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ABSTRACT

Consensus is one of the most thoroughly studied problems in dis-

tributed computing, yet there are still complexity gaps that have

not been bridged for decades. In particular, in the classical message-

passing setting with processes’ crashes, since the seminal works

of Bar-Joseph and Ben-Or [PODC 1998] and Aspnes and Waarts

[SICOMP 1996, JACM 1998] in the previous century, there is still a

fundamental unresolved question about communication complexity

of fast randomized Consensus against a (strong) adaptive adversary

crashing processes arbitrarily online. The best known upper bound

on the number of communication bits is Θ( 𝑛3/2√
log𝑛
) per process,

while the best lower bound is Ω(1). This is in contrast to random-

ized Consensus against a (weak) oblivious adversary, for which

time-almost-optimal algorithms guarantee amortized𝑂 (1) commu-

nication bits per process. We design an algorithm against adaptive

adversary that reduces the communication gap by nearly linear

factor to 𝑂 (
√
𝑛 · polylog 𝑛) bits per process, while keeping almost-

optimal (up to factor 𝑂 (log3 𝑛)) time complexity 𝑂 (
√
𝑛 · log5/2 𝑛).

More surprisingly, we show this complexity indeed can be low-

ered further, but at the expense of increasing time complexity, i.e.,

there is a trade-off between communication complexity and time

complexity. More specifically, our main Consensus algorithm al-

lows to reduce communication complexity per process to any value

from polylog 𝑛 to 𝑂 (
√
𝑛 · polylog 𝑛), as long as Time × Commu-

nication = 𝑂 (𝑛 · polylog 𝑛). Similarly, reducing time complexity

requires more random bits per process, i.e., Time × Randomness

= 𝑂 (𝑛 · polylog 𝑛).
Our parameterized consensus solutions are based on a few newly

developed paradigms and algorithms for crash-resilient computing,

interesting on their own. The first one, called a Fuzzy Counting, pro-

vides for each process a number which is in-between the numbers

of alive processes at the end and in the beginning of the counting.

Our deterministic Fuzzy Counting algorithm works in 𝑂 (log3 𝑛)
rounds and uses only 𝑂 (polylog 𝑛) amortized communication bits

per process, unlike previous solutions to counting that required

Ω(𝑛) bits. This improvement is possible due to a new Fault-tolerant

Gossip solution with𝑂 (log3 𝑛) rounds using only𝑂 ( |R| ·polylog 𝑛)
communication bits per process, where |R | is the length of the ru-

mor binary representation. It exploits distributed fault-tolerant
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divide-and-conquer idea, in which processes run a Bipartite Gossip

algorithm for a considered partition of processes. To avoid passing

many long messages, processes use a family of small-degree com-

pact expanders for local signaling to their overlay neighbors if they

are in a compact (large and well-connected) party, and switch to a

denser overlay graph whenever local signalling in the current one

is failed.

CCS CONCEPTS

• Theory of computation→ Distributed algorithms.

KEYWORDS

distributed consensus, crash failures, adaptive adversary

ACM Reference Format:

Mohammad T. Hajiaghayi, Dariusz R. Kowalski, and Jan Olkowski. 2022.

Improved Communication Complexity of Fault-Tolerant Consensus. In Pro-

ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing

(STOC ’22), June 20–24, 2022, Rome, Italy.ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3519935.3520078

1 INTRODUCTION

Fault-tolerant Consensus – when a number of autonomous pro-

cesses want to agree on a common value among the initial ones,

despite of failures of processes or communication medium – is

among foundation problems in distributed computing. Since its

introduction by Pease, Shostak and Lamport [31], a large number

of algorithms and impossibility results have been developed and

analyzed, applied to solve other problems in distributed computing

and systems, and led to a discovery of a number of new important

problems and solutions, c.f., [8]. Despite this persistent effort, we

are still far from obtaining even asymptotically optimal solutions

in most of the classical distributed models.

In particular, in the classical message-passing setting with pro-

cesses’ crashes, despite of the results obtained in the seminal works

of Bar-Joseph and Ben-Or [9] and Aspnes and Waarts [5, 6] in

the previous century, there is still a substantial gap in communi-

cation complexity of fast randomized Consensus. More precisely,

in this model, 𝑛 processes communicate and compute in synchro-

nous rounds, by sending/receiving messages to/from a subset of

processes and performing local computation. Each process knows

set P of IDs of all 𝑛 processes. Up to 𝑓 < 𝑛 processes may crash

accidentally during the computation, which is typically modeled

by an abstract adversary that selects which processes to crash and

when, and additionally – which messages sent by the crashed pro-

cesses could reach successfully their destinations. An execution

of an algorithm against an adversary could be seen as a game, in

which the algorithm wants to minimize its complexity measures

(such as time and communication bits) while the adversary aims at

violating this goal by crashing participating processes. The classical
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distributed computing focuses on two main types of the adversary:

adaptive and oblivious. Both of them know the algorithm in ad-

vance, however the former is stronger as it can observe the run of

the algorithm and decide on crashes online, while the latter has

to fix the schedule of crashes in advance (before the algorithm

starts its run). Thus, these adversaries have different power against

randomized algorithms, but same against deterministic ones.

One of the perturbations caused by crashes is that they sub-

stantially delay reaching consensus: no deterministic algorithm

can reach consensus in all admissible executions within 𝑓 rounds,

as proved by Fisher and Lynch [18], and no randomized solution

can do it in 𝑜 (
√︁
𝑛/log𝑛) expected number of rounds against an

adaptive adversary, as proved by Bar-Joseph and Ben-Or [9]. Both

these results have been proven (asymptotically) optimal. The situa-

tion gets more complicated if one seeks time-and-communication

optimal solutions. The only existing lower bound requires Ω(𝑛)
messages to be sent by any algorithm even in some failure-free

executions, which gives Ω(1) bits per process [4].∗ which is the

total communication complexity divided by 𝑛. There exists even a

deterministic algorithm with a polylogarithmic amortized number

of communication bits [14], however it requires a linear number of

rounds (as any deterministic solution, see [18]). On the other hand,

randomized algorithms running against weak adversaries are both

fast and amortized-communication-efficient, both formulas being

𝑂 (log𝑛) or better, c.f., Gilbert and Kowalski [22]. At the same time,

the best randomized solutions against an adaptive adversary con-

sidered in this work requires time Θ(
√︁
𝑛/log𝑛) but large amortized

communication Θ(𝑛 ·
√︁
𝑛/log𝑛). In this paper, we show a parame-

terized algorithm not only improves amortized communication by

nearly a linear factor, but also suggests surprisingly that there is

no time-and-communication optimal algorithm in this setting. The

omitted analysis’ details, due to space limit, could be found in [26].

Consensus problem. Consensus is about making a common deci-

sion on some of the processes’ input values by every non-crashed

process, and is specified by the three requirements:

Validity: Only one of the initial values may be decided upon.

Agreement: No two processes decide on different values.

Termination: Each alive process eventually decides.

All the above requirements must hold with probability 1. We focus

on binary consensus, in which initial values are in {0, 1}.

2 OUR RESULTS AND NEW TOOLS

Our main result is a new consensus algorithm Parameterized-

Consensus
∗
, parameterized by 𝑥 , that achieves any asymptotic time

complexity between 𝑂̃ (
√
𝑛)† and 𝑂̃ (𝑛), while preserving the con-

sensus complexity equation: Time × Amortized_Communication

= 𝑂 (𝑛 polylog 𝑛). This is also the first algorithm that makes a

smooth transition between a class of algorithms with the optimal

running time (c.f., Bar-Joseph’s and Ben-Or’s [9] randomized al-

gorithm that works in 𝑂̃ (
√
𝑛) rounds) and the class of algorithms

with amortized polylogarithmic communication bit complexity (c.f.,

∗
In this paper we typically state communication complexity results in terms of amor-

tized per process,

†
We use 𝑂̃ symbol to hide any polylog 𝑛 factors.

Chlebus, Kowalski and Strojnowski [14] deterministic algorithm

using 𝑂̃ (1) communication bits).

Theorem 1 (Section 5.4). For any 𝑥 ∈ [1, 𝑛] and the number of

crashes 𝑓 < 𝑛, ParameterizedConsensus∗ solves Consensus with
probability 1, in 𝑂̃ (

√
𝑛𝑥) time and 𝑂̃ (

√︁
𝑛/𝑥) amortized bit commu-

nication complexity, whp, using 𝑂̃ (
√︁
𝑛/𝑥) random bits per process.

In this section we only give an overview of the most novel and

challenging part of ParameterizedConsensus
∗
, called Paramete-

rizedConsensus, which solves Consensus if the number of failures

𝑓 < 𝑛
10
. Its generalization to ParameterizedConsensus

∗
is done

in Section 5.4, by exploiting the concept of epochs in a similar way

to [9, 14]. In short, the first and main epoch (in our case, Para-

meterizedConsensus followed by BiasedConsensus described

in Section 2.1) is repeated 𝑂 (log𝑛) times, each time adjusting ex-

pansion, density and probability parameters by factor equal to
9

10
.

The complexities of the resulting algorithm are multiplied by a

logarithmic factor.

High-level idea of .ParameterizedConsensus. In Paramete-

rizedConsensus, processes are clustered into 𝑥 disjoint groups,

called super-processes 𝑆𝑃1, . . . , 𝑆𝑃𝑥 , of
𝑛
𝑥 processes each. Each pro-

cess, in a local computation, initiates its candidate value to the initial

value, pre-computes the super-process it belongs to, as well as two

expander-like overlay graphs which are later use to communicate

with other processes.

Degree 𝛿 of both overlay graphs is 𝑂 (log𝑛), and correspond-

ingly the edge density, expansion and compactness are selected, c.f.,

Sections 4 and 5. One overlay graph, denotedH , is spanned on the

set of 𝑥 super-processes, while copies of the other overlay graph are

spanned on the members of each pair of super-processes 𝑆𝑃𝑖 , 𝑆𝑃 𝑗
connected by an edge inH (we denote such copy by 𝑆𝐸 (𝑆𝑃𝑖 , 𝑆𝑃 𝑗 )).

ParameterizedConsensus is split into three phases, c.f., Algo-

rithm 7 in Section 5. Each phase uses some of the newly developed

tools, described later in this section: 𝛼-BiasedConsensus and Gos-

sip. Processes keep modifying their candidate values, starting from

the initial values, through different interactions.

Using the tools. 𝛼-BiasedConsensus is used for maintaining the

same candidate value within each super-process, biasing it towards

0 if less than a certain fraction𝛼 ofmembers prefer 1; see description

in Section 2.1 and 6. Theorem 2 proves that 𝛼-BiasedConsensus

works correctly in 𝑂̃ (
√︁
𝑛/𝑥) time and communication bits per pro-

cess.Gossip, on the other hand, is used to propagate values between

all or a specified group of processes, see description in Section 2.2

and 7.2. Theorem 3 guarantees that Gossip allows to exchange in-

formation between the involved up to 𝑛′ processes, where 𝑛′ ≤ 𝑛,
in time 𝑂 (log3 𝑛) and using 𝑂 (log6 𝑛) communication bits per pro-

cess (in this application, we are using a constant number of rumors,

encoded by constant number of bits).

