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Abstract
Let 𝐺 be a subgroup of the symmetric group 𝑆𝑛. If the
proportion of fixed-point-free elements in 𝐺 (or a coset)
equals the proportion of fixed-point-free elements in 𝑆𝑛,
then𝐺 = 𝑆𝑛. The analogue for𝐴𝑛 holds if 𝑛 ⩾ 7. We give
an application to monodromy groups.
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1 INTRODUCTION

1.1 Derangements in permutation groups

Motivated by an application to monodromy groups, we prove the following.

Theorem 1.1. Let 𝐺 be a subgroup of the symmetric group 𝑆𝑛 for some 𝑛 ⩾ 1. Let 𝐶 be a coset of 𝐺
in 𝑆𝑛. If

|{𝜎 ∈ 𝐶 ∶ 𝜎 has no f ixed points}|
|𝐶| =

|{𝜎 ∈ 𝑆𝑛 ∶ 𝜎 has no f ixed points}|
|𝑆𝑛| , (1)

then 𝐺 = 𝐶 = 𝑆𝑛.
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Elements of 𝑆𝑛 with no fixed points are called derangements. Let𝐷𝑛 be the number of derange-
ments in 𝑆𝑛. The right side of (1) is

𝐷𝑛

𝑛!
=

𝑛∑
𝑖=0

(−1)𝑖

𝑖!
;

see [10, Example 2.2.1], for instance. When the denominator of 𝐷𝑛∕𝑛! in lowest terms is 𝑛!, the
conclusion of Theorem 1.1 follows immediately, but controlling gcd(𝐷𝑛, 𝑛!) in general is nontrivial.
Our proof requires an irrationality measure for 𝑒, divisibility properties of𝐷𝑛, and a bound on the
orders of primitive permutation groups.

Remark 1.2. The proof shows also that for 𝑛 ⩾ 5, if 𝐶 is not necessarily a coset but just any subset
of 𝑆𝑛 having the same size as 𝐺, then (1) implies that 𝐺 is 𝐴𝑛 or 𝑆𝑛. In fact, we prove that if a
subgroup 𝐺 of 𝑆𝑛 has order divisible by the denominator of 𝐷𝑛∕𝑛!, then 𝐺 is 𝐴𝑛 or 𝑆𝑛.

Remark 1.3. We also prove an analogue of Theorem 1.1 in which both appearances of 𝑆𝑛 on the
right side of (1) are replaced by the alternating group𝐴𝑛 for some 𝑛 ⩾ 7; see Theorem 5.1. But there
are counterexamples for smaller alternating groups. For example, the order 10 dihedral group in
𝐴5 has the same proportion of derangements as 𝐴5, namely 4∕10 = 24∕60.

1.2 Application to monodromy

Let 𝔽𝑞 be the finite field of 𝑞 elements. Let 𝑓(𝑇) ∈ 𝔽𝑞[𝑇] be a polynomial of degree 𝑛. Birch and
Swinnerton–Dyer [2] define what it means for 𝑓 to be ‘general’ and estimate the proportion of
field elements in the image of a general 𝑓:

|𝑓(𝔽𝑞)|
𝑞

= 1 −

𝑛∑
𝑖=0

(−1)𝑖

𝑖!
+ 𝑂𝑛(𝑞

−1∕2).

More generally, let 𝑓∶ 𝑋 → 𝑌 be a degree 𝑛 generically étale morphism of schemes of finite
type over 𝔽𝑞, with 𝑌 geometrically integral. The geometric and arithmetic monodromy groups 𝐺
and 𝐴 are subgroups of 𝑆𝑛 fitting in an exact sequence

