Introduction to Drinfeld modules
Bjorn Poonen

ABSTRACT. Our goal is to introduce Drinfeld modules and to explain their
application to explicit class field theory.

Before introducing Drinfeld modules, let us motivate their study by mentioning
some of their applications.

1. Applications

e Explicit class field theory for global function fields (just as torsion of G, gives
abelian extensions of @, and torsion of CM elliptic curves gives abelian extensions
of imaginary quadratic fields). Here, global function field means F,(T) or a finite
extension.

e Langlands conjectures for GL,, over global function fields (Drinfeld modular
varieties play the role of Shimura varieties).

e Modularity of elliptic curves over global function fields: If E over F,(T") has split
multiplicative reduction at oo, then E is dominated by a Drinfeld modular curve.

e Explicit construction of curves over finite fields with many points, as needed
in coding theory, namely reductions of Drinfeld modular curves, which have
easier-to-write-down equations than the classical modular curves.

Only the first of these will be treated in these notes, though we do also give a
very brief introduction to Drinfeld modular curves and varieties. We follow [Hay92]
as primary reference. For many more details about Drinfeld modules, one can consult
the original articles of Drinfeld [Dri74, Dri77] or any of the following: [DH87],
[GHR92], [Gos96], [Lau96], [Lau97], [GPRG97], [Ros02], [Tha04].

2. Analytic theory

2.1. Inspiration from characteristic 0. Let A be a discrete Z-submodule
of C of rank r > 0, so there exist R-linearly independent wy,...,w, such that
A =Zwy + - Zw,. Tt turns out that the Lie group C/A is isomorphic to G(C) for
some algebraic group G over C, as we can check for each value of r:
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7 | isomorphism of Lie groups G
0 C/A = C the additive group G,
C/A = C*
1 / . the multiplicative group G,,
z — exp(2miz/wy)
C/A = E(C) .
2 , an elliptic curve F
z— (p(2), ¢'(2))

(The notation p denotes the Weierstrass g-function associated to the lattice A; see
[Sil09, V1.3], for instance.)
Cases with r > 2 do not occur, since [C: R] = 2.

2.2. Characteristic p analogues. What is a good analogue of the above in
characteristic p? Start with a smooth projective geometrically integral curve X
over a finite field F,, and fix a closed point co € X. Let (X — {oo}) denote the
coordinate ring of the affine curve X — {co}.

Characteristic 0 ring Characteristic p analogue  Example

7 A:=0(X —{o0}) F,[T)
Q K :=FracA F,(T)
R K := completion at co  Fy((1/T))
C C := completion of K

The completions are taken with respect to the co-adic absolute value: For nonzero
a € A, define |a| := #(A/a) = ¢°8* (and |0| := 0); extend | | to K, its completion
K., an algebraic closure K, and its completion C, in turn. The field C is
algebraically closed as well as complete with respect to | |. Some authors use the
notation C or C, instead of C'.

Finite rank Z-submodules of C' are just finite-dimensional IF,-subspaces, not so

interesting, so instead consider this:

DEFINITION 2.1. An A-lattice in C is a discrete A-submodule A of C of finite
rank, where

rank A := dimg (KA) = dimg_ (KxoA).
If A is a principal ideal domain, such as F,[T], then all such A arise as follows:

Let {x1,...,x,} be a basis for a finite-dimensional K .-subspace
in C, and let A := Axq +---+ Az, C C.

Note: In contrast with the characteristic 0 situation,  can be arbitrarily large since
[C: K] is infinite.

THEOREM 2.2. The quotient C'/A is analytically isomorphic to C'!

This statement can be interpreted using rigid analysis. More concretely, it
means that there exists a power series

e(z) = apz + a12% + agz® +---

defining a surjective Fy-linear map C — C with kernel A. If we require op = 1, then
such a power series e is unique.
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SKETCH OF PROOF. Uniqueness follows from the nonarchimedean Weierstrass
preparation theorem, which implies that a convergent power series is determined up
to a constant multiple by its zeros: explicitly, if e(z) exists, then

(2.1) e(z) =z H (1 — ;) .

(Over C, there would be an ambiguity of multiplication by a function e9(*), but in
the nonarchimedean setting, every invertible entire function is constant!)
If we take (2.1) as a definition, there are several things to check:

e The infinite product converges. (Proof: Since A is a discrete subgroup of
a locally compact group K., A, we have A — 00.)

e ¢(2) is surjective. (The nonarchimedean Picard theorem says that a
nonconstant entire function omits no values.)

o e(r+y) =-e(z)+e(y). (Proof: Write A as an increasing union of finite-
dimensional F,-subspaces, and e(x) as the limit of the corresponding finite
products. If f(x) is a polynomial whose zeros are distinct and form a group
G under addition, then f(z+y) = f(z)+ f(y), because f(x+y)—f(z)—f(y)
vanishes on G x G but is of degree less than #G in each variable.)

e e(cx) = ce(x) for each ¢ € Fy. (Use a proof similar to the preceding, or
argue directly.)

e kere = A. (I

Now C/A has a natural A-module structure. Carrying this across the isomor-
phism C/A — C gives an ezotic A-module structure on C. This is essentially what
a Drinfeld module is: the additive group with a new A-module structure.

For each a € A, the multiplication-by-a map a: C/A — C/A corresponds under
the isomorphism to a map ¢,: C — C making

C/A —*= C/A
(2.2) ; iz zl .
o c

commute.
PROPOSITION 2.3. The map ¢ is a polynomial!
PROOF. Assume that a # 0. We have
a A
A b
which is isomorphic to A/aA = (4/a)", which is finite of order |a|". So ker ¢, should
be e (‘flA). Define the polynomial

A
dalz) =az ] (1 - e(zt)> .

tea=la_ (0}

ker (a: C/A — C/A) =

Then ¢, is the map making (2.2) commute, because the power series ¢,(e(z)) and
e(az) have the same zeros and same coefficient of z. ]
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The proof of Proposition 2.3 shows also that for any nonzero a € A,

a1

deg ¢ = #°—

= |al".

