and 0.001, respectively.

Fig. 2 presents the resulting MSE curves of using the
SNLMS (24) as an example. The update rule (25) was used for
W2

n, using c = 0.001. The normalization (26) was performed.
The NLMS (3) is also compared. We used µ = 0.5 and
� = 0.01 for both SNLMS and NLMS. From the results we
see that the selection of p is crucial for obtaining optimal
performance for IRs with different sparsity degrees. For the
quasi-sparse case in Fig. 2 (a), the fastest convergence is given
by p = 1.5, which seems a reasonable value in terms of finding
a balance between PNLMS (p! 1) and NLMS (p = 2). For
the sparse case in Fig. 2 (b), p = 1.2 gives the best results,
which is also intuitive since the sparsity level has increased.
For the dispersive case in Fig. 2 (c), p = 1.8 results in
the fastest convergence and is comparable to NLMS. These
results show that the algorithm exploits the underlying system
structure in the way we expect.

Fig. 3 presents the mean of estimated filter coefficients to
observe the converged solutions. The results were computed
as the average of 500 iterations when the algorithm was in
steady-state. In each case, we see that SNLMS (with the
optimal p found in Fig. 2) converges to the same solution as
NLMS, which agrees well with the corresponding true IR in
Fig 1. This supports the argument that the proposed strategy of
utilizing �! 0+ provides the algorithms with the capability of
leveraging sparsity without compromising estimation quality.
In other words, the results together with Fig. 2 demonstrate
that the sparsity promoting algorithms can exploit sparsity for
speeding up convergence in the adaptation stage and perform
equally well in steady-state should sparsity be present in the
underlying system response.

VI. CONCLUSION

In this paper, we exploited the connection between sparse
system identification and SSR, and utilized the iterative
reweighting strategies to derive novel proportionate adaptive
filters that incorporate various diversity measures for promot-
ing sparsity. Moreover, utilizing a regularization coefficient
�! 0+, the proposed SLMS and SNLMS algorithms can take
advantage of, though do not strictly enforce, the sparsity of the
underlying system if it already exists. Simulation results were
presented to demonstrate the effectiveness of the algorithms.
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Fig. 1. IRs of (a) quasi-sparse, (b) sparse, and (c) dispersive systems.
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Fig. 2. MSE of SNLMS with various p for (a) quasi-sparse, (b) sparse, and (c) dispersive systems.
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Fig. 3. Mean of estimated filter coefficients for (a) quasi-sparse, (b) sparse, and (c) dispersive systems.
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from a basis pursuit perspective,” IEEE Signal Process. Lett., vol. 17,
no. 12, pp. 985–988, 2010.

[15] R. K. Martin, W. A. Sethares, R. C. Williamson, and C. R. Johnson,
“Exploiting sparsity in adaptive filters,” IEEE Trans. Signal Process.,
vol. 50, no. 8, pp. 1883–1894, 2002.

[16] Y. Jin, Algorithm Development for Sparse Signal Recovery and
Performance Limits Using Multiple-User Information Theory, Ph.D.
dissertation, University of California, San Diego, 2011.

[17] J. Liu and S. L. Grant, “A generalized proportionate adaptive algorithm
based on convex optimization,” in Proc. IEEE China Summit Int. Conf.
Signal Inform. Process. (ChinaSIP), 2014, pp. 748–752.

[18] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
2009, pp. 3125–3128.

[19] Y. Gu, J. Jin, and S. Mei, “l0 norm constraint LMS algorithm for sparse
system identification,” IEEE Signal Process. Lett., vol. 16, no. 9, pp.
774–777, 2009.

[20] G. Su, J. Jin, Y. Gu, and J. Wang, “Performance analysis of l0 norm
constraint least mean square algorithm,” IEEE Trans. Signal Process.,
vol. 60, no. 5, pp. 2223–2235, 2012.

[21] F. Y. Wu and F. Tong, “Gradient optimization p-norm-like constraint
LMS algorithm for sparse system estimation,” Signal Process., vol. 93,
no. 4, pp. 967–971, 2013.

[22] O. Taheri and S. A. Vorobyov, “Reweighted l1-norm penalized LMS for
sparse channel estimation and its analysis,” Signal Process., vol. 104,
pp. 70–79, 2014.

[23] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for
finding sparse solutions,” IEEE J. Sel. Top. Signal Process., vol. 4, no.
2, pp. 317–329, 2010.

[24] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: A re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, 1997.

[25] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 2008, pp. 3869–3872.

[26] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted `1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5, pp.
877–905, 2008.

[27] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for
best basis selection,” IEEE Trans. Signal Process., vol. 47, no. 1, pp.
187–200, 1999.

[28] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-
Hill Inc., 1996.

773

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 28,2022 at 21:51:19 UTC from IEEE Xplore.  Restrictions apply. 


