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1 | INTRODUCTION
1.1 | Derangements in permutation groups
Motivated by an application to monodromy groups, we prove the following.

Theorem 1.1. Let G be a subgroup of the symmetric group S,, for some n > 1. Let C be a coset of G
inS,.If

l{o € C : o hasnofixed points}|  [{c € S, : o has no fixed points}|

iCl 1S, ! 0

thenG =C =S,
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Elements of S,, with no fixed points are called derangements. Let D,, be the number of derange-
ments in S,,. The right side of (1) is

~—

_y !
i=0
see [10, Example 2.2.1], for instance. When the denominator of D, /n! in lowest terms is n!, the
conclusion of Theorem 1.1 follows immediately, but controlling gcd(D,,, n!) in general is nontrivial.
Our proof requires an irrationality measure for e, divisibility properties of D,,, and a bound on the
orders of primitive permutation groups.

Remark 1.2. The proof shows also that for n > 5, if C is not necessarily a coset but just any subset
of S,, having the same size as G, then (1) implies that G is A,, or S,,. In fact, we prove that if a
subgroup G of S,, has order divisible by the denominator of D,,/n!, then G is A, or S,,.

Remark 1.3. We also prove an analogue of Theorem 1.1 in which both appearances of S, on the
right side of (1) are replaced by the alternating group A,, for some n > 7; see Theorem 5.1. But there
are counterexamples for smaller alternating groups. For example, the order 10 dihedral group in
Aj; has the same proportion of derangements as A5, namely 4/10 = 24/60.

1.2 | Application to monodromy
Let F, be the finite field of g elements. Let f(T) € F,[T] be a polynomial of degree n. Birch and

Swinnerton-Dyer [2] define what it means for f to be ‘general’ and estimate the proportion of
field elements in the image of a general f:

If([F I Z oG,

i=0

More generally, let f : X — Y be a degree n generically étale morphism of schemes of finite
type over I, with Y geometrically integral. The geometric and arithmetic monodromy groups G
and A are subgroups of S,, fitting in an exact sequence

1—G6G— A— Gal(F, /F) —1

for some r > 1; see [4, Section 4] for an exposition. Let C be the coset of G in A mapping to the
Frobenius generator of Gal(F, /F,). Let M be a bound on the geometric complexity of X and Y.
Assume that Y(F,) # @, which is automatic if g is large relative to M. Then the Lang-Weil bound
implies

[ fX(F ) _ |{oc € C : o has at least one fixed point}| 1o, M(q_1/2)§ 2
Y (F,)] iC| :
see [4, Theorem 3], for example. In particular, if G = S, then
| fXEI = (—1) _
I 1oy E 0, @, 3)

Y (F,)] &
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We prove a converse, that an estimate as in (3) on the proportion of points in the image implies
that the geometric monodromy group of f is the full symmetric group S,;:

Corollary 1.4. Given n and M, there exists an effectively computable constant c = c¢(n, M) such that
forany f: X — Y as above, with deg f = n and the complexities of X and Y bounded by M, if

IfXE)I I (<1) .
- =1- —~ +¢, wherele| < = —cq /2
[Y(Fy)l ZO‘ i! n
thenG = S,,.
Proof. Combine (2) and Theorem 1.1. O

Remark 1.5. We originally proved Corollary 1.4 in order to prove a version of [8, Theorem 1.9],
about specialization of monodromy groups, but later we found a more natural argument.

1.3 | Structure of the paper

The proof of Theorem 1.1 occupies the rest of the paper, which is divided in sections according to
the properties of G. Throughout, we assume that G, C, and n are such that (1) holds. The cases
with n < 4 can be checked directly, so assume thatn > 5and G # S,,.

2 | PRIMITIVE PERMUTATION GROUPS

The proportion of derangements in A, is given by the inclusion—exclusion formula; it differs
from D, /n! by the nonzero quantity +(n — 1)/n!. The proportion for S, is the average of the
proportions for A, and S, — A,,, so the proportion for S, — A,, also differs from D, /n!. Thus
G+#A,.

Suppose that G is primitive, n > 5, and G # 4,,, S,,. The main theorem in [9]' gives |G| < 4".
On the other hand, D,,/n! is close to 1/e and hence cannot equal a rational number with small
denominator; this will show that |G| is at least about \/ﬁ . These will give a contradiction for large
n. We now make this precise.

