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ABSTRACT divide-and-conquer idea, in which processes run a Bipartite Gossip

Consensus is one of the most thoroughly studied problems in dis-
tributed computing, yet there are still complexity gaps that have
not been bridged for decades. In particular, in the classical message-
passing setting with processes’ crashes, since the seminal works
of Bar-Joseph and Ben-Or [PODC 1998] and Aspnes and Waarts
[SICOMP 1996, JACM 1998] in the previous century, there is still a
fundamental unresolved question about communication complexity
of fast randomized Consensus against a (strong) adaptive adversary

crashing processes arbitrarily online. The best known upper bound
32

Vlogn

while the best lower bound is Q(1). This is in contrast to random-
ized Consensus against a (weak) oblivious adversary, for which
time-almost-optimal algorithms guarantee amortized O(1) commu-
nication bits per process. We design an algorithm against adaptive
adversary that reduces the communication gap by nearly linear
factor to O(~/n - polylog n) bits per process, while keeping almost-
optimal (up to factor O(log® n)) time complexity O(+/n - logs/ Zp).

More surprisingly, we show this complexity indeed can be low-
ered further, but at the expense of increasing time complexity, i.e.,
there is a trade-off between communication complexity and time
complexity. More specifically, our main Consensus algorithm al-

on the number of communication bits is ©(

) per process,

lows to reduce communication complexity per process to any value
from polylog n to O(+/n - polylog n), as long as Time X Commu-
nication = O(n - polylog n). Similarly, reducing time complexity
requires more random bits per process, i.e., Time X Randomness
= O(n - polylog n).

Our parameterized consensus solutions are based on a few newly
developed paradigms and algorithms for crash-resilient computing,
interesting on their own. The first one, called a Fuzzy Counting, pro-
vides for each process a number which is in-between the numbers
of alive processes at the end and in the beginning of the counting.
Our deterministic Fuzzy Counting algorithm works in O(log® n)
rounds and uses only O(polylog n) amortized communication bits
per process, unlike previous solutions to counting that required
Q(n) bits. This improvement is possible due to a new Fault-tolerant
Gossip solution with O(log® n) rounds using only O(|R| - polylog n)
communication bits per process, where |R| is the length of the ru-
mor binary representation. It exploits distributed fault-tolerant
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algorithm for a considered partition of processes. To avoid passing
many long messages, processes use a family of small-degree com-
pact expanders for local signaling to their overlay neighbors if they
are in a compact (large and well-connected) party, and switch to a
denser overlay graph whenever local signalling in the current one

is failed.
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1 INTRODUCTION

Fault-tolerant Consensus — when a number of autonomous pro-
cesses want to agree on a common value among the initial ones,
despite of failures of processes or communication medium - is
among foundation problems in distributed computing. Since its
introduction by Pease, Shostak and Lamport [31], a large number
of algorithms and impossibility results have been developed and
analyzed, applied to solve other problems in distributed computing
and systems, and led to a discovery of a number of new important
problems and solutions, c.f,, [8]. Despite this persistent effort, we
are still far from obtaining even asymptotically optimal solutions
in most of the classical distributed models.

In particular, in the classical message-passing setting with pro-
cesses’ crashes, despite of the results obtained in the seminal works
of Bar-Joseph and Ben-Or [9] and Aspnes and Waarts [5, 6] in
the previous century, there is still a substantial gap in communi-
cation complexity of fast randomized Consensus. More precisely,
in this model, n processes communicate and compute in synchro-
nous rounds, by sending/receiving messages to/from a subset of
processes and performing local computation. Each process knows
set P of IDs of all n processes. Up to f < n processes may crash
accidentally during the computation, which is typically modeled
by an abstract adversary that selects which processes to crash and
when, and additionally — which messages sent by the crashed pro-
cesses could reach successfully their destinations. An execution
of an algorithm against an adversary could be seen as a game, in
which the algorithm wants to minimize its complexity measures
(such as time and communication bits) while the adversary aims at
violating this goal by crashing participating processes. The classical
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distributed computing focuses on two main types of the adversary:
adaptive and oblivious. Both of them know the algorithm in ad-
vance, however the former is stronger as it can observe the run of
the algorithm and decide on crashes online, while the latter has
to fix the schedule of crashes in advance (before the algorithm
starts its run). Thus, these adversaries have different power against
randomized algorithms, but same against deterministic ones.

One of the perturbations caused by crashes is that they sub-
stantially delay reaching consensus: no deterministic algorithm
can reach consensus in all admissible executions within f rounds,
as proved by Fisher and Lynch [18], and no randomized solution
can do it in o(4/n/logn) expected number of rounds against an
adaptive adversary, as proved by Bar-Joseph and Ben-Or [9]. Both
these results have been proven (asymptotically) optimal. The situa-
tion gets more complicated if one seeks time-and-communication
optimal solutions. The only existing lower bound requires Q(n)
messages to be sent by any algorithm even in some failure-free
executions, which gives Q(1) bits per process [4]. which is the
total communication complexity divided by n. There exists even a
deterministic algorithm with a polylogarithmic amortized number
of communication bits [14], however it requires a linear number of
rounds (as any deterministic solution, see [18]). On the other hand,
randomized algorithms running against weak adversaries are both
fast and amortized-communication-efficient, both formulas being
O(log n) or better, c.f., Gilbert and Kowalski [22]. At the same time,
the best randomized solutions against an adaptive adversary con-
sidered in this work requires time ©(+/n/log n) but large amortized

communication ©(n - y/n/log n). In this paper, we show a parame-
terized algorithm not only improves amortized communication by
nearly a linear factor, but also suggests surprisingly that there is
no time-and-communication optimal algorithm in this setting. The
omitted analysis’ details, due to space limit, could be found in [26].

Consensus problem. Consensus is about making a common deci-
sion on some of the processes’ input values by every non-crashed
process, and is specified by the three requirements:

Validity: Only one of the initial values may be decided upon.
Agreement: No two processes decide on different values.
Termination: Each alive process eventually decides.

All the above requirements must hold with probability 1. We focus
on binary consensus, in which initial values are in {0, 1}.

2 OUR RESULTS AND NEW TOOLS

Our main result is a new consensus algorithm PARAMETERIZED-
CONSENsUS*, parameterized by x, that achieves any asymptotic time
complexity between (j(\/ﬁ)+ and O(n), while preserving the con-
sensus complexity equation: Time X Amortized_Communication
= O(n polylog n). This is also the first algorithm that makes a
smooth transition between a class of algorithms with the optimal
running time (c.f., Bar-Joseph’s and Ben-Or’s [9] randomized al-
gorithm that works in é(\/ﬁ) rounds) and the class of algorithms
with amortized polylogarithmic communication bit complexity (c.f.,

“In this paper we typically state communication complexity results in terms of amor-
tized per process,
TWe use O symbol to hide any polylog n factors.
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Chlebus, Kowalski and Strojnowski [14] deterministic algorithm
using O(1) communication bits).

