
Introduction to Drinfeld modules

Bjorn Poonen

Abstract. Our goal is to introduce Drinfeld modules and to explain their
application to explicit class field theory.

Before introducing Drinfeld modules, let us motivate their study by mentioning
some of their applications.

1. Applications

• Explicit class field theory for global function fields (just as torsion of Gm gives
abelian extensions of Q, and torsion of CM elliptic curves gives abelian extensions
of imaginary quadratic fields). Here, global function field means Fp(T ) or a finite
extension.
• Langlands conjectures for GLn over global function fields (Drinfeld modular

varieties play the role of Shimura varieties).
• Modularity of elliptic curves over global function fields: If E over Fp(T ) has split

multiplicative reduction at ∞, then E is dominated by a Drinfeld modular curve.
• Explicit construction of curves over finite fields with many points, as needed

in coding theory, namely reductions of Drinfeld modular curves, which have
easier-to-write-down equations than the classical modular curves.

Only the first of these will be treated in these notes, though we do also give a
very brief introduction to Drinfeld modular curves and varieties. We follow [Hay92]
as primary reference. For many more details about Drinfeld modules, one can consult
the original articles of Drinfeld [Dri74, Dri77] or any of the following: [DH87],
[GHR92], [Gos96], [Lau96], [Lau97], [GPRG97], [Ros02], [Tha04].

2. Analytic theory

2.1. Inspiration from characteristic 0. Let Λ be a discrete Z-submodule
of C of rank r ≥ 0, so there exist R-linearly independent ω1, . . . , ωr such that
Λ = Zω1 + · · ·Zωr. It turns out that the Lie group C/Λ is isomorphic to G(C) for
some algebraic group G over C, as we can check for each value of r:
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r isomorphism of Lie groups G

0 C/Λ ∼−→ C the additive group Ga

1
C/Λ ∼−→ C×

z 7−→ exp(2πiz/ω1)
the multiplicative group Gm

2
C/Λ ∼−→ E(C)

z 7−→ (℘(z), ℘′(z))
an elliptic curve E

(The notation ℘ denotes the Weierstrass ℘-function associated to the lattice Λ; see
[Sil09, VI.3], for instance.)

Cases with r > 2 do not occur, since [C : R] = 2.

2.2. Characteristic p analogues. What is a good analogue of the above in
characteristic p? Start with a smooth projective geometrically integral curve X
over a finite field Fq, and fix a closed point ∞ ∈ X. Let O(X − {∞}) denote the
coordinate ring of the affine curve X − {∞}.

Characteristic 0 ring Characteristic p analogue Example
Z A := O(X − {∞}) Fq[T ]
Q K := FracA Fq(T )
R K∞ := completion at ∞ Fq((1/T ))
C C := completion of K∞

The completions are taken with respect to the ∞-adic absolute value: For nonzero
a ∈ A, define |a| := #(A/a) = qdeg a (and |0| := 0); extend | | to K, its completion
K∞, an algebraic closure K∞, and its completion C, in turn. The field C is
algebraically closed as well as complete with respect to | |. Some authors use the
notation C or C∞ instead of C.

Finite rank Z-submodules of C are just finite-dimensional Fp-subspaces, not so
interesting, so instead consider this:

Definition 2.1. An A-lattice in C is a discrete A-submodule Λ of C of finite
rank, where

rank Λ := dimK(KΛ) = dimK∞(K∞Λ).

If A is a principal ideal domain, such as Fq[T ], then all such Λ arise as follows:

Let {x1, . . . , xr} be a basis for a finite-dimensional K∞-subspace
in C, and let Λ := Ax1 + · · ·+Axr ⊂ C.

Note: In contrast with the characteristic 0 situation, r can be arbitrarily large since
[C : K∞] is infinite.

Theorem 2.2. The quotient C/Λ is analytically isomorphic to C!

This statement can be interpreted using rigid analysis. More concretely, it
means that there exists a power series

e(z) = α0z + α1z
q + α2z

q2

+ · · ·

defining a surjective Fq-linear map C → C with kernel Λ. If we require α0 = 1, then
such a power series e is unique.
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Sketch of proof. Uniqueness follows from the nonarchimedean Weierstrass
preparation theorem, which implies that a convergent power series is determined up
to a constant multiple by its zeros: explicitly, if e(z) exists, then

(2.1) e(z) = z
∏
λ∈Λ
λ 6=0

(
1− z

λ

)
.

(Over C, there would be an ambiguity of multiplication by a function eg(z), but in
the nonarchimedean setting, every invertible entire function is constant!)

If we take (2.1) as a definition, there are several things to check:

• The infinite product converges. (Proof: Since Λ is a discrete subgroup of
a locally compact group K∞Λ, we have λ→∞.)
• e(z) is surjective. (The nonarchimedean Picard theorem says that a

nonconstant entire function omits no values.)
• e(x+ y) = e(x) + e(y). (Proof: Write Λ as an increasing union of finite-

dimensional Fp-subspaces, and e(x) as the limit of the corresponding finite
products. If f(x) is a polynomial whose zeros are distinct and form a group
G under addition, then f(x+y) = f(x)+f(y), because f(x+y)−f(x)−f(y)
vanishes on G×G but is of degree less than #G in each variable.)
• e(cx) = ce(x) for each c ∈ Fq. (Use a proof similar to the preceding, or

argue directly.)
• ker e = Λ. �

Now C/Λ has a natural A-module structure. Carrying this across the isomor-
phism C/Λ→ C gives an exotic A-module structure on C. This is essentially what
a Drinfeld module is: the additive group with a new A-module structure.

For each a ∈ A, the multiplication-by-a map a : C/Λ→ C/Λ corresponds under
the isomorphism to a map φa : C → C making

C/Λ
a //

e o
��

C/Λ

eo
��

C
φa // C

(2.2)

commute.

Proposition 2.3. The map φa is a polynomial!

Proof. Assume that a 6= 0. We have

ker (a : C/Λ→ C/Λ) =
a−1Λ

Λ
,

which is isomorphic to Λ/aΛ = (A/a)r, which is finite of order |a|r. So kerφa should

be e
(
a−1Λ

Λ

)
. Define the polynomial

φa(z) := az
∏

t∈ a−1Λ
Λ −{0}

(
1− z

e(t)

)
.

