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ABSTRACT

Many real systems have a network/graph structure with many connected nodes and many edges
representing deterministic or stochastic dependencies and interactions between nodes. Various
types of known or unknown anomalies and disturbances may occur across these networks over
time. Developing real-time anomaly detection and isolation frameworks is crucial to enable net-
work operators to make more informed and timely decisions and take appropriate maintenance
and operations actions. To monitor the health of modern networks in real time, different types of
sensors and smart devices are installed across these networks that can track real-time data from a
particular node or a section of a network. In this article, we introduce an innovative inference
method to calculate the most probable explanation of a set of hidden nodes in heterogeneous
attributed networks with a directed acyclic graph structure represented by a Bayesian network,
given the values of a set of binary data observed from available sensors, which may be located
only at a subset of nodes. The innovative use of Bayesian networks to incorporate parallelization
and vectorization makes the proposed framework applicable for large-scale graph structures. The
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efficiency of the model is shown through a comprehensive set of numerical experiments.

1. Introduction

Many complex mechanical, electrical, social, communication,
and computer systems are heterogeneous attributed net-
works, which are systems with a graph structure character-
ized by a set of nodes representing different types of objects,
a set of edges representing relationships and dependencies
(deterministic or stochastic) between objects, and a set of
node attributes or features that may vary depending on the
type of objects at each node. Many different types of smart
sensors and remote sensing devices exist in such networks,
to improve the ability to track the state of the network and
help make real-time decisions. Since node attributes are
often collected through sensors at many or all nodes of the
networks, such networks are often sensor-intensive. Also,
since the attributes collected at each node can differ, attrib-
uted networks can be heterogeneous in this regard. Various
types of known or unknown anomalies and disturbances
may occur across these networks over time that can impact
the operating status of each node. Such an anomaly status
can be defined through a binary setting, that is, a node is
either anomalous or normal (not anomalous) at any point
of time. The definition of anomaly varies depending on the
application, but is often defined as patterns/events that do
not conform to a well-defined notion of normal behavior.
Intrusions and bad connections in wireless ad-hoc networks
(Murugan and Suresh, 2017), water contamination in water
distribution networks (Tuptuk et al, 2021), outages and

power disturbances in power distribution networks (Yuan
et al., 2020), and false product reviewers in social networks
(Yu et al.,, 2016), are all real examples of anomalies that can
impact the nodes of their corresponding networks.
Anomalies, which are alternately called outliers, disturban-
ces, and abnormal behaviors, can be momentary or sus-
tained. The process of network anomaly detection is often
complex, as networks include dependent nodes and sensors
that are influenced by the topological dependencies between
nodes, edges, and sensor data. Despite the growing import-
ance of sensor-based network anomaly detection, this area
has received relatively little attention for heterogeneous
attributed networks. Many anomaly detection models devel-
oped for these networks are general-purpose methods and
are not designed to deal with the complexities of network
structure and sensor data. Using them without considering
network complexities can lead to too many false alarms or
too few detected anomalies.

This work is highly motivated by the growing opportuni-
ties for real-time monitoring and control arising from the
availability of sensor data across a broad range of network
systems, particularly for power distribution networks, which
are sensor-intensive networks that are subject to many types
of anomalies and disturbances over time. Power distribution
networks are large-scale graph structures with many sensors
that are sensitive to various types of anomalies and distur-
bances, which can cause momentary or sustained outages.
Quickly and accurately finding the set of anomalous nodes
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and the sources of anomalies is a critical task, which has sig-
nificant impact on maintaining grid reliability and resiliency
to avoid costly disruptions in the operations of critical infra-
structures. How to analyze and merge network sensor data
collected from sensors across the network and locate anoma-
lies while considering the topological dependencies between
nodes without the need for physical inspections is an
important research and practical problem that needs further
study. Our work is also motivated by some of the unique
aspects of Bayesian Networks (BNs) that can be utilized to
model simultaneously the topological structure of the het-
erogeneous attributed networks, the stochastic relationship
between network status and sensor data, and the problem of
anomaly detection in an interpretable and scalable manner.

In this article, a novel BN-based approach is proposed to
diagnose a large network with many nodes and many sensors
to locate the potential sources of anomalies and impacted
nodes. A BN is a probabilistic graphical model (comprised of
nodes and directed edges) that can represent the dependencies
between a set of hidden or observable random variables with a
directed acyclic graph (a directed graph with no cycle). The sta-
tus of each node, the location of anomalies, and the values of
sensors are represented as nodes of a BN and then the topo-
logical dependencies between nodes, the propagation of anoma-
lies, and the stochastic behavior of sensor data are employed to
form the directed edges that represent the conditional depend-
encies between variables in a directed graph. The proposed
approach formulates the problem of network anomaly detection
in the context of a BN and then develops computational techni-
ques to make the approach scalable for large-scale networks,
such as power distribution networks. The main contributions of
our work can be summarized as follows:

1. We formulated an anomaly detection framework for
large-scale network/graph structures with tree or non-
tree topologies using BNs.

2. We developed an efficient Bayesian sampling procedure
to calculate the posterior probabilities of a set of hidden
nodes given a set of evidence nodes.

3. We developed vectorization and parallelization techni-
ques to speed up inference propagation in large-scale
and complex networks. Also, we proposed an algorithm
to divide the network into multiple segments/clusters
where the sampling for all nodes within each cluster
can be conducted simultaneously.

In this work, we have focused only on binary sensor
attributes collected at the node level, due to their wide appli-
cation in many network structures, such as power distribu-
tion networks, water distribution networks, and
communication networks. Also, our work considers only
anomalies that originate from a set of nodes and then
propagate to connected nodes across the network according
to a known set of propagation paths. Thus, analyzing edge
attributes and anomalies with random shapes not following
propagation paths are beyond the scope of this article.

The rest of this article is organized as follows. In Section
2, we provide a review of the current literature and highlight

the challenges of existing works. Section 3 discusses the
problem of anomaly detection and the general structure of
the proposed network anomaly detection framework. Section
4 introduces steps to scale up the proposed framework using
parallelization and vectorization. In Section 5, we show the
performance of our framework through a comprehensive set
of numerical experiments. We conclude in Section 6 and
discuss our future work.

2. Literature review

2.1. Anomaly detection in networks and
graph structures

Anomaly detection has been widely studied by many
researchers from diverse areas, and there are plenty of
review and survey articles available for the work in this
domain (see, for instance, Chandola et al. (2009)). Anomaly
detection has been studied extensively in many application
domains, including network intrusion detection (Bhuyan
et al, 2013), credit card fraud detection (Popat and
Chaudhary, 2018), road traffic anomaly detection (Kim and
Cho, 2018), manufacturing and production system anomaly
detection (Stojanovic et al., 2016), medical and public
healthcare anomaly detection (Antonelli et al, 2013), and
sensor network anomaly detection (Janakiram et al., 2006).
Most available anomaly detection studies have focused on
general-purpose anomaly or outlier detection methods and
are not particularly designed for structures, such as networks
or graphs. For example, anomaly detection can be simply
formulated as a binary classification problem with the
unrealistic assumptions that network data are independent
and identically distributed and the same types of sensor data
are collected from all network nodes. Due to the special
structure of network/graph structures and the complexity of
network sensor data, more research has recently been
focused on developing models that are designed based on
the specific features of networks.

In Akoglu et al. (2015) and Ranshous et al. (2015), an
extensive survey of graph-based anomaly detection techni-
ques in static and dynamic graphs and several real applica-
tions of graph-based anomaly detection methods (supervised
and unsupervised) are provided. It is known that many of
the network-based anomaly detection models have a rela-
tively high false positive rate (Akoglu et al, 2015), which
makes the application of these methods on real systems
more challenging. Available methods of anomaly detection
can be categorized into the following classes: statistical
detection models, such as histograms and control charts;
classification-based models; clustering-based methods; and
data mining and machine learning techniques. Bhuyan et al.
(2013) presented an overview of techniques used in network
anomaly detection models. Noble and Cook (2003) proposed
two methods of detecting anomalies in graph-based data
according to the repetitive patterns or substructures of the
network. Janakiram et al (2006) suggested an anomaly
detection algorithm based on a Bayesian belief network by
considering the conditional dependencies in wireless sensor
networks. Hooi et al. (2019) proposed an online anomaly



detection algorithm given sensor data in the power grid sys-
tem. All of these methods have unique strengths and weak-
nesses, and their performance varies depending on the
application. For example, strong distributional assumptions
in statistical models; ineffectiveness in distance measures in
clustering and nearest neighbor methods, particularly in
high-dimensional settings; high vulnerability of unknown
anomalies in supervised classification models; and high false
alarm rates and difficulty in model training in unsupervised
models make these methods ineffective for complex graph
structures. Another limitation of these approaches is that
anomalies are treated generally, and their cause and type are
unidentifiable.