3. Algebraic theory

3.1. Fg4-linear polynomials. Let L be a field containing F,. A polynomial
f(z) € L[z] is called additive if f(z +y) = f(z) + f(y) in L[z,y], and F,-linear
if, in addition, f(cz) = cf(x) in L[z] for all ¢ € F,. Think of such polynomials
as operators that can be composed: For example, each a € L defines an operator
2+ ax and 7 denotes the Frobenius operator x + 2P, so Ta is * + (az)P and 72 is
z 2P

Let G, be the additive group scheme over L, viewed as an F,-vector space
scheme over L. Endomorphisms of G, as an Fj-vector space scheme are Fy-linear
by definition:

End G, = {F,-lincar polynomials in L{z]}
= {Z?:o a;z? :a; € L}
={(Xipa") () a; € L}
=: L{r};
this is a ring under addition and composition. More specifically, L{7} is a twisted
polynomial ring, twisted in that the elements a € L do not necessarily commute
with the variable 7: instead, 7a = a97.

For f € L{r}, let Lc.(f) denote the leading coefficient a,, of f; by convention,
Le.(0) = 0. Also, if f =" ,a;7, then the derivative of the F,-linear polynomial
f(z) € L[z] is the constant f'(0) = ag, which is the “constant term” of f viewed as
a twisted polynomial in L{7}.

3.2. Drinfeld modules.

DEFINITION 3.1. An A-field is an A-algebra L that is a field; that is, L is a
field equipped with a ring homomorphism ¢: A — L. The A-characteristic of L is
chary L := Kker, a prime ideal of A.

We distinguish two cases:

e L is an extension of K and ¢ is an inclusion; then chary L = 0. (Example:
C.)
e [ is an extension of A/p for some nonzero prime p of A; then chary L = p.
To motivate the following definition, recall that an A-module M is an abelian
group M together with a ring homomorphism A — Endgoup M.

DEFINITION 3.2. A Drinfeld A-module ¢ over L is the additive group scheme
G, with a faithful A-module structure for which the induced action on the tangent
space at 0 is given by ¢. More concretely, ¢ is an injective ring homomorphism

A — EndG, = L{r}
a— Pq

such that ¢/ (0) = ¢(a) for all @ € A.



INTRODUCTION TO DRINFELD MODULES 5

REMARK 3.3. Many authors explicitly disallow ¢ to be the composition A <
L C L{7}, but we allow it when chars L = 0, since doing so does not seem to break
any theorems. Our requirement that ¢ be injective does rule out A % L C L{r}

when char4 L # 0, however; we must rule this out to make Proposition 3.5 below
hold.

It turns out that every Drinfeld A-module over C' arises from an A-lattice as in
Section 2. For a more precise statement, see Theorem 3.11.

3.3. Rank. We could define the rank of a Drinfeld module over C' as the rank
of the A-lattice it comes from, but it will be nicer to give an algebraic definition
that makes sense over any A-field.

Let ¢ be a Drinfeld module. For each nonzero a € A, there are nonnegative
integers m(a) < M (a) such that we may write

b = Cona) ™™ @ + -+ + aray M@

with exponents in increasing order and ¢, (q), capr(a) 7 0. Then ¢4 () as a polynomial
in z has degree ¢™(%) and each zero has multiplicity ¢™(®. In terms of the functions
M and m, we will define the rank and height of ¢, respectively.

For each closed point p € X, let v, be the p-adic valuation on K normalized
so that vy(a) is the degree of the p-component of the divisor (a); thus v, (K*) =
(degp)Z. Also, define |al, := ¢~»(»). For example, | | is the absolute value | |

defined earlier.

ExaMPLE 3.4. If A = F,[T], then ¢ is determined by ¢, and we define
r = M(T). For any nonzero a € A, expanding ¢, in terms of ¢ shows that
M(a) = (dega)r = —rvs(a).

A similar result holds for arbitrary A:

PRrROPOSITION 3.5 (Characterization of rank). Let ¢ be a Drinfeld module over
an A-field L. Then there exists a unique r € Q>¢ such that M(a) = —rvs(a), or
equivalently deg ¢, = |a|”, for all nonzero a € A. (Proposition 3.13(a) will imply
that  is an integer.)

PRrROOF. After enlarging L to make L perfect, we may define the ring of twisted
Laurent series L((7~')) whose elements have the form »_ _, ¢, 7" with ¢, = 0 for
sufficiently large positive n; multiplication is defined so that 7¢ = ¢4" 7. Then
L((r71)) is a division ring with a valuation v: L((771)) — Z U {+o00} sending 7"
to —n (same proof as for usual Laurent series over a field). Thus ¢: A — L{r}
extends to a homomorphism ¢: K — L((7~1)), and v pulls back to a nontrivial
valuation v on K. We have vk (a) = —M(a) <0 for all a € A — {0}, so vg = rveo
for some r € Q>p. Then M(a) = —rvs(a) for all a € A — {0}. O

Define the rank of ¢ to be r. (This is not analogous to the rank of the group of
rational points of an elliptic curve.)
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3.4. Analogies. Drinfeld modules are 1-dimensional objects, no matter what
the rank is. Comparing with Section 2.1 suggests the following analogies:

rank 0 Drinfeld module +— G,
rank 1 Drinfeld module «+— G,,, or CM elliptic curve
(if E has CM by &, view its lattice as rank 1 &-module)
rank 2 Drinfeld module «— elliptic curve
rank > 3 Drinfeld module «+— ? (if only such geometric objects existed...)
There is also a higher-dimensional generalization called a t-module [And86].
REMARK 3.6. Gekeler [Gek83, Gek91] developed a theory of Drinfeld modules

over finite fields analogous to the theory of abelian varieties over finite fields
developed by Deuring, Tate, Waterhouse, and others.