THEOREM 1 (SECTION 5.4). For any x € [1,n] and the number of
crashes f < n, PARAMETERIZEDCONSENSUS® solves Consensus with
probability 1, in O(+/nx) time and é(\/rl/_x) amortized bit commu-
nication complexity, whp, using O(M) random bits per process.

In this section we only give an overview of the most novel and
challenging part of PARAMETERIZEDCONSENSUS®, called PARAMETE-
RIZEDCONSENsUS, which solves Consensus if the number of failures
f < {5-Its generalization to PARAMETERIZEDCONSENSUS™ is done
in Section 5.4, by exploiting the concept of epochs in a similar way
to [9, 14]. In short, the first and main epoch (in our case, PARA-
METERIZEDCONSENSUS followed by BiAsEDCONSENsUS described
in Section 2.1) is repeated O(log n) times, each time adjusting ex-
pansion, density and probability parameters by factor equal to %.
The complexities of the resulting algorithm are multiplied by a
logarithmic factor.

High-level idea of PARAMETERIZEDCONSENSUS. In PARAMETE-
RIZEDCONSENSUS, processes are clustered into x disjoint groups,
called super-processes SPy, . .., SPx, of¥ processes each. Each pro-
cess, in a local computation, initiates its candidate value to the initial
value, pre-computes the super-process it belongs to, as well as two
expander-like overlay graphs which are later use to communicate
with other processes.

Degree § of both overlay graphs is O(logn), and correspond-
ingly the edge density, expansion and compactness are selected, c.f.,
Sections 4 and 5. One overlay graph, denoted H, is spanned on the
set of x super-processes, while copies of the other overlay graph are
spanned on the members of each pair of super-processes SP;, SP;
connected by an edge in H (we denote such copy by SE(SP;, SPj)).

PARAMETERIZEDCONSENSUS is split into three phases, c.f., Algo-
rithm 7 in Section 5. Each phase uses some of the newly developed
tools, described later in this section: a-BIASEDCONSENsUs and Gos-
stp. Processes keep modifying their candidate values, starting from
the initial values, through different interactions.

Using the tools. ¢-BIASEDCONSENSUS is used for maintaining the
same candidate value within each super-process, biasing it towards
0ifless than a certain fraction & of members prefer 1; see description
in Section 2.1 and 6. Theorem 2 proves that a-BIASEDCONSENSUS
works correctly in O(4/n/x) time and communication bits per pro-
cess. GossIP, on the other hand, is used to propagate values between
all or a specified group of processes, see description in Section 2.2
and 7.2. Theorem 3 guarantees that Gossip allows to exchange in-
formation between the involved up to n’ processes, where n’ < n,
in time O(log® n) and using O(log® n) communication bits per pro-
cess (in this application, we are using a constant number of rumors,
encoded by constant number of bits).

In Phase 1, super-processes want to flood value 1 along an overlay
graph H of super-processes, to make sure that processes in the
same connected component of H have the same candidate value
at the end of Phase 1. Here by a connected component of graph
H we understand a maximum connected sub-graph of H induced
by super-processes of at least % - 2 non-faulty processes; we call
such super-processes non-faulty. Recall, that the adversary can
disconnect super-processes in H by crashing some members of
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selected super-processes. To do so, the following is repeated x + 1
times: processes in a non-faulty super-process SP;, upon receiving
value 1 from some neighboring non-faulty super-process, make
agreement (using BIASEDCONSENSUS) to set up their candidate value
to 1 and send it to all their neighboring super-processes SP; via links
in overlay graphs SE(SP;, SP}). One of the challenges that need to
be overcome is inconsistency in receiving value 1 by members
of the same super-process, as — due to crashes — only some of
them may receive the value while others may not. We will show
that it is enough to assume threshold % in the B1ASEDCONSENSUS,
which together with expansion of overlay graphs SE(SP;, SP;) and
compactness of H (existence of large sub-component with small
diameter, c.f., Lemma 2) guarantee propagation of value 1 across the
whole connected component in H. It all takes (x+1) - (O(\/m) +
1) = O(+/xn) rounds and O(\/rl/_x +logn) = é(\/m) amortized
communication per process; see Section 5.1 for details.

In Phase 2, non-faulty super-processes want to estimate the num-
ber of non-faulty super-processes in the neighborhood of radius
O(log x) in graph H. (We know from Phase 1 that whole connected
non-faulty component in H has the same candidate value.) In or-
der to do it, they become “active” and keep exchanging candidate
value 1 with their neighboring super-processes in overlay graph
H in stages, until the number of “active” neighbors becomes less
or equal to a threshold §x = @(logx) < §, in which case the super-
process becomes inactive, but not more than than yx = O(logx)
stages. To assure proper message exchange between neighboring
super-processes, GossIp is employed on the union of members of
every neighboring pair of super-processes. It is followed by BiAsED-
CoNsENsUs within each active super-process to let all its members
agree if the threshold 8y on the number of active neighbors holds.
Members of those super-processes who stayed active by the end
of stage yx (“survived”) conclude that there was at least a certain
constant fraction of non-faulty super-processes (each containing at
least a fraction of non-faulty members) in such neighborhood in
the beginning of Phase 2, and thus they set up variable confirmed
to 1 - it means they confirmed being in sufficiently large group
having the same candidate value and thus they are entitled to de-
cide and make the whole system to decide on their candidate value.
It all takes yy - é(\/m + log3 n) < é(ﬁ) rounds and at most
Yx-8-O(logl n+ \/m) = G(M) amortized communication per
process. See Section 5.3 for further details.

In Phase 3, we discard the partition into x super-processes. All
processes want to learn if there was a sufficiently large group
confirming the same candidate value in Phase 2. To do so, they
all execute the Gossrp algorithm. Processes that set up variable
confirmed to 1 start the Gossrp algorithm with their rumor being
their candidate value; other processes start with a null value. Be-
cause super-processes use graph H for communication, which in
particular satisfies (7, %, dx)-compactness property (i.e., from any
subset of at least 5 super nodes one can choose at least % of them
such that they induced a subgraph of degree at least dx), we will
prove that at the end of Phase 2 at least a constant fraction of super-
processes must have survived and be non-faulty (i.e., their constant
fraction of members is alive). Moreover, we show that there could be
only one non-faulty connected component of confirmed processes,
by expansion of graph H that would connect two components of
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constant fraction of super-processes each (and thus would have
propagated value 1 from one of them to another in Phase 1) — hence,
there could be only one non-null rumor in the Gossrp, originated
in a constant fraction of processes. By property of Gossip, each
non-faulty process gets the rumor and decides on it. It all takes
O(log® n) < O(+/xn) rounds and at most O(log® n) = O(\/m)
amortized communication per process; see Section 5.2 for details.

Summarizing, each part takes O(v/xn) rounds and O(\/rz/_x) amor-
tized communication per process. Each process uses random bits
only in executions of BIASEDCONSENSUS it is involved to, each re-
quiring O(M) random bits (at most one random bit per round).
The number of such executions is O(x) in Part 1 and O(logn) in
Part 2, which in total gives O(+/xn) random bits per process.

2.1 «a-Biased Consensus

Let us start with the formal definition of a-Biased Consensus.