1 ⟶ 𝐺 ⟶ 𝐴 ⟶ Gal(𝔽𝑞𝑟∕𝔽𝑞) ⟶ 1

for some 𝑟 ⩾ 1; see [4, Section 4] for an exposition. Let 𝐶 be the coset of 𝐺 in 𝐴 mapping to the
Frobenius generator of Gal(𝔽𝑞𝑟∕𝔽𝑞). Let𝑀 be a bound on the geometric complexity of 𝑋 and 𝑌.
Assume that 𝑌(𝔽𝑞) ≠ ∅, which is automatic if 𝑞 is large relative to𝑀. Then the Lang–Weil bound
implies

|𝑓(𝑋(𝔽𝑞))|
|𝑌(𝔽𝑞)| =

|{𝜎 ∈ 𝐶 ∶ 𝜎 has at least one fixed point}|
|𝐶| + 𝑂𝑛,𝑀(𝑞−1∕2); (2)

see [4, Theorem 3], for example. In particular, if 𝐺 = 𝑆𝑛, then

|𝑓(𝑋(𝔽𝑞))|
|𝑌(𝔽𝑞)| = 1 −

𝑛∑
𝑖=0

(−1)𝑖

𝑖!
+ 𝑂𝑛,𝑀(𝑞−1∕2). (3)
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We prove a converse, that an estimate as in (3) on the proportion of points in the image implies
that the geometric monodromy group of 𝑓 is the full symmetric group 𝑆𝑛:

Corollary 1.4. Given 𝑛 and𝑀, there exists an effectively computable constant 𝑐 = 𝑐(𝑛,𝑀) such that
for any 𝑓∶ 𝑋 → 𝑌 as above, with deg 𝑓 = 𝑛 and the complexities of 𝑋 and 𝑌 bounded by𝑀, if

|𝑓(𝑋(𝔽𝑞))|
|𝑌(𝔽𝑞)| = 1 −

𝑛∑
𝑖=0

(−1)𝑖

𝑖!
+ 𝜖, where |𝜖| < 1

𝑛!
− 𝑐𝑞−1∕2,

then 𝐺 = 𝑆𝑛.

Proof. Combine (2) and Theorem 1.1. □

Remark 1.5. We originally proved Corollary 1.4 in order to prove a version of [8, Theorem 1.9],
about specialization of monodromy groups, but later we found a more natural argument.

1.3 Structure of the paper

The proof of Theorem 1.1 occupies the rest of the paper, which is divided in sections according to
the properties of 𝐺. Throughout, we assume that 𝐺, 𝐶, and 𝑛 are such that (1) holds. The cases
with 𝑛 ⩽ 4 can be checked directly, so assume that 𝑛 ⩾ 5 and 𝐺 ≠ 𝑆𝑛.

2 PRIMITIVE PERMUTATION GROUPS

The proportion of derangements in 𝐴𝑛 is given by the inclusion–exclusion formula; it differs
from 𝐷𝑛∕𝑛! by the nonzero quantity ±(𝑛 − 1)∕𝑛!. The proportion for 𝑆𝑛 is the average of the
proportions for 𝐴𝑛 and 𝑆𝑛 − 𝐴𝑛, so the proportion for 𝑆𝑛 − 𝐴𝑛 also differs from 𝐷𝑛∕𝑛!. Thus
𝐺 ≠ 𝐴𝑛.
Suppose that 𝐺 is primitive, 𝑛 ⩾ 5, and 𝐺 ≠ 𝐴𝑛, 𝑆𝑛. The main theorem in [9]1 gives |𝐺| < 4𝑛.

On the other hand, 𝐷𝑛∕𝑛! is close to 1∕𝑒 and hence cannot equal a rational number with small
denominator; this will show that |𝐺| is at least about√𝑛!. These will give a contradiction for large
𝑛. We now make this precise.
Let 𝑎 = |{𝜎 ∈ 𝐶 ∶ 𝜎 has no fixed points}| and 𝑏 = |𝐶| = |𝐺|, so 𝑎 ⩽ 𝑏 = |𝐺| < 4𝑛. Then

||||
𝑎

𝑏
−

1

𝑒

|||| =
||||
𝐷𝑛

𝑛!
−

1

𝑒

|||| <
1

(𝑛 + 1)!
.

