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Abstract. Many network/graph structures are continuously monitored by various sensors
that are placed at a subset of nodes and edges. The multidimensional data collected from
these sensors over time create large-scale graph data in which the data points are highly
dependent. Monitoring large-scale attributed networks with thousands of nodes and heter-
ogeneous sensor data to detect anomalies and unusual events is a complex and computa-
tionally expensive process. This paper introduces a new generic approach inspired by
state-space models for network anomaly detection that can utilize the information from the
network topology, the node attributes (sensor data), and the anomaly propagation sets in
an integrated manner to analyze the entire network all at once. This article presents how
heterogeneous network sensor data can be analyzed to locate the sources of anomalies as
well as the anomalous regions in a network, which can be impacted by one or multiple
anomalies at any time instance. Experimental results demonstrate the superior perform-
ance of our proposed framework in detecting anomalies in attributed graphs.
Summary of Contribution: With the increasing availability of large-scale network sensors
and rapid advances in artificial intelligence methods, fundamentally new analytical tools
are needed that can integrate data collected from sensors across the networks for decision
making while taking into account the stochastic and topological dependencies between
nodes, sensors, and anomalies. This paper develops a framework to intelligently and effi-
ciently analyze complex and highly dependent data collected from disparate sensors across
large-scale network/graph structures to detect anomalies and abnormal behavior in real
time. Unlike general purpose (often black-box) machine learning models, this paper pro-
poses a unique framework for network/graph structures that incorporates the complex-
ities of networks and interdependencies between network entities and sensors. Because of
the multidisciplinary nature of the paper that involves optimization, machine learning,
and systemmonitoring and control, it can help researchers in both operations research and
computer science domains to develop new network-specific computing tools and machine
learning frameworks to efficiently manage large-scale network data.
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1. Introduction
Many important systems in high-impact applications
have a network/graph structure. Network systems or
systems with a network/graph structure are subject to
different types of anomalies, abnormal behavior, and
disturbances over time. Anomalies in a network can
be defined as a set of unusual behaviors or patterns
that does not conform to a known normal behavior
and can potentially impact one or multiple nodes.
Examples are momentary or sustained outages in
power distribution networks, distributed denial-of-
service (DDoS) attacks in computer networks, and

spam emails in social networks. A unique aspect of
anomalies in a graph structure is that the impacted
nodes are often connected or adjacent and may follow
a set of topological constraints. For instance, in power
distribution networks, if a transformer experiences a
sustained anomaly, then all devices downstream from
the affected transformer (such as customer meters)
will experience a power outage. To monitor the health
of modern networks and detect anomalies in a timely
manner, different types of sensors and smart devices
are installed across these networks that can track real-
time data from a particular node or section of a
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network. With the increasing availability of large-
scale sensors that monitor network entities, new
analytical tools are needed that can integrate data col-
lected from sensors across networks for decision
making while taking into account the stochastic and
topological dependencies between nodes, sensors,
and anomalies. Available sensor-based models for
network anomaly detection are rarely designed based
on both the structure of the network and the data col-
lected across the network. Also, networks include
many dependent subsystems that are not the same in
the sense that different subsystems may experience
different types of anomalies and different sets of
nodes may collect different types of sensor data.

Despite the growing importance of anomaly detec-
tion, this promising area has received relatively little
attention for heterogeneous attributed networks. This
article addresses important challenges for anomaly
detection in sensor-intensive networks. The main chal-
lenges are finding the anomalous nodes or subgraphs
and identifying the sources of anomalies given a
known set of propagation rules between nodes and/
or connectivity constraints. The next challenge is how
to efficiently merge heterogeneous sensor data based
on the topology of the network so that the healthy/
normal and anomalous subgraphs are both detected
throughout the network, which may be under the
impact of multiple types of anomalies. In this article,
we introduce new integrated frameworks for network
data fusion and multiclass anomaly detection for
attributed networks with a heterogeneous structure
and disparate sensors. In the proposed integrated net-
work data fusion model, each subnetwork with sensor
data are transformed (compressed) into an embedded
vector (in a low-dimensional space) that represents
the dynamic of the subnetwork and its sensor data.
The data in the embedding space are then used as
inputs for a multilayer perceptron (MLP) structure to
train a multiclass node-level anomaly detection
model. Finally, two optimization models are intro-
duced that can simultaneously find the location of
anomalies and impacted nodes for the entire network.
The outcomes of both optimization models are dis-
tinct subsets of network nodes (anomalous segments)
such that all nodes in the subset share the same health
or anomaly status. Because all nodes are considered in
an integrated anomaly detection paradigm, it is
expected that fewer false alarms are generated and, as
a result, the true location of anomalies and impacted
nodes are detected more accurately.

This paper is motivated by power distribution net-
works, which are sensor-intensive graph structures
susceptible to various types of faults and anomalies
that often lead to momentary or sustained power
interruptions, costly power outages and repairs, and cus-
tomer dissatisfaction. In such networks, the topological

dependencies between nodes and edges make sensor
data, potential anomalies, and impacted nodes ac-
ross the network interdependent. For instance,
anomalies experienced by a specific subset of con-
nected nodes can form a connected anomalous
subnetwork with similar sensor behavior at the indi-
vidual node level. Thus, conventional approaches,
such as typical machine learning models at the node
level, cannot fully capture the underlying dependen-
cies between the entities of the grid and are often
ineffective in localizing anomalous regions in a net-
work. Although this paper is motivated by distribu-
tion networks, it is general in terms of the network
topology and can be used in a broad range of applica-
tions to detect unusual events. Examples are smart and
connected cities (Parra et al. 2015), communication net-
works (Yang et al. 2011), and wireless sensor networks
(Feng et al. 2017).

The contributions made in the paper are sum-
marized as follows: An optimization framework is
proposed that can detect an anomaly or multiple
simultaneous anomalies in the network using obser-
vations from various types of sensors with multivari-
ate outputs that are placed on a subset (or all) of the
nodes. The detected anomalous nodes (subgraphs) are
consistent with a known set of propagation paths
(rules) between nodes and/or connectivity con-
straints. We also introduce network structure and sen-
sor data aggregation and dimensionality reduction
steps that help with improving the computational
complexity and the accuracy of the anomaly detection
task. This framework considers the topological
dependencies between all nodes as well as the sto-
chastic nature of sensor data. The framework is
designed to consider the network all at once and to
find the sources of anomalies as well as the subsets of
impacted nodes with similar anomalous structures.
Compared with many similar approaches, the pro-
posed work has the advantage that it does not need
user-specified input parameters (e.g., the neighbor-
hood size/radius) to search for anomalies or anomaly
score thresholds. Also, the proposed framework does
not need any parametric probability distribution to
model the stochastic behavior of sensor data. The
network and the models proposed have generic struc-
tures, which allow for any network structure repre-
sented by a directed acyclic graph (DAG) and model
family to be used for sensors and anomalies. Finally,
all anomalies and impacted nodes/subgraphs are
detected in an optimal manner; a set of important
preoptimization steps are introduced to improve the
scalability of the optimization models for anomaly
detection. The frameworks utilized for dimensionality
reduction and multiclass anomaly detection are formal-
ized by well-known deep neural network structures,
without any technical contributions to neural networks.
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By employing deep autoencoder and multilayer percep-
tron, we aim to build a sparse model, removing uncor-
related variables falsely found to be correlated with
anomalies while taking uncertainty and numerical
instability into account. We should also point out that
detecting changes/anomalies in the topology of the net-
work is beyond the scope of the paper.

This article is organized into seven sections. Section
2 reviews some of the recent work on anomaly detec-
tion, particularly for network and graph structures.
The fundamental structure of the network and its
main elements are discussed in Section 3. In Section 4,
the details of the proposed approach for network
structure and sensor data aggregation and dimen-
sionality reduction are presented. Then, a multilayer
perceptron neural network is formalized for nodal
anomaly detection. In Section 5, two optimization mod-
els are presented that can be used to detect anomalies
throughout the network. Section 6 provides a compre-
hensive set of numerical experiments to show the
application of the proposed frameworks. We conclude
in Section 7 and suggest directions for future research.

2. Related Work
2.1. Anomaly Detection and Its Application to

Networks and Graph Structures
Anomaly detection has been used in many applica-
tions, such as fraud detection (Lee et al. 2017), fault
detection (Theissler 2017), flight safety prediction
(Yelundur and Campbell 2013), network intrusion
detection (Brice et al. 2011), and healthcare (Antonelli
et al. 2013). However, traditional analytical methods
for anomaly detection are that they are mostly
general-purpose models or a byproduct of an algo-
rithm designed for a purpose other than anomaly
detection. As a result, they are not optimized to detect
anomalies and may lead to too many false alarms or
too few detected anomalies (Liu et al. 2012). A survey
of the research on anomaly detection can be found in
Liu et al. (2012) and Habeeb et al. (2019). Many sys-
tems have a network/graph structure that is suscepti-
ble to anomalies caused by a variety of off-nominal
conditions. Anomaly detection for networks has been
an important topic, but it has recently become even
more popular because of the availability of new sour-
ces of structured graph data. For a comprehensive
review of anomaly detection for network/graph struc-
tures, interested readers may refer to Ranshous et al.
(2015) and Akoglu et al. (2015). Much of the available
work on anomaly detection in network settings
focuses mainly on searching individual nodes or sen-
sors (Henderson et al. 2011). Monitoring and decision
making based on a single sensor can result in informa-
tion loss and can increase the false alarm rate (Wang
et al. 2009). Multisensor information fusion can obtain

more accurate and reliable information, which cannot
be achieved by single-sensor analysis (Wang et al.
2009). Many of the available approaches involve
general anomaly detection methods that fail to incor-
porate the complexities of networks and the interde-
pendencies between network entities and sensors. For
example, anomaly detection can be simply formulated
as a classification problem with the unrealistic assump-
tion that network data are independent and identically
distributed and that the same types of sensor data are
collected from all network nodes.

2.2. Network Topology and Sensor Data
Aggregation

One of the modern techniques for analyzing graph
data is to apply graph embedding, which can learn to
generate a vector representation of graph topology
and potentially node attributes. Most traditional net-
work embedding approaches mainly focus on the net-
work itself, ignoring attributes of nodes. In recent
years, attributed network embedding methods that
focus on graph topology and node features have
received more attention (see, for instance, the recent
work of Gao and Huang 2018 and Cui et al. 2020).
However, these approaches have significant limita-
tions: (i) they are focused only on node embedding
and node classification as opposed to subgraph
embedding and (ii) they cannot accommodate hetero-
geneous sensor outputs where only a selected set of
nodes have sensors and sensor attributes are not the
same across the network. Most available subgraph
embedding approaches are fully supervised and are
used for subgraph classification where the goal is to
predict a label associated with a particular subgraph
(Hamilton et al. 2017b). In Hamilton et al. (2017a), an
unsupervised embedding is proposed; instead of
training a distinct embedding vector for each node, a
set of aggregator functions are used to aggregate fea-
ture information from a node’s local neighborhood.
However, that approach is only scalable for small
neighborhoods. Despite its great potential, graph
embedding on attributed networks for the task of
anomaly detection has been rarely studied in the liter-
ature and has received attention only in the last few
years. In this paper, we choose a scalable aggregation
function that provides a standardized vector represen-
tation of any subgraph topology and sensor data. We
will show that this aggregation function is injective
with regard to detecting anomalies and is statistically
sufficient (under certain conditions), that is, it cap-
tures all the information concerning the subgraph that
is relevant for anomaly detection.

2.3. Techniques for Network Anomaly Detection
Techniques used for network anomaly detection can be
classified into two categories: general-purpose models
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(e.g., classification and clustering) that may be margin-
ally modified to be used for network anomaly detection
and network-specific models that are mainly designed
for network/graph structures. A comprehensive over-
view of various methods used in network anomaly
detection is given in Bhuyan et al. (2014). The models
and algorithms typically used for anomaly detection
can also be classified into the categories of statistical
models (e.g., control chart, histogram), residual-based
models that are often parametric, clustering-based
models, nearest neighbors, classification models, and
context-specific models. These methods have unique
strengths and weaknesses, and their performance often
varies depending on the application. For example,
strong distributional assumptions in statistical models;
ineffectiveness in distance measures in methods such
as clustering and nearest neighbor, particularly in high-
dimensional settings; high vulnerability of unknown or
modified anomalies in supervised classification mod-
els; and high false alarm rates and difficulty in model
training in unsupervised models make these methods
generally ineffective for complex graph structures.
Another limitation of these approaches is that anoma-
lies are treated very generally, and their cause and type
are unidentifiable.