3.5. Height.

PROPOSITION 3.7. Let ¢ be a Drinfeld module over an A-field L of nonzero
characteristic p. Then there exists a unique h € Q¢ such that m(a) = hvy(a) for
all nonzero a € A. (Proposition 3.13(b) will imply that h is an integer satisfying
0<h<r.)

PROOF. Enlarge L to make it perfect and extend ¢ to a homomorphism K —
L((7)) (twisted Laurent series in 7 instead of 771) to define a valuation on K. It is
positive on p, hence equal to hv, for some h € Q. O

Call h the height of ¢. It is analogous to the height of the formal group of an
elliptic curve over a field of characteristic p.

3.6. Drinfeld modules and lattices. For fixed A and L, Drinfeld A-modules
over L form a category, with morphisms as follows:

DEFINITION 3.8. A morphism f: ¢ — 1 of Drinfeld modules over L is an element
of End G, such that fo ¢, =1, 0 f for all a € A: ie.,

(3.1) Gy —*> G,

wa

Gy, — G,
commutes.
An isogeny between Drinfeld modules ¢ and 1 is a surjective morphism f with
finite kernel, or equivalently (since G, is 1-dimensional), a nonzero morphism. If
such an f exists, ¢ and 1 are called isogenous.

Over C, there is no nonzero algebraic homomorphism from G,, to an elliptic
curve; analogously:

PROPOSITION 3.9. Isogenous Drinfeld modules have the same rank.

PRrOOF. If f: ¢ — 1) is an isogeny between Drinfeld modules of rank r and r’,
respectively, then (3.1) gives

(deg f)lal” = |a|" (deg )
forallae A, sor=r'. O
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Because of Proposition 3.9, we fix the rank in the following.

DEFINITION 3.10. A morphism of rank r A-lattices A, A’ in C is a number ¢ € C
such that cA C A’.

THEOREM 3.11. For each r > 0, the analytic construction
{A-lattices in C of rank 7} — {Drinfeld modules over C of rank r}
of Section 2 is an equivalence of categories.

SKETCH OF PROOF. Given a rank r Drinfeld module ¢ over C, choose a non-
constant a € A, and consider a power series

e(z) =z+ay2? oz 4

with unknown coefficients a;. The condition e(az) = ¢,(e(z)) determines the «;
uniquely; solve for each «; in turn. Check that the resulting power series converges
everywhere, and that its kernel is an A-lattice in C' giving rise to ¢. The proof of
Proposition 2.3 shows more generally that a morphism of A-lattices corresponds
to a polynomial map C' — C' defining a morphism of Drinfeld modules, and vice
versa. (I

In particular, homothety classes of rank r A-lattices in C' are in bijection with
isomorphism classes of rank r Drinfeld modules over C.

3.7. Torsion points. The additive polynomial ¢, plays the role of the multi-
plication-by-n map on an elliptic curve, or the n'® power map on G,,.

For a # 0, the a-torsion subscheme of a Drinfeld module ¢ is ¢[a] := ker @,
viewed as subgroup scheme of G,. It is a finite group scheme of order deg ¢, =
gM(@) = |a|". Let L denote the additive group of L viewed as an A-module via ¢.
Then ¢[a](L) is an A-submodule of ?L, but its order may be less than |a|” if L is
not algebraically closed or ¢[a] is not reduced.

More generally, if T is a nonzero ideal of A, let ¢[I] be the scheme-theoretic
intersection [,.; ¢[a]. Equivalently, one can define ¢; as the monic generator of
the left ideal of L{r} generated by {¢, : a € I}, and define ¢[I] := ker¢;. To
understand the structure of ¢[I](L), we need the following basic lemma about
modules over Dedekind rings.

LEMMA 3.12. Let A be a Dedekind ring. Let D be an A-module.

(a) If ¢1,...,¢, are distinct nonzero prime ideals of A, and e1,. .., e, € Z>q, then
DIty -] = Dlty') @ -+ @ DIE .

(b) If D is divisible, then for each fized nonzero prime £ of A, the A/¢¢-module
D[¢°] is free of rank independent of e.

PRrROOF. Localize to assume that A is a discrete valuation ring. Then (a)
is trivial. In proving (b), we write ¢ also for a generator of ¢. Since D[{] is
an A/l-vector space, we can choose a free A-module F' and an isomorphism
iy: (71F/F 5 D[¢]. We construct isomorphisms i.: {~¢F/F = DI[¢(¢] for all
e > 1 by induction: given the isomorphism i., use divisibility of D to lift i, to a
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homomorphism i : £~ ¢tV EF/F — D[¢°t!] fitting in a commutative diagram with
exact rows

0— > (1F/F — s (~(+VF/p Lo y=eF/F — 0

iil ie+1 lie
Y

0 D[/] D+ —L > D[re] —0.

The diagram shows that ¢.4; is an isomorphism too. O

PROPOSITION 3.13. Let ¢ be a rank r Drinfeld module over an algebraically
closed A-field L.

(a) If I is an ideal of A such that chary L {1, then the A/I-module ¢[I](L) is free
of rank r. The same holds even if L is only separably closed.

(b) If chargy L =p #£ 0, let h be the height of ¢; then the A/pc-module ¢[pc|(L) is
free of rank r — h.

PrROOF. When L is algebraically closed, ¢,: L — L is surjective for every
nonzero a € A. In other words, the A-module ?L is divisible. By Lemma 3.12, the
claims for algebraically closed L follow if for each nonzero prime ¢ of A, there exists
e > 1 such that

H(A/L)", if £ # char s L;

#¢[£e](‘[’) = {#(A/Ee)rh7 if # = chary L.