No rational number with numerator ⩽ 4 is within 1∕6! of 1∕𝑒, so 𝑎 ⩾ 5. By the main result of [7]
(see also [1]),

||||𝑒 −
𝑏

𝑎

|||| >
log log 𝑎

3𝑎2 log 𝑎
.

1 This is independent of the classification of finite simple groups. Using the classification, [6] gives better bounds.
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Combining the two displayed inequalities yields

1

(𝑛 + 1)!
>
||||
𝑎

𝑏
−

1

𝑒

|||| =
𝑎

𝑏𝑒

||||𝑒 −
𝑏

𝑎

|||| >
1

𝑏𝑒
⋅
log log 𝑎

3𝑎 log 𝑎
>

log log 4𝑛

3𝑒(4𝑛)2 log 4𝑛
; (4)

the last step uses that 𝑎, 𝑏 < 4𝑛 and that log log 𝑥

𝑥 log 𝑥
is decreasing for 𝑥 ⩾ 5. Inequality (4) implies

𝑛 ⩽ 41.
Let 𝑑𝑛 be the denominator of the rational number

𝐷𝑛

𝑛!
= 𝑎

𝑏
. Then 𝑑𝑛 ∣ 𝑏, so 𝑑𝑛 ⩽ 𝑏 < 4𝑛. For

11 < 𝑛 ⩽ 41, the inequality 𝑑𝑛 < 4𝑛 fails. For 𝑛 ⩽ 11, a Magma computation [5] shows that there
are no degree 𝑛 primitive subgroups 𝐺 ≠ 𝐴𝑛, 𝑆𝑛 for which 𝑑𝑛 ∣ 𝑏.

3 IMPRIMITIVE BUT TRANSITIVE PERMUTATION GROUPS

Suppose that𝐺 is imprimitive but transitive. Then𝐺 preserves a partition of {1, … , 𝑛} into 𝑙 subsets
of equal size 𝑘, for some 𝑘, 𝑙 ⩾ 2 with 𝑘𝑙 = 𝑛. The subgroup of 𝑆𝑛 preserving such a partition has
order (𝑘!)𝑙𝑙! (it is a wreath product 𝑆𝑘 ≀ 𝑆𝑙). Thus |𝐺| divides (𝑘!)𝑙𝑙!.
For a prime 𝑝, let 𝜈𝑝 denote the 𝑝-adic valuation. Since

𝑎

|𝐺| =
𝐷𝑛

𝑛!
, every prime 𝑝 ∤ 𝐷𝑛 satisfies

𝜈𝑝(𝑛!) ⩽ 𝜈𝑝(|𝐺|) ⩽ 𝜈𝑝((𝑘!)
𝑙𝑙!) ⩽ 𝜈𝑝(𝑛!). Thus for every prime 𝑝 ∤ 𝐷𝑛, the inequality 𝜈𝑝((𝑘!)𝑙𝑙!) ⩽

𝜈𝑝(𝑛!) is an equality. The third of the three following lemmas will prove that this is impossible for
𝑛 ⩾ 5.

Lemma 3.1. Let 𝑘, 𝑙 ⩾ 2 and let 𝑝 be a prime. The inequality

𝜈𝑝((𝑘!)
𝑙𝑙!) ⩽ 𝜈𝑝((𝑘𝑙)!) (5)

is an equality if and only if at least one of the following holds:

∙ 𝑘 is a power of 𝑝;
∙ there are no carry operations in the 𝑙-term addition 𝑘 +⋯ + 𝑘 when 𝑘 is written in base 𝑝 (in
particular, 𝑙 < 𝑝).

Proof. Let 𝑠𝑝(𝑘) denote the sum of the 𝑝-adic digits of a positive integer 𝑘; then 𝜈𝑝(𝑘!) =
𝑘−𝑠𝑝(𝑘)

𝑝−1
.