2.2. Binary network sensor data

Binary sensors, which are noisy sensors that generate binary
outcomes, are widely used due to their simplicity, efficiency,
and relatively low cost, particularly in power distribution net-
works (Alghuried and Moghaddass, 2020), wireless sensor net-
works (Guerriero et al, 2009), and water distribution
networks (Ostfeld, 2008). In general, binary sensors may
detect the presence or absence of a particular target in their
sensing regions. The accuracy of the detection depends on the
applications and the detection power of the sensors
(Asadzadeh et al, 2011). Examples of such binary signals are
various types of SCADA messages (e.g., switches open/close),
smart meter binary errors, and binary messages generated
across power distribution networks. For example, before an
actual outage or severe anomaly occurs, there are often events,
such as transient faults, errors, voltage irregularities, or power
quality events/errors, that are reported as binary signals and
are often available for most residential and commercial smart
meters. Many other power quality measurements are binary
and are commonly reported in typical smart meters. For
instance, the last gasp error is generated when a smart meter
detects a zero voltage event lasting for a short period of time,
and a voltage sag error is reported when there is a short drop
of a root mean square voltage below a threshold for a period
of time. In water distribution networks, noisy binary sensors
with a fixed false positive rate and true positive rate are used
to locate contaminant plumes (Speakman et al, 2015). With
the increasing use of smart and binary sensors in networks,
research over the past decade has focused more on using bin-
ary sensor data for decision making. Wang et al. (2010) intro-
duced a real-time distributed target tracking algorithm with
binary sensor networks. Chen et al. (2011) proposed a prac-
tical algorithm for target tracking with binary detection sen-
sors. Djuric et al. (2008) presented algorithms using particle
filtering methods to track a single target in a binary sensor
network. Zhang et al. (2020) constructed a Kalman filtering
approach for an estimation problem for a binary sensor net-
work. Despite the huge investment in deploying binary sensors
in many large-scale networks, relatively less network-specific
work has been conducted on developing analytical methods to
utilize binary sensor data for anomaly detection.
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2.3. BN Models for network anomaly detection

Due to the structure of the anomaly detection problem in
attributed graphs and the fact that known and unknown
variables in such graphs follow a highly interpretable and
causal structure, BN inference is a great fit to model this
problem in a structured manner. Considering sensor data as
observations represented by observable nodes and nodes’
anomaly status as explanation nodes that are hidden, BNs
can be employed to formulate the anomaly detection prob-
lem in network structures. Finding explanations for a set of
observations or evidence in Bayesian belief networks is a
challenging problem that has attracted a lot of attention in
the scientific community. A comprehensive introduction
and overview of explanation methods for BNs, including the
explanation of evidence, can be found in Lacave and Diez
(2002). The explanation of evidence can be defined as the
configuration of unobservable variables that can interpret
the existing set of observations (Pearl, 1988). The process of
finding such explanations is sometimes referred to as the
abduction inference (Neapolitan 2004). A very popular
approach for the inference problem in BNs is the Most
Probable Explanation (MPE) method, which aims to find
the most likely value of all possible combinations of varia-
bles given the subset of evidence. Kwisthout (2011) provided
a comprehensive overview of the complexity and tractability
of computing the MPEs in BNs. Neapolitan (2004) intro-
duced a best-first search algorithm for abductive inference
to find the MPEs using the branch-and-bound pruning tech-
nique in a state-space tree. Marinescu and Dechter (2012)
demonstrated an extension of the best-first AND/OR graph
search method from branch-and-bound in which the OR
node represents variables, whereas the AND node represents
the status of each variable. Yuan and Lu (2007) proposed a
new approach to find the explanatory MAP (eMAP), which
can identify the most relevant explaining variables by rank-
ing the Bayes factor of each configuration for given observa-
tions in the BN. However, this method is not scalable and
has difficulty handling networks with just hundreds of
nodes. Li and D’Ambrosio (1993) presented a non-search
approach for finding the MPEs in an arbitrary Bayesian
belief network. An algorithm for finding the MPEs using the
massage passing method in both singly connected and
multiply connected networks was presented in Sy (1992).
Mengshoel et al. (2010) discussed a local search approach to
focus on initialization and restart to solve the MPE problem
in BNs. It has been shown that the difficulty in finding the
MPEs in BNs is NP-hard (Cooper, 1990). Almost all avail-
able MPE methods are not scalable for large-scale networks
and can only be used in small network settings. Thus, using
available heuristic and MPE-based methods for large-scale
network anomaly detection models is not a feasible option.
A new generation of scalable techniques is needed that can
incorporate the complexity of today’s network sensor data,
the topological dependencies between nodes and sensor
data, and the propagation properties of anomalies across the
network. We will show that flexible BNs with many stochas-
tic and deterministic nodes and edges are highly
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Table 1. List of notation used in this article.

Notations

Descriptions

N
v
A= [aij]\N\x\N\
J
S
Z

The set of nodes in the network

The set of edges in the network

The adjacency matrix (representing physical/virtual connections between nodes)
The set of sensor attributes

The number of sensors in the network

= [z The sensor-attribute matrix
Zj The binary index representing whether node i generates sensor output j
yi(t) The value of sensor output j for node i at time t
xi(t) The binary index representing the anomaly status of node i at time t
0i(t) The binary index representing whether node i is the source of anomaly at time t
P = [pj] iy The anomaly propagation matrix
pij A binary index representing whether an anomaly propagates from node i to node j
D, The set of downstream/descendant nodes of node n
D The set of immediate children nodes of node n
U, The set of upstream/ancestor nodes of node n
v The set of immediate parent nodes of node n

interpretable and efficient tools for modeling the problem of
anomaly detection.

2.4. Summary of available methods and their
limitations

Many efforts have been made in the literature on anomaly
detection for attributed networks, each with positive proper-
ties and serious limitations. Since network systems and
graphs and network sensor data are typically complex, due
to various reasons (e.g., large-scale and heterogeneous sensor
data and topological dependencies between network ele-
ments), available general-purpose methods are not effective
for anomaly detection in attributed networks, and thus, net-
work-specific models that can adapt to such complexities
must be developed. Among those methods that are devel-
oped for network systems, there are three major categories:
network classification, node classification, and subgraph
classification. Although both network classification and node
classification problems are useful and have important appli-
cations, they are limited in the sense that they cannot find
the sections (subgraphs) where the anomalous nodes are
located. The methods that are designed for subgraph anom-
aly detections also have at least one of the following com-
mon limitations: not simultaneously using sensor and graph
topology data, not applicable to all network structures or
network data types, not scalable for large graphs, ignorance
of anomalous nodes’ connectivity and anomaly propagation,
and inability to detect the source(s) of potential anomalies.
In addition, since many of the models in this category just
rank nodes and subgraphs based on a predefined anomaly
score, they cannot be used to distinguish healthy networks
from anomalous networks. Also, some of these methods
require specific parameters as inputs, such as the size and
shape of the detected subgraphs, which are hard to deter-
mine in practice. In Table 1 in the Supplemental Materials,
we summarize the main characteristics of a series of recent
and relevant works on anomaly detection for static attrib-
uted networks and reported their objective/output, type
(supervised, unsupervised, and semi-supervised), main
approach, data used, and main drawbacks and application
limits. It is clear from this table that each method has some

limitations that narrow its potential use for network anom-
aly detection. The proposed framework introduces new
interpretable ways to detect anomalies in networks and
graph structures while addressing the limitations in the
available literature. Although a lot of research has been con-
ducted on network anomaly detection for attributed net-
works, efficient use of large BNs for anomaly detection in
attributed and heterogeneous networks is novel, particularly
for large networks with topological dependencies.

3. Main approach

This section illustrates the details of the proposed anomaly
detection framework, which is characterized by a Bayesian
network. The list of notation used in this article is provided
in Table 1.

3.1. Problem definition and assumptions

In this subsection, we list the main assumptions made in
this article to better define the scope and the application of
this article. The system under study has a graph/network
structure made up of nodes or vertices connected by links
or edges. The network topology can be represented by a
known Directed Acyclic Graph (DAG), which is a directed
graph with no directed cycles and tree or non-tree topology.
An anomaly is defined as an abnormal behavior or a devi-
ation from normal behavior that can impact the binary
operating status of each node. In other words, at each point
of time, a node can either be normal or anomalous. All
anomalies are assumed to originate at one or a group of
nodes and then propagate to connected nodes across the
network and make them anomalous according to a known
set of propagation paths (Section 3.2.2). A set of noisy bin-
ary sensor attributes (if any) may be collected at each node
(edge attributes are not considered). Each sensor attribute
may only partially reveal the anomaly state of the node
where the sensor is located. It is assumed that an anomaly
cannot be detected directly from available sensors. Since the
sensor attributes available at each node are not the same
across all network nodes, the network under study falls
under the category of a heterogeneous attributed network.



Figure 1. Examples of anomaly propagation in randomly generated tree (a)
and non-tree (b-f) structures. The dark red nodes are the origins of anomalies
and the red nodes are anomalous nodes.

The topology of the network is known and remains
unchanged over time. Below, we define the generic problem
of anomaly detection for an attributed network, which is a
graph structure with sensor outputs/attributes at the nodes
of the network. Then, we discuss the main elements of the
proposed framework.

Problem 1. Anomaly Detection for Heterogeneous
Networks. Given the topology of an attributed network, sen-
sor locations and attributes, and anomaly propagation sets
for all network nodes, aggregate/analyze real-time network
sensor observations collected from sensors across the entire
network to identify (i) the most likely sources of potential
anomalies (if any), (ii) the impacted anomalous nodes/sub-
graphs, and (iii) the uncertainty associated with the results
from (i) and (ii).

3.2. A generic structure for attributed networks

The characteristic variables/parameters and the assumptions
made to characterize a network, its topology, and the detec-
tion framework are discussed in this subsection. A heteroge-
neous attributed network or graph G, represented by
G=(A,P,Z,Y), is a system made up of nodes or vertices
connected by links or edges that are characterized by the
adjacency matrix A, the anomaly propagation matrix P, the
sensor-attribute matrix Z, and the sensor data matrix Y.