DEFINITION 1 (@-B1ASED CONSENSUS). An algorithm solves a-
Biased Consensus if it solves the Consensus problem and additionally,
the consensus value is 0 if less than an initial values of processes are 1.

In Section 6, we design an efficient a-Biased Consensus algorithm
and prove the following:

THEOREM 2 (SECTION 6). For every constant a > 0, there exists
an algorithm, called a-B1ASEDCONSENSUS, that solves a-Biased Con-
sensus problem with probability 1, in O(f/~/n) rounds and using
O(f/+/n) amortized communication bits whp, for any number of
crashes f < n.

Note that for f = ©(n) the algorithm works in O(+/n) rounds
and uses O(y/n) communication bits per process. Observe also
that the above result solves classic Consensus as well, and as a
such, it is the first algorithm which improves on the amortized
communication of Bar-Joseph’s and Ben-Or’s Consensus algorithm
[9], which has been known as the best result up for over 20 years.
The improvement is by a nearly linear factor ®(n/ 10g13/ 2 ), while
being only O(log® ) away from the absolute lower bound on time
complexity (also proved in [9]).

High-level idea oft-BIASEDCONSENSUs. The improvement comes
from replacing a direct communication, in which originally all pro-
cesses were exchanging their candidate values, by procedure Fuzzy-
CouNTING. This deterministic procedure solves Fuzzy Counting
problem, i.e., each process outputs a number between the starting
and ending number of active processes, and does it in O(log® n)
rounds and with O(log” n) communication bits per process, see
Sections 2.3, 7 and Theorem 4.

First, processes run FuzzyCoUNTING where the set of active
processes consists of the processes with input value 1. Then, each
process calculates logical AND of the two values: its initial value
and the logical value of formula “ones > « - n”, where ones is the
number of 1’s output by the FuzzyCouNTING algorithm. Denote
by x, the output of the logical AND calculated by process p - it
becomes p’s candidate value.

Next, processes run O(f/+/nlogn) phases to update their can-
didate values such that eventually every process keeps the same
choice. To do so, in a round r every process p calculates, using the
FuzzyCoUNTING algorithm, the number of processes with (current)
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candidate value 1 and, separately, the number of processes with
(current) candidate value 0, denoted O}, and Z}, respectively. Based
on these numbers, process p either sets its candidate value to 1, if
the number OI’, is large enough, or it sets it to 0, if the number Z;,
is large, or it replaces it with a random bit, if the number of zeros
and ones are close to each other.

In Bar-Joseph’s and Ben-Or’s algorithm the numbers Z;S and
Olr, were calculated in a single round of all-to-all communication.
However, we observe that because processes’ crashes may affect
this calculation process in an arbitrary way (the adversary could
decide which messages of the recently crashed processes to deliver
and which do not, see Section 4) and also because messages are
simply zeros and ones, this step can be replaced by any solution to
Fuzzy Counting. In particular, the correctness and time complex-
ity analysis of the original Bar-Joseph’s and Ben-Or’s algorithm
captured the case when an arbitrary subset of 0-1 messages from
processes alive in the beginning of this step and a superset of those
alive at the end of the step could be received and counted - and
this can be done by our solution to the Fuzzy Counting problem.

Monte Carlo version for f = n — 1. a-BIASEDCONSENSUS as de-
scribed above is a Las Vegas algorithm with an expected time com-
plexity 7 = O(+/n), as is the original Bar-Joseph’s and Ben-Or’s
algorithm on which it builds. However, we can make it Monte
Carlo, which is more suitable for application in PARAMETERIZED-
CoNSENSsUSs, by forcing all processes to stop by time const - 7. In
such case, the worst-case running time will always be while the
correctness (agreement) will hold only whp. In order to be applied
as a subroutine in the PARAMETERIZEDCONSENSUS, we need to add
one more adjustment, so that PARAMETERIZEDCONSENSUS could
guarantee correctness with probability 1. Mainly, processes which
do not decide by time const - 7 — 2 initiate a 2-round switch of the
whole system of P processes to a deterministic consensus algorithm,
that finishes in O(n) rounds and uses O(polylog n) communication
bits per process, e.g., from [14]. Such switch between two consensus
algorithms has already been designed and analyzed before, c.f., [14],
and since this scenario happens only with polynomially small prob-
ability, the final time complexity of PARAMETERIZEDCONSENSUS
will be still O(y/xn) and bit complexity O(\/m) per process, both
whp and expected.

2.2 Improved Fault-Tolerant Gossip Solution

The PARAMETERIZEDCONSENSUS algorithm relies on a new (deter-
ministic) solution to a well-known Fault-Tolerant Gossip problem,
in which each non-faulty process has to learn initial rumors of all
other non-faulty processes (while it could or could not learn some
initial rumors of processes that crash during the execution). Many
solutions to this problem have been proposed (c.f., [3, 10]), yet, the
best deterministic algorithm given in [10] solves Fault-tolerant Gos-
sip in O(log® n) rounds using O(log? n) point-to-point messages
amortized per process. However, it requires Q(n) amortized com-
munication bits regardless of the size of rumors. We improve this
result as follows:

THEOREM 3 (SECTION 7.2). Gossip solves deterministically the
Fault-tolerant Gossip problem in O(1) rounds using O(|R|) amortized
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number of communication bits, where |R| is the number of bits needed
to encode the rumors.

High-level idea of Gossip. The algorithm implements a distributed
divide-and-conquer approach that utilizes the BIPARTITEGOSSIP de-
terministic algorithm, described in Section 2.4, in the recursive calls.
Each process takes the set #, an initial rumor r and its unique name
p € P as an input. The processes split themselves into two groups
of size at most [n/2] each: the first [n/2] processes with the small-
est names make the group #1, while the n — [n/2] processes with
the largest names constitute group $,. Each of those two groups
of processes solves Gossip separately, by evoking the Gossip algo-
rithm inside the group only. The processes from each group know
the names of every other process in that group, hence the necessary
conditions to execute the GossIp recursively are satisfied. After the
recursion finishes, a process in P stores a set of rumors R; of pro-
cesses from its group, and respectively, a process in P, stores a set
of rumors Ry of processes from its group. Then, the processes solve
the Bipartite Gossip problem by executing the BiIPARTITEGOsSIP
algorithm on the partition #1, P2 and having initial rumors R and
R2. The output of this algorithm is the final output of the Gossip.
A standard inductive analysis of recursion and Theorem 5 stating
correctness and O(1) time and O(|R|) amortized communication
complexities of BIPARTITEGOssIP imply Theorem 3, which proof is
deferred to Section 7.2.

2.3 Fuzzy Counting

The aforementioned improvement of algorithm a-B1ASEDCONSENSUS
over [9] is possible because of designing and employing an efficient
solution to a newly introduced Fuzzy Counting problem.

DEFINITION 2 (Fuzzy COUNTING). An algorithm solves Fuzzy
Counting if each process returns a number between the initial and
the final number of active processes. Here, being active depends on
the goal of the counting, e.g., all non-faulty processes, processes with
initial value 1, etc.