Thus equality in (5) is equivalent to equality in

𝑙 + 𝑠𝑝(𝑘𝑙) ⩽ 𝑙𝑠𝑝(𝑘) + 𝑠𝑝(𝑙). (6)

We always have

𝑙 + 𝑠𝑝(𝑘𝑙) ⩽ 𝑙 + 𝑠𝑝(𝑘)𝑠𝑝(𝑙) ⩽ 𝑙𝑠𝑝(𝑘) + 𝑠𝑝(𝑙); (7)

the first follows from 𝑠𝑝(𝑘𝑙) ⩽ 𝑠𝑝(𝑘)𝑠𝑝(𝑙), and the second is simply

(𝑠𝑝(𝑘) − 1)(𝑙 − 𝑠𝑝(𝑙)) ⩾ 0.

Thus equality in (6) is equivalent to equality in both inequalities of (7).
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The second inequality of (7) is an equality if and only if either 𝑘 is a power of 𝑝 or 𝑙 < 𝑝; in
each case, we must check when equality holds in the first inequality (7), that is, when 𝑠𝑝(𝑘𝑙) =

𝑠𝑝(𝑘)𝑠𝑝(𝑙). If 𝑘 is a power of 𝑝, then it holds. If 𝑙 < 𝑝, then it holds if and only if 𝑠𝑝(𝑘𝑙) = 𝑙𝑠𝑝(𝑘),
which holds if and only if there are no carry operations in the 𝑙-term addition 𝑘 +⋯ + 𝑘 when 𝑘

is written in base 𝑝. □

The following lemma will help us produce primes 𝑝 not dividing 𝐷𝑛.

Lemma 3.2. For 0 ⩽ 𝑚 ⩽ 𝑛, we have 𝐷𝑛 ≡ (−1)𝑛−𝑚𝐷𝑚 (mod 𝑛 − 𝑚). In particular,

𝐷𝑛 ≡ ±1 (mod 𝑛) (8)

𝐷𝑛 ≡ ±1 (mod 𝑛 − 2) (9)

𝐷𝑛 ≡ ±2 (mod 𝑛 − 3). (10)

Proof. Reduce each term in 𝐷𝑛 modulo 𝑛 − 𝑚; most of them are 0. □

Lemma 3.3. Let 𝑘, 𝑙 ⩾ 2. Set 𝑛 = 𝑘𝑙 and assume 𝑛 > 4. Then there exists a prime 𝑝 ∤ 𝐷𝑛 such that

𝜈𝑝((𝑘!)
𝑙𝑙!) < 𝜈𝑝(𝑛!).

Proof. Case 1. 𝑙 ⩾ 3 and 𝑛 − 2 is not a power of 2.
Let 𝑝 ⩾ 3 be a prime with 𝑝 ∣ 𝑛 − 2. By (9), 𝑝 ∤ 𝐷𝑛, so 𝜈𝑝((𝑘!)

𝑙𝑙!) = 𝜈𝑝(𝑛!). Apply Lemma 3.1.
If 𝑘 is a power of 𝑝, then 𝑝 divides 𝑘, which divides 𝑛, so 𝑝 ∣ 𝑛 − (𝑛 − 2) = 2, contradicting 𝑝 ⩾

3. Otherwise, there are no carry operations in the 𝑙-term addition 𝑘 +⋯ + 𝑘 in base 𝑝. This is
impossible because the last digit of 𝑛 is 2 (since 𝑝 ∣ 𝑛 − 2 and 𝑝 ⩾ 3) and 𝑙 ⩾ 3.

Case 2. 𝑙 = 2.
Then 2 ∣ 𝑛. By (8), 2 ∤ 𝐷𝑛. By Lemma 3.1, 𝑘 is a power of 2 (since 𝑙 < 2 is violated). Thus 𝑛 = 2𝑘

is a power of 2.
Since 𝑛 ⩾ 5, there exists a prime 𝑝 ∣ 𝑛 − 3. Since 𝑛 is a power of 2, this implies 𝑝 ⩾ 5. By (10),

𝑝 ∤ 𝐷𝑛. Apply Lemma 3.1. Note that 𝑘 is not a power of 𝑝, since 𝑘 is a power of 2 and 𝑝 ≠ 2.
Therefore, there are no carry operations in 𝑘 + 𝑘 = 𝑛, so the last digit of 𝑛 is even. But 𝑝 ∣ 𝑛 − 3

and 𝑝 ⩾ 5, so the last digit of 𝑛 is 3.