In Phase 1, super-processes want to flood value 1 along an overlay

graph H of super-processes, to make sure that processes in the

same connected component ofH have the same candidate value

at the end of Phase 1. Here by a connected component of graph

H we understand a maximum connected sub-graph ofH induced

by super-processes of at least
3

4
· 𝑛𝑥 non-faulty processes; we call

such super-processes non-faulty. Recall, that the adversary can

disconnect super-processes in H by crashing some members of
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selected super-processes. To do so, the following is repeated 𝑥 + 1
times: processes in a non-faulty super-process 𝑆𝑃𝑖 , upon receiving

value 1 from some neighboring non-faulty super-process, make

agreement (using BiasedConsensus) to set up their candidate value

to 1 and send it to all their neighboring super-processes 𝑆𝑃 𝑗 via links

in overlay graphs 𝑆𝐸 (𝑆𝑃𝑖 , 𝑆𝑃 𝑗 ). One of the challenges that need to

be overcome is inconsistency in receiving value 1 by members

of the same super-process, as – due to crashes – only some of

them may receive the value while others may not. We will show

that it is enough to assume threshold
2

3
in the BiasedConsensus,

which together with expansion of overlay graphs 𝑆𝐸 (𝑆𝑃𝑖 , 𝑆𝑃 𝑗 ) and
compactness ofH (existence of large sub-component with small

diameter, c.f., Lemma 2) guarantee propagation of value 1 across the

whole connected component inH . It all takes (𝑥 + 1) · (𝑂̃ (
√︁
𝑛/𝑥) +

1) = 𝑂̃ (
√
𝑥𝑛) rounds and 𝑂̃ (

√︁
𝑛/𝑥 + log𝑛) = 𝑂̃ (

√︁
𝑛/𝑥) amortized

communication per process; see Section 5.1 for details.

In Phase 2, non-faulty super-processes want to estimate the num-

ber of non-faulty super-processes in the neighborhood of radius

𝑂 (log𝑥) in graphH . (We know from Phase 1 that whole connected

non-faulty component inH has the same candidate value.) In or-

der to do it, they become “active” and keep exchanging candidate

value 1 with their neighboring super-processes in overlay graph

H in stages, until the number of “active” neighbors becomes less

or equal to a threshold 𝛿𝑥 = Θ(log𝑥) < 𝛿 , in which case the super-

process becomes inactive, but not more than than 𝛾𝑥 = 𝑂 (log𝑥)
stages. To assure proper message exchange between neighboring

super-processes, Gossip is employed on the union of members of

every neighboring pair of super-processes. It is followed by Biased-

Consensus within each active super-process to let all its members

agree if the threshold 𝛿𝑥 on the number of active neighbors holds.

Members of those super-processes who stayed active by the end

of stage 𝛾𝑥 (“survived”) conclude that there was at least a certain

constant fraction of non-faulty super-processes (each containing at

least a fraction of non-faulty members) in such neighborhood in

the beginning of Phase 2, and thus they set up variable confirmed
to 1 – it means they confirmed being in sufficiently large group

having the same candidate value and thus they are entitled to de-

cide and make the whole system to decide on their candidate value.

It all takes 𝛾𝑥 · 𝑂̃ (
√︁
𝑛/𝑥 + log3 𝑛) ≤ 𝑂̃ (

√
𝑥𝑛) rounds and at most

𝛾𝑥 · 𝛿 · 𝑂̃ (log6 𝑛 +
√︁
𝑛/𝑥) = 𝑂̃ (

√︁
𝑛/𝑥) amortized communication per

process. See Section 5.3 for further details.

In Phase 3, we discard the partition into 𝑥 super-processes. All

processes want to learn if there was a sufficiently large group

confirming the same candidate value in Phase 2. To do so, they

all execute the Gossip algorithm. Processes that set up variable

confirmed to 1 start the Gossip algorithm with their rumor being

their candidate value; other processes start with a null value. Be-

cause super-processes use graphH for communication, which in

particular satisfies ( 𝑥
64
, 3
4
, 𝛿𝑥 )-compactness property (i.e., from any

subset of at least
𝑥
64

super nodes one can choose at least
3

4
of them

such that they induced a subgraph of degree at least 𝛿𝑥 ), we will

prove that at the end of Phase 2 at least a constant fraction of super-

processes must have survived and be non-faulty (i.e., their constant

fraction of members is alive). Moreover, we show that there could be

only one non-faulty connected component of confirmed processes,

by expansion of graphH that would connect two components of

constant fraction of super-processes each (and thus would have

propagated value 1 from one of them to another in Phase 1) – hence,

there could be only one non-null rumor in the Gossip, originated

in a constant fraction of processes. By property of Gossip, each

non-faulty process gets the rumor and decides on it. It all takes

𝑂̃ (log3 𝑛) ≤ 𝑂̃ (
√
𝑥𝑛) rounds and at most 𝑂̃ (log6 𝑛) = 𝑂̃ (

√︁
𝑛/𝑥)

amortized communication per process; see Section 5.2 for details.

Summarizing, each part takes 𝑂̃ (
√
𝑥𝑛) rounds and 𝑂̃ (

√︁
𝑛/𝑥) amor-

tized communication per process. Each process uses random bits

only in executions of BiasedConsensus it is involved to, each re-

quiring 𝑂̃ (
√︁
𝑛/𝑥) random bits (at most one random bit per round).

The number of such executions is 𝑂 (𝑥) in Part 1 and 𝑂 (log𝑛) in
Part 2, which in total gives 𝑂̃ (

√
𝑥𝑛) random bits per process.

2.1 𝛼-Biased Consensus

Let us start with the formal definition of 𝛼-Biased Consensus.

Definition 1 (𝛼-Biased Consensus). An algorithm solves 𝛼-

Biased Consensus if it solves the Consensus problem and additionally,

the consensus value is 0 if less than 𝛼𝑛 initial values of processes are 1.

In Section 6, we design an efficient 𝛼-Biased Consensus algorithm

and prove the following:

Theorem 2 (Section 6). For every constant 𝛼 > 0, there exists

an algorithm, called 𝛼-BiasedConsensus, that solves 𝛼-Biased Con-

sensus problem with probability 1, in 𝑂̃ (𝑓 /
√
𝑛) rounds and using

𝑂̃ (𝑓 /
√
𝑛) amortized communication bits whp, for any number of

crashes 𝑓 < 𝑛.

Note that for 𝑓 = Θ(𝑛) the algorithm works in 𝑂̃ (
√
𝑛) rounds

and uses 𝑂̃ (
√
𝑛) communication bits per process. Observe also

that the above result solves classic Consensus as well, and as a

such, it is the first algorithm which improves on the amortized

communication of Bar-Joseph’s and Ben-Or’s Consensus algorithm

[9], which has been known as the best result up for over 20 years.

The improvement is by a nearly linear factor Θ(𝑛/log13/2 𝑛), while
being only 𝑂 (log3 𝑛) away from the absolute lower bound on time

complexity (also proved in [9]).

High-level idea of.𝛼-BiasedConsensus. The improvement comes

from replacing a direct communication, in which originally all pro-

cesses were exchanging their candidate values, by procedure Fuzzy-

Counting. This deterministic procedure solves Fuzzy Counting

problem, i.e., each process outputs a number between the starting

and ending number of active processes, and does it in 𝑂 (log3 𝑛)
rounds and with 𝑂 (log7 𝑛) communication bits per process, see

Sections 2.3, 7 and Theorem 4.

First, processes run FuzzyCounting where the set of active

processes consists of the processes with input value 1. Then, each

process calculates logical 𝐴𝑁𝐷 of the two values: its initial value

and the logical value of formula “ones ≥ 𝛼 · 𝑛”, where ones is the
number of 1’s output by the FuzzyCounting algorithm. Denote

by 𝑥𝑝 the output of the logical 𝐴𝑁𝐷 calculated by process 𝑝 – it

becomes 𝑝’s candidate value.

Next, processes run 𝑂 (𝑓 /
√︁
𝑛 log𝑛) phases to update their can-

didate values such that eventually every process keeps the same

choice. To do so, in a round 𝑟 every process 𝑝 calculates, using the

FuzzyCounting algorithm, the number of processes with (current)
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candidate value 1 and, separately, the number of processes with

(current) candidate value 0, denoted 𝑂𝑟
𝑝 and 𝑍𝑟𝑝 respectively. Based

on these numbers, process 𝑝 either sets its candidate value to 1, if

the number 𝑂𝑟
𝑝 is large enough, or it sets it to 0, if the number 𝑍𝑟𝑝

is large, or it replaces it with a random bit, if the number of zeros

and ones are close to each other.

In Bar-Joseph’s and Ben-Or’s algorithm the numbers 𝑍𝑟𝑝 and

𝑂𝑟
𝑝 were calculated in a single round of all-to-all communication.

However, we observe that because processes’ crashes may affect

this calculation process in an arbitrary way (the adversary could

decide which messages of the recently crashed processes to deliver

and which do not, see Section 4) and also because messages are

simply zeros and ones, this step can be replaced by any solution to

Fuzzy Counting. In particular, the correctness and time complex-

ity analysis of the original Bar-Joseph’s and Ben-Or’s algorithm

captured the case when an arbitrary subset of 0-1 messages from

processes alive in the beginning of this step and a superset of those

alive at the end of the step could be received and counted – and

this can be done by our solution to the Fuzzy Counting problem.

Monte Carlo version for 𝑓 = 𝑛 − 1. 𝛼-BiasedConsensus as de-
scribed above is a Las Vegas algorithm with an expected time com-

plexity 𝜏 = 𝑂̃ (
√
𝑛), as is the original Bar-Joseph’s and Ben-Or’s

algorithm on which it builds. However, we can make it Monte

Carlo, which is more suitable for application in Parameterized-

Consensus, by forcing all processes to stop by time 𝑐𝑜𝑛𝑠𝑡 · 𝜏 . In
such case, the worst-case running time will always be while the

correctness (agreement) will hold only whp. In order to be applied

as a subroutine in the ParameterizedConsensus, we need to add

one more adjustment, so that ParameterizedConsensus could

guarantee correctness with probability 1. Mainly, processes which

do not decide by time 𝑐𝑜𝑛𝑠𝑡 · 𝜏 − 2 initiate a 2-round switch of the

whole system of P processes to a deterministic consensus algorithm,

that finishes in𝑂 (𝑛) rounds and uses𝑂 (polylog 𝑛) communication

bits per process, e.g., from [14]. Such switch between two consensus

algorithms has already been designed and analyzed before, c.f., [14],

and since this scenario happens only with polynomially small prob-

ability, the final time complexity of ParameterizedConsensus

will be still 𝑂̃ (
√
𝑥𝑛) and bit complexity 𝑂̃ (

√︁
𝑛/𝑥) per process, both

whp and expected.

2.2 Improved Fault-Tolerant Gossip Solution

The ParameterizedConsensus algorithm relies on a new (deter-

ministic) solution to a well-known Fault-Tolerant Gossip problem,

in which each non-faulty process has to learn initial rumors of all

other non-faulty processes (while it could or could not learn some

initial rumors of processes that crash during the execution). Many

solutions to this problem have been proposed (c.f., [3, 10]), yet, the

best deterministic algorithm given in [10] solves Fault-tolerant Gos-

sip in 𝑂 (log3 𝑛) rounds using 𝑂 (log4 𝑛) point-to-point messages

amortized per process. However, it requires Ω(𝑛) amortized com-

munication bits regardless of the size of rumors. We improve this

result as follows:

Theorem 3 (Section 7.2). Gossip solves deterministically the

Fault-tolerant Gossip problem in 𝑂̃ (1) rounds using 𝑂̃ ( |R|) amortized

number of communication bits, where |R | is the number of bits needed

to encode the rumors.

High-level idea of .Gossip.The algorithm implements a distributed

divide-and-conquer approach that utilizes the BipartiteGossip de-

terministic algorithm, described in Section 2.4, in the recursive calls.