Then φa is the map making (2.2) commute, because the power series φa(e(z)) and
e(az) have the same zeros and same coefficient of z. �
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The proof of Proposition 2.3 shows also that for any nonzero a ∈ A,

deg φa = #
a−1Λ

Λ
= |a|r.

3. Algebraic theory

3.1. Fq-linear polynomials. Let L be a field containing Fq. A polynomial
f(x) ∈ L[x] is called additive if f(x + y) = f(x) + f(y) in L[x, y], and Fq-linear
if, in addition, f(cx) = cf(x) in L[x] for all c ∈ Fq. Think of such polynomials
as operators that can be composed: For example, each a ∈ L defines an operator
x 7→ ax and τ denotes the Frobenius operator x 7→ xp, so τa is x 7→ (ax)p and τ2 is

x 7→ xp
2

.
Let Ga be the additive group scheme over L, viewed as an Fq-vector space

scheme over L. Endomorphisms of Ga as an Fq-vector space scheme are Fq-linear
by definition:

EndGa = {Fq-linear polynomials in L[x]}

=
{∑n

i=0 aix
qi : ai ∈ L

}
=
{(∑n

i=0 aiτ
i
)

(x) : ai ∈ L
}

=: L{τ};

this is a ring under addition and composition. More specifically, L{τ} is a twisted
polynomial ring, twisted in that the elements a ∈ L do not necessarily commute
with the variable τ : instead, τa = aqτ .

For f ∈ L{τ}, let l.c.(f) denote the leading coefficient an of f ; by convention,
l.c.(0) = 0. Also, if f =

∑n
i=0 aiτ

i, then the derivative of the Fq-linear polynomial
f(x) ∈ L[x] is the constant f ′(0) = a0, which is the “constant term” of f viewed as
a twisted polynomial in L{τ}.

3.2. Drinfeld modules.

Definition 3.1. An A-field is an A-algebra L that is a field; that is, L is a
field equipped with a ring homomorphism ι : A → L. The A-characteristic of L is
charA L := ker ι, a prime ideal of A.

We distinguish two cases:

• L is an extension of K and ι is an inclusion; then charA L = 0. (Example:
C.)
• L is an extension of A/p for some nonzero prime p of A; then charA L = p.

To motivate the following definition, recall that an A-module M is an abelian
group M together with a ring homomorphism A→ EndgroupM .

Definition 3.2. A Drinfeld A-module φ over L is the additive group scheme
Ga with a faithful A-module structure for which the induced action on the tangent
space at 0 is given by ι. More concretely, φ is an injective ring homomorphism

A −→ EndGa = L{τ}
a 7−→ φa

such that φ′a(0) = ι(a) for all a ∈ A.
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Remark 3.3. Many authors explicitly disallow φ to be the composition A
ι→

L ⊂ L{τ}, but we allow it when charA L = 0, since doing so does not seem to break

any theorems. Our requirement that φ be injective does rule out A
ι→ L ⊂ L{τ}

when charA L 6= 0, however; we must rule this out to make Proposition 3.5 below
hold.

It turns out that every Drinfeld A-module over C arises from an A-lattice as in
Section 2. For a more precise statement, see Theorem 3.11.

3.3. Rank. We could define the rank of a Drinfeld module over C as the rank
of the A-lattice it comes from, but it will be nicer to give an algebraic definition
that makes sense over any A-field.

Let φ be a Drinfeld module. For each nonzero a ∈ A, there are nonnegative
integers m(a) ≤M(a) such that we may write

φa = cm(a)τ
m(a) + · · ·+ cM(a)τ

M(a)

with exponents in increasing order and cm(a), cM(a) 6= 0. Then φa(x) as a polynomial

in x has degree qM(a) and each zero has multiplicity qm(a). In terms of the functions
M and m, we will define the rank and height of φ, respectively.

For each closed point p ∈ X, let vp be the p-adic valuation on K normalized
so that vp(a) is the degree of the p-component of the divisor (a); thus vp(K×) =

(deg p)Z. Also, define |a|p := q−vp(a). For example, | |∞ is the absolute value | |
defined earlier.

Example 3.4. If A = Fq[T ], then φ is determined by φT , and we define
r = M(T ). For any nonzero a ∈ A, expanding φa in terms of φT shows that
M(a) = (deg a)r = −rv∞(a).

A similar result holds for arbitrary A:

Proposition 3.5 (Characterization of rank). Let φ be a Drinfeld module over
an A-field L. Then there exists a unique r ∈ Q≥0 such that M(a) = −rv∞(a), or
equivalently deg φa = |a|r, for all nonzero a ∈ A. (Proposition 3.13(a) will imply
that r is an integer.)

Proof. After enlarging L to make L perfect, we may define the ring of twisted
Laurent series L((τ−1)) whose elements have the form

∑
n∈Z `nτ

n with `n = 0 for

sufficiently large positive n; multiplication is defined so that τn` = `q
n

τ . Then
L((τ−1)) is a division ring with a valuation v : L((τ−1))→ Z ∪ {+∞} sending τn

to −n (same proof as for usual Laurent series over a field). Thus φ : A → L{τ}
extends to a homomorphism φ : K → L((τ−1)), and v pulls back to a nontrivial
valuation vK on K. We have vK(a) = −M(a) ≤ 0 for all a ∈ A−{0}, so vK = rv∞
for some r ∈ Q≥0. Then M(a) = −rv∞(a) for all a ∈ A− {0}. �

Define the rank of φ to be r. (This is not analogous to the rank of the group of
rational points of an elliptic curve.)
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3.4. Analogies. Drinfeld modules are 1-dimensional objects, no matter what
the rank is. Comparing with Section 2.1 suggests the following analogies:

rank 0 Drinfeld module←→ Ga
rank 1 Drinfeld module←→ Gm or CM elliptic curve

(if E has CM by O, view its lattice as rank 1 O-module)

rank 2 Drinfeld module←→ elliptic curve

rank ≥ 3 Drinfeld module←→ ? (if only such geometric objects existed. . . )

There is also a higher-dimensional generalization called a t-module [And86].