Case 3. 𝑙 = 3 and 𝑛 − 2 is a power of 2.
Then 3 ∣ 𝑛. By (8), 3 ∤ 𝐷𝑛. By Lemma 3.1, 𝑘 must be a power of 3 (since 𝑙 < 3 is violated). Then

𝑛 = 3𝑘 is a power of 3, contradicting the fact that 𝑛 is even.

Case 4. 𝑙 > 3 and 𝑛 − 2 is a power of 2.
In particular, 𝑛 = 𝑘𝑙 > 6. Then 𝑛 − 3 is not a power of 3, because otherwise we would have a

solution to 3𝑢 = 2𝑣 − 1with 𝑢 > 1, whereas the only solution in positive integers is (𝑢, 𝑣) = (1, 2)

(proof: 3 ∣ 2𝑣 − 1, so 𝑣 is even, so 2𝑣∕2 − 1 and 2𝑣∕2 + 1 are powers of 3 that differ by 2, so they are
1 and 3).
Let 𝑝 ≠ 3 be a prime divisor of 𝑛 − 3. Then 𝑝 ⩾ 5. Apply (10) and Lemma 3.1. If 𝑘 is a power of

𝑝, then 𝑝 ∣ 𝑛, so 𝑝 ∣ 𝑛 − (𝑛 − 3) = 3, contradicting 𝑝 ≠ 3. Therefore, there are no carry operations
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in the 𝑙-term addition 𝑘 +⋯ + 𝑘. This is impossible, since the last digit of 𝑘𝑙 is 3 (since 𝑝 ∣ 𝑛 − 3

and 𝑝 ⩾ 5) and 𝑙 > 3. □

4 INTRANSITIVE PERMUTATION GROUPS

Suppose that 𝐺 is intransitive. Then 𝐺 embeds in 𝑆𝑢 × 𝑆𝑣 ⊂ 𝑆𝑛 for some 𝑢, 𝑣 ⩾ 1 with 𝑢 + 𝑣 = 𝑛.
Consider a prime 𝑝 ∣ 𝑛. By (8), 𝑝 ∤ 𝐷𝑛. Then, analogously to the second paragraph of Section 3,

𝜈𝑝(𝑛!) ⩽ 𝜈𝑝(|𝐺|) ⩽ 𝜈𝑝(𝑢! 𝑣!) ⩽ 𝜈𝑝(𝑛!), so 𝜈𝑝(𝑢!) + 𝜈𝑝(𝑣!) = 𝜈𝑝(𝑛!); equivalently, 𝑠𝑝(𝑢) + 𝑠𝑝(𝑣) =

𝑠𝑝(𝑛). So there are no carry operations in 𝑢 + 𝑣. Let 𝑒 = 𝜈𝑝(𝑛), so the last 𝑒 base 𝑝 digits of 𝑛
are zero; then the same holds for 𝑢 and 𝑣. In other words, 𝑝𝑒 ∣ 𝑢, 𝑣 as well. Since this holds for
each 𝑝 ∣ 𝑛, we conclude that 𝑛 ∣ 𝑢, 𝑣. This contradicts 0 < 𝑢, 𝑣 < 𝑛.
This completes the proof of Theorem 1.1.

5 ALTERNATING GROUP

Theorem 5.1. Let 𝐺 be a subgroup of the symmetric group 𝑆𝑛 for some 𝑛 ⩾ 7. Let 𝐶 be a coset of 𝐺
in 𝑆𝑛 having the same proportion of fixed-point-free elements as 𝐴𝑛. Then 𝐺 = 𝐴𝑛.