3.2.1. Graph topology

A network, or graph G, is a system made up of a set of
nodes or vertices, denoted by N, connected (virtually or
physically) by a set of links or edges, denoted by V. Here, V
can be obtained by an |N| x [N| adjacency matrix A = [a;],
where a;; = 1 if there is a direct link (edge/arc) from node i
to node j, that is, if {i,j} € V. Each node corresponds to a
unique entity, such as a sensor, device, equipment, or user,
and can be a potential candidate for the original location of

IISE TRANSACTIONS (&) 5

ing €U,

Figure 2. A graphical model representing the dependencies between BN varia-
bles for node n and its immediate children (D) and parents (UP). Circles are hid-
den nodes, and rectangles are sensor nodes. Solid lines represent deterministic
relationships, and dashed lines represent stochastic relationships. Only the con-
nection from and to node n and its corresponding variables are shown.

an anomaly. The topological structure of the network should
follow a DAG which is a directed graph with no cycles.

3.2.2. Anomaly and its propagation

At any point of time, anomalies can originate from one or
multiple nodes of the network. Thus, at each point of time,
a node may be anomalous or not anomalous. Due to the
topological structure of the network and dependencies
between nodes, anomalies can propagate across the network.
The propagation of anomalies in the network is character-
ized by a set of anomaly propagation paths/sets, which can
be represented by a [N| x |N| matrix P = [p;], where p;; =
1 if an anomaly can propagate from node i to node j. In a
deterministic case, when node n experiences an anomaly,
the linked neighbor nodes may or may not experience the
same anomaly, that is, p; is a binary variable being one
when an anomaly propagates from node i to node j. For
example, in a distribution network, the propagation of any
outage in the network is fully known according to the loca-
tion of protective devices. Similarly, the propagation of the
contamination in a water distribution network depends on
the topology of the network and the points (sources) of con-
tamination. In other words, contamination at a point in the
network affects downstream locations in the network. Due
to the sparse structure of most large-scale networks, only
positive p;s may be recorded as a list variable. In the case of
stochastic propagation, p;; can represent the probability that
an anomaly propagates from node i to node j. It is import-
ant to note that for any node in the network, matrix P con-
siders all impacted nodes and not just its neighbors. We
assume that P is either known or can be estimated from
past data. In the stochastic case, which is beyond the scope
of this article, we have a probabilistic graphical model where
the conditional dependencies can be shown via a DAG. In
our framework, downstream/descendant nodes, upstream/
ancestor nodes, parent nodes, and children nodes are
defined according to the anomaly propagation paths. For
instance, node m is a child of node n if a,, = 1 according
to the adjacency matrix and any anomaly at node #n propa-
gates to node m (that is p,, = 1). In such a case, n is the
parent of node m. Since for any node, we can have multiple
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parents or children, we use U, and D,, to denote the set of
ancestors and descendants of node #n, respectively. Based on
this notation set, node m is a direct child of node n if
m € Dy and a,,, = 1. Also, if node k € D, then p,; = 1
and if node k € U,, then py, = 1. We should point out that
anomaly propagation can occur in both tree and non-tree
structures. To better illustrate this point, six examples of
anomaly propagation for random tree and non-tree struc-
tures are shown in Figure 1.

3.2.3. Network monitoring variables

To monitor a network structure with regards to anomalies,
a health state variable is defined for all nodes based on the
topology of the network. For node n, variable x,(t) is
defined to indicate whether node # is under the effect of an
anomaly at time f. To monitor the original locations of
anomalies, we also define a binary variable o,(t) reflecting
whether node 7 is the original location/source of the anom-
aly in epoch t. It is clear that if 0,(t),05(t),...,op(t) are
known, the anomaly status of all nodes, represented by
x1(t), %2(t), ..., )y (£), are known as well (based on the
deterministic anomaly propagation paths). These network
status variables are not directly observable and only sensor
data may be available to partially infer their status.

3.2.4. Graph sensor data

The data collected across a network are of various types and
are generated from various sensors. Sensors are located at a
known subset of nodes. There are a total of |J| types of bin-
ary sensor attributes (outputs) collected in the network,
which may be generated from |J| or less than |J| types of
sensors (i.e., each sensor may generate one or more types of
binary sensor attributes). There may be multiple sensors
located at any given node, however, we mainly track the
types of sensor attributes available at each node. This work
focuses only on binary attributes due to their wide applica-
tion in many network structures, such as power distribution
and communication networks. We refer to the network
structure as an attributed heterogeneous network because
attributes are available at subsets of nodes and the sensor
attributes at any two nodes may be different. It is assumed
in this article that a binary attribute can either be (i) the dir-
ect outcome of a sensor (e.g., one if there is electric current
or zero if there is no electric current in a smart meter); or
(ii) a transformed representation of a non-binary sensor
attribute (or attributes) that is found by either preprocessing
original sensor values (e.g., applying a threshold to classify
temperature sensor outcomes to high and low) or feature
transformation (e.g., applying one-hot encoding on a cat-
egorical feature to transform it into a binary feature vector).
Networks with non-binary sensor data that are not convert-
ible to binary data are beyond the scope of this work.
During any time interval of interest, node » is assumed to
generate either the output y,;(t) or simply no output (if no
sensor that generates output j is at this node or if there is a
missing point), that is, y,i(t) = NA, for sensor output j. The
binary index z,; represents whether node n generates feature

j or whether the jth sensor attribute is collected at node n.
With this notation, users can set z,; to zero when sensor
attribute j is not collected at node n (when the sensor that
generates attribute j is not installed at node #n) or when that
specific data point is missing. Since the status of each node
is binary, the outcome of each sensor attribute is binary,
and sensor attributes are assumed to be conditionally inde-
pendent given the node’s binary status. Further, the relation-
ship between sensor attributes and node status can be
mathematically defined with two parameters, the false posi-
tive rate (denoted by f;), and the true positive rate (denoted
by o), as follows:

Pr(ynj(t) = 1|xn(t) = I,an(t)) = an(t)OCj,
Pr(yn(£) = 1xu(t) = 0,2()) = 24 (1) >
VneN, Vjel.

Modeling binary sensor behavior using the above equa-
tions is very reasonable and has been extensively used in the
literature. The power of these sensor attributes is defined
through parameters o and f. Based on this sensor behavior
model, the larger « and (1 — f) are, the stronger are the
corresponding sensors in distinguishing anomalies from nor-
mal instances. Now, based on the conditional independence
assumption of sensor data at each node given the status of
that node, we can build the following sensor model (assum-
ing that z,1(t) = 1,..., z,(t) = 1):

Pr(yui (t) = vi, oo yuy) (1) = vy % (2) = %)
- [H (1 — ])} {H B(1 - ﬂj)”f}
jel Jjel
Vx € {0,1}.

3.3. Problem statement in the context of BNs

In this subsection, we discuss how the problem of anomaly
detection for an attributed heterogeneous network can be
framed through a BN with both deterministic and stochastic
edges as well as hidden and observable nodes. A BN is a
probabilistic graphical model (comprised of nodes and
directed edges) that can represent the dependencies between
a set of hidden or observable random variables with a DAG
(a directed graph with no cycle). The proposed BN model-
ing will enable network operators to obtain integrated
insight regarding the entire network and the uncertainty
associated with that insight at any decision epoch. Given a
heterogeneous attributed network with a known topology
and sensors, locations, and attributes, the objective is to ana-
lyze real-time network sensor data, from all or a subset of
sensors across the network to find the most likely status
of the network (with regards to anomalies). The full status
of the network is defined based on the status of all nodes,
potential anomalies, and the original sources of the potential
anomalies. This problem can be extended to finding the K
most likely scenarios with regards to the status of the entire
network given available sensor data.



3.3.1. BN and its connection with the network topology
The causal relationship between the network topology ele-
ments, anomaly and its propagation, monitoring variables, and
sensor data can be represented by a BN through a DAG as
shown in Figure 2. The directions of edges represent the
dependency/causal relationships, where the initial nodes are
the causes of destination nodes. It is clear from Figure 2 that
each node may have multiple parents and multiple children as
discussed in Section 3.2.2, thus, the graph structure is not lim-
ited to tree structures unlike many available graph anomaly
detection frameworks that work only on simple graph struc-
tures, such as trees, with both deterministic and stochastic
edges, as well as hidden and observable nodes. There are three
stochastic variables in the BN for each node # of the original
graph (that is o,, x,,, and y,). Each variable in the BN is rep-
resented by a distinct node. There are two types of variables/
nodes in this BN. The rectangles represent observable/evidence
nodes (i.e., sensor nodes y), and the circles represent the hid-
den nodes (ie., network monitoring variables x and o). In
BNs a node whose status has been observed with probability 1
is an evidence node. It is important to note that all sensor
outputs at each node are represented in one box (y), which
reflects the fact that they are not necessarily independent.
There are two types of edges in the network as well, namely,
stochastic edges (dashed lines) and deterministic edges (solid
lines). The deterministic edges are defined based on the net-
work topology and anomaly propagation paths. For instance,
the solid edge between o,(¢) and x,(t) ensures that if 0,(t) =
1 then x,(t) = 1. Also, x,(t) = 1 if any of its ancestors (U})
are impacted by the anomaly. The stochastic edges between x
and y represent the relationship between the status of each
node and sensor outputs for that node (if there is any). Also,
the binary parameter z,; in z indicates whether node n gener-
ates feature j or whether the jth sensor attribute is collected at
node n. In Figure 3, the BN transformation of a small section
of a distribution network is presented. It is clear that the top-
ology of the original graph/network and the topology of the
BN are not the same, because the BN combines network vari-
ables with topology parameters and their relationships, and
thus has more nodes (three times more nodes) and edges
(much more depending on the structure of the anomaly
propagation in the network). It can be seen from this figure
that a physical network can be modeled by a casual graph rep-
resenting the propagation of anomalies (middle graph) and a
BN. For each node in the original network, there are three
variable nodes in the BN.