Models and frameworks for attributed networks
that are specifically designed to work with network/
graph structures and data/attributes have gained more
attention over the past few years. In such frameworks,
the main question is given a network/graph with node
attributes, what nodes/subnetworks are anomalous? A
comprehensive overview of the state-of-the-art methods
for anomaly detection in graph data are given in Akoglu
et al. (2015). Unlike conventional techniques, recent work
on anomaly detection for attributed networks considers
both network structure and nodal attributes (Ding et al.
2019). These models mainly find anomalous nodes whose
behavior deviates significantly from the majority of refer-
ence nodes. Ding et al. (2019) modeled the attributed
networks with a graph convolutional network and com-
pressed the input attributed network to low-dimensional
embedding representations. Then, the topological structure
and nodal attributes were reconstructed by decoder func-
tions. Finally, the reconstruction errors of nodes following
the encoder and decoder were used to rank anomalous
nodes. In Perozzi and Akoglu (2016), both attributes and
network structure are utilized to analyze the abnormality
of each node from the ego-network point of view and
detect anomalous neighborhoods. Li et al. (2017) proposed
a residual-based method that detects anomalies whose
behavior is different from the majority by characterizing
the residuals of attribute information and its coherence
with network information.

Although our proposed approach is similar to the
above-referenced works because we also utilize net-
work structure and node attributes, the proposed

approach is unique with respect to the following
aspects. In addition to ranking all nodes and subnet-
works, the proposed approach can figure out whether
there is an anomaly (or multiple anomalies) and then find
the sources of anomalies and impacted nodes. None
of the above models can determine how many anoma-
lies are in the network. Also, our model considers a
heterogeneous network where a node may have no
attribute or have its own set of attributes that is differ-
ent from that of other nodes. Similarly, the set of
sensors and attributes in two subnetworks may be dif-
ferent. Thus, we cannot simply compare two nodes or
two neighborhoods and provide a ranking. Also, our
framework can incorporate multiple types of anoma-
lies and anomaly propagation sets for each node. Our
work is different from community-based models and
compression-based models used in dynamic networks
(Ranshous et al. 2015) that are only based on the change
or evolution in edges and nodes over time. Another
group of commonly used anomaly detection models is
distance-based methods in which a specific form of dis-
tance measures is employed as a metric to measure
change or anomalies in the network. These types of mod-
els require a fixed number of attributes or predictors,
which is not the case for heterogeneous attributed net-
works. Also, their success highly depends on the type of
data, distance measures, and the dimensionality of the
data (Gogoi et al. 2011). Because of its flexible structure,
our framework can handle the above drawbacks of
distance-basedmodels.

Our work is also different from Liu et al. (2010) that
considers a dynamic structure with moving objects in
which a small subset is the sensor set with complete
knowledge, and the status of the rest should be inferred
from these sensors. Unlike this work, the topology of the
network and the relationship between nodes defined by
edges have a significant impact on the propagation of
anomalies. Also, our sensors are noisy and only partially
provide information regarding the status of each node.
Our work can consider multidimensional node attributes
and multiple simultaneous anomalies, both of which are
beyond the scope of Liu et al. (2010). Ourwork is also dif-
ferent from many heterogeneous anomaly detection
methods, such as Liu et al. (2018) and Moshtaghi (2013),
because they cannot incorporate the dependencies and
causal relationships between nodes that drive the struc-
tural propagationof anomalies across thenetwork.Unlike
the work of Liu et al. (2018), anomalies in our work are
considered for a directed graph and are not defined based
on any specific features. In fact, the propagation of
anomalies follows a structural pattern (e.g., connected
nodes or downstream nodes). The proposed approach in
Moshtaghi (2013) cannot incorporate the propagation of
anomalies and the dependencies between nodes across
the network, and thus their detected anomalous nodes
may or may not be connected. Also, that work relies on
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the selected similarity or distance measure; and sensor
measurements under normal conditions are assumed to
follow a Gaussian mixture density. Our work does not
require such distributional assumption for normal data
and can be used to detect structural anomalies in the net-
work based on heterogeneous sensor data that may be
collected only froma subset of nodes across the network.

2.4. Subset Scan Statistics Methods
Subset scan statistics approaches are one of the most
widely used methods for detecting anomalies in graph
data. These methods also seek to find anomalous patterns
by filtering through subsets of subgraphs and identifying
the subset with the highest anomaly score using a heuristic
or an exactmodel.Many of theworks in this domain focus
on the detection of arbitrarily shaped connected clusters or
specific shapes (Kulldorff 1997). The work in this domain
can be divided into two categories: topology-based and
sensor-based methods. Because our framework utilizes
both network sensor data and sensor topology, it is differ-
ent from topology-based methods, such as Priebe et al.
(2005), that search for a highly anomalous area only based
on the topology of the network. The work in the second
category often utilizes binary sensor data and the network
topology for anomaly detection. Examples are the well-
known heuristic method of FlexScan (Tango and Takaha-
shi 2005) and the exact method of GraphScan (Speakman
et al. 2015). In both of these methods, the connected sub-
graph with the highest anomaly from among all the con-
nected subgraphs is found based on observed counts from
network sensors.

Although there are similarities between the pro-
posed framework and the abovementioned references,
there are key differences that make our work different
from the above series of work. For instance, both the
FlexScan and GraphScan approaches utilize a one-
dimensional binary sensor output (score) to find a sin-
gle subgraph of connected nodes that maximizes a
score function over all feasible subgraphs. However,
our approach is more generic and aims to find a sub-
set or multiple subsets of connected nodes (as
opposed to one subset) satisfying anomaly propaga-
tion paths by analyzing single or multidimensional
binary sensor data collected from a subset of nodes
(as opposed to binary data from all nodes). Our
approach can be used to find a set of simultaneous
anomalies affecting multiple connected subgraphs
and the most likely sources of anomalies, whereas the
above methods focus on finding only the most likely
subset of one type of anomaly without finding the
source(s) of that anomaly. The ability of our model to
find the sources (root causes) of anomalies makes it
more actionable and interpretable as well. Also, these
other works cannot determine whether the network is
in a healthy state, as they always find a subgraph with
the highest anomaly score. Both Tango and Takahashi

(2005) and Speakman et al. (2015) enforce a predefined
neighborhood radius for which the prediction power
may decrease when the size (depth) of the anomalies
is larger than this radius. Also, their work is based on
a user-defined score function that defines the anoma-
lousness of a set of nodes satisfying a linear time sub-
set scanning property. Because our model deals with
probabilities rather than user-defined functions, we
do not need to specify any anomaly detection model
parameters (such as the neighborhood radius).

2.5. Summary of the Literature Review and
Contributions

Sensor data in networks are complex because they are
large in scale and heterogeneous, obtained frommulti-
ple sources, and have a high topological/spatial
dependency. As a result, new network-specific models
that can adapt to such complexity must be developed.
We can conclude that although there are other network
anomaly detection approaches that have their advan-
tages and disadvantages, none of these approaches
work well with all of the different graph structures,
sensor data behavior, anomaly propagation scenarios,
and modeling assumptions. The main limitation of
existing approaches, which our paper intends to
address, is their inefficiency in utilizing heterogeneous
data, including node attributes (sensor data) and net-
work typology collected from a subset of nodes across
the network to detect multiple simultaneous anomalies
and the most likely sources/causes of these anomalies.
Also, models that focus only on independent nodes or
a subgraph ranking are not effective because the
detected nodes/subgraph may violate the dependen-
cies embedded in the anomaly propagation paths or
the connectivity requirement of anomalous nodes. By
developing a framework that localizes anomalies and
finds their sources by searching a subset of high-risk
nodes and subnetworks that follow certain propagation
paths, this article aims to providemore interpretable and
actionable results. Compared with many available net-
work anomaly detection models that require a specific
distribution for sensor data or search parameters in their
algorithms (e.g., neighborhood size), our model is more
generic and can be applied in graph structures where no
such information is available. Also, unlike manymodels
that work only on tree structures, our framework can be
applied to any network structure that can be represented
by a directed acyclic graph, which covers a wide range
of network systems, such as power and water distribu-
tion networks.

3. The Problem Setting for
Network Monitoring

In this section, the structure of the proposed framework
for network modeling and monitoring is formalized.
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The list of the main notation in the paper is given in
Table 1. The problem of anomaly detection can be for-
malized as follows:

Problem A (Multiple Anomaly Detection for Heteroge-
neous Networks). Given the topology of the attributed
network, sensor locations and attributes, and anomaly
propagation rules (paths) for each type of anomaly,
aggregate/analyze real-time network sensor observa-
tions collected from sensors across the network to locate
(a) the most likely sources and types of potential
anomalies (if any) and (b) the impacted anomalous
nodes/subgraphs.

The main assumptions made in this paper are the fol-
lowing. The system has a network structure made up of
nodes or vertices connected by links or edges. The net-
work is connected; its topology is represented by a known
directed acyclic graph, which is a directed graph with no
directed cycles. Also, both tree and nontree topologies can
be considered for the topology of the network. The DAG
representation of the network also helps with defining the
anomaly propagation paths as defined in Section 3.3. The
set of noisy binary sensor attributes (if any) collected at
each node is known. Each sensor attribute may only parti-
ally reveal the state of the node where the sensor is
located. One or multiple types of anomalies can occur
simultaneously across the network. Because sensor attrib-
utes have different sampling rates, sensor time series are
segmented according to a user-defined window size Δ,
that is, time epoch t includes all time points between
[(t− 1)Δ, tΔ). All model variables/parameters are defined
based on this window size. Also, if the source of each
anomaly is known, the propagation of anomalies across
the network can be detected. We later relax this assump-
tion by detecting anomalous subgraphs that contain only
adjacent/connected subsets of nodes as an extension of
our work.

3.1. Network Topology and
Characteristic Variables

To monitor the health status of the network, or graph,
a hierarchical structure is defined based on the physi-
cal topology of the network, consisting of nodes/ver-
tices and edges/links. The network is assumed to
have N distinct nodes where each node corresponds
to a unique entity, such as a sensor, device, equip-
ment, or user, and can be a potential candidate for the
original location of anomalies. The adjacency matrix
A � [aij], where aij � 1 if there is a direct link between
node i and node j, is used to represent the topological
structure of the network. There are several sensors in
the network, which are placed at a selected set of
nodes. For each node, the physical entities and sensors
located at that node (if any) are known. We define a
subnetwork or subgraph as a network formed by a
subset of nodes and edges of the original network.
The parameters to characterize a subnetwork are Rn

denoting a subset of nodes with node n as the parent
node and Sn′ denoting the set of sensor attributes gen-
erated at each node n′ within subgraph Rn.

In Figure 1, a simple physical network with 11
nodes (n � 11) inspired by real distribution networks
and the corresponding network graph structure are
shown. The network has a breaker, a fault indicator,
three fuses, one recloser, and five meters. Node i is the
parent of the subgraph denoted by Ri. Also, node i can
generate sensor attributes listed in Si. For instance, for
node 1, only attribute number 5 is available (i.e.,
S1 � {5}). The connection between nodes is shown by
an adjacency list, which is obtained from an adjacency
matrix. For instance, for node 1, the adjacency list con-
tains nodes 2, 3, and 4 representing three distinct edges
from node 1 to nodes 2, 3, and 4. All information given
in the network characteristic table is assumed to be
known. For many network systems, such as electric grids,

Table 1. The List of the Main Notation Used in the Paper

Notation Description

Network topology

N The number of nodes (vertices) in the network
A � [aij]N×N The adjacency matrix, where ai,j � 1 if there is a direct link between node i and node j
Rn The subgraph/subset of nodes with node n as the parent node (i.e., node n and all its downstream nodes)
Un The set of nodes upstream from node n
Sn The set of attributes collected at node n
snj A binary variable denoting whether sensor attribute j is collected at node n

Anomalies and propagation

O∗
m(t) The original location(s)/source(s) of the anomaly type m (O∗

m(t) ∈ {1, : : : ,N}) in epoch t
xnm(t) A binary variable indicating whether node n is under the effect of anomaly type m in epoch t
onm(t) A binary indicator indicating whether the original location of the anomaly type m is at node n in epoch t
dij A binary parameter denoting whether an anomaly propagates from node i to node j

Sensor data

Δ Observation interval
J The number of binary sensor attributes in epoch t
ynj(t) The binary sensor output j observed from node n in epoch t (ynj(t) ∈ {0, 1,∅})
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the network topology may change to a new but known
setting during operation for various reasons. Our frame-
work can still be used for such systems because its only
assumption is that the topology and the propagation sets
are known at any decision epoch. In other words, the top-
ology and propagation sets do not need to be fixed; how-
ever, they need to be known at any given time.We should
point out that detecting changes in the topology of the net-
work is beyond the scope of the paper.