Remark 5.2. For 𝑛 ⩽ 6, the subgroups of 𝑆𝑛 other than 𝐴𝑛 for which some coset has the same
proportion as 𝐴𝑛, up to conjugacy, are:

∙ the order 4 subgroup of 𝑆4 generated by (1423) and (12)(34);
∙ the order 4 subgroup of 𝑆4 generated by (34) and (12)(34);
∙ the order 8 subgroup of 𝑆4;
∙ the subgroups of 𝑆5 of order 5, 10, or 20;
∙ the order 36 subgroup of 𝑆6 generated by (1623)(45), (12)(36), (124)(365), and (142)(365);
∙ the order 36 subgroup of 𝑆6 generated by (13)(25)(46), (14)(36), (154)(236), and (145)(236).

The proof of Theorem 5.1 follows the proof of Theorem 1.1; we highlight only the differences.
The proportion of fixed-point-free elements in 𝐴𝑛 is 𝐸𝑛∕𝑛!, where 𝐸𝑛 ≔ 𝐷𝑛 + (−1)𝑛−1(𝑛 − 1).

5.1 Primitive permutation groups

Suppose 𝐺 ≠ 𝐴𝑛. The first paragraph of Section 2 shows that 𝐺 ≠ 𝑆𝑛. For 7 ⩽ 𝑛 ⩽ 13, we use
Magma to check Theorem 5.1 for each primitive subgroup of 𝑆𝑛. So assume 𝑛 ⩾ 14. Define 𝑎 and
𝑏 as in Section 2. We have

||||
𝑎

𝑏
−

1

𝑒

|||| =
||||
𝐸𝑛

𝑛!
−

1

𝑒

|||| ⩽
||||
𝐸𝑛 − 𝐷𝑛

𝑛!

|||| +
||||
𝐷𝑛

𝑛!
−

1

𝑒

|||| <
𝑛 − 1

𝑛!
+

1

(𝑛 + 1)!
=

𝑛2

(𝑛 + 1)!
.

No 𝑎∕𝑏 with 𝑎 < 5 is within 152∕16! of 1∕𝑒, so 𝑎 ⩾ 5. Inequality (4) with 1∕(𝑛 + 1)! replaced by
𝑛2∕(𝑛 + 1)! implies 𝑛 ⩽ 49.
Let 𝑒𝑛 be the denominator of𝐸𝑛∕𝑛!, so 𝑒𝑛 divides |𝐺|, which is less than 4𝑛. But for 13 < 𝑛 ⩽ 49,

the inequality 𝑒𝑛 < 4𝑛 fails.
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5.2 Imprimitive permutation groups that preserve a partition into
blocks of equal size

To rule out imprimitive permutation groups that preserve a partition into 𝑙 blocks of size 𝑘, we
argue as in Section 3, but with Lemma 3.3 replaced by the following.

Lemma 5.3. Let 𝑘, 𝑙 ⩾ 2. Set 𝑛 = 𝑘𝑙 and assume 𝑛 > 6. Then there exists a prime 𝑝 ∤ 𝐸𝑛 such that

𝜈𝑝((𝑘!)
𝑙𝑙!) < 𝜈𝑝(𝑛!).

Proof of Lemma 5.3. For each integer 𝑛 ∈ (6, 30], we check directly that there exists a prime 𝑝 ∈

(𝑛∕2, 𝑛] such that 𝑝 ∤ 𝐸𝑛. Assume from now on that 𝑛 > 30.
Suppose the statement is false. Then whenever a prime 𝑝 satisfies 𝑝 ∤ 𝐸𝑛, (5) is an equality and

Lemma 3.1 applies.
By using 𝐷𝑛 ≡ (−1)𝑛−𝑠𝐷𝑠 (mod 𝑛 − 𝑠) and 𝐸𝑛 = 𝐷𝑛 + (−1)𝑛−1(𝑛 − 1), we obtain

𝐸𝑛 ≡ 2(−1)𝑛 (mod 𝑛) (11)

𝐸𝑛 ≡ 4(−1)𝑛−1 (mod 𝑛 − 3) (12)

𝐸𝑛 ≡ 6(−1)𝑛 (mod 𝑛 − 4) (13)

𝐸𝑛 ≡ (−1)𝑛−124 × 3 (mod 𝑛 − 5) (14)