The class group of A is finite, so we may choose e so that £¢ is principal, say generated
by a. If £ # char 4 L, then ¢, is separable, so #¢[¢¢](L) = deg ¢, = |a|” = #(A/a)".
If ¢ = char4 L, then each zero of ¢, has multiplicity ¢"™(® = ¢"*»(®) = #(A/a)", so
#OU)(L) = #(A/a)"". _
Now suppose that L is only separably closed, with algebraic closure L. If

char 4 L 1 I, the proof above shows that ¢[I](L) consists of L-points, so the structure
of ¢[I](L) is the same. O

COROLLARY 3.14. If ¢ is a rank r Drinfeld module over any A-field L, and I
is a nonzero ideal of A, then deg ¢ = #o[I] = #(A/I)".

PRrROOF. The underlying scheme of ¢[I] is Spec L{z]/(¢1(x)), so #¢[I] = deg ¢;.
For the second equality, assume without loss of generality that L is algebraically
closed. For a group scheme G, let G° denote its connected component. Define
m(I) := min{m(a) : a € I — {0}}. If a € A — {0}, then ¢[a]® = ker 7™ so
H[1]° = ker 7). Thus #¢[I]° = ¢, which is multiplicative in I. On the other
hand, Proposition 3.13 shows that #¢[I](L) is multiplicative in I. Thus the integers
#oI) = #¢[1]° - #6[I)(L) and #(A/I)" are both multiplicative in I. They are
equal for any power of I that is principal, so they are equal for I. O

COROLLARY 3.15. Let ¢ be a rank 1 Drinfeld module over a field L of nonzero
A-characteristic p. Then ¢, = 798P,

ProoOF. Without loss of generality, L is algebraically closed. Since 0 < h <
r =1, we have h = r = 1. By Proposition 3.13(b), ¢[p](L) = 0. On the other hand,
¢p is monic, by the general definition of ¢;. The previous two sentences show that
¢y is a power of 7. By Corollary 3.14, deg ¢, = #(A/p) = q1°8% = deg 79°¢¥, s0
bp = rdegp, O
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COROLLARY 3.16. In the context of Corollary 3.15, if p = (7) for some 7 € A,
then ¢ = cTI°8P for some c € L.

PRroo¥r. By definition, ¢, is the monic generator of the left ideal generated by
{¢q : a € T}, which is the left ideal generated by ¢. O

3.8. Tate modules. Let £ C A be a prime ideal not equal to 0 or chary L.
Define the completions Ay := an A/0™ and K, := Frac Ay. Let L be a separable
closure of L. Then the Tate module

Ty¢ = Hom(K,/Ay, ® L)
is a free Ay-module of rank r.
Its applications are analogous to those for elliptic curves:

e The endomorphism ring End ¢ is a projective A-module of rank < r2.
In particular, if r = 1, then End¢ = A and Aut¢ = A* =F.
e The Galois action on torsion points yields an ¢-adic representation

pe: Gal(Ls/L) — Auty, (Typ) ~ GL,(Ay).

4. Reduction theory

4.1. Drinfeld modules over rings. So far we considered Drinfeld modules
over A-fields. One can also define Drinfeld modules over arbitrary A-algebras R or
even A-schemes. In such generality, the underlying F,-vector space scheme need only
be locally isomorphic to G, so it could be the F -vector space scheme associated to
a nontrivial line bundle on the base.

To avoid this complication, let us assume that Pic R = 0; this holds if the
A-algebra R is a principal ideal domain, for instance. Then a Drinfeld A-module
over R is given by a ring homomorphism

A— EndGa’R = R{’T}

ar— @a
such that ¢/ (0) = a in R for all a € A and l.c(¢,) € R™ for all nonzero a € A. The
last requirement, which implies injectivity of ¢ (if R is nonzero), guarantees that for

any maximal ideal m C R, reducing all the ¢, modulo m yields a Drinfeld module
over R/m of the same rank.

4.2. Good and stable reduction. Let us now specialize to the following
setting:
R: an A-discrete valuation ring
(a discrete valuation ring with a ring homomorphism A — R)
m: the maximal ideal of R
L :=FracR, the fraction field
v: L = ZU{400}, the discrete valuation
F:= R/m, the residue field
¢: a Drinfeld module over L of rank r > 1.

Then
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e ¢ has good reduction if ¢ is isomorphic over L to a Drinfeld module over
R, that is, if after replacing ¢ by an isomorphic Drinfeld module over L,
all the ¢, have coefficients in R, and l.c.(¢,) € R* for all nonzero a € A.

e ¢ has stable reduction if after replacing ¢ by an isomorphic Drinfeld module
over L, all the ¢, have coefficients in R, and a +— (¢, mod m) is a Drinfeld
module over F of positive rank.

ExAMPLE 4.1. Let A =F,[T]. A rank 2 Drinfeld module over L is determined
by
¢or =T + 17 + e
here ¢1,c2 € L and ¢o # 0. Isomorphic Drinfeld modules are given by

wlopu=T4+ul eyt + uqulch2

for any w € L*. The condition for stable reduction is satisfied if and only if
v(utley) > 0 and v(u? ~ley) > 0, with at least one of them being an equality. This
condition uniquely specifies v(u) € Q. An element u of this valuation might not
exist in L, but u can be found in a suitable ramified finite extension of L.

THEOREM 4.2 (Potential stability). Let ¢ be a Drinfeld module over L of rank
r > 1. There exists a finite ramified extension L' of L such that ¢ over L' has stable
reduction.

ProoOF. Choose generators aq, ..., a,, of the ring A. As in Example 4.1, find
L' and u € L' of valuation “just right” so that all coefficients of u=1¢,,u for all i
have nonnegative valuation, and there exist ¢ and j > 0 such that the coefficient of
79 in uld,,u has valuation 0. ]

COROLLARY 4.3. Let ¢ be a rank 1 Drinfeld module over L. If there exists
a € A such that deg ¢, > 1 and l.c.(¢q) € R™, then ¢ is a Drinfeld module over R.