Note that the returned numbers could be different across processes.
In Section 7 we design a deterministic algorithm FuzzyCouNTING
and prove the following:

THEOREM 4 (SECTION 7.2). The FuzzyCOUNTING deterministic
algorithm solves the Fuzzy Counting problem in O(1) rounds, using
O(1) communication bits amortized per process.

High-level idea of FuzzyCoUNTING. FuzzyCOUNTING uses the
Gossrp algorithm with the only modification that now we require
the algorithm the return the values Z and 0, instead of the set of
learned rumors. We apply the same divide-and-conquer approach.
That is, we partition # into groups £; and $, and we solve the
problem within processors of this partition. Let Z1, 01 and Z3, 0y
be the values returned by recursive calls on set of processes P1
and P, respectively. Then, we use the BiPARTITEGOSsSIP algorithm,
described in Section 2.4, to make each process learn values Z and 0
of the other group. Eventually, a process returns a pair of values
Z1 +Z3 and 01 + Oy if it received the values from the other partition
during the execution of BIPARTITEGOSSIP, or it returns the values
corresponding to the recursive call in its own partition otherwise.
It is easy to observe that during this modified execution processes



Improved Communication Complexity of Fault-Tolerant Consensus

must carry messages that are able to encode values Z and O, thus in
this have it holds that |R| = O(log n).

2.4 Bipartite Gossip

Our Gosstp and FuzzyCoUNTING algorithms use subroutine BrpAr-
TITEGOSSIP that solves the following (newly introduced) problem.

DEFINITION 3. Assume that there are only two different rumors
present in the system, each in at most [§] processes. The parti-
tion is known to each process, but the rumor in the other part is not.
We say that an algorithm solves Bipartite Gossip if every non-faulty
process learns all rumors of other non-faulty processes in this setting.

Bipartite Gossip is a restricted version of the general Fault-
tolerant Gossip problem, which can be solved in O(log® n) rounds
using O(log* n) point-to-point messages amortized per process, but
requires Q(n) amortized communication bits. In this paper, we give
a new efficient deterministic solution to Bipartite Gossip, called
BirARTITEGOSSIP, which, properly utilized, leads to better solutions
to Fault-tolerant Gossip and Fuzzy Counting. More details and the
proof of the following result are given in Section 7.1.

THEOREM 5 (SECTION 7.1). Given a partition of the set of processes
P into two groups Py and Py of size at most [n/2] each, deterministic
algorithm BIPARTITEGOSSIP solves the Bipartite Gossip problem in
O(1) rounds and uses O(n-|R|) bits, where |R| is the minimal number
of bits needed to uniquely encode the two rumors.

High-level idea of BiPARTITEGoOSssIP. If there were no crashes
in the system, it would be enough if processes span a bipartite ex-
panding graph with poly-logarithmic degree on the set of vertices
#; U P, and exchange messages with their initial rumors in O(1)
rounds. In this ideal scenario the O(log n) bound on the expander
diameter suffices to allow every two process exchange information,
while the sparse nature of the expander graphs contributes to the
low communication bit complexity. However, a malicious crash pat-
tern can easily disturb such a naive approach. To overcome this, in
our algorithm processes — rather than communicating exclusively
with the other side of the partition — also estimate the number of
crashes in their own group. Based on its result, they are able to
adapt the level of expansion of the bipartite graph between the two
parts to the actual number of crashes. More specifically, in internal
communication within each group, a family of certain expander
graphs (c.f., Theorem 6) with different density is adaptively and
locally used by processes to exchange messages. Once a process
recognizes (via Local Signalling, c.f., Section 2.5) that it does not
belong to a large and compact component, it switches to a denser ex-
pander. In external communication, processes use a different family
of expanders of different densities to communicate with processes
in the other group in order to get their rumor - the degree of the
chosen expander depends on current degree used in the internal
communication.

The above dynamic adjustment of internal and external commu-
nication degree allows to achieve asymptotically similar result as
in the fault-free scenario described in the beginning, up to polylog-
arithmic factor. More details and the analysis are in Section 7.1.
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2.5 Local Signalling

Our BrrARTITEGOSSIP algorithm, described in section 2.4, uses a new
technique called LocALSIGNALLING. LOCALSIGNALLING is a specific
deterministic algorithm, parameterized by a family of O(logn)
overlay graphs (of different density) provided to the processes.
Processes start at the same time, but may be at different levels — the
level indicates which overlay graph is used for communication. The
name Local Signalling comes from the way it works - similarly to
distributed sparking networks, a process keeps sending messages
(i.e., ’signalling’) to its neighbors in its current overlay graph as
long as it receives enough number of messages from them. Once
a process fails to receive a sufficient number of messages from
processes that use the same overlay graph or the previous ones,
LocALSIGNALING detects such anomaly and memorizes a negative
‘not surviving’ result (to be returned at the end of the algorithm).
Such process does not stop, but rather keeps signaling using less
dense overlay graph, in order to help processes at lower level to
survive. This non intuitive behavior is crucial in bounding the
amortized bit complexity.

The algorithm proceeds in O(log n) rounds. Its goal is to leverage
the adversary - if the adversary does not fail many processes start-
ing at a level ¢, some fraction of them will survive and exchange
messages in O(log n) time and O(polylog n) amortized number of
communication bits. To achieve this, a specific family of overlay
graphs needs to be used, c.f.,, Section 4 and Theorem 6.

We will show that if all processes start LOCALSIGNALING at
the same time, those who have survived Local Signalling must
have had large-size O(log n)-neighborhoods in their communica-
tion graph in the beginning of the execution. Moreover, they were
able to exchange messages with other surviving processes in their
O(log n)-neighborhoods, c.f.. Lemma 17. We will also prove that
the amortized bit complexity of the LOCALSIGNALING algorithm
is O(polylog n) per process, c.f., Lemma 16. This is the most ad-
vanced technical part used in our algorithm - its full description
and analysis are given in Section 8.

3 RELATED WORK

Early work on consensus. The Consensus problem was introduced
by Pease, Shostak and Lamport [31]. Early work focused on deter-
ministic solutions. Fisher, Lynch and Paterson [19] showed that
the problem is unsolvable in an asynchronous setting, even if one
process may fail. Fisher and Lynch [18] showed that a synchronous
solution requires f + 1 rounds if up to f processes may crash.

The optimal complexity of consensus with crashes is known with
respect to the time and the number of messages (or communication
bits) when each among these performance metrics is considered
separately. Amdur, Weber and Hadzilacos [4] showed that the amor-
tized number of messages per process is at least constant, even in
some failure-free execution. The best deterministic algorithm, given
by Chlebus, Kowalski and Strojnowski in [14], solves consensus
in asymptotically optimal time ©(n) and an amortized number of
communication bits per process O(polylog n).