3.2. Network Anomaly Variables
The network is subject to M different types of anoma-
lies. Inspired by real networks, an anomaly can origi-
nate at a node and then continue to all nodes inside its
anomaly propagation set. It is possible that multiple
anomalies originate at multiple nodes. During any
time interval of interest, each node in the network may
either be impacted by an anomaly (state 1 to stateM) or
be under a normal condition (state 0). A generic state-
space model is utilized to characterize the dependen-
cies between each node’s health status variables and
the set of sensor data collected at each node. The vector
xn(t) � [xn1(t), : : : ,xnM(t)] is used to denote the anomaly
status of node n in epoch t (xnm(t) ∈ {0, 1}). The full sta-
tus of the network is known at epoch t if X(t) (that is,
X(t) � {x1(t), : : : ,xN(t)}) is known. To monitor the origi-
nal sources of anomalies, we define a binary variable
onm(t) reflecting whether node n is the original loca-
tion/source of the anomaly type m in epoch t. The net-
work can be under the influence of many anomalies of
the same type or different types at any time point. We
defineO∗

m(t) to denote the original location(s)/source(s)
of the anomaly type m (O∗

m(t) ∈ {1, : : : ,N}) in epoch t. It
is clear that all these variables are unknown at any time
epoch and need to be estimated. For each epoch t, the

outcome of the proposed framework will be the esti-
matedmatricesX(t) � [xnm(t)] andO(t) � [onm(t)].

3.3. Network Anomaly Propagation
To analyze anomalies in a structural manner while
considering their propagation in the network, a
binary deterministic belief network that models the
propagation of anomalies across the network is
employed according to the DAG representation of
the network. The parameter dij is used to denote
whether an anomaly propagates from node i to node
j. Now the anomaly propagation paths across the
network can be represented by a N by N matrix
D � [dij]. For mathematical convenience, we have
assumed that the propagation between two nodes is
the same for all anomaly types. Because of the sparse
structure of large-scale networks, a sparse version of
matrix D is utilized. The nodes along the propaga-
tion path of node n form the anomaly propagation set of
node n. Also, all subgraph parameters (such as Rn) are
determined based on the anomaly propagation set of
node n. The relationship between anomaly location varia-
ble o and status variable x for each node according to its
propagation can be defined as follows:

onm(t) ≤ xn′m(t),
n′ ∈ Rn(i:e:,dnn′ � 1), ∀n ∈ {1, : : : ,N},

∀m ∈ {1, : : : ,M}:
(1)

For example, in a distribution network, the propaga-
tion of an outage in the network is fully known
according to the location of protective devices. In such
networks, all downstream nodes from the anomalous
source are directly impacted. The anomaly propaga-
tion matrix in that case can be directly computed from

Figure 1. (Color online) An Example of a Small Segment of a Distribution Network with 11 Nodes (Node 0–Node 10) and Its
Topological Characteristics

Notes. Nodes of the same type are shownwith similar patterns. Also, a fixed set of sensor attributes are collected from nodes of the same type.
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the adjacency matrix as follows:

D � min{[1]N, (A + IN)α},
where α is the depth of the graph representing the
maximum length between two nodes, IN is the iden-
tity matrix of size N, and 1N is an all-ones matrix. The
integer variable α can be interpreted as the anomaly
neighborhood radius by taking values smaller than
the depth of the network. Because of the sparse struc-
ture of most large-scale networks, only positive di,js
may be recorded as a list variable. We relax the
assumption of having predefined propagation paths
in Section 5.6. In such a problem, the detected nodes
do not need to follow predefined propagation rules.
The only requirement is that the detected nodes are
connected. Figure 2 shows how two independent
anomalies originating at node 3 and node 4 are propa-
gated in the network shown earlier in Figure 1. For
the distribution network shown in Figures 1 and 2,
the anomaly propagation list can be formed as fol-
lows:

D � {(0, 1), : : : , (0, 10), (1, 2), (1, 3), (1, 5), (1, 6), : : : , (3, 5),
(3, 6), (4, 7), : : : , (4, 10), (7, 8), (7, 9), (7, 10)}:

3.4. Heterogeneous Network Sensor Data
There are J types of sensor attributes (outputs) col-
lected in the network, which may be generated from J
or less than J types of sensors (i.e., each sensor may
generate one or more types of sensor attributes).
During any time interval of interest of length Δ
[(t− 1)Δ, tΔ], node n is assumed to generate either the
output ynj(t) (if a sensor that generates output j is at
this node) or simply no output (if no sensor that gen-
erates output j is at this node), that is, ynj(t) � ∅ for the
measurement type j. In this work, we have focused
only on binary attributes because of their wide appli-
cation in many network structures, such as power dis-
tribution and communication networks. However,

our model can handle nonbinary attributes as well.
The causal relationship between network anomaly
variables and sensor data can be shown by a directed
acyclic graph as shown in Figure 3 for node n. Our
framework can consider multiple observations within
any decision interval by assuming that sensor data
points are independent over time. For example, by
assuming that there are W data points in interval
[(t− 1)Δ, tΔ], sensor output ynj(t) can be computed as
the summation of all W observations collected during
that time interval. Our proposed framework cannot
be used directly for other types of dynamic sensor
data and temporal behavior.

4. Node Anomaly Detection with
Heterogeneous Network Data

In this section, we discuss the steps for network anom-
aly detection at the node level.

4.1. Network Topology and Data Aggregation
For notational convenience, we remove the time index
in the rest of this section. As mentioned earlier, Rn is
the subset of nodes with node n as the parent node.
The idea of defining subgraph Rn is that if an anomaly
occurs at node n, we know that all nodes in Rn should
be affected. We can analyze the data and anomaly
status of all nodes within each subgraph together to
better diagnose the status of the nodes within that
subgraph. For node n, the set of observed sensor
attributes is denoted by yn � [yn1, : : : ,ynJ]. Depending
on the type of node n, one or more elements of yn may
not exist. In addition to sensor attributes observed at
node n, there is a set of measurements from all neigh-
bor sensors yn′ where n′ ∈ Rn in the subgraph where n
is the parent node. It is obvious that for subgraphs
across the network, the feature inputs to detect
anomalies are not the same; thus, network data are
heterogeneous. To accommodate both the topology
and available sensor signals within each subgraph, we
propose to first convert the topology and set of signal

Figure 2. (Color online) An Example of How Two Independ-
ent Anomalies Can Propagate in a Network

Figure 3. (Color online) A Graphical Model of a State-Space
Model Representing the Dependencies Between Network
Variables

Notes. The dashed edge is a stochastic edge, whereas the continuous
edges are deterministic edges between two variables. A circle vertex
represents a latent/hidden variable.
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outputs within each subgraph to two distinct sets of
data vectors: (a) aggregated sensor data, denoted by
ȳn, and (b) aggregated sensor topology data, denoted
by s̄n, for all nodes in the network. The aggregated
sensor data are the set of data points that summarizes
the observations from sensor attributes within the
subgraph. The aggregated sensor topology data sum-
marize the number and types of sensors within the
subgraph. For the jth sensor attribute, the aggregated
vector can be represented by a two-tuple multiset,
where the first element is the sum of the original
binary sensor observations and the second element is
the number of sensors that can generate signal j in the
subgraph. To have a normalized representative vec-
tor, we can divide the aggregated values by the num-
ber of available sensors. In summary, the process of
aggregation for (a) and (b) is conducted through pre-
defined aggregation functions around the effective
neighborhood of each node as follows:

ȳnj �
∑
n′∈Rn

yn′j

[ ] ∑
n′∈Rn

1{sn′j � 1}
[ ]−1

,

∀n ∈ {1, : : : ,N}, ∀j ∈ {1, : : : , J}, (2)

s̄nj �
∑
n′∈Rn

1{sn′j � 1}
[ ] ∑

n′∈{1,: : : ,N}
1{sn′j � 1}

[ ]−1
,

∀n ∈ {1, : : : ,N}, ∀j ∈ {1, : : : , J}: (3)

The type of aggregation function selected is important
because it determines how much information is lost
during the aggregation process. For instance, one may
use the median instead of the mean because of its
robustness against outliers. Now, for subgraph Rn, the
network sensor data can be represented by a 2J-
dimensional vector [ȳn1, : : : , ȳnJ, s̄n1, : : : , s̄nJ]. If signal j
is not collected in subgraph n, then both ȳnj and s̄nj are
set to zero. By having both variables, we can simply
distinguish between actual values of zeros and zeros
due to no sensors in the subgraph. It can be observed
from Equations (2) and (3) that all elements in the
aggregated vectors are normalized between zero and
one. The core idea here is that nodes and subgraphs
with similar types of sensors get a similar cluster vec-
tor. Also, different subnetworks with any topology,
types of sensors, and observed sensor attributes can
be represented by a standard vector that has the same
size across all subnetworks. To illustrate the concept
of data aggregation, we provide a simple example in
Figure 4 for the distribution network given earlier in
Figure 1. The sensor attribute vectors y1, : : : ,y10 as
well as the aggregated vectors for two subgraphs R1

and R4 are shown in the figure. It can be seen that for
both subnetworks, the topology and sensor attributes
are transformed into two five-dimensional standar-
dized vectors ȳ1 and s̄1 for R1 and ȳ4 and s̄4 for R4.

4.1.1. Statistical Properties of the Aggregation Function.
As shown earlier, we chose a scalable aggregation
function that provides a standardized vector represen-
tation of any subgraph with any set of sensors. We
will show that this aggregation function is injective
and statistically sufficient (under certain conditions)
with regard to detecting anomalies and captures all
the information concerning the subgraph that is rele-
vant for anomaly detection. The aggregation functions
should be defined so that as much information as
possible is maintained on both topology and sensor
attributes. It is known that aggregation functions should
be injective to attain maximum discrimination power
(Seo et al. 2019). In Remark 1, we discuss the injectivity
of the selected aggregation functions, which indicates
how the aggregation functions map two different sub-
graphs to two different representation vectors.

Remark 1 (Injectivity of the Aggregation Functions). For
any two subgraphs Rn1 and Rn2 (n1,n2 ∈ {1, : : : ,N}), the
aggregated representation vectors (which are standar-
dized between zero and one) are the same if and only
if the number of sensors generating the same types of
attributes is the same in both subgraphs and the cumu-
lative observations for all sensor attributes are the
same as well.

Based on Remark 1, two distinct subgraphs with
different sets of sensors and/or cumulative sensor
observations are represented distinctively after being
aggregated by Equations (2)–(3). In Remark 2, we
show that the sum operators over sensor data and
sensor numbers incur statistically sufficient measures
with regard to the anomaly status of any subgraph for
each sensor attributes.

Remark 2 (Statistical Sufficiency of the Aggregation
Functions for Each Sensor Attribute). For any sub-
graphs Rn the following holds true for each sensor
attribute j under certain conditions:

Pr(xnm � 1 | yn′j;n′ ∈ Rn)∝

Pr xnm � 1

∣∣∣∣∣ ∑n′∈Rn

yn′j,
∑
n′∈Rn

1{sn′j � 1}
( )

∀j ∈ {1, : : : , J},
that is, ∑n′∈Rn

yn′j and
∑

n′∈Rn
1{sn′j � 1} are sufficient to

infer the anomaly probability distribution of the
parent node of subgraph Rn based on data collected
for sensor attributes j from all nodes in that subgraph.
The proof is given in Appendix A in the online
supplement.

Remark 2 is valid for categorical features, too
(beyond the scope of this paper). However, it does not
apply to continuous attributes or when the condi-
tional independence assumption is not met. For such
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cases, we need to choose or design aggregation func-
tions so that minimum information (from sensor data
and sensor topology) is lost. We should note that the
aggregation functions do not need to follow the prop-
erties discussed in Remarks 1 and 2. These remarks
only motivated us to employ the aggregation func-
tions given in Equations (2)–(3). One may include
more elements of the topology/sensor data.