Remark 3.6. Gekeler [Gek83,Gek91] developed a theory of Drinfeld modules
over finite fields analogous to the theory of abelian varieties over finite fields
developed by Deuring, Tate, Waterhouse, and others.

3.5. Height.

Proposition 3.7. Let φ be a Drinfeld module over an A-field L of nonzero
characteristic p. Then there exists a unique h ∈ Q>0 such that m(a) = hvp(a) for
all nonzero a ∈ A. (Proposition 3.13(b) will imply that h is an integer satisfying
0 < h ≤ r.)

Proof. Enlarge L to make it perfect and extend φ to a homomorphism K →
L((τ)) (twisted Laurent series in τ instead of τ−1) to define a valuation on K. It is
positive on p, hence equal to hvp for some h ∈ Q>0. �

Call h the height of φ. It is analogous to the height of the formal group of an
elliptic curve over a field of characteristic p.

3.6. Drinfeld modules and lattices. For fixed A and L, Drinfeld A-modules
over L form a category, with morphisms as follows:

Definition 3.8. A morphism f : φ→ ψ of Drinfeld modules over L is an element
of EndGa such that f ◦ φa = ψa ◦ f for all a ∈ A: i.e.,

(3.1) Ga
φa //

f

��

Ga

f

��
Ga

ψa // Ga
commutes.

An isogeny between Drinfeld modules φ and ψ is a surjective morphism f with
finite kernel, or equivalently (since Ga is 1-dimensional), a nonzero morphism. If
such an f exists, φ and ψ are called isogenous.

Over C, there is no nonzero algebraic homomorphism from Gm to an elliptic
curve; analogously:

Proposition 3.9. Isogenous Drinfeld modules have the same rank.

Proof. If f : φ→ ψ is an isogeny between Drinfeld modules of rank r and r′,
respectively, then (3.1) gives

(deg f)|a|r = |a|r
′
(deg f)

for all a ∈ A, so r = r′. �
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Because of Proposition 3.9, we fix the rank in the following.

Definition 3.10. A morphism of rank r A-lattices Λ,Λ′ in C is a number c ∈ C
such that cΛ ⊆ Λ′.

Theorem 3.11. For each r ≥ 0, the analytic construction

{A-lattices in C of rank r} ∼−→ {Drinfeld modules over C of rank r}

of Section 2 is an equivalence of categories.

Sketch of proof. Given a rank r Drinfeld module φ over C, choose a non-
constant a ∈ A, and consider a power series

e(z) = z + α1z
q + α2z

q2

+ · · ·

with unknown coefficients αi. The condition e(az) = φa(e(z)) determines the αi
uniquely; solve for each αi in turn. Check that the resulting power series converges
everywhere, and that its kernel is an A-lattice in C giving rise to φ. The proof of
Proposition 2.3 shows more generally that a morphism of A-lattices corresponds
to a polynomial map C → C defining a morphism of Drinfeld modules, and vice
versa. �

In particular, homothety classes of rank r A-lattices in C are in bijection with
isomorphism classes of rank r Drinfeld modules over C.

3.7. Torsion points. The additive polynomial φa plays the role of the multi-
plication-by-n map on an elliptic curve, or the nth power map on Gm.

For a 6= 0, the a-torsion subscheme of a Drinfeld module φ is φ[a] := kerφa,
viewed as subgroup scheme of Ga. It is a finite group scheme of order deg φa =
qM(a) = |a|r. Let φL denote the additive group of L viewed as an A-module via φ.
Then φ[a](L) is an A-submodule of φL, but its order may be less than |a|r if L is
not algebraically closed or φ[a] is not reduced.

More generally, if I is a nonzero ideal of A, let φ[I] be the scheme-theoretic
intersection

⋂
a∈I φ[a]. Equivalently, one can define φI as the monic generator of

the left ideal of L{τ} generated by {φa : a ∈ I}, and define φ[I] := kerφI . To
understand the structure of φ[I](L), we need the following basic lemma about
modules over Dedekind rings.

Lemma 3.12. Let A be a Dedekind ring. Let D be an A-module.

(a) If `1, . . . , `n are distinct nonzero prime ideals of A, and e1, . . . , en ∈ Z≥0, then

D[`e11 · · · `enn ] ' D[`e11 ]⊕ · · · ⊕D[`enn ].

(b) If D is divisible, then for each fixed nonzero prime ` of A, the A/`e-module
D[`e] is free of rank independent of e.

Proof. Localize to assume that A is a discrete valuation ring. Then (a)
is trivial. In proving (b), we write ` also for a generator of `. Since D[`] is
an A/`-vector space, we can choose a free A-module F and an isomorphism

i1 : `−1F/F
∼→ D[`]. We construct isomorphisms ie : `−eF/F

∼→ D[`e] for all
e ≥ 1 by induction: given the isomorphism ie, use divisibility of D to lift ie to a
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homomorphism ie+1 : `−(e+1)F/F → D[`e+1] fitting in a commutative diagram with
exact rows

0 // `−1F/F //

i1

��

`−(e+1)F/F
` //

ie+1

��

`−eF/F //

ie

��

0

0 // D[`] // D[`e+1]
` // D[`e] // 0.

The diagram shows that ie+1 is an isomorphism too. �

Proposition 3.13. Let φ be a rank r Drinfeld module over an algebraically
closed A-field L.

(a) If I is an ideal of A such that charA L - I, then the A/I-module φ[I](L) is free
of rank r. The same holds even if L is only separably closed.

(b) If charA L = p 6= 0, let h be the height of φ; then the A/pe-module φ[pe](L) is
free of rank r − h.

Proof. When L is algebraically closed, φa : L → L is surjective for every
nonzero a ∈ A. In other words, the A-module φL is divisible. By Lemma 3.12, the
claims for algebraically closed L follow if for each nonzero prime ` of A, there exists
e ≥ 1 such that

#φ[`e](L) =

{
#(A/`e)r, if ` 6= charA L;

#(A/`e)r−h, if ` = charA L.