Efficient randomized solutions against weak adversaries. Ran-
domness proved itself useful to break a linear time barrier for time
complexity. However, whenever randomness is considered, differ-
ent types of an adversary generating failures could be considered.
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Chor, Merritt and Shmoys [15] developed constant-time algorithms
for consensus against an oblivious adversary - i.e., the adversary
who knows the algorithm but has to decide which process fails
and when before the execution starts. Gilbert and Kowalski [22]
presented a randomized consensus algorithm that achieves optimal
communication complexity, using O(1) amortized communication
bits per process and terminates in O (log n) time with high proba-
bility, tolerating up to f < n/2 crash failures.

Randomized solutions against (strong) adaptive adversary. Con-
sensus against an adaptive adversary, considered in this paper, has
been already known as more expensive than against weaker ad-
versaries. The time-optimal randomized solution to the consensus
problem was given by Bar-Joseph and Ben-Or [9]. Their algorithm

n n3/2
logn logn
munications bits per process, in expectation. They also proved
optimality of their result with respect to the time complexity, while

here we substantially improve the communication.

works in O( ) amortized com-

) expected time and uses O(

Beyond synchronous crashes. It was shown that more severe fail-
ures or asynchrony could cause a substantially higher complexity.
Dolev and Reischuk [16] and Hadzilacos and Halpern [24] proved
the Q(f) lower bound on the amortized message complexity per
process of deterministic consensus for (authenticated) Byzantine
failures. King and Saia [29] proved that under some limitation on
the adversary and requiring termination only whp, the sublinear
expected communication complexity o(n'/ 2polylog n) per process
can be achieved even in case of Byzantine failures. Abraham et
al. [1] showed necessity of such limitations to achieve subquadratic
time complexity for Byzantine failures.

If asynchrony occurs, the recent result of Alistarh et al. [2]
showed how to obtain almost optimal communication complex-
ity O(nlogn) per process (amortized) if less then n/2 processes
may fail, which improved upon the previous result O(nlog? n) by
Aspnes and Waarts [6]. It is asymptotically almost optimal due to
the lower bound Q(n) proved by Attiya and Censor-Hillel [7]. Asp-
nes [5] gave an Q (n/log2 n) lower bound on the expected number of
coin flips.

Fault-tolerant Gossip. was introduced by Chlebus and Kowal-
ski [10]. They developed a deterministic algorithm solving Gossip
in time O(log? f) while using O(log? f) amortized messages per
process, provided n — f = Q(n). They also showed a lower bound
o logn

log(nlogn)—log f
amortized messages are used per process. In a sequence of pa-
pers [10, 11, 21], O(polylog n) message complexity, amortized per
process, was obtained for any f < n, while keeping the polyloga-
rithmic time complexity. Note however that general Gossip requires
Q(n) communication bits per process for different rumors, as each
process needs to deliver/receive at least one bit to all non-faulty pro-
cesses. Randomized gossip against an adaptive adversary is doable
w.h.p. in O(log? n) rounds using O(log> n) communication bits per
process, for a constant number of rumors of constant size and for
f< % processes, c.f., Alistarh et al. [3].

) on the number of rounds in case O(polylog n)
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4 MODEL AND PRELIMINARIES

In this section we discuss the message-passing model in which all
our algorithms are developed and analyzed. It is the classic synchro-
nous message-passing model with processes’ crashes, c.f., [8, 9].

Processes. There are n processes with synchronized clocks. Let
denote the set of all processes. Each process has a unique integer ID
in the set # = [n] = {1, ..., n}. The set £ and its size n are known
to all the processes (in the sense that it may be a part of code of an
algorithm); it is also called a K7T-1 model in the literature [30].

Communication. The processes communicate among themselves
by sending messages. Any pair of processes can directly exchange
messages in a round. The point-to-point communication mecha-
nism is assumed to be reliable, in that messages are not lost nor
corrupted while in transit.

Computation in rounds. A computation, or an execution of a
given algorithm, proceeds in consecutive rounds, synchronized
among processes. By a round we mean such a number of clock
cycles that is sufficient to guarantee the completion of the following
operations by a process: first, multicasting a message to an arbitrary
set of processes (selected by the process during the preceding local
computation in previous round or stored in the starting conditions);
second, receiving the sent messages by their (non-faulty) destination
processes; third, performing local computations.

Processes’ failures and adversaries. Processes may fail by crash-
ing. A process that has crashed stops any activity, and in particular
does not send nor receive messages. There is an upper bound f < n
on the number of crash failures we want to be able to cope with,
which is known to all processes in that it can be a part of code of
an algorithm. We may visualize crashes as incurred by an omni-
scient adversary that knows the algorithm and has an unbounded
computational power; the adversary decides which processes fail
and when. The adversary knows the algorithm and is adaptive — if
it wants to make a decision in a round, it knows the history of com-
putation until that point. However, the adversary does not know
the future computation, which means that it does not know future
random bits drawn by processes. We do not assume failures to be
clean, in the sense that when a process crashes while attempting
to multicast a message, then some of the recipients may receive
the message and some may not; this aspect is controlled by the
adversary. An adversarial strategy is a deterministic function, which
assigns to each possible history that may occur in any execution
some adversarial action in the subsequent round - i.e., which pro-
cesses to crash in that round and which of their last messages would
reach the recipients.

Performance measures. We consider time and bit communication
complexities as performance measures of algorithms. For an execu-
tion of a given algorithm against an adversarial strategy, we define
its time and communication as follows. Time is measured by the
number of rounds that occur by termination of the last non-faulty
process. Communication is measured by the total number of bits sent
in point-to-point messages by termination of the last non-faulty
process. For randomized algorithms, both these complexities are
random variables. Time/Communication complexity of a distributed
algorithm is defined as a supremum of time/communication taken
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over all adversarial strategies, resp. Finally, time/communication
complexity of a distributed problem is an infimum of all algorithms’
time/communication complexities, resp. In this work we present
communication complexity in a form of an amortized communica-
tion complexity (per process), which is equal to the communication
complexity divided by the number of processes n.

Notation whp. We say that a random event occurs with high
probability, or whp, if its probability can be lower bounded by
1—0(n™°) for a sufficiently large positive constant c. Observe that
when a polynomial number of events occur whp each, then their
union occurs with high probability as well.

Overlay graphs. We review the relevant notation and main theo-
rems assuring existence of specific fault-tolerant compact expanders
from [14]. We will use them as overlay graphs in the paper, to spec-
ify via which links the processors should send messages in order to
maintain small time and communication complexities. Some prop-
erties of these graphs have already been observed in [14], however
we also prove a new property (Lemma 2) and use it for analysis of
a novel Local Signalling procedure (Section 8).

Notation. Let G = (V, E) denote an undirected graph. Let W € V
be a set of nodes of G. We say that an edge (v, w) of G is internal
for W if v and w are both in W. We say that an edge (v, w) of
G connects the sets Wi and W or is between Wi and Ws, for any
disjoint subsets W; and W; of V, if one of its ends is in W; and
the other in Wy. The subgraph of G induced by W, denoted Glyy,
is the subgraph of G containing the nodes in W and all the edges
internal for W. A node adjacent to a node v is a neighbor of v and
the set of all the neighbors of a node v is the neighborhood of v.
N(i;(W) denotes the set of all the nodes in V that are of distance at
most i from some node in W in graph G. In particular, the (direct)
neighborhood of v is denoted Ng(v) = Né (v).