4.2. Optional Dimensionality Reduction with
Autoencoder Embedding

After aggregating the topology and sensor data within
each subgraph, the output vectors may become high
dimensional, depending on the aggregation functions
used and the number of possible sensors and sensor
attributes. The objective here is to utilize the informa-
tion contained in the aggregated sensor data and
aggregated sensor topology data and map each sub-
graph into a D-dimensional vector in an entirely
unsupervised manner. The transformation should be
designed in a way that it can be applied to any sub-
graph of the network regardless of its size or sensor
topology. The embedding problem is conducted
through an autoencoder, which is a feedforward
neural network with an input layer, an output layer,
and one or more hidden layers. The idea is to use the
representation learned from the autoencoder in the
low-dimensional bottleneck layer as the input for
the node anomaly detection task. The autoencoder
has two main mapping functions: encoder and
decoder. The encoder transforms the aggregated
node data in the input layer to a low-dimensional
representation (latent embedding space). Then, the
decoder returns a reconstruction of the original inputs
from the low-dimensional embedding space. The loss func-
tion is the minimization of the difference between node

inputs and their reconstruction outputs. The main idea
behind this autoencoder is that if the decoder can return a
reasonable reconstruction of the original inputs from the
low-dimensional embedding space, we can transform
aggregated network data at each subgraph into a lower
dimensional space and use that as an input for anomaly
detection. The reconstruction error can be used on a test set
to determine whether this optional step is useful and
should be used, depending on the complexity and dimen-
sion of the sensor attributes.After the training is performed
on the autoencoder, we can disregard the decoder for the
task of anomaly detection. The number of hidden layers
and the number of neurons in each layer are fine-tuned
with cross-validation.

An overview of the network data compression
process is shown in Figure 5. The hidden layer in the
middle with D neurons (i.e., the smallest number of
neurons among layers) is the one to be used as a new
feature vector for anomaly detection. Each subgraph
and its sensor data can be transformed into an aggre-
gated and compressed D-dimensional space, which is
designed for minimum information loss and con-
trolled by the autoencoder hyperparameters. To
improve the robustness of the network and obtain bet-
ter generalization and faster learning, we can add
noise to the aggregated sensor data (ȳ) as the input of
the autoencoder while keeping the network structure
fixed. In addition to the potential to compress large-
scale network structures and sensor data and detect
redundant/correlated attributes, the autoencoder can
accommodate nonlinearity, which is an advantage over
linear fusion models, such as Principal Component
Analysis. We should point out that we did not directly
employ the embedding of the nodes for all subgraphs
for the following reasons. Available models in the liter-
ature for embedding an attributed graph require the

Figure 4. (Color online) A Simple Example of a Physical Network (11 Nodes) and Aggregating Network Structure and Sensor
Data

Notes. Nodes of the same type are shownwith similar patterns. The aggregated variables are calculated given that there are a total of 100 meters,
10 fault indicators, and 10 reclosers.
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same graph topology and sensor output dimensions for
all nodes. However, it is assumed in our work that the
topological structure (e.g., size, type of sensors, and
sensor outputs) of subgraphs differs from each other.
Thus, we cannot use a single embedding function to
transform all nodes into an embedding space. Embed-
ding after the aggregation step can significantly lower
the complexity of the problem without losing impor-
tant information concerning the subgraph that is rele-
vant for anomaly detection. This step is entirely
optional, and that is why we separated it from the
aggregation step. We should point out that there is no
theoretical guarantee that this entirely optional step
will improve the anomaly detection results. We will
only numerically evaluate its performance in Section 6.

4.3. A Multilayer Perceptron for Nodal Anomaly
Detection and Ranking

Consider a random decision epoch in which sensor obser-
vations from all sensors across the network are collected.
The problem of anomaly detection defined earlier is div-
ided into Problem A.1 and Problem A.2. For any subnet-
work, ProblemA.1 is formalized as follows:

Problem A.1 (Independent Anomaly Detection for Net-
work Nodes). Given the topology of subgraph Rn and
the set of sensor observations for all sensors within
the subgraph, (a) what is the probability that subnet-
work Rn is under the impact of anomaly type m,
denoted by γnm, and (b) what is the most likely status
of node n, denoted by vn, where m ∈ {0, 1, : : : ,M} and
m � 0 refers to the no anomaly condition?

To address Problem A.1, we can build a multilabel
anomaly classifier and train it with past data. For any
subnetwork, we can first transform the aggregated
vectors of the corresponding network structure and
sensor data into a D-dimensional embedding space

(optional). The new D-dimensional vectors can then
be used as the inputs of the multiclass anomaly detec-
tion classifier. Such a classifier is trained to predict
whether the entire subnetwork is under anomaly and,
if yes, predict the most likely anomaly type. The dif-
ference between this approach and a multilabel classi-
fier that uses direct sensor attributes from each node
is that here the topology of the subnetwork and the
entire set of sensor data within the subgraph are used.
Also, the prediction will cover the entire subnetwork
as opposed to diagnosing one node at a time. This is
different from working only on individual nodes and
not the anomaly neighborhood where an anomaly can
propagate. In what follows, the relationship between
M types of anomalies and transformed signals for
each subnetwork in the embedding space is modeled
through a deep neural network. We first encode the
anomaly class labels via one-hot encoding, where
each element of the output vector corresponds to an
anomaly type. We consider the first class to be class 0,
in which the subnetwork is not affected by any anom-
aly. A multilabel classifier inspired by multilayer per-
ceptron networks (Gulli and Pal 2017) is proposed
here. The corresponding MLP has four main layers: (i)
the input later H with D heterogeneous neurons rep-
resenting the aggregated subgraph data in the embed-
ding space, (ii) the output layer X with M + 1 binary
neurons representing M anomalies and one normal
condition, (iii) hidden layer 1 with H1 hidden neurons
representing subgraph latent factors (denoted by
{z{1}1 , : : : ,z{1}H1

}), and (iv) hidden layer 2 with H2 hidden
neurons representing anomaly latent factors (denoted
by {z{2}1 , : : : , z{2}H2

}). The latent variables can account for
the fact that anomalies and network data might come from
a smaller or larger number of latent factors. For instance,
there might be several anomalies that exhibit similar

Figure 5. (Color online) Overview of a Deep Autoencoder

Note. The output is the encoder section that can transform each subnetwork aggregated topology and sensor data into a D-dimensional
embedding space.
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characteristics and are similar for generating a set of
highly related sensor attributes. These latent factors
allow the model to incorporate marginal dependencies
and interactions within anomalies and sensor attrib-
utes, which could not be achieved with approaches
that work only under the independence assumption of
anomalies and sensor attributes. The hyperparameters
H1 and H2 can be tuned in by cross-validation. The
high-level connection between the elements in each
layer is shown in Figure 6. In this figure, b{1} � [b{1}1:H1

],
b{2} � [b{2}1:H2

], and b{M} � b{X}1:M+1 are the bias variables in
hidden layers 1 and 2 and output layer X that toge-
ther control the uncertainty. The elements in B{1} �
[β{1}d,h1

]D×H1
, B{2} � [β{2}h1,h2

]H1×H2
, and B{X} � [β{X}h2,m

]H2×M+1
quantify the contribution of variables between layers
H, 1, 2, andX.

Note that if we multiply B{1}, B{2}, and B{X}, we get
a D × (M+ 1) matrix, where its dmth element can be
interpreted as the contribution of anomaly type m on
the dth network embedding variables (or vice versa).
The equations for each layer are defined below:

z{1}h1
� ω{1} ∑D

d�1
β{1}dh1

hnd + b{1}h1

( )
,h1 ∈ {1, : : : ,H1}, (4)

z{2}h2
� ω{2} ∑H1

h1�1
β{2}h1h2

z{1}h1
+ b{2}h2

( )
,h2 ∈ {1, : : : ,H2}, (5)

z{Y}m � ∑H2

h2�1
β{X}h2m

z{2}h2
+ b{X}m ,m � {0, : : : ,M}, (6)

where ω{1} and ω{2} are parameter-free activation func-
tions. Now to generate the output as a unit probability
vector (that is, a normalized probability distribution con-
sisting of M + 1 probabilities), we can use the softmax
function (multinomial logistic regression) as follows:

Pr(xnm � 1 | hn) � ez
{X}
m

∑M
m�0

ez
{X}
m

[ ]−1
, m � {0, : : : ,M}, (7)

where vector hn is the embedded vector subnetwork
Rn. One aspect of the above formulation is its ability
to be rewritten in a compact matrix form that helps
calculate the recursive equations needed for efficient
learning and inference. For a set of input-output
points stored in D � [H,X] that includes |D| row-
vector data points, we have

Z{1} �Ω{1}(HB{1} +b{1}I),Z{2}

�Ω{2}(B{2}Z{1} +b{2}I),Z{Y} � B{X}Z{2}, (8)

where Ω{:} is the element-wise activation function for
a matrix. It can be observed that the only unknown
parameters of this model are Q � {B{:},b{:}}. Note that
these parameters are shared between all subgraphs
with any size and any set of sensor data. To use the
model in real time, we need to train the MLP struc-
ture. Let us assume that multiple samples of network
data are available for all the N nodes in the network.
The training data set can be shown by D � {H,X},
which includes transformed network data from the
autoencoder (H) and the true anomaly status of all
subnetworks (X) for different time epochs. Let us
denote xnm as the true anomaly status of node n (and
subnetwork Rn) with respect to anomaly type m and
x̂nm as its estimated output from the MLP. The catego-
rical cross-entropy function is used as the loss func-
tion in the back-propagation algorithm. With this
function, the MLP will be trained to output a probabil-
ity over the M + 1 anomaly classes for each node. The
back-propagation procedure will follow the standard
feed-forward and back-propagation steps. In our
experiments, we tune all hyperparameters through a
grid search.

4.3.1. Overview of the MLP. Although this paper does
not contribute to deep learning and the theoretical
foundations of MLP, it customizes MLP as a highly
flexible tool that has appealing properties because of
the existence of structural latent factors, the variety of
sensor attributes, and the potential for deep learning
and inference. In this structure, all anomalies and sen-
sor attributes are incorporated in a unified model,
which can account for the fact that many anomaly
events and sensor attributes are highly correlated and
should not be analyzed independently. Also, the top-
ology of the network and its sensors are taken into
account. With defining structural latent factors, the
overall interpretability is improved; marginal depend-
encies between anomalies and sensor attributes and
network topology are allowed. With defining latent
factors, the number of model parameters can become
lower than DM in high-dimensional settings with
large M and large J, contributing to lowering computa-
tional complexity. A large set of latent factors may be
defined to capture more interaction and complexity

Figure 6. (Color online) The Structure of the MLPwith Two
Hidden Layers (Inputs Are Shown Based on Node n)
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between anomalies, sensor attributes, and network
topology. Although it requires more computational
time for large data sets and a large number of anoma-
lies, considering a single network for an M-class
anomaly detection task can theoretically result in opti-
mal classification when enough data are available.
The MLP structure has a generic structure that accom-
modates well-known parametric settings. By setting
B{1} and B{2} to identity matrices of size D and M,
respectively, and setting ω to an identity function, we
can reach multinomial logistic regression.

4.4. Summary of the Proposed Approach for
Node Anomaly Detection (Model M0)

An overview of the proposed approach for node/sub-
graph anomaly detection, referred to as the baseline
model or M0, is given below. For training, we need to
first preprocess network data using the aggregation
functions and the autoencoder network. The inputs of
the autoencoder are the series of aggregated subgraph
data without their labels. Once the autoencoder net-
work is trained, the aggregated network data at the
subgraph are transformed into the embedding space.
The transformed embedded data together with the
labels of the nodes are used to train the MLP in Fig-
ure 6. Once the MLP is trained, we can use it for any
new sample r to predict the probability of being under
each anomaly condition (i.e., Pr(xrm � 1)) and find the
most probable anomaly class vn as

M0 : vn � arg max
m∈{0, : : : ,M}

Pr(xrm � 1 | hn): (9)

We can also use the probability outcome of the MLP
to rank the nodes and subnetworks with respect to the
risk of being under an anomaly. Algorithm 1 in
Appendix B of the online supplement summarizes the
details of the entire process to transform raw network
data into detection results at the node level.