The class group of A is finite, so we may choose e so that `e is principal, say generated
by a. If ` 6= charA L, then φa is separable, so #φ[`e](L) = deg φa = |a|r = #(A/a)r.
If ` = charA L, then each zero of φa has multiplicity qm(a) = qhvp(a) = #(A/a)h, so
#φ[`e](L) = #(A/a)r−h.

Now suppose that L is only separably closed, with algebraic closure L. If
charA L - I, the proof above shows that φ[I](L) consists of L-points, so the structure
of φ[I](L) is the same. �

Corollary 3.14. If φ is a rank r Drinfeld module over any A-field L, and I
is a nonzero ideal of A, then deg φI = #φ[I] = #(A/I)r.

Proof. The underlying scheme of φ[I] is SpecL[x]/(φI(x)), so #φ[I] = deg φI .
For the second equality, assume without loss of generality that L is algebraically
closed. For a group scheme G, let G0 denote its connected component. Define
m(I) := min{m(a) : a ∈ I − {0}}. If a ∈ A − {0}, then φ[a]0 = ker τm(a), so
φ[I]0 = ker τm(I). Thus #φ[I]0 = qm(I), which is multiplicative in I. On the other
hand, Proposition 3.13 shows that #φ[I](L) is multiplicative in I. Thus the integers
#φ[I] = #φ[I]0 · #φ[I](L) and #(A/I)r are both multiplicative in I. They are
equal for any power of I that is principal, so they are equal for I. �

Corollary 3.15. Let φ be a rank 1 Drinfeld module over a field L of nonzero
A-characteristic p. Then φp = τdeg p.

Proof. Without loss of generality, L is algebraically closed. Since 0 < h ≤
r = 1, we have h = r = 1. By Proposition 3.13(b), φ[p](L) = 0. On the other hand,
φp is monic, by the general definition of φI . The previous two sentences show that
φp is a power of τ . By Corollary 3.14, deg φp = #(A/p) = qdeg p = deg τdeg p, so
φp = τdeg p. �
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Corollary 3.16. In the context of Corollary 3.15, if p = (π) for some π ∈ A,
then φπ = cτdeg p for some c ∈ L×.

Proof. By definition, φp is the monic generator of the left ideal generated by
{φa : a ∈ I}, which is the left ideal generated by φπ. �

3.8. Tate modules. Let ` ⊂ A be a prime ideal not equal to 0 or charA L.
Define the completions A` := lim←−nA/`

n and K` := FracA`. Let Ls be a separable

closure of L. Then the Tate module

T`φ := Hom(K`/A`,
φLs)

is a free A`-module of rank r.
Its applications are analogous to those for elliptic curves:

• The endomorphism ring Endφ is a projective A-module of rank ≤ r2.
In particular, if r = 1, then Endφ = A and Autφ = A× = F×q .
• The Galois action on torsion points yields an `-adic representation

ρ` : Gal(Ls/L) −→ AutA`
(T`φ) ' GLr(A`).

4. Reduction theory

4.1. Drinfeld modules over rings. So far we considered Drinfeld modules
over A-fields. One can also define Drinfeld modules over arbitrary A-algebras R or
even A-schemes. In such generality, the underlying Fq-vector space scheme need only
be locally isomorphic to Ga, so it could be the Fq-vector space scheme associated to
a nontrivial line bundle on the base.

To avoid this complication, let us assume that PicR = 0; this holds if the
A-algebra R is a principal ideal domain, for instance. Then a Drinfeld A-module
over R is given by a ring homomorphism

A −→ EndGa,R = R{τ}
a 7−→ φa

such that φ′a(0) = a in R for all a ∈ A and l.c.(φa) ∈ R× for all nonzero a ∈ A. The
last requirement, which implies injectivity of φ (if R is nonzero), guarantees that for
any maximal ideal m ⊂ R, reducing all the φa modulo m yields a Drinfeld module
over R/m of the same rank.

4.2. Good and stable reduction. Let us now specialize to the following
setting:

R : an A-discrete valuation ring

(a discrete valuation ring with a ring homomorphism A→ R)

m : the maximal ideal of R

L := FracR, the fraction field

v : L→ Z ∪ {+∞}, the discrete valuation

F := R/m, the residue field

φ : a Drinfeld module over L of rank r ≥ 1.

Then
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• φ has good reduction if φ is isomorphic over L to a Drinfeld module over
R, that is, if after replacing φ by an isomorphic Drinfeld module over L,
all the φa have coefficients in R, and l.c.(φa) ∈ R× for all nonzero a ∈ A.

• φ has stable reduction if after replacing φ by an isomorphic Drinfeld module
over L, all the φa have coefficients in R, and a 7→ (φa mod m) is a Drinfeld
module over F of positive rank.

Example 4.1. Let A = Fq[T ]. A rank 2 Drinfeld module over L is determined
by

φT = T + c1τ + c2τ
2;

here c1, c2 ∈ L and c2 6= 0. Isomorphic Drinfeld modules are given by

u−1φT u = T + uq−1c1τ + uq
2−1c2τ

2

for any u ∈ L×. The condition for stable reduction is satisfied if and only if

v(uq−1c1) ≥ 0 and v(uq
2−1c2) ≥ 0, with at least one of them being an equality. This

condition uniquely specifies v(u) ∈ Q. An element u of this valuation might not
exist in L, but u can be found in a suitable ramified finite extension of L.

Theorem 4.2 (Potential stability). Let φ be a Drinfeld module over L of rank
r ≥ 1. There exists a finite ramified extension L′ of L such that φ over L′ has stable
reduction.

Proof. Choose generators a1, . . . , am of the ring A. As in Example 4.1, find
L′ and u ∈ L′ of valuation “just right” so that all coefficients of u−1φaiu for all i
have nonnegative valuation, and there exist i and j > 0 such that the coefficient of
τ j in u−1φaiu has valuation 0. �

Corollary 4.3. Let φ be a rank 1 Drinfeld module over L. If there exists
a ∈ A such that deg φa > 1 and l.c.(φa) ∈ R×, then φ is a Drinfeld module over R.