Desired properties of overlay graphs. Let a, §, 8, y and ¢ be positive
integers and 0 < ¢ < 1 be a real number. The following definition
extends the notion of a lower bound on a node degree:

Dense neighborhood: For anodev € V,asetS C Né(z)) is said to

be (y, 8)-dense-neighborhood forv if each node in SﬁNé_1 (v)
has at least § neighbors in S.

We want our overlay graphs to have the following properties, for
suitable parameters «, 8, § and ¢:

Expansion: graph G is said to be £-expanding, or to be an £-expander,
if any two subsets of £ nodes each are connected by an edge.

Edge-density: graph G is said to be (¢, a, §)-edge-dense if, for any
set X C V of at least ¢ nodes, there are at least a|X| edges
internal for X, and for any set Y C V of at most ¢ nodes,
there are at most f|Y| edges internal for Y.

Compactness: graph G is said to be (¢, ¢, §)-compact if, for any set
B C V of at least £ nodes, there is a subset C C B of at least
et nodes such that each node’s degree in G|¢ is at least §.
We call any such set C a survival set for B.

Existence of overlay graphs. Let 4, y, k be integers such that § =
24logn,y = 2lognand256 < k < ZTn Let G(n, p) be an Erdés—Rényi
random graph of n nodes, in which each pair of nodes is connected
by an edge with probability p, independently over all such pairs.
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THEOREM 6 ([14]). For every n and k such that 256 < k < ZT" a
random graph G(n, 245/k) satisfies all the below properties whp:

(i) it is (k/64) -expanding, (iti) it is (k, 3/4, §)-compact,

(ii) it is (k/64,0/8,5/4)-edge-dense, (iv) the degree of each node
is between 2275 and 26 .6.

We define an overlay graph G(n, k, 8, y) as an arbitrary graph of n
nodes fulfilling the conditions of Theorem 6. Graph G(n, k, d, y) can
be computed locally (i.e., in a single round) and deterministically by
each process. Specifically, by Theorem 6, the class of graphs satisfy-
ing the four properties (i) - (iv) is large, therefore any deterministic
search in the class of n-node graphs, applied locally by each process,
returns the same overlay graph G(n, k, 8, y) in all processes.*

LemMA 1 ([14]). Ifgraph G = (V,E) of n nodes is (k/64,5/8,5/4)-
edge-dense then any (y, §)-dense-neighborhood for a nodev € V has
at least k /64 nodes, fory > 2lgn.

The new property. The key new property of overlay graphs with
good expansion, edge-density and compactness is that survival sets
in such graphs have small diameters.

LEmMA 2. If graph G = (V,E) of n nodes is (6k—4)-expanding,
&, g, %)—edge—dense and (k, %, &)-compact, then for any set B C V
of at least k nodes and for any two nodes v, w from set C being a
survival set of B, the nodes v, w are of distance at most 2y +1 in graph

Gic, foranyy > 21gn.

5 PARAMETERIZED CONSENSUS: TRADING
TIME FOR COMMUNICATION

We first specify and analyze algorithm PARAMETERIZEDCONSENSUS,
for a given parameter x € [1,..., n]% and a number of crashes
f < 1%' Later, in Section 5.4, we show how to generalize it to
algorithm PARAMETERIZEDCONSENSUS®, which works correctly and
efficiently for any number of crashes f < n.

Notation and data structures. Let p € P denote the process ex-
ecuting the algorithm, while b, denote p’s input bit; P, x, p, by,
are the input of the algorithm. Let SPy, ..., SPx be a partition of
the set P of processes into x groups of £ processes each. SP; is
called a super-process, and each p € SP; is called its member. We
also denote by SP[,) the super-process SP; to whose p belongs.
A graph H is an overlay graph G(x, , dx, yx), which existence
and properties are guaranteed in Theorem 6 and Lemma 2, where
Ox = 24logx,yx = 2logx. We uniquely identify vertices of H
with super-processes. We say that two super-processes, SP, and
SPgq, are neighbors if vertices corresponding to them share an edge
in H. For every two such neighbors, we denote by SE(SPp, SPy)
an overlay graph G(2%, %—Z 241log 27" 2log 27") which vertices we
identify with the set SP, U SPy. (SE(SPp, SPg) is a short form of
super-edge between SP, and SP;.) Again, for existence and proper-
ties of the above overlay graph we refer to Theorem 6 and Lemma 2.
Since the processes operate in KT-1 model, we can assume that all
objects mentioned in this paragraph can be computed locally by any
process. Alg. 1 gives a pseudo-code of PARAMETERIZEDCONSENSUS.

#Recall that each round contributes 1 to the time complexity, no matter of the length
of local computation.

SWithout loss of generality, we may assume that x is a divisor of n. If it is not the case,
we can always make [x] groups of size [%] which would not change the asymptotic
analysis of the algorithm.
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Algorithm 1: PARAMETERIZEDCONSENSUS

input: P, x, p, bp
calculate locally {SPy,...,SPx}, H ;
candidate_value «— PARAMETERIZEDCONSEN-
sus:PHASE_1(P, {SP1,...,SPx}, H, x,p, bp);
confirmed «— PARAMETERIZEDCONSEN-
sus:PHASE_2(P, {SPy,...,SPx}, H, x, p);
if confirmed = 1 then
CandidatesValues «
Gossip(P, p, candidate_value) ;

[

N

©w

o e

/* Phase 3 */
else

‘ CandidatesValues « Gossip(P, p,-1); /* Phase 3 */
decision_value «

any value in set CandidatesValues that differs from — 1 ;
return decision_value

ECICN

®

©

High-level idea of PARAMETERIZEDCONSENSUS. We cluster pro-
cesses into x disjoint groups (super-processes) of 2 processes each.
Processes locally compute the super-process they belong to and
overlay graphs. Starting from this point, we view the system as a
set of x super-processes.

In the beginning, Phase 1 is executed (see line 2 of Algorithm 1
and Section 5.1) in which super-processes flood value 1 along an
overlay graph H of super-processes. The main challenge is to do
it in O(+v/xn) rounds and O( \/n/_x) amortized communication per
process whp.

In Phase 2 (see line 3 and Section 5.2 for description of Phase 2),
super-processes estimate the number of operating super-processes
in the neighborhood of radius O(log x) in graph H. Members of
those super-processes who estimate at least a certain constant
fraction (we say that they “survive”), set up variable confirmed
to 1. The main challenge is to do it in O(M) rounds and O(y/nx)
amortized communication per process whp.

Next, we discard the partition into x super-processes. All pro-
cesses execute a GossIp algorithm. Processes that set up variable
confirmed to 1 start the Gossip algorithm with their initial value
being the value of the super-process they belonged to. Other pro-
cesses start with a null value (-1). Because super-processes use
graph H for communication, which in particular satisfies (x, %, Ox)-
compactness property, we will prove that at the end of Phase 2 at
least a constant fraction of non-faulty (i.e., their % fraction of mem-
bers are alive) super-processes survive. This implies that at least a
constant fraction of processes begins the Gossrp algorithm with a
non-null value. Because the non-null value results from a flooding-
like procedure of value 1 (if there is any in the system), we will be
able to prove that, eventually, every process gets the same value,
since at most a constant number of crashes can occur.