5. The Proposed Network-Based Anomaly
Detection Framework

The results obtained from the framework in Section 4
only provide the anomaly status of each node inde-
pendent of other nodes in the network. Thus, the
framework ignores the data collected from other
sensors and the status of other nodes outside the cor-
responding subgraph. In other words, it does not pro-
vide integrated insight regarding the entire network.
The result from the node-to-node anomaly detection
cannot locate the original location or identify the type
of anomalies. However, it only shows whether a node
and its subgraph are under an anomaly condition.
The nodal approach also cannot verify whether the
network is under multiple simultaneous anomalies.
With respect to the status of the entire network, the

results from the nodal approach may not be consistent
with each other. For instance, for a parent-child case,
nodal analysis may predict the parent node to be
anomalous but the child node to be normal, which
violates the anomaly propagation rule for the parent
node. The objective of the anomaly detection frame-
work here is to efficiently employ the results from
nodal analysis across the network to (i) detect whether
there are anomalies in the network and (ii) identify
the sources of anomalies and all impacted nodes. Two
optimization models, referred to as Model M1 and
Model M2 , are designed where the results from the
multiclass MLP (i.e., the probability of being under
each type of anomaly and the most likely status of
each node) are utilized as inputs. The outcome is the
most likely status of the entire network. Such results
would divide the network into multiple distinct sub-
graphs/segments, each with a uniform anomaly sta-
tus. This problem is formalized as follows:

Problem A.2 (Anomaly Detection for the Entire Network).
Given the results from Problem A.1, namely, γnm and
vn, for all n ∈ {1, : : : ,N}, and m ∈ {0, 1, : : : ,M}, (a) detect
whether there are anomalies in the network and (b)
identify the sources of anomalies and all impacted
nodes.

We discuss important optimal properties of these
models and propose solutions to reduce their compu-
tational complexity. The main difference between
these two optimization models is the manner in which
they utilize the outcome of the node-level anomaly
detection phase (MLP). ModelM1 employs the proba-
bility distribution of an anomaly for each node,
whereasM2 employs each node’s predicted label.

5.1. Anomaly Detection with Stochastic Nodal
Outputs from MLP (M1)

As discussed in Section 4, the original outcome of the
MLP for any node at any time point is the probability
distribution of its anomaly status, which can be
denoted by the vector gn(t) � [γnm(t)], where γnm is
the probability of node n being under anomaly type m
for m ∈ {0, : : : ,M}. Below, we develop an optimization
model that can find the most likely locations of
anomalies across the network. The outcome of this
optimization model can divide the network into Q
(Q ≥ 1) mutually exclusive and distinct segments.
Each segment contains a subgraph where all the sub-
graph nodes are under the same anomaly condition.
We define onm(t) as a binary decision variable reflect-
ing whether node n is the source of anomaly type m.
When onm(t) � 1, then we have a subgraph with node
n as a parent node that hosts the original location of
an anomaly of type m, and all nodes in Rn are its
impacted children. Also, when node n is not the
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source of anomaly m, it can either be under no anom-
aly or under an anomaly originating from an up-
stream node. The relationship between network nodes
and anomaly location variables (denoted by o) and
status variables (denoted by x), anomaly propagation
paths (represented by edges), and sensor data can be
represented by a directed acyclic graph with a deter-
ministic causal relationship between the anomaly
location and status variables and probabilistic depend-
encies between any node’s status variable x and sensor
data collected at that node. Before thefirst optimization
model is introduced, the following two important
remarks are stated.

Remark 3. Given the assumption that each node can
only be under the impact of one anomaly at a time,
the maximum number of anomalies within each sub-
network cannot exceed the number of nodes at the
lowest level (leaf nodes) of that subnetwork (denoted
by ln for node n). Here leaf nodes are the ones that
have no other nodes in their propagation paths.

Remark 4. Without taking into account the dependen-
cies between network nodes from the propagation
of anomalies, given the outputs of the MLP as Γ �
[γnm]N×(M+1), the most likely state for network varia-
bles in O(t) � [onm(t)] and subsequently all variables
in O(t) � [onm(t)] is the one that maximizes the follow-
ing posterior probability/belief:

Pr(O(t) | h1, : : : ,hn) �
∏N
n�1

∏M
m�1

γnm(t)onm(t)

×∏N
n�1

γn0
1−∑N

n′�1
∑M

m�1 on′m(t)dn′n
[ ]

,

(10)

where 1−∑N
n′�1

∑M
m�1on′m(t)dn′n

[ ]
is a binary term

equal to one if node n is under the impact of no anom-
aly. Instead of γnm(t), we can use the joint anomaly
probability of all nodes in the propagation path of
node n (i.e., ∏n∈Rn

γnm(t)) and get an alternative anom-
aly score for the network. Remark 3 is true because
any number of anomalies greater than the number of
leaf nodes, which are the nodes with no child nodes/
downstream connections, results in at least one node
being under the impact of two anomalies. Equation
(10) in Remark 4 is the joint probability of all nodes’
health status variables inspired by the chain rule in
Bayesian belief networks (the proof is omitted because
of its simplicity). By taking the log of the belief func-
tion in Equation (10) as the objective function, we can
build an optimization model that takes into account
the topological dependencies between nodes as struc-
tural constraints. The network optimization problem
for anomaly detection can be formalized through the
following binary integer programming problem:

M1 :Optimal Network Segmentation Based on

Anomalies2Model 1

max
onm(t),∀n,m

z � ∑N
n�1

∑M
m�1

onm(t)logγnm(t)

+∑N
n�1

1−∑N
n′�1

∑M
m�1

on′m(t)dn′n
[ ]

× logγn0(t),

(11)

Subject To :
∑M
m�1

onm(t) ≤ 1, ∀n ∈ {1, : : : ,N}, (12)

∑M
m�1

∑N
n′�1,n′≠n

on′m(t)dnn′
[ ]

≤ ln 1−∑M
m�1

onm(t)
( )

,

∀n ∈ {1, : : : ,N}, (13)

onm(t) ∈ {0, 1}, ∀n ∈ {1, : : : ,N}, ∀m ∈ {0, : : : ,M}: (14)

The objective function is defined according to the
propagation of anomalies in the network. The left part
of the objective function is only activated for anoma-
lous nodes, whereas the right part is activated for all
nodes that are not part of the anomaly propagation
paths of the anomalous source nodes. The first con-
straint ensures that each node can be the source of
only one anomaly at a time (note that the network can
still be under simultaneous anomalies). The second
constraint has multiple roles regarding the propaga-
tion of anomalies. First, it guarantees that no node
along the propagation set of node n is the source of
any anomaly if node n is the source of an anomaly.
Also, it ensures that node n cannot be the source of
any anomaly if one of the nodes within its anomaly
propagation set is the source of the anomaly. The con-
stant ln shows the maximum number of anomalies
within subgraph Rn. Because Equation (1) holds for
the relationship between variables o and x, the optimal
solution of M1 automatically provides all the optimal
values for the elements of x. In Section 5.4, we provide
some important remarks that help lower the complex-
ity of this optimization model for large networks.

5.2. Anomaly Detection with Deterministic Nodal
Outputs from MLP (M2)

Instead of using the outcome of the MLP in a proba-
bilistic manner as in M1, we can alternatively use the
predicted label of each node. Such a predicted label
for node n, denoted by vn(t), can be estimated from
Equation (9). Now, we have a network where all
nodes are labeled as [v1(t),v2(t), : : : ,vN(t)]. The objec-
tive of this network anomaly detection approach is to
find the most likely set of distinct anomaly subgraphs
and affected nodes given the predicted label of all
nodes, which provides a segmented network with
detected anomalies and impacted nodes. In what fol-
lows, we use the power of the MLP model to detect
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each node’s anomaly status and use it to determine
the status of all nodes and of the entire network. After
MLP is trained, we can calculate the probabilistic con-
fusion matrix P � [pi,j], where pi,j indicates the average
probability that a sample with true anomaly type i is
classified into anomaly type j. Now for node n with
the predicted anomaly vn(t), the probability of the
true label being i equals pi,vn(t). Thus, the probability of
node n being the source of anomaly type m depends
on the predicted probability values of all nodes inside
the anomaly propagation set of node n (that is, all
nodes in Rn) and the values in its probabilistic confu-
sion matrix. Using p instead of γ, a binary optimiza-
tion problem to find variables onm(t) can be built as
follows:

M2 :Optimal Network Segmentation Based on
Anomalies2Model 2 :

max
onm(t),∀n,m

z � ∑N
n�1

∑M
m�1

onm(t)logpm,vn(t)

+∑N
n�1

1−∑N
n′�1

∑M
m�1

onm(t)dn′n
[ ]

× logp0,vn(t)

Subject to : Equations (12)–(14):

The left side of the objective function is activated if
node n is found to be the location of an anomaly. The
right side of the objective function is activated when
node n and none of its connected ancestors are under
the effect of an anomaly. It is clear that the complexity
of Models 1 and 2 is the same, as they have the same
number and types of constraints and variables.

5.3. Remarks for the Number of
Network Segments

Below, a few remarks are introduced regarding the
complexity of the proposed optimization problems.

Remark 5. The maximum possible number of mutu-
ally disjointed anomalous segments (denoted by Q∗)
in a network with N nodes and known R1, : : : ,Rn can
be found from the solution of the following binary
integer programming, which has a similar structure to
the maximum set packing problem:

maximize Q �∑N
n�1

qn, (15)

Subject to :
∑N
n�1

1{s ∈ Rn} qn ≤ 1, ∀s ∈ {1, : : : ,N}
qn ∈ {0, 1}, ∀n ∈ {1, : : : ,N}:

(16)

The value ofQ∗ represents the vulnerability of a network
and helps with the efficient allocation of monitoring and

restoration resources. The proof of this remark is in
Appendix C in the online supplement.

Remark 6. Regarding the optimal solution of M1 and
M2, if we consider all nodes with no anomaly as one
segment, then the total number of optimal distinct
segments at time t is

∑
n

∑
m

o∗nm(t) +1
∑
n

∑
m

o∗nm(t) <N

{ }
:

This is an important remark for network operators
because it gives the number of anomalous segments
for the network at any time point. The proof for this
remark is very simple because every nonzero onm(t)
refers to an anomalous subgraph with anomalous
nodes of the same type. Because two subgraphs with
anomalies cannot overlap each other, there is a dis-
tinct segment for each nonzero onm(t). If the total num-
ber of impacted nodes is less than the total number of
nodes, then there is at least one node under normal
conditions. Because all normal nodes are considered
as one segment, then the total number of segments
will be added by one. This completes the proof.

5.4. Computational Complexity Remarks for
Large-Scale Networks

A major challenge in analyzing large-scale network
data are scalability. Four important remarks are intro-
duced regarding the complexity of the proposed opti-
mization problems. These remarks are effective for
both Model 1 and Model 2 and will be used as initiali-
zation (Preoptimization) steps, which aim to lower the
number of decision variables/constraints in the corre-
sponding optimization problems.

Remark 7. For node n, if the optimal value of
∑

mo∗nm(t)
is one, then the optimal m in o∗nm equals

argmax
m

γnm(t) in Model 1 and

argmax
m

pm,vn(t) in Model 2:

Based on this remark,we can lower the number of vari-
ables needed in both models fromN ×M toN by keep-
ing only onm∗ (t) instead of [on1(t), : : : , onM(t)]. This is a
significant computational advantage, particularly for
large networks and networks with many types of
anomalies.

Proof. From Equation (11) in Model 1, we can see that
if

∑
mo∗nm(t) is one (i.e., node n is the location of an

anomaly), then the right-hand side of the objective
function is inactive. Given that the constraint coeffi-
cients for variables onm(t) are the same for all m, then
argmaxmγnm(t) would make the objective function
optimal. This completes the proof. The same proof
applies to Model 2.
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Remark 8. For any node n, if∏
n′∈Rn

γn′0(t) > max
m

γnm(t)

for Model 1 and
∏
n′∈Rn

p0,vn′(t) > max
m

pm,vn(t)

for Model 2,

then o∗nm(t) � 0 for all m ∈ {0, : : : ,M}, that is, node n is
not the source of any anomaly.

Proof. This is an important finding because if the
above condition is met, then we can remove all M
decision variables for node n from the optimization
models. If node m is the source of an anomaly, then
o∗nm(t) is one for one m in {1, : : : ,M}. This also con-
cludes that γnm(t) for the optimal m is larger than∏

n′∈Rnγn′0(t) because otherwise o∗nm(t) would not be
one. This completes the proof.