Each process takes the set P, an initial rumor 𝑟 and its unique name

𝑝 ∈ P as an input. The processes split themselves into two groups

of size at most ⌈𝑛/2⌉ each: the first ⌈𝑛/2⌉ processes with the small-

est names make the group P1, while the 𝑛 − ⌈𝑛/2⌉ processes with
the largest names constitute group P2. Each of those two groups

of processes solves Gossip separately, by evoking the Gossip algo-

rithm inside the group only. The processes from each group know

the names of every other process in that group, hence the necessary

conditions to execute the Gossip recursively are satisfied. After the

recursion finishes, a process in P1 stores a set of rumors R1 of pro-
cesses from its group, and respectively, a process in P2 stores a set
of rumors R2 of processes from its group. Then, the processes solve

the Bipartite Gossip problem by executing the BipartiteGossip

algorithm on the partition P1, P2 and having initial rumors R1 and
R2. The output of this algorithm is the final output of the Gossip.

A standard inductive analysis of recursion and Theorem 5 stating

correctness and 𝑂̃ (1) time and 𝑂̃ ( |R|) amortized communication

complexities of BipartiteGossip imply Theorem 3, which proof is

deferred to Section 7.2.

2.3 Fuzzy Counting

The aforementioned improvement of algorithm𝛼-BiasedConsensus

over [9] is possible because of designing and employing an efficient

solution to a newly introduced Fuzzy Counting problem.

Definition 2 (Fuzzy Counting). An algorithm solves Fuzzy

Counting if each process returns a number between the initial and

the final number of active processes. Here, being active depends on

the goal of the counting, e.g., all non-faulty processes, processes with

initial value 1, etc.

Note that the returned numbers could be different across processes.

In Section 7 we design a deterministic algorithm FuzzyCounting

and prove the following:

Theorem 4 (Section 7.2). The FuzzyCounting deterministic

algorithm solves the Fuzzy Counting problem in 𝑂̃ (1) rounds, using
𝑂̃ (1) communication bits amortized per process.

High-level idea of .FuzzyCounting. FuzzyCounting uses the

Gossip algorithm with the only modification that now we require

the algorithm the return the values Z and O, instead of the set of

learned rumors. We apply the same divide-and-conquer approach.

That is, we partition P into groups P1 and P2 and we solve the

problem within processors of this partition. Let Z1, O1 and Z2, O2
be the values returned by recursive calls on set of processes P1
and P2, respectively. Then, we use the BipartiteGossip algorithm,

described in Section 2.4, to make each process learn values Z and O
of the other group. Eventually, a process returns a pair of values

Z1 + Z2 and O1 + O2 if it received the values from the other partition

during the execution of BipartiteGossip, or it returns the values

corresponding to the recursive call in its own partition otherwise.

It is easy to observe that during this modified execution processes
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must carry messages that are able to encode values Z and O, thus in
this have it holds that |R | = 𝑂 (log𝑛).

2.4 Bipartite Gossip

Our Gossip and FuzzyCounting algorithms use subroutine Bipar-

titeGossip that solves the following (newly introduced) problem.

Definition 3. Assume that there are only two different rumors

present in the system, each in at most ⌈𝑛
2
⌉ processes. The parti-

tion is known to each process, but the rumor in the other part is not.

We say that an algorithm solves Bipartite Gossip if every non-faulty

process learns all rumors of other non-faulty processes in this setting.

Bipartite Gossip is a restricted version of the general Fault-

tolerant Gossip problem, which can be solved in 𝑂 (log3 𝑛) rounds
using𝑂 (log4 𝑛) point-to-point messages amortized per process, but

requires Ω(𝑛) amortized communication bits. In this paper, we give

a new efficient deterministic solution to Bipartite Gossip, called

BipartiteGossip, which, properly utilized, leads to better solutions

to Fault-tolerant Gossip and Fuzzy Counting. More details and the

proof of the following result are given in Section 7.1.

Theorem 5 (Section 7.1). Given a partition of the set of processes

P into two groups P1 and P2 of size at most ⌈𝑛/2⌉ each, deterministic

algorithm BipartiteGossip solves the Bipartite Gossip problem in

𝑂̃ (1) rounds and uses 𝑂̃ (𝑛 · |R |) bits, where |R | is the minimal number

of bits needed to uniquely encode the two rumors.

High-level idea of .BipartiteGossip. If there were no crashes

in the system, it would be enough if processes span a bipartite ex-

panding graph with poly-logarithmic degree on the set of vertices

P1 ∪ P2 and exchange messages with their initial rumors in 𝑂̃ (1)
rounds. In this ideal scenario the 𝑂 (log𝑛) bound on the expander

diameter suffices to allow every two process exchange information,

while the sparse nature of the expander graphs contributes to the

low communication bit complexity. However, a malicious crash pat-

tern can easily disturb such a naive approach. To overcome this, in

our algorithm processes – rather than communicating exclusively

with the other side of the partition – also estimate the number of

crashes in their own group. Based on its result, they are able to

adapt the level of expansion of the bipartite graph between the two

parts to the actual number of crashes. More specifically, in internal

communication within each group, a family of certain expander

graphs (c.f., Theorem 6) with different density is adaptively and

locally used by processes to exchange messages. Once a process

recognizes (via Local Signalling, c.f., Section 2.5) that it does not

belong to a large and compact component, it switches to a denser ex-

pander. In external communication, processes use a different family

of expanders of different densities to communicate with processes

in the other group in order to get their rumor – the degree of the

chosen expander depends on current degree used in the internal

communication.

The above dynamic adjustment of internal and external commu-

nication degree allows to achieve asymptotically similar result as

in the fault-free scenario described in the beginning, up to polylog-

arithmic factor. More details and the analysis are in Section 7.1.

2.5 Local Signalling

OurBipartiteGossip algorithm, described in section 2.4, uses a new

technique called LocalSignalling. LocalSignalling is a specific

deterministic algorithm, parameterized by a family of 𝑂 (log𝑛)
overlay graphs (of different density) provided to the processes.

Processes start at the same time, but may be at different levels – the

level indicates which overlay graph is used for communication. The

name Local Signalling comes from the way it works – similarly to

distributed sparking networks, a process keeps sending messages

(i.e., ’signalling’) to its neighbors in its current overlay graph as

long as it receives enough number of messages from them. Once

a process fails to receive a sufficient number of messages from

processes that use the same overlay graph or the previous ones,

LocalSignaling detects such anomaly and memorizes a negative

’not surviving’ result (to be returned at the end of the algorithm).

Such process does not stop, but rather keeps signaling using less

dense overlay graph, in order to help processes at lower level to

survive. This non intuitive behavior is crucial in bounding the

amortized bit complexity.

The algorithm proceeds in𝑂 (log𝑛) rounds. Its goal is to leverage
the adversary – if the adversary does not fail many processes start-

ing at a level ℓ , some fraction of them will survive and exchange

messages in 𝑂 (log𝑛) time and 𝑂 (polylog 𝑛) amortized number of

communication bits. To achieve this, a specific family of overlay

graphs needs to be used, c.f., Section 4 and Theorem 6.

We will show that if all processes start LocalSignaling at

the same time, those who have survived Local Signalling must

have had large-size 𝑂 (log𝑛)-neighborhoods in their communica-

tion graph in the beginning of the execution. Moreover, they were

able to exchange messages with other surviving processes in their

𝑂 (log𝑛)-neighborhoods, c.f.. Lemma 17. We will also prove that

the amortized bit complexity of the LocalSignaling algorithm

is 𝑂 (polylog 𝑛) per process, c.f., Lemma 16. This is the most ad-

vanced technical part used in our algorithm – its full description

and analysis are given in Section 8.

3 RELATEDWORK

Early work on consensus. The Consensus problem was introduced

by Pease, Shostak and Lamport [31]. Early work focused on deter-

ministic solutions. Fisher, Lynch and Paterson [19] showed that

the problem is unsolvable in an asynchronous setting, even if one

process may fail. Fisher and Lynch [18] showed that a synchronous

solution requires 𝑓 + 1 rounds if up to 𝑓 processes may crash.

The optimal complexity of consensus with crashes is knownwith

respect to the time and the number of messages (or communication

bits) when each among these performance metrics is considered

separately. Amdur, Weber and Hadzilacos [4] showed that the amor-

tized number of messages per process is at least constant, even in

some failure-free execution. The best deterministic algorithm, given

by Chlebus, Kowalski and Strojnowski in [14], solves consensus

in asymptotically optimal time Θ(𝑛) and an amortized number of

communication bits per process 𝑂 (polylog 𝑛).

Efficient randomized solutions against weak adversaries. Ran-

domness proved itself useful to break a linear time barrier for time

complexity. However, whenever randomness is considered, differ-

ent types of an adversary generating failures could be considered.
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Chor, Merritt and Shmoys [15] developed constant-time algorithms

for consensus against an oblivious adversary – i.e., the adversary

who knows the algorithm but has to decide which process fails

and when before the execution starts. Gilbert and Kowalski [22]

presented a randomized consensus algorithm that achieves optimal

communication complexity, using O(1) amortized communication

bits per process and terminates in O(log𝑛) time with high proba-

bility, tolerating up to 𝑓 < 𝑛/2 crash failures.

Randomized solutions against (strong) adaptive adversary. Con-

sensus against an adaptive adversary, considered in this paper, has

been already known as more expensive than against weaker ad-

versaries. The time-optimal randomized solution to the consensus

problem was given by Bar-Joseph and Ben-Or [9]. Their algorithm

works in 𝑂 (
√
𝑛

log𝑛
) expected time and uses 𝑂 ( 𝑛3/2

log𝑛
) amortized com-

munications bits per process, in expectation. They also proved

optimality of their result with respect to the time complexity, while

here we substantially improve the communication.

Beyond synchronous crashes. It was shown that more severe fail-

ures or asynchrony could cause a substantially higher complexity.

Dolev and Reischuk [16] and Hadzilacos and Halpern [24] proved

the Ω(𝑓 ) lower bound on the amortized message complexity per

process of deterministic consensus for (authenticated) Byzantine

failures. King and Saia [29] proved that under some limitation on

the adversary and requiring termination only whp, the sublinear

expected communication complexity𝑂 (𝑛1/2polylog 𝑛) per process
can be achieved even in case of Byzantine failures. Abraham et

al. [1] showed necessity of such limitations to achieve subquadratic

time complexity for Byzantine failures.

If asynchrony occurs, the recent result of Alistarh et al. [2]

showed how to obtain almost optimal communication complex-

ity 𝑂 (𝑛 log𝑛) per process (amortized) if less then 𝑛/2 processes

may fail, which improved upon the previous result 𝑂 (𝑛 log2 𝑛) by
Aspnes and Waarts [6]. It is asymptotically almost optimal due to

the lower bound Ω(𝑛) proved by Attiya and Censor-Hillel [7]. Asp-

nes [5] gave anΩ(𝑛/log2 𝑛) lower bound on the expected number of

coin flips.