Each variable/node in a BN is conditionally independent of
all its non-descendants in the graph given the value of all its
parents. To fully specify the BN, it is necessary to characterize
each edge that is specifying the probability distribution or
causal relationship between each node conditional upon its
parents. In this article, instead of using a conditional probabil-
ity table to show the relationship between Boolean variables x
and o, we define a set of mathematical constraints to charac-
terize the deterministic edges. The set of constraints that guar-
antees the causal dependencies (or conditional independence
relationships implied by the graph) between elements x and o
can be mathematically defined with a set of binary constraints
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for graph G as follows:

on+2xm§(|Uﬁ|+l)xn vV n€N;
P
O(G,x,0) : meUn
( ) xngon—i—me V¥ né€N.
meUl
(1)

The first constraint implies that if node # is the original
location of an anomaly (i.e., 0, = 1) and/or at least one of
the direct parents of node #n is anomalous (i.e.,
> meutXm > 1), then node n is impacted by an anomaly
(i.e., x, = 1). The second constraint ensures that if node n
is not the source of an anomaly (i.e., 0, = 0) and all its dir-
ect parents are healthy (ie., Zmeuﬁxm = 0), then node # is
in a healthy condition (i.e., x, = 0). From a network point
of view, the first constraint implies that an anomaly propa-
gates from a node to all of that node’s descendants, and the
second constraint implies that any node can be impacted by
an anomaly originating at that node or by other upstream
nodes in its anomaly propagation set (or both). Any combin-
ation of x and o that satisfies all constraints in Equation (1) is
a feasible explanation (cause) for the evidence observed by the
sensors and satisfies the connection between these nodes in
the corresponding BN. The second type of edges in this BN is
related to the stochastic edges between network anomaly sta-
tus and potential sensor measurements. To characterize this
edge, we need to use a conditional probability distribution of
y, given x,, as defined in Section 3.2.4.

3.3.2. Anomaly detection with a BN

At decision epoch t, it is assumed that sensor data Y(¢) are
available for a subset of evidence nodes, denoted by E(f),
that is Y(t) = {yn|n € E(t),j € J}. The rest of the nodes,
denoted by E'(t), either generate no sensor data or are sub-
ject to missing points. Thus, N = E(¢t) U E'(¢). The anom-
aly detection problem can be mathematically defined
through the posterior distribution of hidden variables x(t)
and o(t) given Y (¢) and the network topology G as

Pr(01 (£).--s 0y (£), %1 (), s X ()] ¥ (£), G). 2)

The most likely status of the network is the combination
of [01(t)..., o (£), x1(£), ..., 1)y (¢)] that satisfies the causal
relationships between variables as listed in Equation (1) and
maximizes the joint posterior distribution of o and x in
Equation (2). This problem is often referred to as the MPE
in the context of BNs. One approach to find the MPE is to
list all the scenarios (combination of feasible x(¢) and o(t))
and compute the joint posterior probabilities. Given that
there are |N| nodes in the hidden/explanation set and each
node has only two possible values, we will have to compute
2Nl conditional probabilities in total (although some combi-
nations are not feasible). Such an exhaustive abductive infer-
ence is proved to be NP-hard in BNs (Cooper, 1990). In
this article, we proposed an efficient way to evaluate
Equation (2) and find the K(K > 1) most likely scenarios
for the status of the network and the uncertainty associated
with that status while satisfying the topological dependencies
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Physical Network

Breaker (1)

Graph based on

Recloser (4)
| |

Figure 3. The BN transformation of a small section of a distribution network.

in the network. The equivalent binary optimization model
for this problem can be formed as follows:

max z = Pr(oi(t),...,opn(t), x1(), ... v ()| Y (2), G).
3)
Subject To: ®(G,x,0), 4)
0,(t) € {0,1}, x,(¢) € {0,1}, Vn €N, (5)

where @ is the set of constraints that guarantees the causal
dependencies (or conditional relationships implied by the
graph) between the elements x and o (Equation (1)).

3.4. A fast stochastic sampler for network
anomaly detection

In this subsection, we discuss how to find the most likely
network status given the data observed from a set of sensors
across the network, denoted by Y(t). We refer to E as the
set of nodes (evidence nodes) where at least one sensor
measurement is available and E' as the set of nodes with no
data (non-evidence node). Inspired by interesting properties
of BNs, we first introduce an important remark that helps
simplify the evaluation of Equation (2) based on the BN
topology. For notational convenience, the time index ¢ is
removed from all equations.

Remark 1. Given that the network topology G = (A,P,Z,Y)
is known, the following holds true:

Pr(o1, ..., 0N} X1 s XN Y5 G) = Pr(o1, ..., 05| Y, G)
x H Pr(o,) x HPr(yn|x,,,zn) x 1{(0,x) € (G, 0,x),

neN ncE

where Pr(o,) is the prior probability of node n being the
anomaly source and 1 is the Dirac Delta function.

The proof is given in Section B of the Supplemental
Materials. This Remark significantly simplifies the process of
finding MPE based on the topology of the network. Also,
this remark implies that it is sufficient to estimate 0,,n € N
to find all x,,n € N from Equation (1). Any combination of
x and o that violates Equation (1) will result in the posterior
values of zero and will not be the solution of the MPE. As
will be discussed later, we will make sure that such solutions
do not appear in the final solution sets. Below, we develop a
Metropolis-Hastings sampling method to construct a
Markov chain with a stationary distribution equal to
Equation (2) according to Remark 1 with a block sampling

Anomaly Propagation

The Bayesian Network
for Anomaly Detection

of x and o variables while satisfying their causal relation-
ships. The initial algorithm can sample o; for node i for a
number of predetermined iterations. A new value o/ is
sampled from Q(07¢"[0) where 0% is the current value of

0. The acceptance probability can now be calculated as fol-

lows:
o= min{ 1,

where MB(o0;) is the current value of the nodes in the
Markov Blanket (MB) of o;. In a Bayesian framework set-
ting, a MB of a node comprises a set of parents, children,
and the parents of all its children. The main property of a
MB is that a node is conditionally independent of all other
nodes in the network given its MB. This helps the sampling
process to randomly sample o; conditioned on the previously
generated values of the variables in the MB of o; For the
proposal distribution Q, we use the model composition
approach where we always flip the binary variable at each
state, that is

Qo™ = 0jof™ = 1) = Qo = 1) = 0)

=1 Qo}"|o™) = Qo 1o}").

Q(of"]o") Pr(o}"|MB(o;)) } ©)

Q(0f"[0f")  Pr(0f[MB(0;))

Now, Pr(o7*”|MB(o;)) can be calculated from Remark 1
and the MB of node o; in the BN, which are the parents of
node o;, the children of node o;, and the parents of the chil-
dren of node o, Given the deterministic relationship
between the variables in the corresponding BN, the MB of
node i includes a set of nodes that are shown in Figure 4. It
can be seen that due to the deterministic relationship
between nodes, the MB of node # involves many upstream
nodes that can potentially impact this node. In Section 4.1.1,
we discuss how to efficiently find the MB of all nodes. Now,
the marginal distribution of o; given its MB can be found as
follows:

Pr(o}*"|MB(0;)) o< Pr(o!")
X H Pr(y, |x2", z,) x 1{(0"",x"") € ®(G, 0,x)}.

nefi, D}

It is important to note that x"" should be updated based
on o/". The key point here is to only update the elements
in x that are impacted directly by o*”. From Equation (1)
and the structure of the DAG in Figure 2, we know that o;
can impact x; and all x,,n € D;. Also, each x; is initially
impacted by their ancestors. Thus, selected elements of x
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Figure 4. MB of node i based on deterministic and stochastic relationships.

should be updated based on 07*" as follows:

NI S )
VI/E{Un})n#i

™)
where 0,7 refers to the most updated value of o, during
the samplmg process. The above equation is extracted from
the topology constraints given in Equation (1). Given that
only elements of o are sampled at each step and all x varia-
bles are calculated directly from o using Equation (1), the
new combination of 0" and x"" always satisfies Equation
(1) and, as a result, 1{(0"",x"") € ®(G,0,x)} is always
one. Now, the acceptance probability « can be simplified to

Pr(0f*") X [ Liegi, p;y Pr(w,|x5"> 2n)
update
PI‘( OId) X Hne{z,D} Pr<yn|x Pt ’z”>

The summary of our proposed sampler is presented in
Algorithm 1. At each iteration of the algorithm, variables
01,...0y| are sampled sequentially and then xi,...x)y are
updated if necessary based on Equation (7). This means that
even though one variable is sampled at a time, multiple hid-
den variables may be updated after a new sample is gener-
ated. It should be noted that the variables x**% and o"ate
are defined to track the most updated set of variables within
a single iteration of MCMC. The stopping criterion is
defined so that the algorithm is terminated when the vari-
ance in sample average for each variable in the last # itera-
tions equals zero, that is, when the sample average remains
the same for the last # iterations for each of the unknown
variables o; and x;. Here, the stopping parameter 1 should
be defined by the users.

upda

o = min{1,

}oo(8)

Algorithm 1 Proposed Stochastic Sampler to Estimate
Network Status Variables

Input: Network Structure (G), Evidence nodes (E), Sensor
Data (Y), Burn-in Period (k,), Stopping Criterion
Parameters (1)
Output: Samples o) and x* for k € {1,..,K}
1: Initialize 0*) from the correspondlng priors and then
find x©) from the network topology.
2: Set x4t — x(0) and k=1.
3: while k <5 OR the variance of each sample average
in the last 7 iterations is greater than 0 do
4: fori=1:Ndo

5: - Propose o} (k=1)

=1-o;
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6: - Compute the acceptance probability as
7:
, Pr(0f") [Tneqi, py Prvalx™20)
o = ming 1, =) update
Pr(o;" ) [Luegi,py Prlen > 20)

where

xzew :min{l, Orew_’_ O;Pdute}) ne {i,Di} (9)

Je{Unynti
8: - Sample a random number u from U(0,1).
: if u < o then

10: - Update ol = opew, o0 — gnew %) — ynew
and x4 = xpe for n € {i,D;}

11: else

12: - Re]ect the proposed 0", set o) = ol
and x) = P for n € {i, D;}.