Remark 9. If the condition in Remark 8 is satisfied for
all n, then the network is not under the effect of any
anomaly. This is an extremely important remark
because it can help find the status of the entire net-
work without running the optimization problems.

This remark is an immediate outcome of Remark 8,
and thus the proof is not discussed.

Remark 10. For nodes n1 and n2 with the same set of
sensors in their corresponding subnetworks Rn1 and
Rn2 , the optimal solutions of on1m(t) and on2m(t) in
Model 1 and Model 2 are the same.

This is a very important remark because it can be
used to merge multiple nodes into one node and con-
sequently lower the number of decision variables and
constraints in both Model 1 and Model 2. This remark
is particularly important for sparse networks where
many nodes have no sensors, and thus they share the
same sensor structures with at least one other neigh-
bor node.

Proof. It is known that the optimal solution of any two
decision variables is the same if the set of objective func-
tion and constraint parameters are the same. For Model
1 and 2, if sensors are the same for two nodes, then the
corresponding inputs (i.e., network structure and sensor
attributes) for the aggregation functions, the autoen-
coder, and the node-to-node anomaly detection algo-
rithm are the same. As a result, the corresponding inputs
of Model 1 and Model 2 are the same as well for these
two nodes. This completes the proof.

5.5. An Optional Prescreening (PS) Phase (MLP0)
Most real-life networks have a complex structure with
a very large number of nodes. Also, network systems
are often operating under normal conditions, with
anomalies being relatively rare. Thus, analyzing all

network nodes at every time epoch is not only compu-
tationally expensive but also unnecessary. To avoid
searching the entire network for potential anomalies,
we can use the topology of the network and sensor
attributes in the entire network as inputs to train an
MLP. Once the inputs are aggregated and trans-
formed into the embedding space, we can feed them
into the MLP with a binary output denoting whether
there is an anomaly in the network. The outputs are
organized so that any data point with anomalies,
regardless of the location of the anomalies, is consid-
ered a positive class, and any data point where no
single anomaly exists in the network is considered a
negative class. In such an MLP, the data obtained
from the entire network are considered one sample
with a binary label. This can be simply done by defin-
ing an artificial node 0 where Ro � {1, : : : ,N}. Once the
model is trained, we can use it for future cases to
determine whether there is an anomaly in the net-
work. If the MLP predicts that the network has at least
one anomalous node, then the detailed process of
nodal and network anomaly detection is triggered.
The role of this step in the framework is shown in
Figure 7. We will also show with numerical experi-
ments that adding such a preliminary step can signifi-
cantly impact the computational time as well as the
detection power of the algorithm.

5.6. Detecting Anomalies in
Connected Subgraphs

To extend the application of this work, we show how
the proposed optimization models can be modified so
that the set or sets of anomalous subgraphs with
connected nodes are detected without considering
propagation constraints. The formal definition of the
problem is given below:

Problem B (Anomaly Detection in Connected Sub-
graphs). Given the topology of an attributed network,
sensor locations, and sensor attributes, aggregate/ana-
lyze real-time network sensor observations collected from
sensors across the network to locate (a) the most likely
sources and types of potential anomalies (if any) and (b)
the impacted anomalous nodes/subgraphs, subject to the
connectivity constraints; that is, the detected anomalous
subgraphs should be connected subgraphs.

In such a problem, the detected nodes do not need to
follow predefined propagation paths. The only require-
ment is that the detected nodes to be connected. Because
of this change, the aggregation of sensor data are not
needed anymore because no predefined subgraphs exist
in the model. The optimization model below can find one
or multiple subgraphs under one or multiple types of
anomalies, where the nodes within each anomalous sub-
graph are connected.
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Mc
1 : Optimal Anomaly Detection with Connectivity

Constraints:

max z � ∑N
n�1

∑M
m�1

xnm(t)logγnm(t)

+∑N
n�1

1 −∑M
m�1

xnm(t)
[ ]

× logγn0(t), (17)

Subject To :
∑M
m�1

onm(t) ≤ 1, ∀n ∈ {1, : : : ,N}, (18)

onm(t) ≤ xnm(t), ∀n ∈ {1, : : : ,N},
∀m ∈ {1, : : : ,M}, (19)

xnm(t) ≤
∑
n′

xn′m(t)an′n + onm(t),
∀n ∈ {1, : : : ,N},∀m ∈ {1, : : : ,M}, (20)∑
n,m

onm(t) ≤ R, ∀n ∈ {1, : : : ,N},

∀m ∈ {1, : : : ,M}, (21)

onm(t), xnm(t) ∈ {0, 1}, ∀n ∈ {1, : : : ,N},
∀m ∈ {1, : : : ,M}:

(22)

Constraint (18) ensures that each node can be the
source of no more than one type of anomaly. Con-
straint (19) guaranties the causal relationship between
o and x for each node. Constraint (20) ensures the con-
nectivity between nodes, that is, each node is either
the root node or it is connected to one of its immediate
parents. Together, Constraints (19)–(20) can control
the propagation of anomalies so that an anomaly at
any node may be propagated to one of the node’s

immediate neighbors, which are defined through the
elements of the adjacency matrixA. Finally, Constraint
(21) limits the number of root nodes in the detected
subgraphs to a maximum threshold R defined by the
user. The value of R dictates the maximum number of
anomalies that can be detected in the network. This
model is more complex than the optimization models
M1 and M2 because it has more variables and con-
straints. We suggest using this model only if (a) there
are no available anomaly propagation paths and (b)
connectivity between anomalous nodes is required.
For a tree structure, because each node has only one
parent, by setting R � 1 we can force the model to
choose only a connected subgraph with one root node
and potentially any size. For nontree structures, the
above model does not guarantee that all subgraphs
are connected to each other; however, it ensures that
the nodes in each detected anomalous subgraph are
connected. This is a limitation over models that detect
only one arbitrarily shaped subgraph with connected
nodes. The objective function is to maximize the joint
probability of all nodes’ health status. The solution of
this optimization problem is the same as the solution of
the GraphScan method (when applied on a DAG) with
an optimal neighborhood size. In Section 6, we provide
a comprehensive example to show how the outcomes
of Problem A (and its extensions) and Problem B can
result in two different solutions.

5.7. Overview of the Real-Time Implementation of
the Proposed Framework

To better understand the relationship between the ele-
ments of the proposed framework, the main steps of

Figure 7. (Color online) An Overview of the Proposed Approach for Network Anomaly Detection (M0-M2)
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the anomaly detection process at a sample time
instance are shown in Figure 7. Algorithm 2 in Appen-
dix D in the online supplement also summarizes the
technical details of the implementation phase.

6. Numerical Experiments
Because of the structure of power distribution net-
works and the extensive availability of binary sensor
data, they are perfect examples of where the proposed
frameworks can be applied. A comprehensive set of
numerical experiments inspired by real power distri-
bution networks in the state of Florida is designed to
show the effectiveness and application of our frame-
work. We also show the application of our work to
detecting contamination in a water distribution net-
work and compare our framework with a strong
model in the literature. We will demonstrate how our
approach can detect anomalies impacted by a set or
sets of connected nodes without having to follow pre-
determined propagation paths. Finally, we provide
experiments on the scalability of our anomaly detec-
tion approach with various sizes of simulated net-
works. All numerical experiments are conducted
using R on a iMac with a 3.5 GHz Intel i9-9920X pro-
cessor and 32 GB of RAM. A summary of the data
used in this article can be found in Appendix E in the
online supplement.

6.1. Detecting Anomalies in Power Distribution
Network Structures

Two publicly available topology data sets related to
power distribution networks are used for the first part
of our numerical experiments. The network topologies
in both data sets have a grid structure that starts at the
top from the substation and moves down to the low-
est level (customers/meters). Some of the topological
characteristics of these networks are given in Table 2.
In the smaller data set (data set 1), the network has
1,138 nodes out of which there are 851 sensor nodes,
whereas in the larger data set (data set 2), the network
has 10,090 nodes out of which there are 7,001 sensor
nodes. For both networks, the power is transformed
from the substation into the meters through different
nodes. Each node may generate some sensor attrib-
utes. Because sensors are placed only at a randomly
selected subset of nodes, we have a heterogeneous
attributed network. A simple view of the network in
data set 1 is shown in Figure 8.

6.1.1. Network Data Set 1. This data set is for a 1,138-bus
power network provided in a Network Repository
(Rossi and Ahmed 2015). Some of the characteristics of
this network are given in Table 2. We divided all
nodes into one of five types: feeders/breakers,
switches, fuses, transformers, and meters.

6.1.2. Network Data Set 2. This network data set, cre-
ated using the U.S. Reference Network Model (NREL
2016), is a fully synthetic distribution data set for the
San Francisco Bay Area and has been created using the
U.S. Reference Network Model. We selected a part of
the network topology with 10,090 nodes and then ran-
domly selected some nodes to be the hosts of sensors.

6.1.3. Anomalies Across the Networks. The propaga-
tion of anomalies in distribution networks depends
entirely on the structure and topology of the distribu-
tion network. For example, if a nonmomentary fault
occurs in an overhead transformer, the fuse at the
transformer can isolate the anomaly so that only
downstream customers are affected by the anomaly.
Similarly, if a transformer has an issue, then all prem-
ises downstream of the transformer will experience an
outage. We use the same rules for all nodes to define
the set of anomaly propagation paths. In Figure 9,
we show six examples from data set 1 of how an an-
omaly in one node is propagated to its neighborhood

Table 2. Important Statistics for the Network Topology of the Two Data Sets

Data set Nodes Edges Density
Maximum
degree

Minimum
degree

Average
degree

Data set 1 1.1K 1.5K 0.002254 17 1 2
Data set 2 10K 10K 0.0001 440 1 2

Figure 8. (Color online) A Simple Overview of the Power
Network in Data Set 1

Notes. Each node may be a host for a sensor or a physical device.
Circles are used to represent sensor nodes.
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according to its anomaly propagation set. We can
segment the network into seven clusters (six anoma-
lous clusters and one healthy cluster). For both data
sets, two types of anomalies are considered. A total
of 1,000 time instances are considered in which
anomalies are detected at each time instance inde-
pendently of others. For each network and at each
time instance, we assumed a 50% chance of being
under at least one anomalous event. If the network
is anomalous, then a random number between 1 and
50 is generated to determine the number of total
anomalies in the network. Also, the types and the
locations of anomalies for anomalous points are ran-
domly found. The final outcome of the simulation
for each network and each timestamp is the set of
anomalous nodes with their types, the original loca-
tions of anomalies, and network sensor data.

6.1.4. Network Sensor Data. A total of 40 binary sen-
sor attributes are considered (i.e., J� 40). Sensor attrib-
utes generated at different nodes depend on the type
of the node, and no node can generate all types of sen-
sor attributes. We have made a realistic assumption
that sensor types can have their own unique set of sen-
sor attributes and also have attributes that are gener-
ated by other sensor types. For instance, breakers and
switches in data set 1 generate sensor attributes 23–33.
Examples of such binary signals are various types of
Supervisory Control and Data Acquisition errors gen-
erated across the network over time. Although this
article does not require a specific stochastic distribu-
tion for sensor data, to conduct numerical experi-
ments, it is assumed that the jth sensor attribute at
node n follows a conditional Bernoulli distribution

given the status of node n (xn(t)) where the sensor is
located, that is,

P(ynj(t) � 1 | xn(t)) � p
1−∑2

m�1 xnm(t)
( )
0,j

∏2
m�1

pxnm(t)m,j , (23)

where parameters p0,j and pm,j are randomly generated
from the following uniform distributions:

p0,j ~U(0, 0:15), pm,j ~U(0, 0:45),
∀j ∈ {1, : : : , 40},m ∈ {0, 2}:

Note that p0,j and pm,j can be defined as the false posi-
tive rate (FPR) and true positive rate (TPR) for the mth
type of anomaly, respectively.

6.1.5. Summary of Training, Testing, and Validation
Sets. For each data set, we simulated 1,000 time
instances/networks out of which 509 networks in
data set 1 and 703 in data set 2 have at least one anom-
aly event. We considered 500 networks for training
and the other 500 for testing. We considered 100 out
of the 500 training samples as a validation data set to
tune in hyperparameters.