Leta = |{o € C : o has no fixed points}| and b = |C| = |G|,s0 a < b = |G| < 4". Then

D, 1

n! e

a 1

b e

_1
n+1)

No rational number with numerator < 4 is within 1/6! of 1/e, so a > 5. By the main result of [7]
(see also [1]),

logloga

‘ b
e f—
a

3a2loga

IThis is independent of the classification of finite simple groups. Using the classification, [6] gives better bounds.
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Combining the two displayed inequalities yields

.
(n+ 1)

1

a b
b e

e — —
a

log1 loglog 4"
5 L logloga = loglogd” @
be 3aloga = 3e(4m)2log4"

the last step uses that a,b < 4" and that l())cgli)% is decreasing for x > 5. Inequality (4) implies
n < 41.

Let d,, be the denominator of the rational number % = %. Then d, | b, so d,, < b < 4". For
11 < n < 41, the inequality d,, < 4" fails. For n < 11, a Magma computation [5] shows that there
are no degree n primitive subgroups G # A,, S, for which d,, | b.

3 | IMPRIMITIVE BUT TRANSITIVE PERMUTATION GROUPS

Suppose that G is imprimitive but transitive. Then G preserves a partition of {1, ..., n} into [ subsets
of equal size k, for some k, ! > 2 with ki = n. The subgroup of S, preserving such a partition has
order (k!)I! (it is a wreath product S 2 ;). Thus |G| divides (k!)'1!.

For a prime p, let v, denote the p-adic valuation. Since % = %, every prime p t D,, satisfies
vp(n) <v,(IG]) < Vp((k!)’l!) < vp(n). Thus for every prime p + D,,, the inequality Vp((k!)ll!) <
v,(n!) is an equality. The third of the three following lemmas will prove that this is impossible for
n>=>.

Lemma 3.1. Let k,l > 2 and let p be a prime. The inequality
v, ((eD'11) < v, (D)) ©

is an equality if and only if at least one of the following holds:

* kis a power of p;
* there are no carry operations in the I-term addition k + --- + k when k is written in base p (in
particular, L < p).

Proof. Let s,(k) denote the sum of the p-adic digits of a positive integer k; then v, (k!) = k_psf ik).
Thus equality in (5) is equivalent to equality in
L+ s,(kl) < sy (k) + s,(D). (6)
We always have
I+ sp(kl) NE sp(k)sp(l) < lsp(k) + sp(l); @)

the first follows from sp(kl) < sp(k)sp (D), and the second is simply
(5, (k) = DU = 5,(D) > 0.

Thus equality in (6) is equivalent to equality in both inequalities of (7).
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The second inequality of (7) is an equality if and only if either k is a power of p or I < p; in
each case, we must check when equality holds in the first inequality (7), that is, when s,(kl) =
sp(K)sp(D). If k is a power of p, then it holds. If | < p, then it holds if and only if 5,(kl) = Is,(k),
which holds if and only if there are no carry operations in the I-term addition k + --- + k when k
is written in base p. ]

The following lemma will help us produce primes p not dividing D,,.

Lemma 3.2. For 0 < m < n, we have D,, = (—1)"~"D,,, (mod n — m). In particular,

D, =+1 (mod n) ®)
D,=+1 (modn-2) 9
D, =+2 (modn—3). (10)
Proof. Reduce each term in D,, modulo n — m; most of them are 0. O

Lemma 3.3. Letk,l > 2. Set n = kl and assume n > 4. Then there exists a prime p } D,, such that
v, (kDY) < v, (n)).

Proof. Casel.l >3 and n — 2 is not a power of 2.

Let p > 3 be a prime with p | n —2. By (9), p 1 D,,, so vp((k!)ll!) = vp(n!). Apply Lemma 3.1.
If k is a power of p, then p divides k, which divides n, so p | n — (n — 2) = 2, contradicting p >
3. Otherwise, there are no carry operations in the I-term addition k + --- + k in base p. This is
impossible because the last digit of nis 2 (since p | n —2 and p > 3) and [ > 3.

Case2.l=2.

Then 2 | n. By (8),2 { D,,. By Lemma 3.1, k is a power of 2 (since I < 2 is violated). Thus n = 2k
is a power of 2.

Since n > 5, there exists a prime p | n — 3. Since n is a power of 2, this implies p > 5. By (10),
p 1 D,. Apply Lemma 3.1. Note that k is not a power of p, since k is a power of 2 and p # 2.
Therefore, there are no carry operations in k + k = n, so the last digit of n is even. But p | n — 3
and p > 5, so the last digit of n is 3.

Case 3.1/ =3 and n — 2 is a power of 2.
Then 3 | n. By (8), 3 + D,,. By Lemma 3.1, k must be a power of 3 (since | < 3 is violated). Then
n = 3k is a power of 3, contradicting the fact that » is even.