Note: Saying that ¢ s a Drinfeld module over R is stronger than saying that ¢ is
isomorphic over L to a Drinfeld module over R, which would be saying that ¢ has
good reduction.

PRrROOF. By enlarging R and L, we may assume that ¢ has stable reduction,
so there exists u such that (u~!¢u) mod m is a Drinfeld module of positive rank.
This reduction has rank at most the rank of ¢, so it too has rank 1, so ¢, and
(utpou) mod m have the same degree. Thus v(l.c.(¢,)) and v(l.c.(u"tp,u)) are 0,
so v(udes®a=1) = 0, so v(u) = 0. Now u~1¢u is a Drinfeld module of rank 1 over R,
so ¢ is too. O

5. Example: The Carlitz module
The Drinfeld module analogue of G,, is the Carlitz module
¢: A=F,[T| — K{r}
T—T+T1
(i.e., ¢r(x) = Tx + 2?). This is a Drinfeld module of rank 1 since

deg o = q = |T|".
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Define
[n] := T — T
]t = 12 - [7]
e(z) == Z 27" /[n]!
n>0
._ [n]
w._nl;[l<1— [n+1]> € Ko

i:="v/—[1] eC.

Carlitz [Car35], long before Drinfeld, proved that e induces an isomorphism
C/miA — (C with the Carlitz A-module action).
This is analogous to exp: C/2miZ = C*.
THEOREM 5.1 ([Car38, Theorem 9]). Fiz a € A with a #0. Then K(¢[a]) is
an abelian extension of K, and Gal(K(4la])/K) ~ (A/a)*.

Theorem 5.1 is analogous to Gal(Q(u,,)/Q) = (Z/nZ)*, and can be proved in
the same way.

THEOREM 5.2 (Analogue of Kronecker—Weber, implicit in [Hay74, §7] and
[Dri74, §8]). Fvery abelian extension of K in which the place oo splits completely
is contained in K(¢[a]) for some a.

6. Class field theory

The theory of elliptic curves with complex multiplication leads to an explicit
construction of the abelian extensions of an imaginary quadratic number field. In
this section, we explain work of Drinfeld [Dri74] and Hayes [Hay79] that adapts this
classical theory to construct the abelian extensions of an arbitrary global function
field K = Frac A.

6.1. The class group. When A is not a principal ideal domain, class field
theory is more complicated than Theorem 5.2 would suggest. Introduce the following
notation:

7 := the group of nonzero fractional A-ideals in K
P:={(c):ce KX}, the group of principal fractional A-ideals
PicA:=Z/P, the class group of A.

For a nonzero fractional ideal I, let [I] denote its class in Pic A.

6.2. Rank 1 Drinfeld modules over C.

PROPOSITION 6.1. We have bijections

Pic A {rank 1 A-lattices in C'} -~ {rank 1 Drinfeld modules over C'}

homothety isomorphism
[I] — (homothety class of I in C)
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PROOF. The second bijection comes from the » = 1 case of Theorem 3.11. Thus
we need only consider the first map.

Surjectivity: Any rank 1 A-lattice A in C can be scaled so that KA = K. Then
A is a nonzero fractional ideal I.

Injectivity: I is homothetic to I’ in C if and only if there exists ¢ € K* such
that I =cl’. O

COROLLARY 6.2. Every rank 1 Drinfeld module over C is isomorphic to one
defined over K.

PROOF. When the lattice A is contained in K, the power series e and polyno-
mials ¢, constructed in Section 2 will have coefficients in K. O

6.3. The action of ideals on Drinfeld modules. The bijection between
Pic A and the set of isomorphism classes of rank 1 Drinfeld modules over C' is
analytic, not canonical from the algebraic point of view. But a weaker form of this
structure exists algebraically, as will be described in Theorem 6.5.

Fix any A-field L. If I is a nonzero ideal of A and ¢ is a Drinfeld module over
any A-field L, we can define a new Drinfeld module I % ¢ over L isomorphic to the
quotient of G, by ¢[I]; more precisely, there exists a unique Drinfeld module % over
L such that ¢;: G, — G, is an isogeny ¢ — 1, and we define I x ¢ := ).

Suppose that I = (a) for some nonzero a € A. Then ¢; is ¢, made monic; that
is, if u := Lc.(g), then ¢; = u=1¢,. Therefore ¢; is the composition

0 6 " u gu,
so (a) * » = u~L¢u, which is isomorphic to ¢, but not necessarily equal to ¢. This
suggests that we define (a=!) * ¢ = upu=!. Finally, every I € Z is (a~*)J for some
a € A— {0} and integral ideal J, and we define I x ¢ = u(J * ¢)u~!. The following
is now easy to check:

PROPOSITION 6.3. The operation * defines an action of L on the set of Drinfeld
modules over L. It induces an action of Pic A on the set of isomorphism classes of
Drinfeld modules over L.

EXAMPLE 6.4. Suppose that ¢ is over C, and I is a nonzero integral ideal of A.
If we identify ¢ analytically with C/A, then ¢[I] ~ I=1A/A, so

I+ (C/A) ~ (C/A)/(I"*AJA) ~ C/T'A.

Let #'(C) be the set of isomorphism classes of rank 1 Drinfeld A-modules over
C.

THEOREM 6.5. The set % (C) is a principal homogeneous space under the action
of Pic A.