To preserve synchronicity, in the PARAMETERIZEDCONSENSUS
algorithm we use the Monte Carlo version of BIASEDCONSENSUS in
both Phase 1 and Phase 2, see discussion in Section 2.1. However,
with a polynomial small probability, in this variant of Consensus
some processes may not reach a decision value. To handle this
very unlikely scenario, processes who have not decided in a run of
B1asepCoONSENsUs alarm the whole system by sending a message
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to every other process. Then, the whole system switches to any
deterministic Consensus algorithm with O(n)-time and amortized
communication bit complexities (c.f., [8]) and returns its outcome as
the final decision. The latter part of alarming and the deterministic
Consensus algorithm could use ®(n) communication bits, however
it happens only with polynomially small probability, see Section 2.1;
hence, it does not affect the final amortized complexity of the PARa-
METERIZEDCONSENSUs algorithm whp. For the sake of clarity, we do
not include this straightforward "alarm’ scheme in the pseudocodes.

5.1 Specification and Analysis of Phase 1

Algorithm 2: PARAMETERIZEDCONSENSUS:PHASE_1

input: P, {SP1,...,SPx}, H, x, p, bp
1 is_active « true;

2 candidate_value « %-BIASEDCONSENSUS(}), SPip1,bp);
3 fori— 1tox+1do

4 if is_active = true & candidate_value = 1 then
5 candidate_value «

%-BIASEDCONSENSUS(p, SP[p), candidate_value);

6 else

7 ‘ stay silent for y = é(\/g) rounds ;

8 if is_active = true & candidate_value =1 then

9 foreach super-process SP; being a neighbor of SP(p)
inH do

10 send 1 to every member of SP; which is a

neighbor of p in SE(SP,), SP)) ;
11 end

12 is_active « false;

13 if p received a message containing 1 in the previous round
then

14 | candidate_value « 1;

15 end

16 return % -BiaSEDCONSENSUS(p, SP[ ), candidate_value)

High-level idea of Phase 1. In the beginning, the members of
every super-process agree on a single value among their input val-
ues. Once this is done, super-processes start a flooding procedure
navigated by an overlay graph H. H should be an expander-like,
regular graph with good connectivity properties, but a small degree
of at most O(log x). Intuitively, this can guarantee that regardless
of the crash pattern there will exist a connected component, of a
size being a constant fraction of all vertices, in H consisting of
super-processes that are still operating. The flooding processes is a
sequential process of O(x) phases. A single super-process communi-
cates, that means it sends value 1 to all its neighbors in H, in at most
one phase only; either in the first phase, if the value its members
agreed on in the beginning is 1; or in the very first phase after the
super-process received value 1 from any of its neighbors in . End
of the flooding process encloses the Phase 1 of the algorithm.

Once members of a super-process get value 1 for the first time,
they use B1AsEDCONSENSUS to agree if value 1 has been received or
not. It is necessary due to crashes during the flooding procedure,
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yet it is not easy to implement with low amortized bit complexity.
A pattern of crashes can result in some members of a super-process
receiving value 1 and some others not. One can require all members
to execute B1IASEDCONSENSUS in each phase, but this will blow up
the amortized bit complexity to ON(x\/g ) whp. We, in turn, propose
to execute BIASEDCONSENsUS only among these members who
received value 1 in the previous communication round (see line 10)
and use the stronger properties of Biased Consensus to argue that
the number of calls to the BiasepCoNseNsus will not be to large.

Analysis of Phase 1. Recall, that we say that a super-process
communicates with another super-process if any of its members exe-
cutes lines 9-11 of the Algorithm 2. Trivially, from the Algorithm 2
we get that each member of a super-process executes line 10 at
most once, since if the line is executed then variable is_active
will be changed to false, but the next lemma shows that we can
expect more: members of a super-process preserve synchronicity
in communicating with other members.

LEMMA 3. For everyi € [x], there is at most one iteration of the
main loop in which SP; communicates with any other super-process.

LEMMA 4. Foreveryi € [x], members of a non-faulty super-process
SP; return the same value in PHASE_1.

Recall, that we defined a super-process non-faulty if in the end
of the ParameterizedConsensus algorithm at least % of its mem-
bers have not been crashed. In particular, the number of operating
members is at least Z—Z in every phase of the algorithm.

LEMMA 5. There are no two non-faulty super-processes that are
connected by an edge in H but their members return different
decision_values in the end of PHASE_1.

From the previous lemma we can immediately conclude.

LEMMA 6. Members of each connected component of H formed by
a non-faulty super-processes return the same decision_values in
the end of PHASE_1.

LEMMA 7. The PHASE_1 part of the PARAMETERIZEDCONSENSUS
algorithm takes O(x+/n/x) rounds and uses O(n~/n/x log n) bits whp.

5.2 Specification and Analysis of Phase 2

High-level idea. In Phase 2, non-faulty super-processes estimate
the number of operating super-processes in the neighborhood of
radius O(log x) in graph H. Those who estimate at least a certain
constant fraction, set up variable confirmed to 1.In order to achieve
that, each super-process keeps signaling all its neighbors in H in
Yx = O(logx) stages until at least a constant fraction of them
signaled its activity in preceding stage. A super-process that has
been signaling during all stages is said to survive. We will prove
that, thanks to suitably chosen connectivity properties of #, at
least a constant fraction of super-processes survives. Members of
these super-processes will influence the final decision of the whole
system in the following Phase 3. The following holds:

LEMMA 8. At least %—fraction of the super-processes are non-faulty
and survive PHASE_2 of the PARAMETERIZEDCONSENSUS algorithm.

LEMMA 9. The PHASE_2 part of the PARAMETERIZEDCONSENSUS
algorithm takes O(+/n/x) rounds and uses O(n+/n/x) bits whp.
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Algorithm 3: PARAMETERIZEDCONSENSUS:PHASE_2

input: P, {SPy,...,SPx}, H,x, p
1 if %—BIASEDCONSENSUS(p, SP[p],1) = 1then

2 ‘ is_active « true
3 else
4 | is_active « false; /* stage i %/

5 fori < 1to yy do

6 if is_active = true then

7 SN « 0;

8 foreach super-process SP; being a neighbor of SP[)
inH do

9 Nj « Gosstp(SP[,) U SPj,p,p);

10 SN < SNUN;j;

11 end

12 if [SN| > §, then many_superprocesses « 1;

13 else many_superprocesses « 0;
survived « %-BIASEDCONSEN-

sus(p, SPip1, many_superprocesses) ;
if survived = 0 then

‘ is_active « false

14

15
16

17 end

18 end

19 return is_active;/* p’s super-process survived? */

5.3 Analysis of PARAMETERIZEDCONSENSUS

LEmMMA 10. The value candidate_value is the same among all
members of super-processes that survived PHASE_2.