Case 4. > 3 and n — 2 is a power of 2.

In particular, n = kl > 6. Then n — 3 is not a power of 3, because otherwise we would have a
solution to 3* = 2¥ — 1 with u > 1, whereas the only solution in positive integers is (1, v) = (1, 2)
(proof: 3 | 2¥ — 1, so v is even, so 2°/2 — 1 and 2/2 + 1 are powers of 3 that differ by 2, so they are
1and 3).

Let p # 3 be a prime divisor of n — 3. Then p > 5. Apply (10) and Lemma 3.1. If k is a power of
p.then p | n,so p | n — (n — 3) = 3, contradicting p # 3. Therefore, there are no carry operations
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in the I-term addition k + --- + k. This is impossible, since the last digit of kl is 3 (since p | n — 3
and p > 5)and [ > 3. O

4 | INTRANSITIVE PERMUTATION GROUPS

Suppose that G is intransitive. Then G embedsin S, X S, C S, for some u,v > 1 withu + v =n.
Consider a prime p | n. By (8), p + D,,. Then, analogously to the second paragraph of Section 3,
vp(n!) <vp(IG]) < vp(ulv!) < v, (nh), so vy(u!) +v,(v!) = v,(n!); equivalently, s,(u) +s,(v) =
sp(n). So there are no carry operations in u + v. Let e = vp(n), so the last e base p digits of n
are zero; then the same holds for u and v. In other words, p® | u,v as well. Since this holds for
each p | n, we conclude that n | u, v. This contradicts 0 < u,v < n.
This completes the proof of Theorem 1.1.

5 | ALTERNATING GROUP

Theorem 5.1. Let G be a subgroup of the symmetric group S,, for some n > 7. Let C be a coset of G
in S,, having the same proportion of fixed-point-free elements as A,,. Then G = A,,.

Remark 5.2. For n < 6, the subgroups of S, other than A, for which some coset has the same
proportion as A,,, up to conjugacy, are:

* the order 4 subgroup of S, generated by (1423) and (12)(34);

* the order 4 subgroup of S, generated by (34) and (12)(34);

* the order 8 subgroup of S;

* the subgroups of S of order 5, 10, or 20;

* the order 36 subgroup of S, generated by (1623)(45), (12)(36), (124)(365), and (142)(365);

* the order 36 subgroup of S, generated by (13)(25)(46), (14)(36), (154)(236), and (145)(236).

The proof of Theorem 5.1 follows the proof of Theorem 1.1; we highlight only the differences.
The proportion of fixed-point-free elements in A,, is E,,/n!, where E,, := D,, + (—=1)""!(n — 1).

5.1 | Primitive permutation groups

Suppose G # A,,. The first paragraph of Section 2 shows that G # S,. For 7 < n < 13, we use
Magma to check Theorem 5.1 for each primitive subgroup of S,,. So assume n > 14. Define a and
b as in Section 2. We have

D, 1 2

n! e

n—1 1 n

En_Dn
n! (n+1)! (m+1

<
n!

No a/b with a < 5 is within 152 /16! of 1/e, so a > 5. Inequality (4) with 1/(n + 1)! replaced by
n?/(n + 1)! implies n < 49.

Let e, be the denominator of E, /n!, so e,, divides |G|, which is less than 4". But for 13 < n < 49,
the inequality e,, < 4" fails.
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5.2 | Imprimitive permutation groups that preserve a partition into
blocks of equal size

To rule out imprimitive permutation groups that preserve a partition into [ blocks of size k, we
argue as in Section 3, but with Lemma 3.3 replaced by the following.

Lemma 5.3. Letk,l > 2. Set n = kl and assume n > 6. Then there exists a prime p t E,, such that
v (kD' < v, (n)).

Proof of Lemma 5.3. For each integer n € (6, 30], we check directly that there exists a prime p €
(n/2,n] such that p t E,. Assume from now on that n > 30.

Suppose the statement is false. Then whenever a prime p satisfies p 1 E,,, (5) is an equality and
Lemma 3.1 applies.

By using D,, = (—=1)"*D; (mod n — s) and E,, = D,, + (—1)""}(n — 1), we obtain

E, =2(-1)" (mod n) (11)
E,=4(-1)""1 (modn-3) 12)
E,=6(-1)" (mod n—4) (13)
E,=(-1)""12*x3 (mod n—>5) (14)

Case 1. n — 4 is a power of 2.