Note: Saying that φ is a Drinfeld module over R is stronger than saying that φ is
isomorphic over L to a Drinfeld module over R, which would be saying that φ has
good reduction.

Proof. By enlarging R and L, we may assume that φ has stable reduction,
so there exists u such that (u−1φu) mod m is a Drinfeld module of positive rank.
This reduction has rank at most the rank of φ, so it too has rank 1, so φa and
(u−1φau) mod m have the same degree. Thus v(l.c.(φa)) and v(l.c.(u−1φau)) are 0,
so v(udeg φa−1) = 0, so v(u) = 0. Now u−1φu is a Drinfeld module of rank 1 over R,
so φ is too. �

5. Example: The Carlitz module

The Drinfeld module analogue of Gm is the Carlitz module

φ : A = Fq[T ] −→ K{τ}
T 7−→ T + τ

(i.e., φT (x) = Tx+ xq). This is a Drinfeld module of rank 1 since

deg φT = q = |T |1.
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Define

[n] := T q
n

− T
[n]! := [1] [2] · · · [n]

e(z) :=
∑
n≥0

zq
n

/[n]!

π :=
∏
n≥1

(
1− [n]

[n+ 1]

)
∈ K∞

i := q−1
√
−[1] ∈ C.

Carlitz [Car35], long before Drinfeld, proved that e induces an isomorphism

C/πiA −→ (C with the Carlitz A-module action).

This is analogous to exp: C/2πiZ ∼→ C×.

Theorem 5.1 ([Car38, Theorem 9]). Fix a ∈ A with a 6= 0. Then K(φ[a]) is
an abelian extension of K, and Gal(K(φ[a])/K) ' (A/a)×.

Theorem 5.1 is analogous to Gal(Q(µn)/Q)
∼→ (Z/nZ)×, and can be proved in

the same way.

Theorem 5.2 (Analogue of Kronecker–Weber, implicit in [Hay74, §7] and
[Dri74, §8]). Every abelian extension of K in which the place ∞ splits completely
is contained in K(φ[a]) for some a.

6. Class field theory

The theory of elliptic curves with complex multiplication leads to an explicit
construction of the abelian extensions of an imaginary quadratic number field. In
this section, we explain work of Drinfeld [Dri74] and Hayes [Hay79] that adapts this
classical theory to construct the abelian extensions of an arbitrary global function
field K = FracA.

6.1. The class group. When A is not a principal ideal domain, class field
theory is more complicated than Theorem 5.2 would suggest. Introduce the following
notation:

I := the group of nonzero fractional A-ideals in K

P := {(c) : c ∈ K×}, the group of principal fractional A-ideals

PicA := I/P, the class group of A.

For a nonzero fractional ideal I, let [I] denote its class in PicA.

6.2. Rank 1 Drinfeld modules over C.

Proposition 6.1. We have bijections

PicA
∼−→ {rank 1 A-lattices in C}

homothety

∼−→ {rank 1 Drinfeld modules over C}
isomorphism

[I] 7−→ (homothety class of I in C)
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Proof. The second bijection comes from the r = 1 case of Theorem 3.11. Thus
we need only consider the first map.

Surjectivity: Any rank 1 A-lattice Λ in C can be scaled so that KΛ = K. Then
Λ is a nonzero fractional ideal I.

Injectivity: I is homothetic to I ′ in C if and only if there exists c ∈ K× such
that I = cI ′. �

Corollary 6.2. Every rank 1 Drinfeld module over C is isomorphic to one
defined over K∞.

Proof. When the lattice Λ is contained in K∞, the power series e and polyno-
mials φa constructed in Section 2 will have coefficients in K∞. �

6.3. The action of ideals on Drinfeld modules. The bijection between
PicA and the set of isomorphism classes of rank 1 Drinfeld modules over C is
analytic, not canonical from the algebraic point of view. But a weaker form of this
structure exists algebraically, as will be described in Theorem 6.5.

Fix any A-field L. If I is a nonzero ideal of A and φ is a Drinfeld module over
any A-field L, we can define a new Drinfeld module I ∗ φ over L isomorphic to the
quotient of Ga by φ[I]; more precisely, there exists a unique Drinfeld module ψ over
L such that φI : Ga → Ga is an isogeny φ→ ψ, and we define I ∗ φ := ψ.

Suppose that I = (a) for some nonzero a ∈ A. Then φI is φa made monic; that
is, if u := l.c.(φa), then φI = u−1φa. Therefore φI is the composition

φ
φa−→ φ

u−1

−→ u−1φu,

so (a) ∗ φ = u−1φu, which is isomorphic to φ, but not necessarily equal to φ. This
suggests that we define (a−1) ∗ φ = uφu−1. Finally, every I ∈ I is (a−1)J for some
a ∈ A− {0} and integral ideal J , and we define I ∗ φ = u(J ∗ φ)u−1. The following
is now easy to check:

Proposition 6.3. The operation ∗ defines an action of I on the set of Drinfeld
modules over L. It induces an action of PicA on the set of isomorphism classes of
Drinfeld modules over L.

Example 6.4. Suppose that φ is over C, and I is a nonzero integral ideal of A.
If we identify φ analytically with C/Λ, then φ[I] ' I−1Λ/Λ, so

I ∗ (C/Λ) ' (C/Λ)/(I−1Λ/Λ) ' C/I−1Λ.

Let Y (C) be the set of isomorphism classes of rank 1 Drinfeld A-modules over
C.

Theorem 6.5. The set Y (C) is a principal homogeneous space under the action
of PicA.

Proof. This follows from Proposition 6.1 and the calculation in Example 6.4
showing that the corresponding action of I on lattices is by multiplication by
I−1. �

6.4. Sgn-normalized Drinfeld modules. We will eventually construct abe-
12lian extensions of a global function field K by adjoining the coefficients appearing
in rank 1 Drinfeld modules. For this, it will be important to have actual Drinfeld
modules, and not just isomorphism classes of Drinfeld modules. Therefore we will
choose a (not quite unique) “normalized” representative of each isomorphism class.
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Let F∞ be the residue field of ∞ ∈ X. Since ∞ is a closed point, F∞ is a
finite extension of Fq. A choice of uniformizer π ∈ K∞ defines an isomorphism
K∞ ' F∞((π)), and we define sgn as the composition

K×∞
∼→ F∞((π))×

l.c.
� F×∞.