Fault-tolerant Gossip. was introduced by Chlebus and Kowal-

ski [10]. They developed a deterministic algorithm solving Gossip

in time 𝑂 (log2 𝑓 ) while using 𝑂 (log2 𝑓 ) amortized messages per

process, provided 𝑛 − 𝑓 = Ω(𝑛). They also showed a lower bound

Ω( log𝑛

log(𝑛 log𝑛)−log 𝑓 ) on the number of rounds in case 𝑂 (polylog 𝑛)
amortized messages are used per process. In a sequence of pa-

pers [10, 11, 21], 𝑂 (polylog 𝑛) message complexity, amortized per

process, was obtained for any 𝑓 < 𝑛, while keeping the polyloga-

rithmic time complexity. Note however that general Gossip requires

Ω(𝑛) communication bits per process for different rumors, as each

process needs to deliver/receive at least one bit to all non-faulty pro-

cesses. Randomized gossip against an adaptive adversary is doable

w.h.p. in𝑂 (log2 𝑛) rounds using𝑂 (log3 𝑛) communication bits per

process, for a constant number of rumors of constant size and for

𝑓 < 𝑛
3
processes, c.f., Alistarh et al. [3].

4 MODEL AND PRELIMINARIES

In this section we discuss the message-passing model in which all

our algorithms are developed and analyzed. It is the classic synchro-

nous message-passing model with processes’ crashes, c.f., [8, 9].

Processes. There are 𝑛 processes with synchronized clocks. Let P
denote the set of all processes. Each process has a unique integer ID

in the set P = [𝑛] = {1, . . . , 𝑛}. The set P and its size 𝑛 are known

to all the processes (in the sense that it may be a part of code of an

algorithm); it is also called a KT-1 model in the literature [30].

Communication. The processes communicate among themselves

by sending messages. Any pair of processes can directly exchange

messages in a round. The point-to-point communication mecha-

nism is assumed to be reliable, in that messages are not lost nor

corrupted while in transit.

Computation in rounds. A computation, or an execution of a

given algorithm, proceeds in consecutive rounds, synchronized

among processes. By a round we mean such a number of clock

cycles that is sufficient to guarantee the completion of the following

operations by a process: first,multicasting a message to an arbitrary

set of processes (selected by the process during the preceding local

computation in previous round or stored in the starting conditions);

second, receiving the sent messages by their (non-faulty) destination

processes; third, performing local computations.

Processes’ failures and adversaries. Processes may fail by crash-

ing. A process that has crashed stops any activity, and in particular

does not send nor receive messages. There is an upper bound 𝑓 < 𝑛

on the number of crash failures we want to be able to cope with,

which is known to all processes in that it can be a part of code of

an algorithm. We may visualize crashes as incurred by an omni-

scient adversary that knows the algorithm and has an unbounded

computational power; the adversary decides which processes fail

and when. The adversary knows the algorithm and is adaptive – if

it wants to make a decision in a round, it knows the history of com-

putation until that point. However, the adversary does not know

the future computation, which means that it does not know future

random bits drawn by processes. We do not assume failures to be

clean, in the sense that when a process crashes while attempting

to multicast a message, then some of the recipients may receive

the message and some may not; this aspect is controlled by the

adversary. An adversarial strategy is a deterministic function, which

assigns to each possible history that may occur in any execution

some adversarial action in the subsequent round – i.e., which pro-

cesses to crash in that round and which of their last messages would

reach the recipients.

Performance measures. We consider time and bit communication

complexities as performance measures of algorithms. For an execu-

tion of a given algorithm against an adversarial strategy, we define

its time and communication as follows. Time is measured by the

number of rounds that occur by termination of the last non-faulty

process.Communication is measured by the total number of bits sent

in point-to-point messages by termination of the last non-faulty

process. For randomized algorithms, both these complexities are

random variables. Time/Communication complexity of a distributed

algorithm is defined as a supremum of time/communication taken
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over all adversarial strategies, resp. Finally, time/communication

complexity of a distributed problem is an infimum of all algorithms’

time/communication complexities, resp. In this work we present

communication complexity in a form of an amortized communica-

tion complexity (per process), which is equal to the communication

complexity divided by the number of processes 𝑛.

Notation whp. We say that a random event occurs with high

probability, or whp, if its probability can be lower bounded by

1 −𝑂 (𝑛−𝑐 ) for a sufficiently large positive constant 𝑐 . Observe that

when a polynomial number of events occur whp each, then their

union occurs with high probability as well.

Overlay graphs. We review the relevant notation and main theo-

rems assuring existence of specific fault-tolerant compact expanders

from [14]. We will use them as overlay graphs in the paper, to spec-

ify via which links the processors should send messages in order to

maintain small time and communication complexities. Some prop-

erties of these graphs have already been observed in [14], however

we also prove a new property (Lemma 2) and use it for analysis of

a novel Local Signalling procedure (Section 8).

Notation. Let𝐺 = (𝑉 , 𝐸) denote an undirected graph. Let𝑊 ⊆ 𝑉
be a set of nodes of 𝐺 . We say that an edge (𝑣,𝑤) of 𝐺 is internal

for 𝑊 if 𝑣 and 𝑤 are both in 𝑊 . We say that an edge (𝑣,𝑤) of
𝐺 connects the sets𝑊1 and𝑊2 or is between𝑊1 and𝑊2, for any

disjoint subsets𝑊1 and𝑊2 of 𝑉 , if one of its ends is in𝑊1 and

the other in𝑊2. The subgraph of 𝐺 induced by𝑊 , denoted 𝐺 |𝑊 ,

is the subgraph of 𝐺 containing the nodes in𝑊 and all the edges

internal for𝑊 . A node adjacent to a node 𝑣 is a neighbor of 𝑣 and

the set of all the neighbors of a node 𝑣 is the neighborhood of 𝑣 .

𝑁 𝑖
𝐺
(𝑊 ) denotes the set of all the nodes in 𝑉 that are of distance at

most 𝑖 from some node in𝑊 in graph 𝐺 . In particular, the (direct)

neighborhood of 𝑣 is denoted 𝑁𝐺 (𝑣) = 𝑁 1

𝐺
(𝑣).

Desired properties of overlay graphs. Let𝛼 , 𝛽 , 𝛿 ,𝛾 and ℓ be positive

integers and 0 < 𝜀 < 1 be a real number. The following definition

extends the notion of a lower bound on a node degree:

Dense neighborhood: For a node 𝑣 ∈ 𝑉 , a set 𝑆 ⊆ 𝑁𝛾

𝐺
(𝑣) is said to

be (𝛾, 𝛿)-dense-neighborhood for 𝑣 if each node in 𝑆∩𝑁𝛾−1
𝐺
(𝑣)

has at least 𝛿 neighbors in 𝑆 .

We want our overlay graphs to have the following properties, for

suitable parameters 𝛼 , 𝛽 , 𝛿 and ℓ :

Expansion: graph𝐺 is said to be ℓ-expanding, or to be an ℓ-expander,

if any two subsets of ℓ nodes each are connected by an edge.

Edge-density: graph 𝐺 is said to be (ℓ, 𝛼, 𝛽)-edge-dense if, for any
set 𝑋 ⊆ 𝑉 of at least ℓ nodes, there are at least 𝛼 |𝑋 | edges
internal for 𝑋 , and for any set 𝑌 ⊆ 𝑉 of at most ℓ nodes,

there are at most 𝛽 |𝑌 | edges internal for 𝑌 .
Compactness: graph𝐺 is said to be (ℓ, 𝜀, 𝛿)-compact if, for any set

𝐵 ⊆ 𝑉 of at least ℓ nodes, there is a subset 𝐶 ⊆ 𝐵 of at least

𝜀ℓ nodes such that each node’s degree in 𝐺 |𝐶 is at least 𝛿 .

We call any such set 𝐶 a survival set for 𝐵.

Existence of overlay graphs. Let 𝛿,𝛾, 𝑘 be integers such that 𝛿 =

24 log𝑛,𝛾 = 2 log𝑛 and 25𝛿 ≤ 𝑘 ≤ 2𝑛
3
. Let𝐺 (𝑛, 𝑝) be an Erdős–Rényi

random graph of 𝑛 nodes, in which each pair of nodes is connected

by an edge with probability 𝑝 , independently over all such pairs.

Theorem 6 ([14]). For every 𝑛 and 𝑘 such that 25𝛿 ≤ 𝑘 ≤ 2𝑛
3
, a

random graph 𝐺 (𝑛, 24𝛿/𝑘) satisfies all the below properties whp:

(i) it is (𝑘/64)-expanding, (iii) it is (𝑘, 3/4, 𝛿)-compact,

(ii) it is (𝑘/64, 𝛿/8, 𝛿/4)-edge-dense, (iv) the degree of each node

is between 22
𝑛
𝑘
𝛿 and 26𝑛

𝑘
𝛿 .

We define an overlay graph𝐺 (𝑛, 𝑘, 𝛿,𝛾) as an arbitrary graph of 𝑛
nodes fulfilling the conditions of Theorem 6. Graph𝐺 (𝑛, 𝑘, 𝛿,𝛾) can
be computed locally (i.e., in a single round) and deterministically by

each process. Specifically, by Theorem 6, the class of graphs satisfy-

ing the four properties (i) - (iv) is large, therefore any deterministic

search in the class of 𝑛-node graphs, applied locally by each process,

returns the same overlay graph 𝐺 (𝑛, 𝑘, 𝛿,𝛾) in all processes.
‡

Lemma 1 ([14]). If graph𝐺 = (𝑉 , 𝐸) of 𝑛 nodes is (𝑘/64, 𝛿/8, 𝛿/4)-
edge-dense then any (𝛾, 𝛿)-dense-neighborhood for a node 𝑣 ∈ 𝑉 has

at least 𝑘/64 nodes, for 𝛾 ≥ 2 lg𝑛.

The new property. The key new property of overlay graphs with

good expansion, edge-density and compactness is that survival sets

in such graphs have small diameters.

Lemma 2. If graph 𝐺 = (𝑉 , 𝐸) of 𝑛 nodes is ( 𝑘
64
)-expanding,

( 𝑘
64
, 𝛿
8
, 𝛿
4
)-edge-dense and (𝑘, 3

4
, 𝛿)-compact, then for any set 𝐵 ⊆ 𝑉

of at least 𝑘 nodes and for any two nodes 𝑣,𝑤 from set 𝐶 being a

survival set of 𝐵, the nodes 𝑣,𝑤 are of distance at most 2𝛾 + 1 in graph
𝐺 |𝐶 , for any 𝛾 ≥ 2 lg𝑛.

5 PARAMETERIZED CONSENSUS: TRADING

TIME FOR COMMUNICATION

We first specify and analyze algorithm ParameterizedConsensus,

for a given parameter 𝑥 ∈ [1, . . . , 𝑛]§ and a number of crashes

𝑓 < 𝑛
10
. Later, in Section 5.4, we show how to generalize it to

algorithm ParameterizedConsensus
∗
, which works correctly and

efficiently for any number of crashes 𝑓 < 𝑛.

Notation and data structures. Let 𝑝 ∈ P denote the process ex-

ecuting the algorithm, while 𝑏𝑝 denote 𝑝’s input bit; P, 𝑥, 𝑝, 𝑏𝑝
are the input of the algorithm. Let 𝑆𝑃1, . . . , 𝑆𝑃𝑥 be a partition of

the set P of processes into 𝑥 groups of
𝑛
𝑥 processes each. 𝑆𝑃𝑖 is

called a super-process, and each 𝑝 ∈ 𝑆𝑃𝑖 is called its member. We

also denote by 𝑆𝑃 [𝑝 ] the super-process 𝑆𝑃𝑖 to whose 𝑝 belongs.