PRrROOF. This follows from Proposition 6.1 and the calculation in Example 6.4
showing that the corresponding action of I on lattices is by multiplication by
Ifl. O

6.4. Sgn-normalized Drinfeld modules. We will eventually construct abe-
12lian extensions of a global function field K by adjoining the coefficients appearing
in rank 1 Drinfeld modules. For this, it will be important to have actual Drinfeld
modules, and not just isomorphism classes of Drinfeld modules. Therefore we will
choose a (not quite unique) “normalized” representative of each isomorphism class.
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Let Fo, be the residue field of co € X. Since oo is a closed point, F, is a
finite extension of Fy. A choice of uniformizer m € K., defines an isomorphism
Ko ~Foo((m)), and we define sgn as the composition

~ l.c.
K S5 Foo((m) > FX.
The function sgn is an analogue of the classical sign function sgn: R* — {£1}.

From now on, we fix (A,sgn).

DEFINITION 6.6. A rank 1 Drinfeld module ¢ over L is sgn-normalized if there
exists an F,-algebra homomorphism 7: Fo, — L such that lc.(¢,) = n(sgna) for all
nonzero a € A.

EXAMPLE 6.7. Suppose that A = F,[T] and sgn(1/T) = 1. For a Drinfeld
A-module ¢ over L, the following are equivalent:
e ¢ is sgn-normalized;
[ ] 1C(¢T) = 1,
o ¢ =T + 7 (the Carlitz module).

THEOREM 6.8. Ewvery rank 1 Drinfeld module ¢ over C is isomorphic to a
sgn-normalized Drinfeld module. More precisely, the set of sgn-normalized Drinfeld
modules isomorphic to ¢ is a principal homogeneous space under ]F(fo/IF;

Proor. When A is generated over I, by one element 7', then it suffices to
choose u so that u~'¢pu is monic. The idea in general is that even if A is not
generated by one element, its completion will be (topologically).

First, extend ¢ to a homomorphism K — C((771)) as in the proof of Proposi-
tion 3.5. The induced valuation on K is v, so there exists a unique extension to
a continuous homomorphism K., — C((771)), which we again denote by a — ¢,.
Also, Le. extends to a map C((t71))* — C* (not a homomorphism). Let 7 € K,
be a uniformizer with sgn(7) = 1. Replacing ¢ by u~!¢u multiplies l.c.(¢,) by
ul™=1 50 we can choose u € C* to make lL.c.(¢,) = 1.

We claim that the new ¢ is sgn-normalized. Define n: Foo, — C by n(c) :=
le(¢.). For any a = en™ € KX, with ¢ € Fo, and n € Z, we have

Le(@a) = Leoedr) = Leoe) = n(c) = n(sgna),
as required.
The u was determined up to a (#F —1)th root of unity, but Aut ¢ = A* =Fy,
so u~'¢u depends only on the image of © modulo 7. This explains the principal
homogeneous space claim. ([l

Introduce the following notation:
% (L) := the set of sgn-normalized rank 1 Drinfeld A-modules over L
Pti:={(c):ce KX andsgnc=1} C P
Pict A:=T/P", the narrow class group of A.
LEMMA 6.9. If p € #t(L), then Stabz ¢ = PT.

PRrROOF. The following are equivalent for a nonzero integral ideal I not divisible
by chary4 ¢:
o Ixp=¢;
® V1o = dapr for all a € 4
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e ¢; € End ¢;

® §; € A

e ¢; = ¢ for some b € A.
In particular, if I is an integral ideal in PT, then I = (b) for some b € A with
sgnb = 1, so ¢; = ¢y, so I € Stabz ¢. Using weak approximation, one can show
that the integral ideals in P+ generate the group P, and that a general ideal I can
be multiplied by an ideal in P* to make it integral and not divisible by char 4 ¢.

Thus it remains to show that when [ is an integral ideal not divisible by

char 4 ¢, the condition ¢; = ¢, implies I € P*. Suppose that ¢; = ¢,. Taking
kernels yields ¢[I] = ¢[b]. Since chary ¢ t I, the group scheme ¢[I] is reduced,
so charg ¢ t b. By Proposition 3.13, I = Anny ¢[I] = Anny ¢[b] = (b). Also,
n(sgnb) = l.c¢p) = Le(pr) =1, so sgnb = 1. Thus I € P+. O

THEOREM 6.10. The action of T on Drinfeld modules makes % +(C) a principal
homogeneous space under Pict A.

PROOF. Lemma 6.9 implies that #*(C) is a disjoint union of principal homo-
geneous spaces under Pict A, so it suffices to check that #(C) and # Pict A are
finite sets of the same size. Theorems 6.8 and 6.5 imply

#P(C) =#Y (C) - #(FX/Fy) = #Pic A £(FL /Fy).
On the other hand, the exact sequence
1—P/Pt—I/P" —I/P—1
and the isomorphism P/P* = FX /FX induced by sgn show that
#Pict A =#Pic A- #(FL /F)). O
6.5. The narrow Hilbert class field. Choose ¢ € # T (C). Define
H™" := K(all coefficients of ¢, for all a € A) C C.

Then ¢ is a Drinfeld module over HT, and so is I*¢ for any I € Z. By Theorem 6.10,
these are all the objects in #+(C), so HT is also the extension of K generated
by the coefficients of ¢, for all ¢ € #T(C) and all a € A. In particular, H™ is
independent of the choice of ¢. It is called the narrow Hilbert class field of (A,sgn).

THEOREM 6.11.

(a) The field H" is a finite abelian extension of K.
(b) The extension HT D K is unramified above every finite place (“finite” means
not 00 ).

(c) We have Gal(HT /K) ~ Pic™ A.
PRrOOF.

(a) The group Aut(C/K) acts on #+(C), so it maps H™ to itself. Also, HT is
finitely generated over K. These imply that H ™ is a finite normal extension of
K.

By Corollary 6.2, each rank 1 Drinfeld module over C' is isomorphic to
one over K., and it can be made sgn-normalized over the field F' obtained by
adjoining to Ko the (#F — 1)th root of some element. Then H* C F. On
the other hand, the extensions K C K., C F are separable, so HT is separable
over K.
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The automorphism group of %+ (C) as a principal homogeneous space under
Pict A equals Pic™ A, so we have an injective homomorphism

x: Gal(H"/K) — Aut # *(C) ~ Pic™ A.