13: end if

14:  end for

15: end while

3.5. The most likely scenarios and their uncertainties

The outcome of the stochastic sampler is a set of samples
oh) = [o§k>, ""O|(JI\<I>|] and x) = [ogk),...,ogfj)‘] for 1 <k <K,
where K is the number of iterations that is either directly
predetermined or indirectly imposed by a stopping criterion.
Since the size of the networks in this study is typically large,
there are many combinations of solutions that may not
appear during the sampling process. Also, many solutions
may appear only a few times throughout the entire MCMC.
We can find the posterior distribution of each sample dir-
ectly using Equation (2). In other words, only the posterior
values of MCMC samples are evaluated. The index of the
rth most likely sample can be found as:

I' = Pr(0 = o, X = x|y (t),G), (10)

arg max
ko<k<K,k#{Il,.., I}
where kq is the burn-in period. Now, the rth most likely
scenario would be MPE" = [0}, x(")]. There are other ways
to estimate the status of each node from the MCMC results.
For instance, one can estimate the marginal expectation of
the status of each node and its probability as follows:

k
Zk:kgzK 01( )
K—Fky+1

Sekox HoP =0;}
K—ky+1 ’

The MCMC results can be used to rank nodes and
regions (neighborhoods of nodes) based on their marginal
distributions obtained from MCMC samples. For a complex
function of interests where the closed-form formula for the
posterior cannot be used, we directly use the outcome of the
MCMC to get an estimate for that function. For instance, let
us assume that the values for hidden nodes in set A are
already known and we are only interested in knowing the

0; = round( )or median{ogk"), e OSK)},

with probability
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probability of the hidden status of nodes in set B. Then we
can use

Pr(op|Y,G,04) =~ Z 1{o5 € 0} { Z H{oa € 0<k)}} -

k=ko:K k=ko:K
(11)

The above equation is widely applicable due to its generic
structure. It can estimate the probability of a certain set of
nodes given that the sensor data for a certain group of sen-
sors and the anomaly status of a certain set of nodes are
already known. If one wants to calculate the rth most likely
sample given that the status of nodes in set A are known,
we need to update Equation (10) as follows:

I' = arg max Pr(O = o x = x(k>|Y(t), G).

ko<k<K,kA{I',..,I""1} &0, €0k
(12)

3.6. Theoretical bounds on sensor properties to
detect anomalies

In this subsection, an important remark is introduced to
help understand the power of sensor networks to detect
anomalies in different sizes of subgraphs. The remark is
shown for the case where there is only one type of sensor
observation (i.e., J=1), but it can be simply extended to the
general case of J> 1.

Remark 2. For a network with sensors with o > f, if node
n is the true source of an anomaly and h denotes the actual
fraction of the sensors located in the corresponding propa-
gation subgraph that generates an error (i.e., y=1), then for
the model to detect node n as the source of the anomaly, h
should satisfy the following:

log (1‘%0) ~ log (1_/;)

|E,| 1-a
" e () - g (1)

where p, is the prior probability of each node being the
source of an anomaly (i.e., Pr(o, = 1)) and E, and |E,| are
the set and the number of sensors located in the propaga-
tion set of node n, respectively, that is |E,| = > we(n p,}12n1-
In the absence of knowledge for prior po,, we can either
define an uninformative prior or fine tune it with cross-val-
idation. The proof of this remark and some useful insights
are given in Section C of the Supplemental Materials.

4. Scaling up the anomaly detection process for
large networks

The problem of network anomaly detection is often a large-
scale problem with many nodes and large amounts of sensor
data. That makes the MCMC sampler extremely slow to
converge. In this article, we utilize two approaches, namely,
parallelization and vectorization, to significantly accelerate
the developed MCMC sampler and make it scalable for
large networks.

4.1. Utilizing the topology of the BN for
parallel sampling

A typical technique to conduct parallelization in MCMC
algorithms is to run multiple MCMC chains independently
in parallel (and potentially on multiple CPU units) and
merge the results. Although many reports of success with
such a paralll MCMC have been reported in numerous
application settings, such an approach does not impact the
computational time of each iteration of the MCMC algo-
rithm and may not work efficiently for problems with many
variables and slow convergence. In this article, we propose
to decompose the proposed MCMC frameworks to struc-
tural segments/clusters and achieve chain parallelism by effi-
ciently running one chain per available processing unit at a
time. It is clear that all variables cannot be sampled in paral-
lel at the same time for many reasons. For instance, samples
may become infeasible and non-ergodic, which means that a
solution may not satisfy the topological dependencies
between nodes and may never converge to the stationary
distribution. In this article, we utilize the concept of MBs
for MCMC parallelization, graph coloring (Wang et al,
2017), and chromatic sampler (Gonzalez et al., 2011) to pro-
pose a parallel MCMC for the BN under study in this art-
icle. It is clear that in a BN, two nodes can be sampled in
parallel if neither node is part of the other’s MB, that is,
their conditional distributions do not depend on each other.
This is mainly because any variable is conditionally inde-
pendent of all other variables given its MB. Thus, if we find
a set of clusters where within each cluster no node is part of
the other nodes’ MB, then we can sample all nodes in a
cluster simultaneously. Ideally, we need to maximize the
number of nodes within each cluster and minimize the
number of clusters while making sure each node belongs to
exactly one cluster. Once the MCMC runs in parallel for the
nodes of one cluster, the results are transferred to the next
cluster, and this process continues until the nodes in all
clusters are sampled. It is important to note that such a
parallel sampling by vectorization in this article takes a
Single-Instruction-Multiple-Data form in which the logical
processors perform a single instruction on multiple data
points simultaneously (using built-in Python libraries). The
parallel sampling utilized in our numerical experiment sec-
tion is a single-chain strategy, but it can be further extended
to a multi-chain strategy as well as other parallelization
structures, such as Multiple Instruction Multiple Data both
of which are beyond the scope of this article.

4.1.1. MBs and network topology

To incorporate the above idea into the sampling process, we
first need to extract the MB of each node systematically and
generate a pseudo-adjacency matrix B = [bnm]\N\xlNl’ where
the binary parameter b,,, denotes whether node m is in the
MB of node n. The reason that we need to derive this
matrix is twofold: the MB nodes of any node are not neces-
sarily its immediate neighbors (i.e., not directly known as
network inputs) and the pseudo-adjacency matrix can be
better utilized for finding the clusters for parallelization.
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Table 2. Relationship between hierarchy, propagation matrix, and Pseudo propagation matrix.

Adjacency Matrix

Propagation Matrix

Pseudo Adjacency Matrix

Node

Number 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1
2 1 1

3 1 1 1 1 1
4 1 1 1

5 1 1
6 1

7 1 1 1 1

8 1

9 1

10 1

S U [N
—_
—

_—_ a
—_—_
—

Using the definition of MB, b,,, for the BN in this problem
can be defined according to the set of anomaly propagation
paths as

1
bnm{o

Based on the above definition, the children, parents, and
the parents of each node’s children build the MB of any
node. The above equation implies that o, cannot be sampled
together with o; if node i is in the anomaly propagation of
node n or if node n is in the anomaly propagation of node
i. In other words, matrix B is an adjacency matrix where
adjacency is defined based on whether two nodes are in the
MB of each other. We can infer from the above equation
that the pseudo-adjacency matrix can be computed by the
propagation matrix from the following remark:

V m e {T’l, Uﬂ)Dna UD,,}’

Otherwise. (13)

Remark 3. Given that the elements of B should be binary,
the following relationship holds between B and propagation
matrix P:

B = min{[1]jyxn,P+P" +P P'}. (14)

In the above equation, matrix P captures all children,
matrix P captures all parents, and matrix P P" captures
the parents of all children. Since the MB relationship
between two nodes may be counted more than once and
given the binary nature of each element b,,, in matrix B, we
need to find the minimum of one and the outcome from
P+P' +P PT. It is important to note that the propaga-
tion matrix P indicates the propagation relationship between
any two nodes in graph G, which can represent whether an
anomaly at any node »n can propagate to any node m, where
n and m are any two nodes in the network. Due to the
deterministic relationship between node n and all its down-
stream nodes given in D,, the anomaly of node n will
propagate to all its downstream nodes. Therefore, propaga-
tion matrix P = [pym] |y x|y can be represented as follows:

1 V m e {n,D,},
Pnm = 0

Otherwise.
Also, the propagation matrix can be generated from adja-
cency matrix A as follows:

P= min{[thMN‘,Ay},

(15)

(16)

where y is the depth of graph G. The depth of a DAG is
defined as the number of edges on its longest path between

a) A Tree Graph

a) A Non-Tree Graph

Figure 5. Examples of the node clustering on the tree network topology given
in Figure 3 (a) and a random non-tree network structure (b).

a) Entire Network
e i g
s 2

b) A Small Segment of the Network

@
®

Figure 6. A simple view of the network used for numerical experiments (left),
and the propagation path of an anomaly for a random subgraph (if an anomaly
occurs at node 1760).

any two nodes. For a DAG with a source node (a vertex
without incoming edges), depth is the longest distance from
the source node to all other vertices in the given graph. In
Table 2, the adjacency, propagation, and Pseudo adjacency
matrices are given for a small network.