A graph H is an overlay graph 𝐺 (𝑥, 𝑥
3
, 𝛿𝑥 , 𝛾𝑥 ), which existence

and properties are guaranteed in Theorem 6 and Lemma 2, where

𝛿𝑥 := 24 log𝑥,𝛾𝑥 := 2 log𝑥 . We uniquely identify vertices of H
with super-processes. We say that two super-processes, 𝑆𝑃𝑝 and

𝑆𝑃𝑞 , are neighbors if vertices corresponding to them share an edge

in H . For every two such neighbors, we denote by 𝑆𝐸 (𝑆𝑃𝑝 , 𝑆𝑃𝑞)
an overlay graph 𝐺 (2𝑛𝑥 ,

2𝑛
3𝑥 , 24 log

2𝑛
𝑥 , 2 log

2𝑛
𝑥 ) which vertices we

identify with the set 𝑆𝑃𝑝 ∪ 𝑆𝑃𝑞 . (𝑆𝐸 (𝑆𝑃𝑝 , 𝑆𝑃𝑞) is a short form of

super-edge between 𝑆𝑃𝑝 and 𝑆𝑃𝑞 .) Again, for existence and proper-

ties of the above overlay graph we refer to Theorem 6 and Lemma 2.

Since the processes operate in 𝐾𝑇 -1 model, we can assume that all

objects mentioned in this paragraph can be computed locally by any

process. Alg. 1 gives a pseudo-code of ParameterizedConsensus.

‡
Recall that each round contributes 1 to the time complexity, no matter of the length

of local computation.

§
Without loss of generality, we may assume that 𝑥 is a divisor of 𝑛. If it is not the case,

we can always make ⌈𝑥 ⌉ groups of size
⌈
𝑛
𝑥

⌉
, which would not change the asymptotic

analysis of the algorithm.
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Algorithm 1: ParameterizedConsensus

input: P, 𝑥 , 𝑝 , 𝑏𝑝
1 calculate locally {𝑆𝑃1, . . . , 𝑆𝑃𝑥 },H ;

2 candidate_value← ParameterizedConsen-

sus:Phase_1(P, {𝑆𝑃1, . . . , 𝑆𝑃𝑥 },H , 𝑥, 𝑝, 𝑏𝑝 );
3 confirmed← ParameterizedConsen-

sus:Phase_2(P, {𝑆𝑃1, . . . , 𝑆𝑃𝑥 },H , 𝑥 , 𝑝);

4 if confirmed = 1 then

5 CandidatesValues←
Gossip(P, 𝑝, candidate_value) ; /* Phase 3 */

6 else

7 CandidatesValues← Gossip(P, 𝑝,-1); /* Phase 3 */

8 decision_value←
any value in set CandidatesValues that differs from − 1 ;

9 return decision_value

High-level idea of ParameterizedConsensus. We cluster pro-

cesses into 𝑥 disjoint groups (super-processes) of
𝑛
𝑥 processes each.

Processes locally compute the super-process they belong to and

overlay graphs. Starting from this point, we view the system as a

set of 𝑥 super-processes.

In the beginning, Phase 1 is executed (see line 2 of Algorithm 1

and Section 5.1) in which super-processes flood value 1 along an

overlay graphH of super-processes. The main challenge is to do

it in 𝑂̃ (
√
𝑥𝑛) rounds and 𝑂̃ (

√︁
𝑛/𝑥) amortized communication per

process whp.

In Phase 2 (see line 3 and Section 5.2 for description of Phase 2),

super-processes estimate the number of operating super-processes

in the neighborhood of radius 𝑂 (log𝑥) in graph H . Members of

those super-processes who estimate at least a certain constant

fraction (we say that they “survive”), set up variable confirmed

to 1. The main challenge is to do it in 𝑂̃ (
√︁
𝑛/𝑥) rounds and 𝑂̃ (

√
𝑛𝑥)

amortized communication per process whp.

Next, we discard the partition into 𝑥 super-processes. All pro-

cesses execute a Gossip algorithm. Processes that set up variable

confirmed to 1 start the Gossip algorithm with their initial value

being the value of the super-process they belonged to. Other pro-

cesses start with a null value (-1). Because super-processes use

graphH for communication, which in particular satisfies (𝑥, 3
4
, 𝛿𝑥 )-

compactness property, we will prove that at the end of Phase 2 at

least a constant fraction of non-faulty (i.e., their
3

4
fraction of mem-

bers are alive) super-processes survive. This implies that at least a

constant fraction of processes begins the Gossip algorithm with a

non-null value. Because the non-null value results from a flooding-

like procedure of value 1 (if there is any in the system), we will be

able to prove that, eventually, every process gets the same value,

since at most a constant number of crashes can occur.

To preserve synchronicity, in the ParameterizedConsensus

algorithm we use the Monte Carlo version of BiasedConsensus in

both Phase 1 and Phase 2, see discussion in Section 2.1. However,

with a polynomial small probability, in this variant of Consensus

some processes may not reach a decision value. To handle this

very unlikely scenario, processes who have not decided in a run of

BiasedConsensus alarm the whole system by sending a message

to every other process. Then, the whole system switches to any

deterministic Consensus algorithm with 𝑂 (𝑛)-time and amortized

communication bit complexities (c.f., [8]) and returns its outcome as

the final decision. The latter part of alarming and the deterministic

Consensus algorithm could use Θ(𝑛) communication bits, however

it happens only with polynomially small probability, see Section 2.1;

hence, it does not affect the final amortized complexity of the Para-

meterizedConsensus algorithm whp. For the sake of clarity, we do

not include this straightforward ’alarm’ scheme in the pseudocodes.

5.1 Specification and Analysis of Phase 1

Algorithm 2: ParameterizedConsensus:Phase_1

input: P, {𝑆𝑃1, . . . , 𝑆𝑃𝑥 },H , 𝑥 , 𝑝 , 𝑏𝑝

1 is_active← true ;

2 candidate_value← 2

3
-BiasedConsensus(𝑝, 𝑆𝑃 [𝑝 ] , 𝑏𝑝 );

3 for 𝑖 ← 1 to 𝑥 + 1 do
4 if is_active = true & candidate_value = 1 then

5 candidate_value←
2

3
-BiasedConsensus(𝑝, 𝑆𝑃 [𝑝 ] , candidate_value);

6 else

7 stay silent for 𝑦 = 𝑂̃ (
√︃

𝑛
𝑥 ) rounds ;

8 if is_active = true & candidate_value = 1 then

9 foreach super-process 𝑆𝑃 𝑗 being a neighbor of 𝑆𝑃 [𝑝 ]
inH do

10 send 1 to every member of 𝑆𝑃 𝑗 which is a

neighbor of 𝑝 in 𝑆𝐸 (𝑆𝑃 [𝑝 ] , 𝑆𝑃 𝑗 ) ;
11 end

12 is_active← false ;

13 if 𝑝 received a message containing 1 in the previous round

then

14 candidate_value← 1 ;

15 end

16 return
1

3
-BiasedConsensus(𝑝, 𝑆𝑃 [𝑝 ] , candidate_value)

High-level idea of Phase 1. In the beginning, the members of

every super-process agree on a single value among their input val-

ues. Once this is done, super-processes start a flooding procedure

navigated by an overlay graphH .H should be an expander-like,

regular graph with good connectivity properties, but a small degree

of at most 𝑂 (log𝑥). Intuitively, this can guarantee that regardless

of the crash pattern there will exist a connected component, of a

size being a constant fraction of all vertices, in H consisting of

super-processes that are still operating. The flooding processes is a

sequential process of𝑂 (𝑥) phases. A single super-process communi-

cates, that means it sends value 1 to all its neighbors inH , in at most

one phase only; either in the first phase, if the value its members

agreed on in the beginning is 1; or in the very first phase after the

super-process received value 1 from any of its neighbors inH . End

of the flooding process encloses the Phase 1 of the algorithm.

Once members of a super-process get value 1 for the first time,

they use BiasedConsensus to agree if value 1 has been received or

not. It is necessary due to crashes during the flooding procedure,
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yet it is not easy to implement with low amortized bit complexity.

A pattern of crashes can result in some members of a super-process

receiving value 1 and some others not. One can require all members

to execute BiasedConsensus in each phase, but this will blow up

the amortized bit complexity to 𝑂̃ (𝑥
√︃

𝑛
𝑥 ) whp. We, in turn, propose

to execute BiasedConsensus only among these members who

received value 1 in the previous communication round (see line 10)

and use the stronger properties of Biased Consensus to argue that

the number of calls to the BiasedConsensus will not be to large.

Analysis of Phase 1. Recall, that we say that a super-process

communicates with another super-process if any of its members exe-

cutes lines 9-11 of the Algorithm 2. Trivially, from the Algorithm 2

we get that each member of a super-process executes line 10 at

most once, since if the line is executed then variable is_active
will be changed to false, but the next lemma shows that we can

expect more: members of a super-process preserve synchronicity

in communicating with other members.

Lemma 3. For every 𝑖 ∈ [𝑥], there is at most one iteration of the

main loop in which 𝑆𝑃𝑖 communicates with any other super-process.

Lemma 4. For every 𝑖 ∈ [𝑥], members of a non-faulty super-process

𝑆𝑃𝑖 return the same value in Phase_1.

Recall, that we defined a super-process non-faulty if in the end

of the ParameterizedConsensus algorithm at least
3

4
of its mem-

bers have not been crashed. In particular, the number of operating

members is at least
3𝑛
4𝑥 in every phase of the algorithm.

Lemma 5. There are no two non-faulty super-processes that are

connected by an edge in H but their members return different

decision_values in the end of Phase_1.

From the previous lemma we can immediately conclude.

Lemma 6. Members of each connected component ofH formed by

a non-faulty super-processes return the same decision_values in
the end of Phase_1.

Lemma 7. The Phase_1 part of the ParameterizedConsensus

algorithm takes 𝑂̃ (𝑥
√︁
𝑛/𝑥) rounds and uses 𝑂̃ (𝑛

√︁
𝑛/𝑥 log𝑛) bits whp.

5.2 Specification and Analysis of Phase 2

High-level idea. In Phase 2, non-faulty super-processes estimate

the number of operating super-processes in the neighborhood of

radius 𝑂 (log𝑥) in graphH . Those who estimate at least a certain

constant fraction, set up variable confirmed to 1. In order to achieve
that, each super-process keeps signaling all its neighbors inH in

𝛾𝑥 = 𝑂 (log𝑥) stages until at least a constant fraction of them

signaled its activity in preceding stage. A super-process that has

been signaling during all stages is said to survive. We will prove

that, thanks to suitably chosen connectivity properties of H , at

least a constant fraction of super-processes survives. Members of

these super-processes will influence the final decision of the whole

system in the following Phase 3. The following holds:

Lemma 8. At least
1

2
-fraction of the super-processes are non-faulty

and survive Phase_2 of the ParameterizedConsensus algorithm.

Lemma 9. The Phase_2 part of the ParameterizedConsensus

algorithm takes 𝑂̃ (
√︁
𝑛/𝑥) rounds and uses 𝑂̃ (𝑛

√︁
𝑛/𝑥) bits whp.