The function sgn is an analogue of the classical sign function sgn: R× → {±1}.
From now on, we fix (A, sgn).

Definition 6.6. A rank 1 Drinfeld module φ over L is sgn-normalized if there
exists an Fq-algebra homomorphism η : F∞ → L such that l.c.(φa) = η(sgn a) for all
nonzero a ∈ A.

Example 6.7. Suppose that A = Fq[T ] and sgn(1/T ) = 1. For a Drinfeld
A-module φ over L, the following are equivalent:

• φ is sgn-normalized;
• l.c.(φT ) = 1;
• φT = T + τ (the Carlitz module).

Theorem 6.8. Every rank 1 Drinfeld module φ over C is isomorphic to a
sgn-normalized Drinfeld module. More precisely, the set of sgn-normalized Drinfeld
modules isomorphic to φ is a principal homogeneous space under F×∞/F×q .

Proof. When A is generated over Fq by one element T , then it suffices to
choose u so that u−1φTu is monic. The idea in general is that even if A is not
generated by one element, its completion will be (topologically).

First, extend φ to a homomorphism K → C((τ−1)) as in the proof of Proposi-
tion 3.5. The induced valuation on K is v∞, so there exists a unique extension to
a continuous homomorphism K∞ → C((τ−1)), which we again denote by a 7→ φa.
Also, l.c. extends to a map C((τ−1))× → C× (not a homomorphism). Let π ∈ K∞
be a uniformizer with sgn(π) = 1. Replacing φ by u−1φu multiplies l.c.(φπ) by
u|π|−1, so we can choose u ∈ C× to make l.c.(φπ) = 1.

We claim that the new φ is sgn-normalized. Define η : F∞ → C by η(c) :=
l.c.(φc). For any a = cπn ∈ K×∞, with c ∈ F∞ and n ∈ Z, we have

l.c.(φa) = l.c.(φcφ
n
π) = l.c.(φc) = η(c) = η(sgn a),

as required.
The u was determined up to a (#F∞−1)th root of unity, but Autφ = A× = F×q ,

so u−1φu depends only on the image of u modulo F×q . This explains the principal
homogeneous space claim. �

Introduce the following notation:

Y +(L) := the set of sgn-normalized rank 1 Drinfeld A-modules over L

P+ := {(c) : c ∈ K× and sgn c = 1} ⊆ P
Pic+A := I/P+, the narrow class group of A.

Lemma 6.9. If φ ∈ Y +(L), then StabI φ = P+.

Proof. The following are equivalent for a nonzero integral ideal I not divisible
by charA φ:

• I ∗ φ = φ;
• φIφa = φaφI for all a ∈ A;
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• φI ∈ Endφ;
• φI ∈ A;
• φI = φb for some b ∈ A.

In particular, if I is an integral ideal in P+, then I = (b) for some b ∈ A with
sgn b = 1, so φI = φb, so I ∈ StabI φ. Using weak approximation, one can show
that the integral ideals in P+ generate the group P+, and that a general ideal I can
be multiplied by an ideal in P+ to make it integral and not divisible by charA φ.

Thus it remains to show that when I is an integral ideal not divisible by
charA φ, the condition φI = φb implies I ∈ P+. Suppose that φI = φb. Taking
kernels yields φ[I] = φ[b]. Since charA φ - I, the group scheme φ[I] is reduced,
so charA φ - b. By Proposition 3.13, I = AnnA φ[I] = AnnA φ[b] = (b). Also,
η(sgn b) = l.c.(φb) = l.c.(φI) = 1, so sgn b = 1. Thus I ∈ P+. �

Theorem 6.10. The action of I on Drinfeld modules makes Y +(C) a principal
homogeneous space under Pic+A.

Proof. Lemma 6.9 implies that Y +(C) is a disjoint union of principal homo-
geneous spaces under Pic+A, so it suffices to check that Y +(C) and # Pic+A are
finite sets of the same size. Theorems 6.8 and 6.5 imply

#Y +(C) = #Y (C) ·#(F×∞/F×q ) = # PicA ·#(F×∞/F×q ).

On the other hand, the exact sequence

1 −→ P/P+ −→ I/P+ −→ I/P −→ 1

and the isomorphism P/P+ ∼→ F×∞/F×q induced by sgn show that

# Pic+A = # PicA ·#(F×∞/F×q ). �

6.5. The narrow Hilbert class field. Choose φ ∈ Y +(C). Define

H+ := K(all coefficients of φa for all a ∈ A) ⊆ C.

Then φ is a Drinfeld module over H+, and so is I ∗φ for any I ∈ I. By Theorem 6.10,
these are all the objects in Y +(C), so H+ is also the extension of K generated
by the coefficients of φa for all φ ∈ Y +(C) and all a ∈ A. In particular, H+ is
independent of the choice of φ. It is called the narrow Hilbert class field of (A, sgn).

Theorem 6.11.

(a) The field H+ is a finite abelian extension of K.
(b) The extension H+ ⊇ K is unramified above every finite place (“finite” means

not ∞).
(c) We have Gal(H+/K) ' Pic+A.

Proof.

(a) The group Aut(C/K) acts on Y +(C), so it maps H+ to itself. Also, H+ is
finitely generated over K. These imply that H+ is a finite normal extension of
K.

By Corollary 6.2, each rank 1 Drinfeld module over C is isomorphic to
one over K∞, and it can be made sgn-normalized over the field F obtained by
adjoining to K∞ the (#F∞ − 1)th root of some element. Then H+ ⊂ F . On
the other hand, the extensions K ⊆ K∞ ⊆ F are separable, so H+ is separable
over K.
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The automorphism group of Y +(C) as a principal homogeneous space under
Pic+A equals Pic+A, so we have an injective homomorphism

χ : Gal(H+/K) ↪→ Aut Y +(C) ' Pic+A.