4.1.2. Finding clusters for parallel sampling

The next step is to find the clusters and variables within
clusters that can be sampled together. To do that, we can
borrow an idea from the well-known graph coloring prob-
lems, which have many applications in mathematics and
computer science. In graph coloring problems, vertex color-
ing is conducted so that no two adjacent vertices share the
same color. Considering the pseudo-adjacency matrix, we
can use graph coloring to find the set of nodes that can be
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sampled together (nodes that are not in the MB of others).
We utilize a fast greedy approach inspired by Wang et al.
(2017) that considers the unknown nodes of the BN based
on a predefined sequence and then assign each node its first
available color (cluster number). The idea is to first find the
sink nodes, which are the nodes without outgoing edges
(children), and then start from the one with the minimum
degree. Once the independent sink nodes are chosen (with
regards to their MB), they are removed from the network
and the process continues until all nodes are assigned to the
clusters. When arriving at a node, we check all existing clus-
ters to verify if an assignment to them is possible. If not
(because at least one of the nodes in each cluster is within
the MB of the existing node), then we build a new cluster
and move on. The details of the graph clustering for paral-
lelization are given in Algorithm 2. The outcome of this
algorithm is C clusters, denoted by Q, ..., Q¢, and the varia-
bles in each cluster. It is clear that Q, NQ, =0 for any
pair (c1,¢;) € {1,...C}* and Q, UQ,..Qc = N. This algo-
rithm works for both tree and non-tree structures. Also, it is
possible that there is more than one way to cluster a net-
work. In Figure 5, we provide a simple example of a 10-
node tree graph and a 13-node non-tree graph to show
which nodes can be sampled together based on the algo-
rithm. Based on this graph, there are a total of four clusters
with 6, 2, 1, and 1 nodes for the tree graph and a total of
six clusters with 5, 3, 2, 1, 1, and 1 nodes for the non-tree
graph. The nodes within each cluster can be sampled
together. It is interesting to note that in the context of
power distribution networks, devices of the same type can
be clustered together, as they are not within each other’s
MB. For instance, all meter nodes can be sampled simultan-
eously, then transformer nodes can be sampled together,
and so on (see Figure 1 in Supplemental Materials).

Algorithm 2 Graph Clustering for MCMC Parallelization
for Tree and Non-Tree DAGs

Input: Network Structure (G)
Output: Clusters Q, ..., Q¢

A. Initialization:
- Find the Pseudo-Adjacency Matrix from

B = min{[1] yx P +P' +P P'}.

- Find the sink node with the minimum degree (denote it
by e*) and assign it to cluster 1 (i.e, Q; = {e*}). In the
case of a tie, choose one randomly.

-Set C=1 and the set of
asU ={1,.,N} —¢".

B. Clustering:

forj=1:|N|—1do
- Find sink nodes and their degrees.
- Find the sink nodes with the minimum degree (e*)
from U. In case of a tie, choose one randomly.

- Define Ng(e*) as the set of nodes in the MB of node
e*, that is

unassigned  nodes

Ng(e*) = {n € N; by, = 1}.

- Assign e* to the lowest possible cluster denoted by c*,
where

¢ = min{c € {1,...,C}|Q. N Np(e") = 0}.

In the case of a tie, assign e* to the cluster with the high-
est number of nodes from the same type (if applicable).
if ¢* > 0 then
- Update Q = Q. Ue*
else
- Set C = C + 1 and create a new cluster Q¢ = e*.
end if
- Remove ¢* from U (i.e, U =U — e*).
end for

Once the clusters for parallel sampling are determined
from the greedy approach, we can use a Chromatic sampler
to sample variables in the same clusters and then process
the clusters sequentially. For the problem discussed in this
article, we make sure that the graph clustering algorithm
considers the topological structure of the network and the
types of nodes. In the cluster assignment step of the node
clustering scheme (Algorithm 2), we make sure that nodes
of the same types are clustered together to the extent pos-
sible. For instance, when there is a tie between two or more
clusters, a node is assigned to the cluster with the highest
number of nodes from the same type. Also, by first assign-
ing all sink nodes to clusters, it is very likely that nodes of
the same type are clustered together. These steps are import-
ant for the interpretability of clusters, particularly for power
distribution networks. For instance, all smart meters in a
power distribution network can be clustered together. By
applying the steps in Algorithm 2, we first found the clusters
of nodes such that all nodes in a given subset are not in
each other’s MBs. We then sampled each cluster in parallel
and then merged the results.

4.2. Vectorization

After the parallelization clusters are found, the MCMC oper-
ations within each cluster require many repetitive steps (e.g.,
finding «) for many nodes at the same time. One approach
that can utilize parallel operations on a CPU is vectorization
that can potentially lead to the elimination of many for
loops. In this subsection, we propose a series of steps to
convert the proposed MCMC operations on a set of nodes
into efficient and high-performance vectorized operations
and matrix operations, which are supported by a typical
CPU. For large networks and when GPU units are available,
we can potentially speed up the MCMC even further. To
further accelerate the convergence of the MCMC, we can
also run multiple chains on several CPU units. Recall Q. as
the set of nodes in the cth cluster where they can be
sampled together. Below, we introduce a series of vectoriza-
tion steps for the proposed MCMC sampler. The target of
the first step of vectorization is to generate vector ag, =
[o5i € Q], where o; is the acceptance probability in the
Metropolis—-Hastings algorithm as follows:



Pr(0/") X [l e, by Prvali™s 2n)

o; = min< 1
! ’ k—1 update
Pr(o{" ) x [,eqs, ny POy, b, 2,)

Given that the proposal distribution in the algorithm flips
the current variable values, we have

oD

o =[11,...1]" — oy Y,

which is the vector of the proposed values for all the varia-
bles in the cth cluster. By taking the logarithm of the second
term of «;, we get

log (Pr(o?ew){Pr(ogk1>)}_l>+ > log (Pr(y,|xi", z4))

nefi, D;}

— log (Pr(y,|x#%", z,.)),

which can be vectorized for all the variables in Q. as fol-
lows:
(k-1) Pr(0; =
% )] e 8 PI‘(O,'
[Q[x1

Q|1

Pr(yn|xn = LG)
Pr(y,|x, = 0.2,)
[Dag|x1

(17)

where © is the element-by-element product operator, known
as the Hadamard product. Here, matrix Xq = [n,j]
is a binary matrix where its ijth element is

y 0 Otherwise.

where Dq,(j) is the jth element of Dg, and Q.(i) is the ith

element of the cluster Q.. It is interesting to point out that

the only elements of Equation. (17) that need to cl(}{an e dur-
-1

|| x| Do |

ing each step of the MCMC are vectors [(0/" — 0;" )]s
and [x"®" — x,F dm]‘pg ix1 and all other vector/matrix ele-

ments are constant and need to be computed just once
before the start of the MCMC (like 7;;) as a vector. To com-
pute x™" as a vector, we have

new

X = min{[1],p, |» [01, > O] X Ppg }, (18)

where

ofv if ieQ,
0; = dat . >
' 07" Otherwise

and Pp, is a matrix of size |N| x |Dq_|, which includes
only the selected columns of the anomaly propagation
matrix corresponding to the elements of Dg,. Note that
since [0y, ...,0n] X Pp,_ gives the anomaly status of each
node, it can potentially have values more than one, which
reflects a rare case where a node is under the impact of
more than one anomaly. That is why we get the minimum
of one and each element of the product to get the binary
status of each node in €, in Equation (18). Now, by generat-
ing |Q.| random numbers from uniform distribution U(0,
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1), denoted by uq,, the new samples in a vector form can
be calculated as

(k) (k=1

— (k1)
0g. = 0q

) 4+ [ Hug, < OCQC}:I‘QE‘XI © ["?ﬁw — 0q, }
(19)

Also, all the x variables need to be updated based on the
following vectorized equation:
o, =min{1, { : -,of"),...} X Pp, }. (20)
Note that xuggm and o, need to be calculated similar
to Equations (18)-(19), respectively. The final algorithm after
applying the parallelization and vectorization is given by all
details in Algorithm 3. Each iteration of the MCMC can
now run very efficiently with vectorized operators. The
order of clusters within each iteration of MCMC is from the
lowest to the highest. Note that all time-consuming steps are
in Phases I and II, which are conducted offline and only
once for a network.

update
Q

Algorithm 3 The Fast MCMC

Anomaly Detection

Sampler  for

Input: Network Structure (G), number of iterations (K)/
stopping criterion, Sensor data from evidence nodes (Y)
Output: Clusters Qj,..,Qc and Samples o) and x®
for k € {1,...,K}
Optional Steps:
- Run Multiple
Multiple Processors
- Divide Each Cluster to Sub-Clusters and Run Each Sub-
Cluster on a Single Processor
I. Finding Conditionally Independent Clusters
- Find the Pseudo-Adjacency Matrix as follows:

Independent Chains on

B = min{[1] yxn-P+P" +P P'}.