Algorithm 3: ParameterizedConsensus:Phase_2

input: P, {𝑆𝑃1, . . . , 𝑆𝑃𝑥 },H , 𝑥 , 𝑝

1 if
3

4
-BiasedConsensus(𝑝, 𝑆𝑃 [𝑝 ] , 1) = 1 then

2 is_active← true

3 else

4 is_active← false ; /* stage 𝑖 */

5 for 𝑖 ← 1 to 𝛾𝑥 do

6 if is_active = true then

7 𝑆𝑁 ← ∅ ;
8 foreach super-process 𝑆𝑃 𝑗 being a neighbor of 𝑆𝑃 [𝑝 ]

inH do

9 𝑁 𝑗 ← Gossip(𝑆𝑃 [𝑝 ] ∪ 𝑆𝑃 𝑗 , 𝑝, 𝑝) ;
10 𝑆𝑁 ← 𝑆𝑁 ∪ 𝑁 𝑗 ;

11 end

12 if |𝑆𝑁 | > 𝛿𝑥 then many_superprocesses← 1 ;

13 else many_superprocesses← 0 ;

14 survived← 2

3
-BiasedConsen-

sus(𝑝, 𝑆𝑃 [𝑝 ] , many_superprocesses) ;
15 if survived = 0 then

16 is_active← false

17 end

18 end

19 return is_active; /* 𝑝’s super-process survived? */

5.3 Analysis of ParameterizedConsensus

Lemma 10. The value candidate_value is the same among all

members of super-processes that survived Phase_2.

Lemma 11. The algorithm ParameterizedConsensus satisfies

validity, agreement and termination conditions.

Theorem 7. For any 𝑥 ∈ [1, 𝑛] and any number of crashes 𝑓 <
𝑛
10
, ParameterizedConsensus solves Consensus with probability 1,

in 𝑂 (
√
𝑛𝑥 polylog 𝑛) time and 𝑂 (

√︁
𝑛/𝑥 polylog 𝑛) amortized bit

communication complexity, whp, using 𝑂 (
√︁
𝑛/𝑥 polylog 𝑛) random

bits per process.

Proof. By Lemma 11 we already know that the Parameterized-

Consensus algorithm is a solution to the Consensus problem.

By Lemma 7 and Lemma 9 we get the time and bit complexity

of Phase_1 and Phase_1. By Theorem 3, we have that a single

execution of a Gossip algorithm takes 𝑂̃ (1) rounds and 𝑂̃ (1) com-

munication bits amortized per process, given that there can be only

two different rumors of size 𝑂̃ (1) each, as we argued in Lemma 11.

These bounds together give us the desired complexity of the Pa-

rameterizedConsensus algorithm.

A single run of the 𝛼-BiasedConsensus algorithm on members

of a super-processes generates 𝑂̃ ( 𝑛𝑥
√︃

𝑛
𝑥 ) random bits, since each

member generates at most one random bit per every round of the

algorithm, see Section 2.1. Since, the processes execute at most 𝑂̃ (𝑥)
runs of the 𝛼-BiasedConsensus algorithm, thus the total number

of random bits used is 𝑂̃ (𝑛
√︃

𝑛
𝑥 ) which implies 𝑂̃ (

√︃
𝑛
𝑥 ) amortized

random bit complexity. □
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5.4 Generalization to Any Number of Failures.

In this subsection we highlight main ideas that generalize the Pa-

rameterizedConsensus algorithm to work in the presence of any

number of crashes 𝑓 < 𝑛. We call the resulting algorithm Parame-

terizedConsensus
∗
. We exploit the concept of epochs in a similar

way to [9, 14]. In short, the first and main epoch (in our case, Pa-

rameterizedConsensus followed by BiasedConsensus described

in Section 2.1) is repeated 𝑂 (log𝑛) times, each time adjusting ex-

pansion/density/probability parameters by factor equal to
9

10
. The

complexities of the resulting algorithm are multiplied by logarith-

mic factor. More details are given below.

Consider a run of the ParameterizedConsensus algorithm, as

described and analyzed in previous sub-sections. Let us analyze the

state of the system at the end of ParameterizedConsensus algo-

rithm if more than
𝑛
10

crashes have occurred. In the end, there exist

two group of processes, those that have decision_value set to −1
(i.e., the last Gossip has not been successful in their case), and those

who have decision_value set to a value from {0, 1}. Observe, that
if at most

𝑛
10

processes were faulty, then we already proved in The-

orem 7 that the first of these sets would be empty and there could

be only one value in {0, 1} taken by alive processes. Thus, we can

extend the run of the ParameterizedConsensus by an execution

of
1

2
-BiasedConsensus among members of each super-processes,

separately for different super-processes, to make them agree if

there exists a member of the super-process who had received a

null value in the last Gossip execution. A single run of Parame-

terizedConsensus followed by the run of
1

2
-BiasedConsensus is

called an epoch. Based on the output of the
1

2
-BiasedConsensus,

the members of each super-process decide whether they keep the

agreed candidate value as decision final value and stay idle in the

next epoch, or they continue to the next epoch. There are three

key properties here. First, because the decision of entering next

epoch is made based on an output to Biased Consensus, it is con-

sistent among members of a single super-process. Second, in the

good scenario, i.e., when only less than
𝑛
10

processes crashed, every

process will start the run of the
1

2
-BiasedConsensuswith the same

value, yet different than a null-value. From validity condition, all

processes stay idle. Third, a non-faulty super-process at the end

of Phase 2 actually implies that there was a majority of non-faulty

other super-processes in its 𝑂 (log𝑛) neighborhood, regardless of
the number of failures (c.f., Lemma 17 – thus, only one value in

{0, 1} can be confirmed in the whole system as long as at least one

process remains alive, whp.

In the next epoch, super-processes that are not idle, repeat the

ParameterizedConsensus algorithm, but tune its parameters to

adjust to the larger number of crashes (i.e., smaller fraction of alive

processes). They use:

(i) a graph H1, instead of H , which is roughly
10

9
denser (i.e., a

graph 𝐺 (·)) compared to graphH used in the previous epoch,

(ii) new threshold 𝛼1 :=
2

3
· 9

10
for evoking BiasedConsensus,

(iii) they loose the parameter in the definition of a non-faulty super-

process by a factor of 9/10.
In general, processes repeats this process of ’densification’ in sub-

sequent Θ(log𝑛) epochs. Eventually, one of this epochs must be

successful, otherwise the number of crashed process would exceed

𝑛/(1/10)Θ(𝑛) > 𝑛. On the other hand, each time we ’densify’ graph

H , i.e., we take an overlay graph H𝑖 from the family of overlay

graphs as defined in Section 4 but with expansion and density pa-

rameters adjusted by factor

(
9

10

)𝑖
, we are guaranteed that only a

fraction of previously alive processes execute the next epoch. As

density and expansion parameters in the family of overlay graphs

are inversely proportional, we conclude that in each epoch the amor-

tized bit complexity stays at the same level of𝑂 (
√︃

𝑛
𝑥 ). Therefore, in

cost of multiplying both, the time complexity and the amortized bit

complexity by a factor of Θ(log𝑛), we are able to claim Theorem 1.

Theorem 1 (Strengthened Theorem 7). For any 𝑥 ∈ [1, 𝑛] and
the number of crashes 𝑓 < 𝑛, ParameterizedConsensus∗ solves Con-
sensus with probability 1, in 𝑂 (

√
𝑛𝑥 polylog 𝑛) time and 𝑂 (

√︁
𝑛/𝑥 ·

polylog 𝑛) amortized bit communication complexity, whp, while using

𝑂 (
√︁
𝑛/𝑥 polylog 𝑛) random bits per process.

6 RANDOMIZED 𝛼-BIASED CONSENSUS

The 𝛼-BiasedConsensus algorithm generalizes and improves the

SynRan algorithm of Bar-Joseph and Ben-Or [9]. For this part, we

purposely use the same notation as in [9] for the ease of comparison.

First, processes run Fuzzy Counting (i.e. use the FuzzyCounting

algorithm from Section 7) where the set of active processes consists

of this processes which the input value to the 𝛼-Biased Consensus

is 1. Then, each process calculates logical 𝐴𝑁𝐷 of the two values:

its initial value and ones ≥ 𝛼 · 𝑛, where ones is the number of 1’s

output by the Fuzzy Counting algorithm. Denote 𝑥𝑝 the output of

the logical 𝐴𝑁𝐷 calculated by process 𝑝 .

In the following processes solves an 𝛼-Biased Consensus on 𝑥𝑝 .

Each process 𝑝 starts by setting its current choice 𝑏𝑝 to 𝑥𝑝 . The

value 𝑏𝑝 in the end of the algorithm indicates 𝑝’s decision. Now,

processes use 𝑂 (𝑓 /
√︁
𝑛 log𝑛) phases to update their values 𝑏𝑝 such

that eventually every process keeps the same choice. To do so, in

a round 𝑟 every process 𝑝 calculates the number of processes that

current choice is 1 and the number of processes that current choice

is 0, denoted 𝑂𝑟
𝑝 and 𝑍𝑟𝑝 respectively. Based on these numbers, pro-

cess 𝑝 either sets 𝑏𝑝 to 1, if the number 𝑂𝑟
𝑝 is large enough; or

it sets 𝑏𝑝 to 0, if the number 𝑍𝑟𝑝 is large; or it replaces 𝑏𝑝 with a

random bit, if the number of zeros and ones are close to each other.

In Bar-Joseph’s and Ben-Or’s the numbers 𝑍𝑟𝑝 and 𝑂𝑟
𝑝 were calcu-

late in a single round all-to-all of communication. However, we

observed that because processes’ crashes may affect this calculation

process in almost arbitrary way, this step can be replaced by any

solution to Fuzzy Counting. That holds, because Fuzzy Counting

exactly captures the necessary conditions that processes must fulfill

to simulate the all-to-all communication, that is it guarantees that

candidate values of non-faulty processes are included in the num-

bers 𝑂𝑟
𝑝 and 𝑍𝑟𝑝 calculated by any processor 𝑝 . Thus, rather than

using all-to-all communication, our algorithms utilizes the effective

FuzzyCounting algorithm where active processes are those who

have their current choice equal 1. The output of this algorithm

serves as the number 𝑂𝑟
𝑝 , while the number 𝑍𝑟𝑝 is just 𝑛 −𝑂𝑟

𝑝 . For

the sake of completeness, we also provide the pseudocode of the

algorithm. We conclude the above algorithm in Theorem 2.
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Algorithm 4: 𝛼-BiasedConsensus. The parts in which

our algorithm differs from the SynRyn algorithm from [9]

algorithm are underlined.

input: P, 𝑝 , 𝑏𝑝 , 𝛼
1 if FuzzyCounting(P, 𝑝, 𝑏𝑝 ) > 𝛼 · |P | then 𝑥𝑝 ← 𝑏𝑝 & 1;

2 else 𝑥𝑝 ← 0;

3 𝑟 ← 1; 𝑁 𝑟
−1 = 𝑁

𝑟
0
← 𝑛; decided← 𝐹𝐴𝐿𝑆𝐸 ;

4 while 𝑇𝑅𝑈𝐸 do

5 participate in CheapCounting execution with input bit

being set to 𝑏𝑝 ; let 𝑂
𝑟
𝑝 , 𝑍

𝑟
𝑝 be the numbers of ones and

zeros (resp.) returned by CheapCounting;

6 𝑁 𝑟
𝑝 ← 𝑍𝑟𝑝 +𝑂𝑟

𝑝 ;

7 if (𝑁 𝑟
𝑝 <

√︁
𝑛/log𝑛) then

8 send 𝑏𝑝 to all processes, receive all messages sent to

𝑝 in round 𝑟 + 1;
9 run any deterministic Consensus protocol on the set

P of all processes, working in at most

√︁
𝑛/log𝑛

rounds and using all-to-all communication, c.f., [8];

10 end

11 if decided = 𝑇𝑅𝑈𝐸 then

12 diff← 𝑁 𝑟−3
𝑝 𝑁 𝑟

𝑖
;

13 if (diff ≤ 𝑁 𝑟−2
𝑝 /10) then STOP;

14 else decided← 𝐹𝐴𝐿𝑆𝐸;

15 end

16 if 𝑂𝑟
𝑝 > (7𝑁 𝑟

𝑝 − 1)/10 then 𝑏𝑝 ← 1, decided← 𝑇𝑅𝑈𝐸;

17 else if 𝑂𝑟
𝑝 > (6𝑁 𝑟

𝑝 − 1)/10 then 𝑏𝑝 ← 1;

18 else if 𝑍𝑟𝑝 = 0 then 𝑏𝑝 ← 1;

19 else if 𝑂𝑟
𝑝 < (4𝑁 𝑟

𝑝 − 1)/10 then
20 𝑏𝑝 ← 0, decided← 𝑇𝑅𝑈𝐸;

21 else if 𝑂𝑟
𝑝 < (5𝑁 𝑟

𝑝 − 1)/10 then 𝑏𝑝 ← 0;

22 else set 𝑏𝑝 to 0 or 1 with equal probability;

23 𝑟 ← 𝑟 + 1;
24 end

25 return 𝑏𝑝 ; /* consensus value */

Theorem 2. The 𝛼-BiasedConsensus algorithm solves 𝛼-Biased

Consensus with probability 1. The algorithm has expected running

time𝑂 (𝑓 /
√
𝑛·log5/2 𝑛) and expected amortized bit complexity𝑂 (𝑓 /

√
𝑛·

log
13/2 𝑛), for any number of crashes 𝑓 < 𝑛.