Thus Gal(H+/K) is a finite abelian group.
(b) Let B+ be the integral closure of A in H+. Let P ⊂ B+ be a nonzero

prime ideal, lying above p ⊂ A. Let FP = B+/P . By Corollary 4.3, each
φ ∈ Y +(H+) = Y +(C) is a Drinfeld module over the localization B+

P , so there
is a reduction map

ρ : Y +(H+)→ Y +(FP ).

By Lemma 6.9, Pic+A acts faithfully on the source and target. Moreover, the
map ρ is (Pic+A)-equivariant, and Y +(H+) is a principal homogeneous space
under Pic+A by Theorem 6.10, so ρ is injective.

If an automorphism σ ∈ Gal(H+/K) belongs to the inertia group at P ,
then σ acts trivially on Y +(FP ), so σ acts trivially on Y +(H+), so σ = 1.
Thus H+ ⊇ K is unramified at P .

(c) Let Frobp := FrobP ∈ Gal(FP /Fp) ↪→ Gal(H+/K) be the Frobenius automor-
phism. The key point is the formula

Frobp φ = p ∗ φ

for any φ ∈ Y +(FP ); let us now prove this. By definition, if ψ := p ∗ φ, then
ψaφp = φpφa for all a ∈ A. By Corollary 3.15, φp = τdeg p, so ψaτ

deg p =
τdeg pφa. Compare coefficients; since τdeg p acts on FP as Frobp, we obtain
ψ = Frobp φ.

Since Y +(H+)→ Y +(FP ) is injective and (Pic+A)-equivariant, it follows
that Frobp acts on Y +(H+) too as φ 7→ p ∗φ. Thus χ : Gal(H+/K) ↪→ Pic+A

maps Frobp to the class of p in Pic+A. Such classes generate Pic+A, so χ is
surjective. �

6.6. The Hilbert class field. Because of the exact sequence

0 −→ P/P+ −→ Pic+A −→ PicA −→ 0,

the extension H+ ⊇ K decomposes into two abelian extensions

H+

P/P+

H

PicA

K

with Galois groups as shown. The map of sets Y +(C) � Y (C) is compatible with
the surjection of groups Pic+A� PicA acting on the sets. By Corollary 6.2, each
element of Y (C) is represented by a Drinfeld module over K∞, so the decomposition
group D∞ ⊆ Gal(H+/K) acts trivially on Y (C). Thus D∞ ⊆ P/P+. In other
words, ∞ splits completely in H ⊇ K.

The Hilbert class field HA of A is defined as the maximal unramified abelian
extension of K in which ∞ splits completely. Thus H ⊆ HA. On the other hand,
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Gal(H/K) ' PicA ' Gal(HA/K), the latter isomorphism coming from class field
theory. Hence H = HA.

6.7. Ray class fields. In this section, we generalize the constructions to obtain
all the abelian extensions of K, even the ramified ones. Introduce the following
notation:

m : a nonzero ideal of A

Im := the subgroup of I generated by primes not dividing m

Pm := {(c) : c ∈ K and c ≡ 1 mod m}
P+
m := {(c) : c ∈ K and sgn c = 1 and c ≡ 1 mod m}

PicmA := Im/Pm, the ray class group modulo m of A

Pic+
mA := Im/P+

m , the narrow ray class group modulo m of (A, sgn)

Y +
m (C) := {(φ, λ) : φ ∈ Y +(C) and λ generates the A/m-module φ[m](C)}
H+

m := H+(λ) for any (φ, λ) ∈ Y +
m (C)

(the narrow ray class field modulo m of (A, sgn))

Hm := the subfield of H+
m fixed by Pm/P+

m

(the ray class field modulo m of A).

Arguments similar to those in previous sections show the following:

Theorem 6.12.

(a) There is an action of Im on Y +
m (C) making Y +

m (C) a principal homogeneous
space under Pic+

mA.
(b) The field H+

m is a finite abelian extension of K, unramified outside m, and
Gal(H+

m/K) ' Pic+
mA.

(c) The extension Hm is the ray class field modulo m of A as classically defined,
with Gal(Hm/K) ' PicmA.

6.8. The maximal abelian extension. Theorem 6.12 implies that
⋃

mHm

equals Kab,∞, the maximal abelian extension of K in which ∞ splits completely.
Finally, if ∞′ is a second closed point of X, then the compositum Kab,∞Kab,∞′ is
the maximal abelian extension of K.

6.9. Example of an explicit Hilbert class field. We follow [Hay91, Ex-
ample 3]; see [Hay91,DH94] for other examples similar to this one.

Let q = 2. Let X be the elliptic curve over F2 associated to the equation
y2 + y = x3. Let ∞ be the point at infinity on X. Then A = F2[x, y]/(y2 + y − x3).
Since F×∞ = {1}, there is only one possible sgn, and P/P+ ' F×∞/F×q ' {1}, so

Pic+A ' PicA ' Pic0X ' X(F2), which is of order 3. Thus H+ = H and
[H : K] = 3.

Our goal is to use Drinfeld modules to find an explicit equation defining H as an
extension of K. By definition, to give a sgn-normalized rank 1 Drinfeld A-module
over a given field extension L of K is to give elements a, c1, c2 ∈ L such that the
elements

φx = x+ aT + T 2

φy = y + c1T + c2T
2 + T 3
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of L{τ} satisfy φxφy = φyφx and φ2
y + φy = φ3

x. In fact, the second condition is

redundant: if φx commutes with φy, then φx commutes with φ2
y + φy − φ3

x, but in
L{τ} if an element with nonzero constant term commutes with an element with
zero constant term, the second element is 0, as one sees by equating coefficients.

Thus the only condition is φxφy = φyφx, which amounts to the system

xc1 + ay2 = ay + c1x
2

xc2 + ac21 + y4 = y + c1a
2 + c2x

4

x+ ac22 + c41 = c1 + c2a
4 + x8

a+ c42 = c2 + a8

in the unknowns a, c1, c2. The first two equations let us eliminate c1 and c2 in turn
(remember that x and y are constants in K), so we are left with two polynomials in
K[a] that must vanish. Their gcd turns out to be a3 +(x2 +x)a2 +(x+1)2a+(x+1)4,
so H is the extension of K generated by a root of this cubic polynomial.