Case 1. 𝑛 − 4 is a power of 2.
Then 𝑛 − 3 is not a power of 3 because otherwise, we have a solution to 3𝑢 − 1 = 2𝑣 with 𝑢 ⩾ 3;

working modulo 4 shows that 𝑢 is even, and factoring the left side leads to a contradiction. Let
𝑝 ≠ 3 be a prime with 𝑝 ∣ 𝑛 − 3. Since 𝑛 − 3 is odd, 𝑝 ⩾ 5. By (12), 𝑝 ∤ 𝐸𝑛, so we have one of the
conclusions of Lemma 3.1.
If 𝑘 is a power of 𝑝, then 𝑝 ∣ 𝑘 ∣ 𝑛, which, combined with 𝑝 ∣ 𝑛 − 3 gives 𝑝 = 3, a contradiction.
Suppose that there is no carry in 𝑘 +⋯ + 𝑘 (𝑙 terms). This sum has last digit 3 in base 𝑝, so

𝑙 = 3, so 3 ∣ 𝑛, and hence 3 ∤ 𝐸𝑛 by (11). Apply Lemma 3.1 for the prime 3. Since 𝑙 < 3 is violated,
we deduce that 𝑘 is a power of 3. Then 𝑛 = 𝑘𝑙 is also a power of 3, but this contradicts the fact that
𝑛 is even.

Case 2. 𝑛 − 3 is a power of 2 and 𝑙 ≠ 2, 4.
Then 𝑛 − 4 is odd and is not a power of 3. Let 𝑝 ≠ 3 be a prime with 𝑝 ∣ 𝑛 − 4. Then 𝑝 ⩾ 5, so

𝑝 ∤ 𝐸𝑛 by (13). If 𝑘 is a power of 𝑝, then 𝑝 ∣ 𝑘 ∣ 𝑛, which contradicts 𝑝 ∣ 𝑛 − 4 since 𝑝 ⩾ 5. If there
are no carry operations in the 𝑙-term addition 𝑘 +⋯ + 𝑘 (which has last digit 4 in base 𝑝), then
𝑙 = 2 or 𝑙 = 4, contrary to assumption.

Case 3. 𝑙 = 3.
Then 3 ∣ 𝑛, hence 3 ∤ 𝐸𝑛 by (11). Apply Lemma 3.1 for the prime 3. Since 3 < 𝑙 is violated, 𝑘 is a

power of 3. Then 𝑛 = 𝑘𝑙 is also a power of 3. Then 𝑛 − 4 is odd and not divisible by 3. Let 𝑞 be a
primewith 𝑞 ∣ 𝑛 − 4. Then 𝑞 ⩾ 5, and hence 𝑞 ∤ 𝐸𝑛 by (13). Since 𝑘 is a power of 3, it is not a power
of 𝑞. So there is no carry in 𝑘 + 𝑘 + 𝑘 in base 𝑞. But this sum has last digit 4 in base 𝑞, which is
a contradiction.
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Case 4. 𝑙 ≠ 2, 4.
By the previous cases, we may assume in addition that 𝑛 − 4 and 𝑛 − 3 are not powers of 2 and

𝑙 ≠ 3.
Let 𝑝 ≠ 2 be a prime with 𝑝 ∣ 𝑛 − 3. Then 𝑝 ∤ 𝐸𝑛 by (12). Since the 𝑙-term addition 𝑘 +⋯ + 𝑘

has last digit 3 and 𝑙 ≠ 3, there is some carry. Therefore 𝑘 is a power of 𝑝. Then 𝑝 ∣ 𝑘 ∣ 𝑛, which,
combined with 𝑝 ∣ 𝑛 − 3, gives 𝑝 = 3. In particular, 3 ∣ 𝑛.
Let 𝑞 ≠ 2 be a prime with 𝑞 ∣ 𝑛 − 4. Since 3 ∣ 𝑛, we have 𝑞 ≠ 3 so 𝑞 ⩾ 5. By (13), 𝑞 ∤ 𝐸𝑛. If 𝑘 is

a power of 𝑞, then 𝑞 ∣ 𝑛, hence 𝑞 ∣ 4 — contradiction. Therefore there is no carry in the 𝑙-term
addition 𝑘 +⋯ + 𝑘 in base 𝑞. This sum has last digit 4 and 𝑙 ≠ 2, 4, so this case is impossible.