Setting 𝛼 := 1

2
we get a better randomized solution to classic Con-

sensus problem.

Corollary 1. The
1

2
-BiasedConsensus algorithm is a solution

to Consensus. The algorithm satisfies agreement and validity with

probability 1, has expected running time 𝑂 (𝑓 /
√
𝑛 · log5/2 𝑛), and

the expected amortized bit complexity 𝑂 (𝑓 /
√
𝑛 · log13/2 𝑛), for any

number of crashes 𝑓 < 𝑛.

Monte Carlo version. The original algorithm𝛼-BiasedConsensus

has the expected running time 𝑂 (
√
𝑛 log13/2 𝑛). However, we can

force all processes to stop by that time multiplied by a constant. In

such case, the worst-case running time will be always 𝑂̃ (
√
𝑛) while

the correctness (agreement) will hold only whp.

7 GOSSIP AND FUZZY COUNTING

In this section we design and analyze an algorithm, called Gossip

which, given a set of processes P, solves the Gossip problem in

𝑂̃ (1) rounds and uses 𝑂̃ ( |R|) communication bits amortized per

process, where |R | is the number of bits needed to encode initial

rumors of all processes. A small modification of this algorithm will

result in a solution to the Fuzzy Counting problem with the same

time and only logarithmically larger bit complexity.

7.1 Bipartite Gossip

We start by giving a solution to Gossip problem in a special case,

called Bipartite Gossip, in which processes are partitioned into two

groups P1 and P2 each of size ⌈𝑛/2⌉ at most. Processes starts with

at most two different initial rumors 𝑟1 and 𝑟2 such that processes

of each group share the same initial rumor. The partition and the

initial rumor is assumed to be an input to the algorithm. The goal

of the system is still to achieve Gossip.

High level idea of algorithm BipartiteGossip. If there were no

crashes in the system, it would be enough if processes span a bi-

partite expanding graph with poly-logarithmic degree on the set

of vertices P1 ∪ P2 and for 𝑂̃ (1) rounds exchange messages with

their initial rumors. In this ideal scenario the𝑂 (log𝑛) bound on the

expander diameter suffices to allow every two process exchange

information, while the sparse nature of the expander graphs con-

tributes to the small bit complexity. However, a malicious crash

pattern can easily disturb such naive approach. To overcome this,

in our algorithm processes will adapt to the number of crashes

they estimate in their group, by communicating over denser ex-

pander graphs from a family of Θ(log𝑛) expanders, every time

they observe a significant reduction of non-faulty processes in

their neighborhood.

Precisely, the internal communication within group 𝑃1 uses

graphs from a family of Θ(log𝑛) expanders:
Gin = {𝐺in (0), . . . ,𝐺in (log𝑛)}, for 𝑡 = 𝑂 (log𝑛), spanned on the

set of processes P1 and such that 𝐺in (𝑖) ⊆ 𝐺in (𝑖 + 1), the degree
and expansion parameter of the graphs double with the growing

index, and the last graph is a clique. Initially, processes from P1
span an expander graph𝐺in (0) with𝑂 (log𝑛) degree on the set P1,
in the sense that each process in P1 identifies its neighbors in the

graph spanned on P1. In the course of an execution, each process

from P1 keeps testing the number of non-faulty processes in its

𝑂 (log𝑛) neighborhood in 𝐺in (0). If the number falls down below

some threshold, the process upgrades the used expanding graph by

switching to the next graph from the family – 𝐺in (1). The process
continues testing, and switching graph to the next in the family

if necessary, until the end of the algorithm. The ultimate goal of

this ’densification’ of the overlay graph is to enable each process’

communication with a constant fraction of other alive processes in

P1. Note here that this procedure of adaptive adjustment to failures

pattern happens independently at processes in P1, therefore it may

happen that processes in P1 may have neighborhoods taken from

different graphs in family Gin.
The external communication of processes fromP1 with processes

from P2 is strictly correlated with their estimation of the number

of processes being alive in their𝑂 (log𝑛) neighborhood in P1 using
expanders in Gin, as described above. Initially, a process from P1
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sends its rumor according to other expander graph 𝐺out (0) of de-
gree𝑂 (log𝑛), the first graph in another family of expanders graphs

Gout = {𝐺out (0), . . . ,𝐺out (𝑡)}, for 𝑡 = 𝑂 (log𝑛), spanned on the

whole set of processes P1 ∪ P2, such that 𝐺out (𝑖) ⊆ 𝐺out (𝑖 + 1),
the degree and expansion parameter of the graphs double with

the growing index, and the last graph is a clique. Each time a pro-

cess chooses a denser graph from family Gin in the internal group

communication, described in the previous two paragraphs, it also

switches to a denser graph from family Gout in the external com-

munication with group P2. The intuition is that if a process knows

that the number of alive processes in its 𝑂 (log𝑛) neighborhood in

P1 has been reduced by a constant factor since the last check, it

can afford an increase of its degree in external communication with

group P2 by the same constant factor, as the amortized message

complexity should stay the same.

Estimating the number of alive processes in 𝑂 (log𝑛) neighbor-
hoods. In the heart of the above method lies an algorithm, called

LocalSignaling that for each process 𝑝 , tests the number of other

alive processes in 𝑝’s neighborhood of radius 𝑂 (log𝑛). As a side
result, it also allows to exchange a message with these neighbors.

The algorithm takes as in input: a set of all processes in the sys-

tem P, an expander-like graph family G = {𝐺 (0), . . . ,𝐺𝑡 } spanned
on P, together with two parameters 𝛿 and 𝛾 , describing a diame-

ter and a maximal degree of the base graph 𝐺 (0); the name of a

process 𝑝; the process’ level ℓ which denotes which graph from

family G the process uses to communicate; and the message to

convey 𝑟 . Let T denote a graph ∪𝑣∈P𝑁𝐺ℓ𝑣
(𝑣), that is a graph with

set of vertices corresponding to P and set of edges determined

based on neighbors of each vertex from a graph on the proper level.

Provided that LocalSignaling is executed synchronously on the

whole system it returns whether the process 𝑝 was connected to

a constant number of other alived processes at the beginning of

the execution accordingly to graph T . Assumed that, the algorithm

guarantees that 𝑝’s message reached all these processes and vice

versa - messages of these processes reached 𝑝 . On the other hand,

we will prove that the amortized bit complexity of a synchronous

run of the LocalSignaling algorithm is 𝑂̃ (𝑛). This is the most

advanced technical part used in our algorithm. It’s full description

and detailed analysis is given in Section 8.

BipartiteGossip algorithm and its analysis. In this paragraph

we give a pseudocode of the BipartiteGossip algorithm which im-

plements the idea discussed before. We start by formal description

of utilized graphs and connected to them subroutines.

The graphs used by processes are grouped into two families: Gin
and Gout. Denote 𝑡 = ⌊log𝑛⌋, 𝛿 = 2 log𝑛, 𝛾 = 24 log𝑛. Consider a

process 𝑝; it gets as an input the partition of set [𝑛] into groups

𝑃1, 𝑃2, thus it can determine the group it belongs to. The family

Gin = {𝐺in (0), . . . ,𝐺in (𝑡 + 1)} serves for communication inside

each group.

A single graph 𝐺in (𝑖), for 𝑖 ∈ {0, . . . , 𝑡}, is a union of

𝐺 (𝑛/2, 𝑛
3·2𝑗 , 𝛿, 𝛾), over 𝑗 ∈ {0, . . . , 𝑖}, of graphs given in the Theo-

rem 6 with nodes being the processes in 𝑝 ′s group, that is𝐺in (𝑖) =⋃𝑗=𝑖

𝑗=0
𝐺 (𝑛/2, 𝑛

3·2𝑗 , 𝛿, 𝛾). Graph𝐺𝑡+1 is a clique with nodes being the

processes of 𝑝’s group.

The family Gout = {𝐺out (0), . . . ,𝐺out (𝑡 + 1)} serves for com-

munication outside each group. A single graph 𝐺out (𝑖), for 𝑖 ∈
{0, . . . , 𝑡}, is a union of𝐺 (𝑛, 2𝑛

3·2𝑗 , 𝛿, 𝛾), over 𝑗 ∈ {0, . . . , 𝑖}, of graphs
given in the Theorem 6 with nodes being all the processes, that is

𝐺out (𝑖) =
⋃𝑗=𝑖

𝑗=0
𝐺 (𝑛, 2𝑛

3·2𝑗 , 𝛿, 𝛾). Graph 𝐺𝑡+1 is a clique with nodes

being all the processes.

Observe, that those families and parameters 𝑡, 𝛿,𝛾 are determin-

istic and can be precomputed by each process, assumed the knowl-

edge of partition 𝑃1 and 𝑃2. As a such, they are assumed to be

known to the algorithm on every stage of the algorithm.

The Exchange communication scheme for a graph𝐺 , used

in theBipartiteGossip algorithm:This communication scheme

takes two rounds. In the first round 𝑝 sends a message containing

a bit and the set 𝑅, being a set of all learned so far rumors by 𝑝 , to

every process in the set 𝑁𝐺 (𝑝) that is not faulty according to 𝑝’s

view on the system. The receiver treats such a message as both a

request and an increment-knowledge message. In the second round

of the Exchange, 𝑝 responds to all the received requests by sending

𝑅 to each sender of every request received in the previous round.

Algorithm 5: BipartiteGossip

input: partition P1, P2; 𝑝 , 𝑟 , 𝑅 = {𝑟 }
1 for 𝑖 ← 1 to 2𝑡 do

2 repeat 3 times

3 do Exchange on graph Gout (𝑖 + 1);
4 repeat 2𝛾 + 1 times

5 do Exchange on graph Gin (𝑖 + 7);
6 repeat t + 2 times

7 do Exchange on graph Gin (𝑖 + 2);
8 survived← LocalSignaling(𝑝,Gin, 𝑖, 𝛿, 𝛾, 𝑅);
9 if survived = false then

10 𝑖 ← min(𝑖 + 1, 𝑡 + 1)
11 end

12 end

13 return 𝑅; /* set 𝑅 of learned rumors */

Analysis of correctness. We call a single iteration of the main

loop of the BipartiteGossip algorithm an epoch. First, we show

that if in a single epoch a big fraction of processes from the groups

𝑃1 and 𝑃2 worked correctly, then by the end of the epoch every

process has learned both rumors 𝑟1 and 𝑟2. Let E be an epoch. Let

BEGIN1 (BEGIN2) be the set of processes from the group 𝑃1 (group 𝑃2
respectively) that were non-faulty before the epoch E started. Let

END1 (END2) be the set of those processes from the group 𝑃1 (group

𝑃2 respectively) that were non-faulty after the epoch E ended. We

assume that epoch E is such that:

|END1 | > 1

3
|BEGIN1 | and |END2 | > 1

3
|BEGIN2 | .