6.1.6. An Example of Network Anomaly Detection. As
discussed earlier, the outcomes ofMLPmay be directly
used for node-level anomaly detection (M0). Also,
such outcomes can be used as inputs forM1 andM2 to
find the location of anomalies in an integrated manner.
To better present the difference between these ap-
proaches, we provide an example of an anomaly sce-
nario in Figure 10 and show howM0, M1, andM2 can
predict anomalies and all impacted anomalous nodes.
The true scenario in this example has 43 anomalies

Figure 9. (Color online) A View of a Network with Six Simultaneous Anomalies and Segmented Subnetworks

(a) The anomalous segments for six anomalies (b) Anomaly propagation paths/sets

Note. The square nodes are the original locations/sources of anomalies and the filled circles are the impacted nodes based on the propagation
paths of the source nodes.
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with a total of 184 impacted nodes. It is clear from Fig-
ure 10 that Model 0 (M0), which is a node-level anom-
aly detection approach, is subject to a large number of
healthy nodes that are predicted as anomalous. How-
ever,Model 1 andModel 2 perform better in predicting
impacted nodes with fewer false alarms. Models 1 and
2 also can cluster anomalies better thanModel 0. This is
mainly because these models predict anomalies for the
entire network in an integrated and dependent man-
ner. Most of the false alarms for Models 1 and 2 are for
small segments and single node anomalies.

6.1.7. Summary of the Results for Network Anomaly
Detection (M1 and M2). To evaluate the performance
of the network anomaly detection models (M1 and
M2) discussed in Section 5 and the subgraph anomaly
detection M0 discussed in Section 4.4, we applied
them to the testing sets of both data sets. Then, for the
three cases of no anomaly, anomaly type 1, and anom-
aly type 2, we checked to see how each model pre-
dicted the true labels of all nodes. To better evaluate
the outcomes of the proposed models, we compare
them with four relevant baseline models/competitors.

Figure 10. (Color online) A View of True vs. Predicted Anomalous Nodes

(a) True Scenario (b) Predicted Scenario (Model 0)

(c) Predicted Scenario (Model 1) (d) Predicted Scenario (Model 2)

Notes. Impacted and predicted nodes have larger vertex size than healthy nodes. Anomalies with more than 1 node are segmented in pink for
better visibility.

Table 3. Optimal Hyperparameters for MLP in the Proposed and Baseline Models

Model name Layer 1 nodes Layer 2 nodes Dropout rate 1 Dropout rate 1 Optimizer LR annealing rate

B1 8 2 0.3 0.3 Adam 0.05
B2 16 8 0.3 0.3 Adam 0.1
B3 8 4 0.2 0.3 Adam 0.1
M0 16 8 0.2 0.3 Adam 0.05
M1 8 4 0.2 0.3 Adam 0.1
M2 8 8 0.2 0.3 Adam 0.05
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The first natural competitor would be a model that
uses only raw sensor data at each node directly as
inputs and builds a three-label classifier that can pre-
dict the label of each node. This baseline competitor,
referred to as MLP with raw sensor data or B1, is the
most straightforward way of using network sensor
data for anomaly detection. The second baseline com-
petitor, referred to as MLP with aggregated sensor
data or B2, is a model that employs the aggregate sen-
sor data as the input for a multiclass classifier where
only sensor data are aggregated for each subnetwork
and then used as the classifier inputs. Applying this
model helps evaluate the effect of including sensor
topology for anomaly detection. The third competitor,
referred to as MLP with aggregated sensor and topol-
ogy or B3, is a model that aggregates both sensor data
and network topology and uses them as inputs for a
three-label classifier. Such data are actually the inputs
of the autoencoder discussed in Section 4.2. Note that
in model M0, we transform the fully aggregate sensor
and network data into the new embedding space
using the autoencoder and then use the embedded
data as inputs for the classifier for predicting node
labels using the trained MLP. This model can also be
considered as a baseline for our final proposed models
M1 and M2. Table 3 summarizes the optimal struc-
tures of these baseline models with regard to the
hyperparameters (found with a grid search).

We selected six commonly used and reasonable per-
formance metrics to evaluate the performance of each
model. These metrics are the false positive rate (false
alarm rate), which indicates the percentage of healthy
nodes incorrectly detected as anomalous; true positive
rate (detection rate, sensitivity, recall), which indicates
the percentage of anomalous nodes that have been prop-
erly detected; precision (positive predictive value),
which indicates the percentage of correct anomalies out
of the total number of reported anomalies; F-score,
which is used as a general overview of the performance
of the models; and overlap coefficient, which is a com-
mon measure for assessing the efficiency of network

anomaly detection models in detecting real anomalies
and measures the agreement between the affected and
detected nodes (one means perfect agreement and zero
means no agreement). This last metric is computed as
the ratio of true positives and the summation of the true
positives, false negatives, and false positives. In addition
to the abovemetrics, we compute the type detection rate,
which measures the correct identification percentage for
each type of anomaly. Results shown in Table 4 can be
summarized as follows. First, it can be seen that using
only raw network sensor data as inputs results in a rela-
tively poor performance for detecting anomalies. This is
mainly because of the ignorance of the heterogeneity of
the network data and topology and the fact that nodes
and their corresponding subnetworks are analyzed inde-
pendently. However, as we improve the data fusion
process and include the dependencies between nodes,
the performance of the models improves. For instance,
almost all performance metrics of models B1 and B2 are
worse than model B3. Second,M1 andM2 provide bet-
ter results compared with all other baselines as shown
by larger values in some of the overall performance
measures (i.e., F-score, overlap coefficient, and type
detection rate). Also, greater precision in the proposed
models M1 and M2 indicates their better performance
in minimizing false alarms, which is a key metric for
decisionmakers in the power utility industry. Third, bet-
ter performance measures in M0 compared with B3
indicate that the autoencoder can slightly improve the
performance of the task of anomaly detection possibly
because of its power to lower the complexity of the prob-
lem. The results also show no significant difference
betweenM1 andM2.

In summary, we can conclude that the two inte-
grated optimization-based anomaly detection meth-
ods that take the status of the entire network into
account perform better at the task of anomaly detec-
tion compared with their natural competitors. Simi-
larly, with regard to predicting the correct type of
anomaly, optimization-based models perform better.
We justify this performance with the fact that they

Table 4. Performance of the Proposed and Baseline Modes in the Two Data Sets

Network data set 1 Network data set 2

Model type FPR TPR Precision F-Score
Overlap
coefficient

Type
detection FPR TPR Precision F-Score

Overlap
coefficient

Type
detection

Model B1 1.6 56.1 72.8 63.4 46.4 51.0 1.1 99.2 49.6 66.1 49.4 85.6
Model B2 1.7 56.4 71.9 63.2 46.2 85.6 1.5 99.5 43.0 60.1 42.9 85.7
Model B3 1.3 56.7 76.7 65.2 48.4 85.7 1.1 99.4 49.5 66.1 49.4 85.5
Proposed Model M0 6.5 98.1 53.4 69.2 52.9 88.2 0.9 99.1 54.7 70.5 54.4 82.2
Proposed Model M1 2.2 91.6 75.9 83.1 71.1 92.9 0.8 99.4 57.7 72.9 57.5 90.4
Proposed Model M2 2.4 92.6 74.2 82.4 70.1 91.7 1 99.9 51.9 68.3 51.8 96.1
M0, no autoencoder 7.4 98 50.3 66.5 49.9 88.7 1.1 99.4 49.5 66.1 49.4 85.5
M1, no autoencoder 2.4 90.3 74.4 81.6 68.9 92.7 1.1 99.5 51.4 67.8 51.3 93.1
M2, no autoencoder 2.6 91.5 72.7 81.1 68.2 92.3 1.1 99.8 50.4 66.9 50.3 96.9
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both analyze the entire network at once; as a result,
the reduction of all nodes is better in line with the top-
ology of the grid and the corresponding anomaly
propagation sets. It should be pointed out that the
overall efficiency and the relatively better perform-
ance of the proposed models compared with their nat-
ural competitors depend on many factors, including
the complexity of the network topology and its size,
the power of sensor attributes represented by high
TPR and Low FPR, and potentially the number of
anomalous subsets in the network.

6.2. The Impact of Optional Dimensionality
Reduction on Sensor Information Loss

To measure the impact of the optional unsupervised
dimensionality reduction step (autoencoder) on M1

and M2, we considered the original aggregated data
without using the autoencoder as inputs for the opti-
mization models and then calculated the same per-
formance measures as Section 6.1. By changing the
code size (the number of nodes in the bottleneck
layer), the number of layers, and the number of nodes
per layer, we conduct grid search experiments to
determine the set of hyperparameters. All other
parameters of the autoencoder are set as default in the
R autoencoder-package (loss.type: squared, activ.func-
tions: tanh, optim.type: adam, n.epochs�80). The final
encoder has only one hidden layer (embedding space)
with eight nodes (neurons). In other words, the
encoder takes the inputs and maps to an eight-
dimensional layer. Comparing the results in rows 4–6
and rows 7–9 of Table 4 implies that the information
loss of the dimensionality reduction phase was not
significant; thus, the performance of the models after
reducing the feature size stays almost unchanged. In
fact, some metrics slightly improve, which may be
because the complexity of the models decreases after
using the dimensionality reduction step. Thus, MLP
models are better trained. Because the autoencoder
transforms the 80-dimensional sensor-topology vector
to an 8-dimensional vector in the embedded space, it
can help reduce the training time for the MLPs to find
the probability status of each node. On average, using
the autoencoder could save 0.24 seconds per network
sample in the training phase of a single MLP in data
set 1 (14.1% improvement) and 3.2 seconds in data set
2 (15.3% improvement); this takes into account the
time necessary to train the autoencoder. This impact
may be more significant for cases with more training
data, networks of larger size, and networks with more
sensor attributes. This step has no direct impact on the
CPU time in the testing set, particularly for the opti-
mization models in M1 and M2 where both models
use a one-dimensional outcome obtained from trained
MLPs as inputs.

6.3. The Effect of the Preoptimization Steps on
Computational Complexity

In this subsection, we present the effect of Remarks 7
and 8 with regard to their ability to lower the com-
plexity of the optimization models. The impact of
Remark 7 on M1 and M2 for each network sample is
a reduction in the number of decision variables by
100
M %, that is, from 2,276 (M ∗N) to 1,138 (M ∗N −N) in
data set 1 and from 20,180 to 10,090 in data set 2.
However, the effect of Remark 8 is different on M1
and M2 and also cannot be found analytically. For
M1 and M2, the already reduced numbers of varia-
bles after Remark 7 averaged over all 500 training sets
are changed to 327 and 343, respectively, for data set 1
(around 70% reduction) and 2,623 and 2,513 for data
set 2 (around 74% reduction). This reduction also
depends on how many nodes are anomalous in the
network, that is, the greater the number of healthy
nodes/subgraphs are in the network, the greater the
reduction in the number of decision variables. In sum-
mary, the average reduction in the number of varia-
bles in M1 and M2 after implementing Remarks 7
and 8 was about 85.6% and 84.9% for data set 1 and
87% and 87.6% for data set 2. This is a significant com-
putational benefit, particularly for large networks
with a complex topology and sensor structures. The
average CPU time needed to monitor the entire net-
work in our numerical experiment, including all steps
in the testing phase, was 5.5 seconds for data set 1 and
17.2 seconds for data set 2. Without Remarks 7 and 8,
that number was around 67 seconds for data set 1 and
274 seconds for data set 2. The effects of Remarks 9
and 10 were both less than 2%. Such effects mainly
depend on the network topology and how anomalies
are simulated.

6.4. The Impact of the Prescreening Phase on
Network Anomaly Detection

As discussed earlier, the idea behind the prescreening
phase originated from the fact that real networks are
often at a normal state and anomalies are relatively
scarce. Thus, there is often no need to continuously
check the entire network for the task of anomaly detec-
tion. To control the task of anomaly detection, we can
train a single MLP where its inputs are the data from
the embedding space. In other words, each sample is
an integration of all sensor data and the entire network
sensor topology. The label of each sample is binary
reflecting whether the network is under an anomaly
condition with at least one anomalous node. Similar to
all MLPs discussed in the paper, the hyperparameters
can be tuned in with the grid search. Once the cor-
responding MLP is trained, it can be first used to
determine whether a network has an anomaly. If the
prediction is positive, then we can apply models M1
and M2 to find the location of anomalies. Otherwise,
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we can conclude that the network has no anomalous
node. The potential drawback of this prescreening
phase is when the model mistakenly labels an anoma-
lous network as one without any anomaly. We applied
the trained prescreening MLP on the testing sets for
both data sets and computed important performance
measures. In Table 5, we report the improvement in
important performance metrics after using this step
for both M1 and M2 and in both data sets. It can be
seen that the PS step can significantly lower the num-
ber of nodes falsely reported as anomalous. Also, as
expected, applying the prescreening step resulted in a
slightly lower detection rate of anomalous nodes.
This negative performance change is significantly
lower than the improvement in false alarms. Results
shown in Table 5 verify the better performance of the
PS in reducing false alarms (see for instance the
change in the FPR) and increasing precision, which
together help slightly improve the overlap coeffi-
cient. Because this step ignores the type of anomaly,
it has no impact on the ability of Models 1 and 2 to
detect the type of anomaly.