Case 5. 𝑙 = 2 or 𝑙 = 4.
Then 𝑛 is even, so 𝑛 − 3 and 𝑛 − 5 are odd.
Subcase 5.1: 𝑛 − 3 is not a power of 3.
Let 𝑝 ≠ 3 be a prime such that 𝑝 ∣ 𝑛 − 3. Then 𝑝 ⩾ 5 and 𝑝 ∤ 𝐸𝑛 by (12). If 𝑘 is a power of 𝑝,

then𝑝 ∣ 𝑘 ∣ 𝑛, giving𝑝 = 3, which is a contradiction.However, there is carry in the 𝑙-term addition
𝑘 +⋯ + 𝑘 because the sum has last digit 3, and 𝑙 is 2 or 4.
Subcase 5.2: 𝑛 − 3 is a power of 3 but 𝑛 − 5 is not a power of 5.
Let 𝑝 ≠ 5 be a prime with 𝑝 ∣ 𝑛 − 5. Then 𝑝 ⩾ 7 and we apply the argument of subcase 5.1: an

𝑙-term sum 𝑘 +⋯ + 𝑘 cannot have last digit 5 in base 𝑝.
Subcase 5.3: 𝑛 − 3 = 3𝑎 and 𝑛 − 5 = 5𝑏 for some 𝑎, 𝑏 ⩾ 1.
Then 3𝑎 − 5𝑏 = 2, so 𝑎 = 3 and 𝑏 = 2 by [3, Theorem 4.06]. This contradicts 𝑛 > 30. □

5.3 Intransitive subgroups

As in Section 4,𝐺 embeds in 𝑆𝑢 × 𝑆𝑣 ⊂ 𝑆𝑛 for some 𝑢, 𝑣 ⩾ 1with 𝑢 + 𝑣 = 𝑛. Write 𝑛 = 2𝑠𝑚, where
𝑠 ⩾ 0 and 2 ∤ 𝑚. The argument in Section 4 for odd 𝑝 with 𝐸𝑛 in place of 𝐷𝑛 and (11) in place of
(8) implies𝑚 ∣ 𝑢, 𝑣. Thus 𝑠 ⩾ 1.
If 𝑠 = 1, then 𝑛 = 2𝑚, so 𝑢 = 𝑣. This case is covered in Section 5.2.
Suppose that 𝑠 ⩾ 2. Then 4 ∣ 𝑛, so (11) implies that 𝐸𝑛∕2 is odd. Using

𝑎

|𝐺| =
𝐸𝑛∕2

𝑛!∕2
, we obtain

𝜈2(𝑛!∕2) ⩽ 𝜈2(|𝐺|) ⩽ 𝜈2(𝑢!𝑣!) ⩽ 𝜈2(𝑛!). If the last inequality is an equality, then the same argu-
ment used in Section 4 shows that 𝜈2(𝑢) = 𝜈2(𝑣) = 𝜈2(𝑛); combining this with 𝑚 ∣ 𝑢, 𝑣 shows
that 𝑛 ∣ 𝑢, 𝑣, a contradiction. Therefore the first two inequalities must be equalities, so 𝜈2(𝑢!𝑣!) =
𝜈2(𝑛!) − 1; equivalently, 𝑠2(𝑢) + 𝑠2(𝑣) = 𝑠2(𝑛) + 1. This means there is exactly one carry opera-
tion in 𝑢 + 𝑣 in base 2. This is possible only when 2𝑠−1 ∣ 𝑢, 𝑣. Also,𝑚 ∣ 𝑢, 𝑣, so 𝑛∕2 ∣ 𝑢, 𝑣, so again
𝑢 = 𝑣, and this case is covered in Section 5.2.
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