Lemma 12. After the first iteration of the loop from line 2 in

epoch E, each non-faulty process from the group 𝑃1 is on level 𝑗𝑝 ≥
log

(
𝑛

3·64· |BEGIN1 |
)
.

Lemma 13. There exists a set 𝐶1 ⊆ END1 of size at least
|BEGIN1 |

4

such that after the second iteration of the loop 2 of epoch E each

process 𝑝 from set 𝐶1 has the other rumor 𝑟2 in its set R.
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Lemma 14. After the epoch E ends, each process from the set END1
knows the other rumor 𝑟2.

Analysis of communication complexity. Let 𝐿𝑖 (𝑟 ) be the set of

non-faulty processes that at the beginning of the round 𝑟 are on

level 𝑖 or bigger. We show that for any round 𝑟 ≥ 2 and for any

𝑖 ∈ [𝑡], the number |𝐿𝑖 (𝑟 ) | is at most
2𝑛
2
𝑖 .

Lemma 15. For any round 𝑟 ≥ 2 and any level 𝑖 ∈ [𝑡] the number

of processes in the set 𝐿𝑖 (𝑟 ) is at most
2𝑛
2
𝑖 .

Putting the above Lemmas together, Theorem 5 could be proved.

7.2 The Gossip Algorithm

Here, we describe an algorithm based on the divide-and-conquer

approach, called Gossip that utilizes the BipartiteGossip algo-

rithm to solve Fault-tolerant Gossip. Each process takes the set P,
an initial rumor 𝑟 and its unique name 𝑝 ∈ [|P|] as an input. The

processes split themselves into two groups of size at most ⌈𝑛/2⌉.
The groups are determined based on the unique names. The first

⌈𝑛/2⌉ processes with the smallest names make the group P1, while
the 𝑛 − ⌈𝑛/2⌉ processes with the largest names define the group P2.
Each of those two groups of processes solves Gossip separately by

evoking the Gossip algorithm inside the group only. The processes

from each group know the names of every other process in that

group, hence the necessary conditions to execute the Gossip recur-

sively are satisfied. After the recursion finishes, a process from P1
stores a set of rumors R1 of processes from its group, and respec-

tively a process from P2 stores a set of rumors R2 of processes from
its group. Then, the processes solve Bipartite Gossip problem by

executing the BipartiteGossip algorithm on the partition P1, P2
and having initial rumors R1 and R2. The output to this algorithm

is the final output of the Gossip, for which Theorem 3 holds.

Modification for Fuzzy Counting. We define the Fuzzy Counting

problem as follows. There is a set 𝑛 processes, P, with unique

names that are comparable. Each process knows the names of other

processes (i.e. they operate in KT-1 model). Each process starts

with an initial bit 𝑏 ∈ {0, 1}. Let Z denote the number of processes

that started with the initial bit set to 0 and never failed. Similarly,

O denotes the number of processes that started with 1 and never

failed. Each process has to return two numbers: zeros and ones.
An algorithm is said to solve fuzzy counting if every non faulty

process terminates (termination condition) and the values returned

by any process fulfill the conditions: zeros ≥ |Z|, ones ≥ |O| and
zeros + ones ≤ 𝑛 (validity condition).

To solve this problem, we use the Gossip algorithm with the

only modification that now we require the algorithm the return

the values Z and O, instead of the set of learned rumors. We apply

the same divide-and-conquer approach. That is, we partition P
into groups P1 and P2 and we solve the problem within processors

of this partition. Let Z1, O1 and Z2, O2 be the values returned by

recursive calls on set of processes P1 and P2, respectively. Then,
we use the BipartiteGossip algorithm to make each process learn

values Z and O of the other group. Eventually, a process returns

a pair of values Z1 + Z2 and O1 + O2 if it received the values from

the other partition during the execution of BipartiteGossip; or it

returns the values corresponding to the recursive call in its partition

otherwise. It is easy to observe, that during this modified execution

processes must carry messages that are able to encode values Z
and O, thus in this have it holds that |R | = 𝑂 (log𝑛). The above

modification leads to Theorem 4.

8 LOCAL SIGNALLING – ESTIMATING

NEIGHBORHOODS IN EXPANDERS

The LocalSignaling algorithm, presented in this section, allows to

adapt the density of used overlay graph to any malicious fail pattern

guaranteeing fast information exchange among a constant fraction

of non-faulty nodes with amortized 𝑂̃ (𝑛 |R |) bit complexity, where

R is the overhead that comes from the bit size of the information

needed to convey.

It is formally denoted LocalSignaling(P, 𝑝,G, 𝛿, 𝛾, ℓ, 𝑟 ), where
P is the set of all processes, 𝑝 is the process that executes the pro-

cedure and G = {𝐺 (1), . . . ,𝐺 (𝑡)} denotes the family of overlay

graphs that processes from P uses to select processes to directly

communicate – those are neighborhoods in some graph of the fam-

ily G. In our case, the family will consist of graphs with increasing

connectivity properties. Parameters 𝛾, 𝛿 correspond to the property

of (𝛾, 𝛿)-dense-neighborhoods which the base graph 𝐺 (1) must

fulfill. They are also related to the time and actions taken by pro-

cesses if failures occur, respectively. The parameter ℓ ≤ 𝑡 is called
a starting level of process 𝑝 and denotes the communication graph

from family G from which the node 𝑝 starts the current run of the

procedure. This parameter may be different for different processes.

Finally, the parameter 𝑟 denotes a rumor that process 𝑝 is supposed

to deliver to other processes. Since processes operates in KT−1
model, the implementation assumes that each process uses the

same family G (see the corresponding discussion after Theorem 6).

LocalSignaling(P, 𝑝,G, 𝛿, 𝛾, ℓ, 𝑟 ) takes 2𝛾 consecutive rounds.

The level of process 𝑝 executing the procedure is initially set to ℓ ,

and is stored in a local variable 𝑖 . Each process stores also a set 𝑅

of all rumors it has learned to this point. Initially, 𝑅 is set to {𝑟 }.

Odd rounds: Process 𝑝 sends a request message to each process 𝑞

in 𝑁𝐺 (𝑖) (𝑝), provided 𝑖 > 0.

Even rounds: Every non-faulty process 𝑞 responds to the requests

received at the end of the previous round – by replying to the

originator of each request amessage containing the current level 𝑖

of process 𝑞 and the set 𝑅 of all different rumors 𝑞 collected so far.

At the end of each even round, processes that requested informa-

tion in the previous round collect the responses to those requests.

If a single process 𝑝 received less then 𝛿 responses with level’s

value of its neighbors greater or equal than its level value 𝑖 , then

𝑝 decreases 𝑖 by one. Additionally, 𝑝 merges every set of rumors

it received with its own set 𝑅. If 𝑖 drops to 0, then 𝑝 does not send

any requests in the consecutive rounds.

Output: We say that process 𝑝 has not survived the LocalSignal-

ing algorithm if it ends with value 𝑖 lower than its initial level 𝑖 .

Otherwise, 𝑝 is said to have survived the LocalSignaling algo-

rithm. 𝑝 returns a single bit indicating whether it has survived

or not and the set 𝑅 containing all rumors it has learnt in the

course of the execution.

Lemma 16. The procedure LocalSignaling(P, 𝑝,G, 𝛿, 𝛾, ℓ, 𝑟 ) takes
𝑂 (𝛾) rounds and uses

( ∑𝑖=𝑡
𝑖=1 |𝐿𝑖 | · |𝑁𝐺≤𝑖 (𝐿𝑖 ) | ·𝛾 · |R |

)
communication

bits, where 𝐿𝑖 denotes the set of processes that start at level 𝑖 , the graph
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𝐺≤𝑖 is a union of graphs 𝐺 (1), . . . ,𝐺 (𝑖), and the value |R | denotes
the number of bits needed to encode all possible rumors.

Surviving the LocalSignaling – the consequences. Assume that

𝑡 ≥ 1 and consider a sequence (𝑘𝑖 )𝑖∈[𝑡 ] . Let G = {𝐺 (1), . . . ,𝐺 (𝑡)}
be a family of graphs 𝐺 (𝑖) = 𝐺 (𝑛, 𝑘𝑖 , 𝛿, 𝛾) defined as in Theorem 6.

We require, for any 1 ≤ 𝑖 < 𝑡 that𝐺 (𝑖) ⊆ 𝐺 (𝑖 +1). Consider a simul-

taneous run of the procedure LocalSignaling(P, 𝑝,G, 𝛿, 𝛾, ℓ, 𝑟 ) at
every process 𝑝 ∈ P. Here, we require each process 𝑝 ∈ P to use

the same family of graphs G. Since our processes operates in KT−1
model, this requirement could be always satisfied.

Let 𝐵ℓ,1 be the start set on level ℓ : it consists of the processes that

are non-faulty at the beginning of this instance of Local Signaling

and their level is at least ℓ . Let 𝐵ℓ,2 ⊆ 𝐵ℓ,1 be the end set: it consists
of the processes that are non-faulty just after the termination of

this instance and their level at the beginning of this instance was

at least ℓ . The processes in 𝐵ℓ,1 \ 𝐵ℓ,2 are among those that have

crashed during the considered instance of Local Signaling.

Lemma 17. The following properties hold for arbitrary times of

crashes of the processes in 𝐵ℓ,1 \ 𝐵ℓ,2:
1. If there is a (𝛾, 𝛿)-dense-neighborhood for𝑝 ∈ 𝐵ℓ,2 in graph𝐺ℓ |𝐵ℓ,2

,

then process 𝑝 survives Local Signaling.

2. If 𝑝 survived the Local Signaling, then there is (𝛾, 𝛿)-dense-
neighborhood for 𝑝 ∈ 𝐵ℓ,1 in graph 𝐺 (ℓ) |𝐵ℓ,1

. Moreover, 𝑝 receives

the rumor 𝑟 of any node from that (𝛾, 𝛿)-dense-neighborhood.
3. Any process in a survival set 𝐶 for 𝐵ℓ,2 that started at level

exactly ℓ survives Local Signaling.

9 CONCLUSIONS AND OPEN PROBLEMS

We explored the Consensus problem in the classic message-passing

model with processes’ crashes, from perspective of both time and

communication optimality.We discovered an interesting tradeoff be-

tween these two complexity measures: Time × Amortized_Commu-

nication = 𝑂̃ (𝑛), which, to the best of our knowledge, has not been

present in other settings of Consensus and related problems. We

believe that a corresponding lower bound could be proved: Time ×
Amortized_Communication = Ω̃(𝑛). Interestingly, a similar trade-

off could hold between time and amount of randomness, as our

main algorithm ParameterizedConsensus
∗
satisfies the relation:

Time ×Amortized_Randomness = 𝑂̃ (𝑛). Exploring similar tradeoffs

in other fault-tolerant distributed computing problems could be a

promising and challenging direction to follow. It is worth noting

that all our algorithms use messages of size 𝑂 (log𝑛), and thus can

be implemented in the congest model.
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