6.5. Comparison with GraphScan to Detect
Contamination in Water Networks

In this subsection, we compare our work with one of
the well-known scan statistics models developed for
network anomaly detection, namely, the GraphScan
model by Speakman et al. (2015). The objective of the
GraphScan model is to find the set of connected sub-
graphs with the highest anomaly scores. With a set of
numerical experiments, we demonstrate when the
GraphScan model performs better/worse than our
proposed model M1 and its extension Mc

1. In all of
our numerical experiments, each network is subject to
only one anomaly. This is because the GraphScan
model is not designed to find multiple anomalous
subgraphs or the case where there is no anomaly at all
in the network. It is known that the dispersion and
propagation of the contamination in a water distribu-
tion network depend on the topology of the network
and the point (sources) of contamination. In other
words, contamination at a point in the network can
only affect downstream locations in the network. This
makes detecting contaminations in water distribution
networks a perfect case for applying our model and
the GraphScan model. For comparison, we used two
data sets related to water distribution networks. The
first topology is obtained from Georgescu (2012),
which is a small network with 43 nodes and 78 edges.
The second network, which has 130 nodes and 180
edges, is related to the well-known Battle of the Water
Sensor Networks data set, which is a benchmark data
set originally used for sensor location optimization.
For both networks, the adjacency matrix is used to
build the graph topology and define the anomaly T
ab
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propagation paths. For all numerical experiments, we
assume that the flow patterns do not change and thus
the topology of the networks is fixed. Similar to
Speakman et al. (2015), we assume that binary sensors
are located at each of the pipe junctions/graph nodes.
For sensor data generation, we assume a fixed false
positive rate and true positive rate for independent
sensors so that the expectation-based binomial (EBB)
scan statistic can be used as the scoring function for
the GraphScan approach to find the most positive con-
nected subgraph. The score of each node based on the
EBB GraphScan method is as follows:

Scorei � xn1(t) log TPR
FPR

( )
+ (1− xn1(t)) × log

1−TPR
1− FPR

( )
:

(24)
We should point out that the comparison was car-
ried out with an optimization-based GraphScan
method, where the neighborhood size is assumed
to be optimal. This means that the results pre-
sented here may be different from the heuristic
model developed in Speakman et al. (2015). It should
also be noted that the size of the neighborhood (or radius
of the neighborhood) has a significant impact on the
scan statistic model’s detection power and spatial accu-
racy. In systemswhere anomalies can have awide range

of neighborhood sizes, there is frequently no prior
knowledge on the expected size of the events of interest.
As a result, the use of such scan statistics methods is
restricted.

With regard to water contamination (anomaly), we
consider that when a contaminant is inserted from
one node, then it propagates to other nodes according
to two possible contamination scenarios of (a) full
propagation, that is, all downstream nodes are conta-
minated, or (b) partial propagation, that is, only a sub-
set of nodes connected (directly or indirectly) to the
source of contamination is contaminated. In Figure 11,
we show how our proposed model M1 and the
GraphScan method can predict two cases of anoma-
lies, referred to as Scenario 1 and Scenario 2, on water
network 1, when the anomalies are fully propagated
in the network. Also, the output of sensors located at
each node is shown inside each vertex. For the true
Scenario 1, an anomaly occurs at the node shown by a
rectangle and influenced all nine downstream nodes. It
can be seen from the first row of this figure that our
model (M1) can detect all anomalous nodes. However,
the GraphScan model ended up selecting more nodes
as anomalous simply because there is a cluster of false
positive sensors close to the original cluster of anoma-
lies that were incorrectly selected as anomalous. Also,

Figure 11. (Color online) A View of True vs. Predicted Anomalous Nodes for the Case of Full Propagation and for Two
Scenarios of Anomalous Networks

(a) True Scenario 1 (b) Predicted Scenario 1 (M1) (c) Predicted Scenario 1 (GraphScan)

(d) True Scenario 2 (e) Predicted Scenario 2 (M1) (f) Predicted Scenario 2 (GraphScan)
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two of the true anomalous nodes are incorrectly classi-
fied as normal because of their inactive (false negative)
sensors. In Figure 12, two other anomalies are consid-
ered for the case of partial propagation. For both exam-
ples, the GraphScan model outperformed our model
M1. We have repeated the experiments on 1,000 net-
works considering three conditions for sensor FPR and
TPR and then reported the three performance measures
of FPR, TPR, and overlap coefficients in Table 6.

In summary, we can conclude that in the case of
the full propagation, although GraphScan is able to
correctly include contaminated sensors that did not
trigger (false negatives) to connect clusters of true pos-
itives, it can exclude the same sensors if they are in
the boundaries of the connected graphs. Also, Graph-
Scan can incorrectly include all false positive sensors
if they are connected to the anomalous subgraphs.
Unlike our proposed model M1, GraphScan cannot
consider propagation constraints embedded in many
networks, such as power distribution networks. Also,
it is not designed to find the source of the anomaly. In
the case of the partial propagation, GraphScan works
significantly better than our model M1 because it is
not forced to follow propagation rules and include
true negatives in the anomalous nodes. Another in-
teresting observation is that as the power of sensors
with regard to anomaly detection degrades (i.e., TPR
decreases and FPR increases), the superiority of model
M1 increases for the case of full propagation. For the

case of partial propagation, the performance of our
model approaches that of GraphScan. As expected,
results also verify that the model extension Mc

1 pro-
vides the same results as the GraphScan method. This
is because the score of each node in the objective func-
tion ofMc

1 converges to the score function in Equation
(24), and then both models become equal. For the case
of partial propagation and very large networks,
although the model extension Mc

1 works the same as
GraphScan, it is slower because of the existence of the
optimization model.

6.6. Scalability Analysis
To evaluate the scalability of the model with respect
to the size (N), the degree (average number of edges
per node), and the topology of the network, we con-
ducted a set of experiments on randomly generated
graphs of six types of well-known and widely used
directed acyclic graph topologies, where each has
reportedly many real-word applications and are suit-
able for the study of complex networks (Durrett 2006).
These six types of networks are regular DAG (a DAG
graph where every node has about the same degree),
power law DAG (a scale-free graph where the degree
distribution is heavy tailed, that is, many low degree
nodes and a few high degree nodes), Barabási-Albert
DAG (a graph with power-law degree distribution
with a preferential attachment mechanism, which
means the more connected a node is, the more likely it

Figure 12. (Color online) A View of True vs. Predicted Anomalous Nodes for the Case of Partial Propagation and for Two
Scenarios of Anomalous Networks

(a) True Scenario 1 (b) Predicted Scenario 1 (M1) (c) Predicted Scenario 1 (GraphScan)

(d) True Scenario 2 (e) Predicted Scenario 2 (M1) (f) Predicted Scenario 2 (GraphScan)
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is to receive new links), Erdoes-Renyi DAG (a random
graph that connects two nodes based on the edge
probability or the edges selected uniformly at ran-
domly), Watts Strogatz DAG (a graph that interpo-
lates between the regular and Erdoes-Renyi graph),
and tree/hierarchical DAG (a graph that follows a
tree structure with no nodes having more than one
parent). We used the RandDAG package in R to gen-
erate random DAG graphs. We also considered three
different cases for the expected number of neighbors
for each node to verify the scalability of the model
with regard to the average degree of the network for
each type of graph structure. To study the effect of
network size, the experiments were conducted for five
scenarios (around 5,000 nodes, 10,000 nodes, 25,000
nodes, 50,000 nodes, and 100,000 nodes). For each
combination of graph topology, number of nodes, and
degree, we simulated random anomalies in 100
graphs (50 for training and 50 for testing) and applied
our model to detect anomalies in the testing set. For
each experiment, the average CPU time (time it takes
to find anomalies) per graph based on Model M1 was
reported in Figure 13. We also considered three dif-
ferent cases for the number of anomalous subgraphs
to see the effect of the number of anomalous nodes
on the time it takes to detect anomalies. Also, we re-
peated the experiments for M2 and for all of the
above conditions. Because no significant changes
were observed for the last two sets of experiments,
corresponding experiments are not reported here. All
experiments were conducted on an iMac workstation
with 3.4 GHz Intel Core i5 and 32 GB of RAM. As
expected, the run time increases as the connectedness
and complexity of the network increase, but the
model is still scalable for n ≤ 100,000 except for cases
with higher average neighbors (i.e., three and four) in
the power law and the Barabási-Albert graphs whose
degree distributions follow a power law. In fact, we
found that in the randomly generated graphs, there
are nodes at the top layers of the graph with a very
large degree. Such a large number of neighbors for
nodes is not realistic for many systems, such as power
and water distribution networks where nodes often
have a small set of neighbors and nodes with higher
degrees are located at the lower layers of the network.
For instance, almost all eight power grid data sets
reported in a publicly available network repository
(Rossi and Ahmed 2015) have less than 5,000 nodes, a
maximum degree less than 20, and an average degree
around two. Similarly, out of the 22 real water distri-
bution networks having different sizes reported in
Giustolisi et al. (2017), all have a size less than 30,000
nodes, a maximum degree of less than 11, and an
average degree around two. The reason that our
model performed slower for large power law and
Barabási-Albert graphs was mainly because of theT
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high number of propagation paths and complexity
caused by the power law degree distribution, which
make the proposed preoptimization steps (discussed
in Section 5.4) less effective. Although anomalies can
be detected faster in simple structures (such as trees)
and smaller networks, the proposed framework is still
scalable on nontree networks.

Our framework could not be tested on networks
larger than 100,000 nodes (125,000 nodes and above)
mainly because of the memory requirement of form-
ing the problem, that is, generating the adjacency and
propagation matrices and setting up the corresponding
optimization models. The current scalability of the
model for networks smaller than size 100,000 (Figure 13)
makes it highly applicable for anomaly detection in a
wide range of contexts in real-world networks as
reported in the literature, such as power distribution net-
works (where each substation is considered a graph),
water distribution networks, and communication
networks where reportedly the numbers of nodes are
within the feasibility range of our framework. Also,
compared with similar approaches, such as well-
known GraphScan statistics algorithms reported in
Speakman et al. (2015), the proposed framework is
highly competitive as it finds anomalies in an optimal
manner and has a reasonable running time for various

graph complexities and sizes. To use our frameworks for
complex and large networks (e.g., networks with more
than 100,000 nodes and large average degrees), users
should utilize high-performance computing, storage,
andmemory solutions.

7. Conclusion
In this paper, we develop a generic anomaly detection
framework for heterogeneous sensor-intensive attrib-
uted networks with potentially different types of
anomalies that can occur simultaneously across the
networks. The framework is generic and can be used
for many types of graph structures with no loops.
This framework can integrate binary sensor data
across the network and transform these data into opti-
mal insights regarding the health status of the entire
network. A neural network-based approach is em-
ployed to integrate network sensors and topology and
transform them into a low-dimensional embedding
space. Then, a multilayer perceptron structure is used
to predict the status of each node given the sensor
data collected at each node and the nodes within each
node’s propagation set. Finally, two optimization
models and important remarks are introduced to find
the most likely locations of anomalies and the impacted

Figure 13. (Color online) Performance of the Anomaly DetectionModel on RandomGraphs of Varying Size, Average Degree,
and Topology

(a) Regular Graph (b) Power Law Graph (c) Barabási−Albert Graph

(d) Erdoes−Renyi Graph (e) Watts Strogatz Graph (f) Tree Graph
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nodes. The proposed framework can change how
sensor data and topological dependencies between net-
work data can be used for anomaly detection in large-
scale networks. We will study the temporal effects of
anomalies, sensor data, and network topology in future
work.
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