Thus Gal(Ht/K) is a finite abelian group.

(b) Let B* be the integral closure of A in HY. Let P C B* be a nonzero
prime ideal, lying above p C A. Let Fp = B™/P. By Corollary 4.3, each
¢ € WH(HT)=%7*(C) is a Drinfeld module over the localization B}, so there
is a reduction map

p: ZH(HY) = HT(Fp).
By Lemma 6.9, Pic™ A acts faithfully on the source and target. Moreover, the
map p is (Pict A)-equivariant, and #+(H™) is a principal homogeneous space
under Pic™ A by Theorem 6.10, so p is injective.
If an automorphism o € Gal(H*/K) belongs to the inertia group at P,
then o acts trivially on #+(Fp), so o acts trivially on T (H™"), so ¢ = 1.
Thus Ht D K is unramified at P.

(c) Let Frob, := Frobp € Gal(Fp/F,) < Gal(H"/K) be the Frobenius automor-

phism. The key point is the formula

Froby, ¢ =p ¢

for any ¢ € T (Fp); let us now prove this. By definition, if 1) := p x ¢, then
VYadp = ¢pdy for all a € A. By Corollary 3.15, ¢, = 7P 50 1h, 798P =
rdegPp, . Compare coefficients; since 79°8% acts on Fp as Froby,, we obtain
1 = Frob, ¢.

Since # T (H*) — #+(Fp) is injective and (Pic™ A)-equivariant, it follows
that Frob,, acts on Z+(H™) too as ¢ ~— p* ¢. Thus x: Gal(HT/K) < Pic™ A
maps Frob, to the class of p in Pic™ A. Such classes generate Pict A, so x is
surjective. 0

6.6. The Hilbert class field. Because of the exact sequence
0 — P/Pt — Pict A — PicA — 0,
the extension H™ O K decomposes into two abelian extensions
H+
PPt

H

Pic A

K

with Galois groups as shown. The map of sets Z T (C) - #(C) is compatible with
the surjection of groups Pic™ A — Pic A acting on the sets. By Corollary 6.2, each
element of % (C') is represented by a Drinfeld module over K, so the decomposition
group Dy, C Gal(H'/K) acts trivially on % (C). Thus Do, € P/P*. In other
words, oo splits completely in H O K.

The Hilbert class field H4 of A is defined as the maximal unramified abelian
extension of K in which oo splits completely. Thus H C H4. On the other hand,
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Gal(H/K) ~ Pic A ~ Gal(H 4/ K), the latter isomorphism coming from class field
theory. Hence H = Hy4.

6.7. Ray class fields. In this section, we generalize the constructions to obtain
all the abelian extensions of K, even the ramified ones. Introduce the following
notation:

m: a nonzero ideal of A
T = the subgroup of Z generated by primes not dividing m
Pm :={(c) : ¢c € K and ¢ = 1 mod m}
Pl:={(c):c€ K and sgnc =1 and ¢ = 1 mod m}

Picyw A := Zin /P, the ray class group modulo m of A

Pic A := T, /P, the narrow ray class group modulo m of (A, sgn)

E(C) = {(p,)\) : $ € ZT(C) and \ generates the A/m-module ¢[m](C)}

H = H*(\) for any (¢,)) € ZF (O)

(the narrow ray class field modulo m of (A,sgn))
H,, := the subfield of H fixed by Py /P

(the ray class field modulo m of A).

Arguments similar to those in previous sections show the following;:

THEOREM 6.12.

(a) There is an action of Ly on 5 (C) making %, (C) a principal homogeneous
space under Pic A.

(b) The field H is a finite abelian extension of K, unramified outside m, and
Gal(Hf/K) ~ Pic. A.

(¢) The extension Hy, is the ray class field modulo m of A as classically defined,
with Gal(Hy/K) ~ Picy A.

6.8. The maximal abelian extension. Theorem 6.12 implies that (J,, Hm
equals K" the maximal abelian extension of K in which oo splits completely.
Finally, if 0o’ is a second closed point of X, then the compositum J 2o fgaboo” jg
the maximal abelian extension of K.

6.9. Example of an explicit Hilbert class field. We follow [Hay91, Ex-
ample 3]; see [Hay91, DH94] for other examples similar to this one.

Let ¢ = 2. Let X be the elliptic curve over Fy associated to the equation
y? +y =23, Let co be the point at infinity on X. Then A = Fa[z,y]/(v* +y — 2?).
Since FX, = {1}, there is only one possible sgn, and P/P* ~ FY /Fx ~ {1}, so
Pict A ~ PicA ~ Pic® X ~ X(Fy), which is of order 3. Thus H* = H and
[H: K]=3.

Our goal is to use Drinfeld modules to find an explicit equation defining H as an
extension of K. By definition, to give a sgn-normalized rank 1 Drinfeld A-module
over a given field extension L of K is to give elements a, ¢y, co € L such that the
elements

by =x+al +T?
¢y:y+clT+62T2+T?’
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of L{r} satisfy ¢.¢, = ¢y¢, and ¢2 + ¢, = ¢5. In fact, the second condition is

redundant: if ¢, commutes with ¢,, then ¢, commutes with ¢2 + ¢, — ¢3, but in

L{7} if an element with nonzero constant term commutes with an element with

zero constant term, the second element is 0, as one sees by equating coefficients.
Thus the only condition is ¢,¢y = ¢, ¢, which amounts to the system

xc1+ay2 :ay+clx2
x02+ac%+y4 :y+cla2+02x4
x—|—ac§—|—c‘11:cl+(:2a4+a:8
a—i—cg:cQ+a8

in the unknowns a, ¢y, co. The first two equations let us eliminate ¢; and ¢o in turn
(remember that 2 and y are constants in K), so we are left with two polynomials in
K [a] that must vanish. Their ged turns out to be a®+ (22 +z)a?+ (x+1)%a+ (z+1)*,
so H is the extension of K generated by a root of this cubic polynomial.