- Find clusters {Qy, ..., Qc} from Algorithm 2.
II. Initialization

- Compute Matrix 1 and
P o8 Pr(y,|x, = 0.2,)
|Dq, |x1
Pr(o, = 1)
log ———= force {1,...,,C}.
°8 Pr(o, = 0) { }
Q| x1

- Initialize 0®) from priors and then find x(® from the
network topology.
— Set Oupdate — 0(0) and xupdate —_ x(O).
— Define ogc), xg)c), olgz date o nd x?{date based on the defined
clusters Qy, ..., Qc.
III. Chromatic MCMC Sampling
for k = 1: K (or while the stopping criterion is not satis-
tied) do
forc=1:Cdo
- Vectorized MCMC
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- Find of as follows:

]T o(kfl).

oy =[11..1]" —oq

- Compute the acceptance probability vector ag,
from Equation (17) and x%eg‘;: from Equation (18).

- Sample |Q.| random numbers, denoted by ugq,.

- The new samples in a vector form can be calcu-

lated as

og‘f) = og‘:l) + [ 1{ug, < ag[}}lgclxl o [ogiw = ogfl)},

update (k)
OQ[ = OQ

x%‘i = min{l, { -~,0£k),...] X Ppy, },
update k
ey
end for
- Merge the result for clusters Qi,...,Q¢ and store
oK) = [o(lk), ...,o%()] and x%) = [x(lk), 0]
end for

5. Numerical experiments

In this section, we validate our framework by performing
numerical experiments for network anomaly detection on (i)
a part of a synthetic power distribution network in the San
Francisco Bay Area and (ii) a comprehensive set of ran-
domly generated graphs. The first data set is from the U.S.
National Renewable Energy Lab (NREL) (Krishnan et al,
2020). First, we briefly describe the data set and explain how
we set up our numerical experiments. We first used
Algorithm 2 developed in Section 4.1 to obtain the set of
clusters for efficient parallel sampling. Then we employed
Algorithm 3 demonstrated in Section 4 to construct the esti-
mation chain of variables o,, and x,, for all nodes in the net-
work. Some important performance measures are reported
to show the effectiveness of our proposed framework.

5.1. Experiments on power distribution graphs

We considered a subnetwork from the topology dataset,
which contains 10,090 nodes in total. The network has only
one source node and 8330 sink nodes. It is assumed that
one sensor exists on each node and each sensor has only
one binary attribute. A simple view of the network is given
in Figure 6.

The adjacency matrix A is generated from the original
node and edge list and then the propagation matrix P is

found from Equation (16) in Section 4.1. A total of 500 time
instances (network samples) are considered where anomalies
are detected at each time instance independently of others.
For each network sample, we randomly choose a node to be
the source of an anomaly and then mark all nodes in its
anomaly propagation set as anomalous. Whether an anom-
aly occurs at one node follows the preset prior probability of
0.0001 (~~ 1/N). It is assumed that the prior probabilities
are the same for all nodes in the network (e.g.,
Pr(o, = 1) = 0.0001,Vn € N). We then simulated sensor
data for all nodes based on the structure of the network and
the status of each node. We assumed that binary sensor
attributes are collected at each node. It is assumed that the
sensor attributes at node n follow a conditional Bernoulli
distribution given the status of node # as follows:

Pr(y, = l|x, = x) = 0%,

where o and f are the true positive rate and false positive
rate of sensor outputs, respectively. Four different scenarios
are considered for sensor behavior, case 1 with & = 0.9 and
p =0.1, case 2 with « = 0.8 and § = 0.2, case 3 with o =
0.7 and = 0.3, and case 4 with « = 0.6 and § = 0.4. The
simulated set of y; values was used as the observation evi-
dence to estimate o; and x;. In addition to the results pre-
sented here, we also discussed the clustering effect and the
MCMC convergence on Sections D and E of the
Supplemental Materials, respectively.

5.1.1. Results on anomaly detection

We selected six important and reasonable performance met-
rics to evaluate the performance of the proposed framework.
These metrics are the false positive rate (false alarm rate or
FPR), which indicates the percent of healthy nodes incor-
rectly detected as anomalous; true positive rate (detection
rate, sensitivity, recall, or TPR), which indicates the percent
of anomalous nodes that have been properly detected; preci-
sion (positive predictive value), which indicates the percent
of correct anomalies out of the total number of reported
anomalies; f-score, which is used as a general overview of
the performance of the models; and overlap coefficient,
which is a common measure for assessing the efficiency of
network anomaly detection models in detecting real anoma-
lies and measures the agreement between the affected and
detected nodes (1 means perfect agreement and 0 means no
agreement). This last metric is computed as the ratio of true
positives and the summation of the true positives, false neg-
atives, and false positives. In addition to the above measures,

Table 3. Performance measures of the proposed framework versus the optimal approach.

Sensor Properties

Model _ FPR TPR Precision F-score Overlap Coefficient Source Detection Accuracy CPU Time
o B

Optimal Values 0.9 0.1 0.0000 0.997 0.998 0.998 0.995 0.900 2234
0.8 0.2 0.0001 0.989 0.993 0.991 0.982 0.718 2241
0.7 0.3 0.0004 0.976 0.970 0.973 0.947 0.472 2233
0.6 0.4 0.0024 0.940 0.841 0.888 0.798 0.216 226.6

Proposed Model 0.9 0.1 0.0000 0.995 0.999 0.997 0.994 0.850 6.4
0.8 0.2 0.0014 0.982 0.999 0.991 0.981 0.542 6.5
0.7 0.3 0.0008 0.958 0.999 0.978 0.958 0.270 5.03
0.6 0.4 0.0038 0.884 0.996 0.937 0.881 0.086 6.4




we report the CPU time and anomaly source detection rate
as the percent of correct detection of the sources of anoma-
lies. The baseline model is the direct optimization model
discussed in Equations (3)-(5), which is designed to find the
most likely anomalous segments in the network. The results
are shown for 500 network samples in the testing set in
Table 3 for four combinations of o and f.

The results in the table can be summarized as follows:
Overall, the framework performs well in terms of detecting
anomalous nodes; however, the detection power significantly
decreases with a decrease in sensor detection power (lower o
and higher f). Second, although all performance measures
related to the detection of anomalous nodes perform reason-
ably well, the source detection accuracy values are not very
close to the optimal values. After further checking the
results, we found two interesting observations for this poor
performance. First, due to the nature of the grid distribution
networks, many two-neighbor nodes share almost the same
number of nodes/sensors in their anomaly propagation sets.
In many cases, our model finds a source that is very close to
the original source of the anomaly; thus, the source detec-
tion accuracy is negatively impacted by this property that
many nodes share almost the same sensors. Second, the
stopping criteria lead to the convergence of the model
before reaching the optimal solution in many cases. The
third important observation for all experiments is the CPU
time, which in our model is significantly lower. Due to the
iterative nature of our model and the effective use of vector-
ization, unlike the optimization model that cannot be run
for larger networks with more complex structures, our
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Figure 7. The relationship between the number of sensors, active sensors, and
detection power.
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model can be applied in many real large-scale network sys-
tems. It should be noted that the natures of the optimization
model and the proposed model in this article are fundamen-
tally different and that the CPU time for each model may be
impacted by how they are coded, and what algorithm/solver
is used for optimization. Thus, the reported CPU times
should be interpreted with caution.

To further analyze the power of the proposed model in
terms of detecting anomalous segments of the network, we
separated the cases where the sources of anomalies are
detected and not detected and then plotted the number of
sensors in the corresponding anomalous subgraph and the
fraction of active sensors (sensors with output one). It can
be seen from Figure 7 that most undetected cases are small
subgraphs with a small number of sensors. Also, the fraction
of activated sensors for the cases of undetected sources is
significantly lower than the fraction for detected cases (also
higher variance for undetected cases can be seen). This fur-
ther indicates the stochastic nature of the sensor networks.
Depending on what percentage of network sensors is active
in the anomalous subgraphs, the detection power of the
model varies. This simply means that detecting anomalies
with smaller impact (i.e., with fewer anomalous nodes) is
harder than detecting large-scale anomalies. This is consistent
with real distribution networks where single-node anomalies
are usually hard to detect on their own and are often
detected after the impacted customer notifies the control
center (which may be hours after the start of the outage).
One way to improve the performance of the model in small
subgraphs is to use more powerful/accurate (high o and low
B) sensors or increase the number of sensor attributes across
the network.

We further discussed this aspect of the sensor networks
in Section F of the Supplemental Materials.

5.2. Simulation experiments on random graphs

To evaluate the application of the proposed model with
respect to size (|N|), number of attributes (|J|), power of
sensors (represented by binary sensor outputs’ true positive
rate and false positive rate), and topology of the network for
both tree and non-tree structures, we conducted a compre-
hensive set of experiments considering a total of 144 scen-
arios on randomly generated graphs as discussed below. A
total of four types of well-known and widely used DAG top-
ologies, where each has reportedly many real-world applica-
tions and are suitable for the study of complex networks,

Table 4. The average CPU time per network (seconds) for the proposed and benchmark models.