Remark 6.13. One could also find an equation for H by working analytically,
just as one can use lattices in C to compute CM j-invariants numerically. In both
settings, the result can be made rigorous by invoking integrality properties.

Remark 6.14. Yet another way to find H would be to use geometric class field
theory: Let F be the Frobenius endomorphism of X; then the extension of function

fields H ⊇ K arises from the finite étale covering X
F−1−→ X.

Similar calculations can be done when deg∞ > 1, but they are more compli-
cated.

7. Drinfeld modular varieties

7.1. Classical modular curves. The classical modular curve Y (1) is a coarse
moduli space whose points over any algebraically closed field k are in bijection with
isomorphism classes of elliptic curves over k. Over C, the analytic description of
elliptic curves as C/Λ with Λ = Zτ + Z for some τ ∈ C− R shows that

Y (1)(C) ' Γ\Ω
where Ω := C − R (the union of the upper and lower half planes in C) and
Γ := GL2(Z). (Equivalently, one could replace Ω with the upper half plane, and Γ
by the index-2 subgroup SL2(Z), but our formulation will be easier to adapt.)

Similarly, the modular curve Y1(N) is a coarse moduli space whose k-points
over any algebraically closed field k of characteristic not dividing N are in bijection
with isomorphism classes of pairs (E,P ) where E is an elliptic curve over k, and
P ∈ E(k) is a point of exact order N . One can extend this description to define a
functor on Z[1/N ]-schemes, and this functor is representable by a smooth relative
affine curve over Z[1/N ] once N ≥ 4. Over C, one has

Y1(N)(C) ' Γ1(N)\Ω
where

Γ1(N) :=

{(
1 ∗
0 ∗

)
∈ GL2(Z)

}
.

(Since we are working in GL2(Z) instead of SL2(Z), it is not OK to replace the lower
right * with 1.)
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7.2. Drinfeld modular curves. Elliptic curves over C are described analyti-
cally by rank 2 lattices, so elliptic curves are analogous to rank 2 Drinfeld modules.
Drinfeld modular curves classify rank 2 Drinfeld modules with level structure.

For simplicity, let us assume that A = Fq[T ]. Each rank 2 Drinfeld module has
the form

φ(a,b) : A −→ L{τ}
T 7−→ T + aτ + bτ2

for some a ∈ L and b ∈ L×. The definition of morphism shows that φ(a,b) ' φ(a′,b′)

if and only if there exists u ∈ L× such that a′ = uq−1a and b′ = uq
2−1b. So

j := aq+1/b is invariant under isomorphism, like the j-invariant of an elliptic curve.
The Drinfeld modular curve Y (1) classifying rank 2 Drinfeld modules with-

out level structure is a coarse moduli space isomorphic to A1 with coordinate j.
Analytically,

Y (1)(C) ' Γ\Ω
where Ω := C −K∞ (the Drinfeld upper half plane) and Γ := GL2(A).

Similarly, for each nonzero n ∈ A, the Drinfeld modular curve Y1(n) classifies
rank 2 Drinfeld modules equipped with a torsion point of exact order n. One can
make this more precise by specifying a functor on A[1/n]-schemes. The functor is
representable by a smooth relative curve over A[1/n] when n is nonconstant.

Example 7.1. Let us describe Y1(T 2) explicitly. First consider triples (a, b, z)
where φT 2(z) = 0 and φT (z) 6= 0. These are described by the equations φT (z) = y
and φT (y) = 0 with y 6= 0. In other words,

Tz + azq + bzq
2

= y

T + ayq−1 + byq
2−1 = 0.

Eliminating y rewrites this system as the single equation

T + a(Tz + azq + bzq
2

)q−1 + b(Tz + azq + bzq
2

)q
2−1 = 0.

Another triple (a′, b′, z′) gives rise to an isomorphic Drinfeld module with torsion

point if and only if there exists an invertible u such that a′ = uq−1a, b′ = uq
2−1b,

z′ = u−1z. So Y1(T 2) is the quotient of the above affine scheme by an action of Gm.
The quotient can be obtained simply by setting z = 1, to obtain

T + a(T + a+ b)q−1 + b(T + a+ b)q
2−1 = 0.

So Y1(T 2) is the relative curve defined by this equation in A2
A[1/T ] = SpecA[1/T ][a, b].

For much more on Drinfeld modular curves, see [Gek86].

7.3. Drinfeld modular varieties and stacks. More generally, given any
r ≥ 1 and nonzero ideal n ≤ A, Drinfeld [Dri74, §5] defined the notion of (full)
level n structure on a rank r Drinfeld A-module, and he proved that the functor

A-schemes −→ Sets

S 7−→ {Drinfeld A-modules over S with level n structure}/isomorphism

is representable by an A-scheme Y , provided that n is not too small (Drinfeld assumes
that n is divisible by at least two distinct primes of A). Applying deformation
theory to analogues of formal groups and p-divisible groups, he proved also that
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Y → SpecA, after removing the fibers above primes dividing n, is smooth of relative
dimension r − 1.

Without any restriction on n, one can define a moduli stack Y and take its
coarse space Y . Like classical modular curves and Shimura varieties, these can also
be compactified.

Example 7.2 ([Dri74, §8]). Suppose that r = 1 and n = (1) (no level structure).
Then Y is of relative dimension 0 over SpecA, and its coarse space Y is a finite
A-scheme.

• For A = Fq[T ], there is only one rank 1 Drinfeld module over C up to isomorphism
(the Carlitz module). We have Y = SpecA.
• For more general A, define

H := the Hilbert class field of A

OH := the integral closure of A in H.

Then Y = SpecOH , so we have bijections

Y (C) ←→ {A-embeddings OH → C} ←→ {K-embeddings H → C}.

These are principal homogeneous spaces under PicA ' Gal(H/K), in accordance
with Theorem 6.5.
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