Then n — 3 is not a power of 3 because otherwise, we have a solution to 3% — 1 = 2 with u > 3;
working modulo 4 shows that u is even, and factoring the left side leads to a contradiction. Let
p # 3 be a prime with p | n — 3. Since n — 3 is odd, p > 5. By (12), p } E,,, so we have one of the
conclusions of Lemma 3.1.

If k is a power of p, then p | k | n, which, combined with p | n — 3 gives p = 3, a contradiction.

Suppose that there is no carry in k + --- + k (I terms). This sum has last digit 3 in base p, so
I =3,503 | n,and hence 3 } E, by (11). Apply Lemma 3.1 for the prime 3. Since | < 3 is violated,
we deduce that k is a power of 3. Then n = kl is also a power of 3, but this contradicts the fact that
n is even.

Case 2.n — 3is apower of 2and [ # 2,4.

Then n — 4 is odd and is not a power of 3. Let p # 3 be a prime with p | n — 4. Then p > 5, so
p t E, by (13). If k is a power of p, then p | k | n, which contradicts p | n — 4 since p > 5. If there
are no carry operations in the I-term addition k + --- + k (which has last digit 4 in base p), then
I =2orl =4, contrary to assumption.

Case 3.l =3.

Then 3 | n, hence 3 } E,, by (11). Apply Lemma 3.1 for the prime 3. Since 3 < [ is violated, k is a
power of 3. Then n = kl is also a power of 3. Then n — 4 is odd and not divisible by 3. Let g be a
prime with q | n — 4. Then q > 5, and hence q } E,, by (13). Since k is a power of 3, it is not a power
of g. So there is no carry in k + k + k in base q. But this sum has last digit 4 in base g, which is
a contradiction.
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Case 4.l #2,4.

By the previous cases, we may assume in addition that n — 4 and n — 3 are not powers of 2 and
1#3.

Let p # 2 be a prime with p | n — 3. Then p } E, by (12). Since the I-term addition k + - + k
has last digit 3 and I # 3, there is some carry. Therefore k is a power of p. Then p | k | n, which,
combined with p | n — 3, gives p = 3. In particular, 3 | n.

Let q # 2 be a prime with q | n — 4. Since 3 | n, we have g # 3soq > 5. By (13),q 1 E,. If k is
a power of g, then q | n, hence q | 4 — contradiction. Therefore there is no carry in the I-term
addition k + --- + k in base g. This sum has last digit 4 and [ # 2, 4, so this case is impossible.

Case5.l=2orl=4.

Then n is even, so n — 3 and n — 5 are odd.

Subcase 5.1: n — 3 is not a power of 3.

Let p # 3 be a prime such that p | n — 3. Then p > 5 and p { E,, by (12). If k is a power of p,
then p | k | n, giving p = 3, which is a contradiction. However, there is carry in the [-term addition
k + --- + k because the sum has last digit 3, and [ is 2 or 4.

Subcase 5.2: n — 3 is a power of 3 but n — 5 is not a power of 5.

Let p # 5 be a prime with p | n — 5. Then p > 7 and we apply the argument of subcase 5.1: an
I-term sum k + -+ + k cannot have last digit 5 in base p.

Subcase 5.3:n—3=3%andn—-5= Sbforsome a,b>1.

Then 3¢ — 5® = 2,50 a = 3 and b = 2 by [3, Theorem 4.06]. This contradicts n > 30. O

5.3 | Intransitive subgroups

Asin Section 4, G embedsin S, X S, C S, forsome u,v > 1withu + v = n. Write n = 25m, where
s > 0 and 2 } m. The argument in Section 4 for odd p with E,, in place of D,, and (11) in place of
(8) implies m | u,v. Thus s > 1.

If s = 1, then n = 2m, so u = v. This case is covered in Section 5.2.

Suppose that s > 2. Then 4 | n, so (11) implies that E, /2 is odd. Using Ig‘_l = },317//22
v,(n!/2) < v,(|G]) < v,(ulv!) < v,(n!). If the last inequality is an equality, then the same argu-
ment used in Section 4 shows that v,(u) = v,(v) = v,(n); combining this with m | u,v shows
that n | u, v, a contradiction. Therefore the first two inequalities must be equalities, so v,(u!lv!) =
v,(n!) — 1; equivalently, s,(u) + s,(v) = s,(n) + 1. This means there is exactly one carry opera-
tion in u + v in base 2. This is possible only when 2571 | u,v. Also, m | u, v, so n/2 | u,v, so again
u = v, and this case is covered in Section 5.2.

we obtain
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