REMARK 6.13. One could also find an equation for H by working analytically,
just as one can use lattices in C to compute CM j-invariants numerically. In both
settings, the result can be made rigorous by invoking integrality properties.

REMARK 6.14. Yet another way to find H would be to use geometric class field
theory: Let F' be the Frobenius endomorphism of X; then the extension of function

fields H O K arises from the finite étale covering X F—_% X.

Similar calculations can be done when degoo > 1, but they are more compli-
cated.

7. Drinfeld modular varieties

7.1. Classical modular curves. The classical modular curve Y (1) is a coarse
moduli space whose points over any algebraically closed field k are in bijection with
isomorphism classes of elliptic curves over k. Over C, the analytic description of
elliptic curves as C/A with A = Z7 + Z for some 7 € C — R shows that

Y(1)(C) ~T\Q

where Q := C — R (the union of the upper and lower half planes in C) and
I’ := GLy(Z). (Equivalently, one could replace € with the upper half plane, and T'
by the index-2 subgroup SLy(Z), but our formulation will be easier to adapt.)

Similarly, the modular curve Y7 (V) is a coarse moduli space whose k-points
over any algebraically closed field k of characteristic not dividing N are in bijection
with isomorphism classes of pairs (E, P) where E is an elliptic curve over k, and
P € E(k) is a point of exact order N. One can extend this description to define a
functor on Z[1/N]-schemes, and this functor is representable by a smooth relative
affine curve over Z[1/N] once N > 4. Over C, one has

Yi(N)(C) =~ T1(N)\Q

nwy:{G Deem@ﬁ.

(Since we are working in GLy(Z) instead of SLa(Z), it is not OK to replace the lower
right * with 1.)

where
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7.2. Drinfeld modular curves. Elliptic curves over C are described analyti-
cally by rank 2 lattices, so elliptic curves are analogous to rank 2 Drinfeld modules.
Drinfeld modular curves classify rank 2 Drinfeld modules with level structure.

For simplicity, let us assume that A = F,[T]. Each rank 2 Drinfeld module has
the form

gb(“’b): A — L{7}
T+ T+ ar+ br?

for some a € L and b € L*. The definition of morphism shows that ¢(®?) ~ gb(a"b/)
if and only if there exists u € L* such that ¢ = w9 'a and ¥ = u? ~1b. So
j := a?" /b is invariant under isomorphism, like the j-invariant of an elliptic curve.

The Drinfeld modular curve Y (1) classifying rank 2 Drinfeld modules with-
out level structure is a coarse moduli space isomorphic to A! with coordinate j.
Analytically,

Y(1)(C) ~T\Q
where ) := C — K (the Drinfeld upper half plane) and T := GL3(A).

Similarly, for each nonzero n € A, the Drinfeld modular curve Y;(n) classifies
rank 2 Drinfeld modules equipped with a torsion point of exact order n. One can
make this more precise by specifying a functor on A[1/n]-schemes. The functor is
representable by a smooth relative curve over A[1/n] when n is nonconstant.

EXAMPLE 7.1. Let us describe Y;(T?) explicitly. First consider triples (a, b, 2)
where ¢r2(z) = 0 and ¢p(z) # 0. These are described by the equations ¢r(z) =y
and ¢r(y) = 0 with y # 0. In other words,

Tz+az? + b0 = Y
T+ay'™ " +by? ' =0.
Eliminating y rewrites this system as the single equation
T+a(Tz+az?+ bzqrz)q*1 +b0(Tz+ az? + bqu)qZ*1 =0.
Another triple (a’, b, 2’) gives rise to an isomorphic Drinfeld module with torsion
point if and only if there exists an invertible u such that o’ = w9 'a, b’ = uqz_lb7

2 =u~tz. So Y1(T?) is the quotient of the above affine scheme by an action of G,,,.
The quotient can be obtained simply by setting z = 1, to obtain

T+a(T+a+b)" +bT+a+b)? ! =0.
So Y1 (T?) is the relative curve defined by this equation in Ai[l/T] = Spec A[1/T)[a, b].

For much more on Drinfeld modular curves, see [Gek86].

7.3. Drinfeld modular varieties and stacks. More generally, given any
r > 1 and nonzero ideal n < A, Drinfeld [Dri74, §5] defined the notion of (full)
level n structure on a rank r Drinfeld A-module, and he proved that the functor
A-schemes — Sets
S +—— {Drinfeld A-modules over S with level n structure}/isomorphism
is representable by an A-scheme Y, provided that n is not too small (Drinfeld assumes

that n is divisible by at least two distinct primes of A). Applying deformation
theory to analogues of formal groups and p-divisible groups, he proved also that
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Y — Spec A, after removing the fibers above primes dividing n, is smooth of relative
dimension r — 1.

Without any restriction on n, one can define a moduli stack % and take its
coarse space Y. Like classical modular curves and Shimura varieties, these can also
be compactified.

EXAMPLE 7.2 ([Dri74, §8]). Suppose that r = 1 and n = (1) (no level structure).
Then % is of relative dimension 0 over Spec A, and its coarse space Y is a finite
A-scheme.

e For A =F [T7, there is only one rank 1 Drinfeld module over C' up to isomorphism
(the Carlitz module). We have Y = Spec A.
e For more general A, define

H := the Hilbert class field of A
Oy = the integral closure of A in H.

Then Y = Spec O, so we have bijections

Y(C) «— {A-embeddings Oy — C} +— {K-embeddings H — C}.

These are principal homogeneous spaces under Pic A ~ Gal(H/K), in accordance
with Theorem 6.5.
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