N = 5000 N = 10,000 N = 20,000
Approach
J=1 J=10 J=20 J=1 J=10 J=20 J=1 J=10 J=20
Binary 1 1 1 1 2 2 3 4 4
Classification
Proposed 5 5 4 1 1 1 32 38 33
Approach
Optimal 63 64 65 266 264 250 971 940 953
Approach
Optimal Graph 14 12 15 244 253 303 5332 4653 8632

Scan
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are considered. These four types of networks are regular
DAG (a non-tree DAG graph where every node has about
the same degree), Erdoes-Renyi (ER) DAG (a non-tree ran-
dom graph that connects two nodes based on the edge prob-
ability or the edges selected uniformly at random), Watts
Strogatz DAG (a non-tree graph that interpolates between
the regular and ER graph), and tree/hierarchical DAG (a
graph that follows a tree structure with no nodes having
more than one parent). We considered four scenarios for
the sensor properties as {&¢=0.9,§=0.1}; {« =0.8,=
02}; {¢=0.7,=03}; and {x=0.6,f=04}, where
higher o and lower f represent more powerful sensors. A
total of three scenarios for the number of sensor attributes
(ie., /| € {1,10,20}) and three scenarios for the number of
nodes (i.e., |[N| € {5000, 10000,20000}) are considered.

5.2.1. Performance evaluation

For each combination of the graph topology, number of
nodes, number of features, and sensor power scenario, we
simulated random anomalies in 100 independent graphs and
applied our model to detect anomalies in the generated
graphs. For each combination, we calculated all performance
measures as discussed in Section 5.1. The results are sum-
marized in Tables 4 and 5 given in the Supplemental
Materials. Results verify that (as expected) as the number of
features increases, the ability of the model to detect anoma-
lies increases and all performance measures improve. This is
simply because more information is available for each node
of the network. For large values of |J| (e.g., J=20), the
model performs almost perfectly, that is, almost all anomal-
ous nodes and sources are detected accurately for scenarios
1-3 of sensor data detection power. When only one feature
is available in the network, the model performs worse than
cases with |J| > 1, but the performance improves as the sen-
sor detection power increases (e.g., {& = 0.9, § = 0.1}). The
above observations apply to all graph topologies and graph
sizes. In conclusion, more types of sensors are necessary,
especially when sensors are not powerful (e.g., their detec-
tion power is low). Similarly, fewer sensors may be used
when the detection power of sensors is high. Although the
size of the network seems not to impact the detection power
of the model, it does change the CPU time. However, the
CPU time (even for the largest networks) is reasonable (less
than 30 seconds for most configurations), which is sufficient
for real-time decision making for systems such as power
and water distribution networks. We found that for larger
networks, it takes more iterations for MCMC to converge
and that is why a few cases needed more than 1 minute to
converge. This can be potentially improved by utilizing
high-performance computing or running parallel chains of
MCMC for faster convergence. As for the graph structure, it
can be seen that the results for the tree graphs are slightly
better than for non-tree graphs, particularly when there are
less sensor features and fewer powerful sensors. Also, it
takes the anomaly detection framework less time in tree net-
works to find anomalies, due to their simpler structures.
Overall, the proposed anomaly detection model performs
reasonably well and quickly for different graph structures,

network sizes, features, and sensor detection power.
However, for the cases with lower numbers of features and
weaker sensor detection power, results are much worse than
for the other cases. This makes sense as less powerful sen-
sors provide less detection power and higher false alarms,
which can only be compensated if more sensors are used.
Another important factor that we found with a significant
effect was the size of the anomalies (i.e., number of nodes
impacted by anomalies), which was consistent with the
results discussed earlier in Section 5.1.3. As expected, larger
anomalies were easier to detect even for the cases where
only one feature was used. We did not include here the
results for how performance measures changed for different
sizes of anomalies, because of page limits and the fact that a
similar discussion was made before. Also, no consistent
trend was found between the number of sensor outputs and
model convergence and CPU time. We also studied the
effect of having sensors of various types at each node and
found no specific/interesting observation. We found that
sensor effects are only based on their availability and detec-
tion power defined by the two parameters o and 5. Due to
page limits, we did not report the experimental results of
having various sensor types. We have also reported experi-
ments to evaluate the sensitivity of the model with respect
to initialization, the impact of missing points and sensor
availability, and the model’s ability to detect zero-anomaly
networks in Sections G, H, and I of the Supplemental
Materials, respectively.

5.2.2. Comparison with potential benchmark models

In this subsection, we compare our work with three poten-
tial benchmarks models: the direct optimization model dis-
cussed in Equations (3)-(5), binary classification, and a
modified version of the well-known GraphScan model dis-
cussed in Speakman et al. (2015). Although there are other
available anomaly detection networks in the literature, none
of them have the same assumptions and structure, thus, a
direct and fair comparison would not be possible. We first
briefly discuss these methods and how different they are
from the proposed approach and then numerically show
their performance.

e Direct Optimization: In this model, Equations (3)-(5) are
formed to build a binary linear programming problem.
The solution of this model is the theoretically optimal
values of network monitoring variables and can be used
to show how close the results of our model are from
their optimal values.

e Binary Classification: In this class of models, the prob-
lem of network anomaly detection is formed as a node-
level binary classification problem and then the trained
model is used to label each node as normal or anomal-
ous. The prediction results from all nodes will be inte-
grated to capture the entire state of the network. We
repeated the experiments using logistic regression, naive
Bayes, support vector machine, and various forms of
decision trees. Since logistic regression has the most con-
sistent results across all experimental settings, we



reported only the results from logistic regression. For
this experiment, we generated 100 extra networks just for
training for each combination of setup parameters. Since
the data are highly unbalanced through non-anomalous
data, we used a weighted logistic regression to accommo-
date for the unbalanced nature of the data.

o Optimal GraphScan Model: The objective of the
GraphScan model is to find the set of connected sub-
graphs with the highest anomaly scores without consider-
ing any propagation rules. This model is selected as it is
the closest available model in terms of assumptions and
objectives to our model, particularly because it aims to
create the most likely set of anomalous subgraphs using
binary node attributes. The two main inputs of this
model are the anomaly score function and the neighbor-
hood radius. We modified the model and transformed it
into an optimization problem so that it also finds the
optimal neighborhood size. Also, the modified version
can handle multiple sensor attributes. The score of each
node is calculated based on the common score function
used in the GraphScan methods and some of its exten-
sions as follows:

_ Pr(Y, (1) = 11X,() = 1)
Su(t) = (B log 5 o 1%, () = 0)

+ (1 = yu(2)) log

where Pr(Y,(t) = 1|1X,(t) = 1) and Pr(Y,(t) = 1|X,(t) = 0)
are the known and fixed true positive rate and false positive
rate of the binary sensor attribute, respectively.

In all of our numerical experiments, each network is sub-
ject to only one anomaly. This is because the GraphScan
model was not originally designed to find multiple anomal-
ous subgraphs or the cases where there is no anomaly in
the network. We conducted experiments for each of the 36
combinations of parameter setup based on N, J, o, and f.
For each experiment, we simulated 100 networks for testing.
Due to page limits, we only focus on regular networks and
three key performance measures of overlap coefficient,
source detection accuracy, and CPU time. We used the
Rglpk package, which is a GNU solver based on an open
source software GLPK developed for solving large-scale
linear programming and mixed-integer linear programming.
Our discussion below remains the same for other types of
networks and performance measures. Results summarized in
Figure 7 of the Supplemental Material verify that although
the optimization-based models, perform the best in terms of
detecting anomalies, our model performs very close to those
models, particularly for larger values of sensor attributes
and more powerful sensors. The binary classification mod-
el’s performance is the worst, as it does not incorporate the
topological dependencies between the nodes. The biggest
gaps between our model and the optimal values are when
the number of sensor attributes is one. We believe the gap
can potentially become smaller by modifying the stopping
criterion of the sampler and fine-tuning the initialization
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hyperparameter. To better understand the key benefit of our
model compared with the benchmark models, we calculated
the average CPU time per network for the task of anomaly
detection as shown in Table 4. Since the results did not
vary too much over different scenarios of sensor properties,
results are averaged over the four cases of {u, fi}. It can be
seen from the table that the binary classification model is
the fastest, however, it cannot provide reasonable results at
all. Our model is still very fast even for the network of size
20,000 nodes. Although the optimization-based models pro-
vide the best detection results, their long CPU times make
them not scalable for larger networks and thus not always
feasible in practice. About half of the CPU time for the
optimization models is just to form the corresponding opti-
mization models, which can potentially improve by forming
them offline and using more advanced optimization solvers.
However, even after that, the CPU time remains unreason-
able for large networks. In addition to the above compari-
son, we should point out that our model outperforms these
benchmark models from the following aspects: our model
can be used to detect both normal networks (with no
anomalous nodes) or networks with multiple anomalies.
Also, due to the Bayesian nature of the proposed approach,
the uncertainty of detection results can be utilized to pro-
vide more informed insights.

6. Concluding remarks

To monitor the status of large-scale networks and graph
structures, many sensors can be installed at each node to
collect partial information regarding each node’s condition.
These sensors are often not perfect and are subject to
imperfect TPRs and non-zero FPRs. In this article, we
develop an anomaly detection framework for heterogeneous
attributed networks. This framework can integrate binary
sensor data across the network and transform these data
into optimal insights regarding the health status of the
entire network. The problem of anomaly detection is formu-
lated with a BN and then a stochastic sampling method is
proposed to find the most likely status of the network.
Effective parallelization and vectorization techniques are
provided to make the detection problem scalable for large
networks. In future work, we will investigate the dynamic
nature of anomalies and sensor data and include more com-
plex scenarios for anomalies in which the propagation sets
are stochastic.
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