LEmMA 11. The algorithm PARAMETERIZEDCONSENSUS satisfies
validity, agreement and termination conditions.

THEOREM 7. For any x € [1,n] and any number of crashes f <
16 PARAMETERIZEDCONSENSUS solves Consensus with probability 1,

in O(\/nx polylog n) time and O(\/n/x polylog n) amortized bit
communication complexity, whp, using O(y/n/x polylog n) random
bits per process.

ProoF. By Lemma 11 we already know that the PARAMETERIZED-
CoNsENsUS algorithm is a solution to the Consensus problem.

By Lemma 7 and Lemma 9 we get the time and bit complexity
of PHASE_1 and PHASE_1. By Theorem 3, we have that a single
execution of a GossIp algorithm takes O(1) rounds and O(1) com-
munication bits amortized per process, given that there can be only
two different rumors of size O(1) each, as we argued in Lemma 11.
These bounds together give us the desired complexity of the Pa-
RAMETERIZEDCONSENSUS algorithm.

A single run of the a-B1asEDCONSENSsUS algorithm on members

of a super-processes generates O(% /%) random bits, since each

member generates at most one random bit per every round of the
algorithm, see Section 2.1. Since, the processes execute at most O(x)
runs of the a-B1asEDCONSENsUS algorithm, thus the total number

of random bits used is é(n\/g) which implies é(\/g) amortized

random bit complexity. O
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5.4 Generalization to Any Number of Failures.

In this subsection we highlight main ideas that generalize the Pa-
RAMETERIZEDCONSENSUS algorithm to work in the presence of any
number of crashes f < n. We call the resulting algorithm PARAME-
TERIZEDCONSENSUS*. We exploit the concept of epochs in a similar
way to [9, 14]. In short, the first and main epoch (in our case, Pa-
RAMETERIZEDCONSENSUS followed by BiaAsSEDCONSENsUS described
in Section 2.1) is repeated O(log n) times, each time adjusting ex-
pansion/density/probability parameters by factor equal to 1—90. The
complexities of the resulting algorithm are multiplied by logarith-
mic factor. More details are given below.

Consider a run of the PARAMETERIZEDCONSENSUS algorithm, as
described and analyzed in previous sub-sections. Let us analyze the
state of the system at the end of PARAMETERIZEDCONSENSUS algo-
rithm if more than 1—’6 crashes have occurred. In the end, there exist
two group of processes, those that have decision_value set to —1
(i.e., the last Gosstp has not been successful in their case), and those
who have decision_value set to a value from {0, 1}. Observe, that
if at most { processes were faulty, then we already proved in The-
orem 7 that the first of these sets would be empty and there could
be only one value in {0, 1} taken by alive processes. Thus, we can
extend the run of the PARAMETERIZEDCONSENSUS by an execution
of %-BIASEDCONSENSUS among members of each super-processes,
separately for different super-processes, to make them agree if
there exists a member of the super-process who had received a
null value in the last Gossip execution. A single run of PARAME-
TERIZEDCONSENSUS followed by the run of %-BIASEDCONSENSUS is
called an epoch. Based on the output of the %-BIASEDCONSENSUS,
the members of each super-process decide whether they keep the
agreed candidate value as decision final value and stay idle in the
next epoch, or they continue to the next epoch. There are three
key properties here. First, because the decision of entering next
epoch is made based on an output to Biased Consensus, it is con-
sistent among members of a single super-process. Second, in the
good scenario, i.e., when only less than {; processes crashed, every
process will start the run of the %—BIASEDCONSENSUS with the same
value, yet different than a null-value. From validity condition, all
processes stay idle. Third, a non-faulty super-process at the end
of Phase 2 actually implies that there was a majority of non-faulty
other super-processes in its O(log n) neighborhood, regardless of
the number of failures (c.f., Lemma 17 — thus, only one value in
{0,1} can be confirmed in the whole system as long as at least one
process remains alive, whp.

In the next epoch, super-processes that are not idle, repeat the
PARAMETERIZEDCONSENSUS algorithm, but tune its parameters to
adjust to the larger number of crashes (i.e., smaller fraction of alive
processes). They use:

(i) a graph Hj, instead of H, which is roughly % denser (i.e., a
graph G(-)) compared to graph H used in the previous epoch,

(ii) new threshold a; = % . 1% for evoking BIASEDCONSENSUS,

(iii) they loose the parameter in the definition of a non-faulty super-
process by a factor of 9/10.

In general, processes repeats this process of "densification’ in sub-
sequent ©(log n) epochs. Eventually, one of this epochs must be
successful, otherwise the number of crashed process would exceed
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n/(1/ 10)6(”) > n. On the other hand, each time we ’densify’ graph
H, i.e., we take an overlay graph H; from the family of overlay
graphs as defined in Section 4 but with expansion and density pa-

1
rameters adjusted by factor (%) , we are guaranteed that only a

fraction of previously alive processes execute the next epoch. As
density and expansion parameters in the family of overlay graphs
are inversely proportional, we conclude that in each epoch the amor-

tized bit complexity stays at the same level of O(\/g ). Therefore, in

cost of multiplying both, the time complexity and the amortized bit
complexity by a factor of ©(logn), we are able to claim Theorem 1.

THEOREM 1 (STRENGTHENED THEOREM 7). For anyx € [1,n] and
the number of crashes f < n, PARAMETERIZEDCONSENSUS* solves Con-
sensus with probability 1, in O(\/nx polylog n) time and O(~/n/x -
polylog n) amortized bit communication complexity, whp, while using
O(\/m polylog n) random bits per process.

6 RANDOMIZED «a-BIASED CONSENSUS

The a-B1aseDCONSENSUSs algorithm generalizes and improves the
SYNRAN algorithm of Bar-Joseph and Ben-Or [9]. For this part, we
purposely use the same notation as in [9] for the ease of comparison.

First, processes run Fuzzy Counting (i.e. use the FuzzyCOUNTING
algorithm from Section 7) where the set of active processes consists
of this processes which the input value to the a-Biased Consensus
is 1. Then, each process calculates logical AND of the two values:
its initial value and ones > « - n, where ones is the number of 1’s
output by the Fuzzy Counting algorithm. Denote x, the output of
the logical AND calculated by process p.

In the following processes solves an a-Biased Consensus on xp.
Each process p starts by setting its current choice b, to xp. The
value b, in the end of the algorithm indicates p’s decision. Now,
processes use O(f/ W} phases to update their values by such
that eventually every process keeps the same choice. To do so, in
around r every process p calculates the number of processes that
current choice is 1 and the number of processes that current choice
is 0, denoted O}, and Z}, respectively. Based on these numbers, pro-
cess p either sets by, to 1, if the number Oj is large enough; or
it sets by to 0, if the number Zj is large; or it replaces b, with a
random bit, if the number of zeros and ones are close to each other.
In Bar-Joseph’s and Ben-Or’s the numbers Zj and O}, were calcu-
late in a single round all-to-all of communication. However, we
observed that because processes’ crashes may affect this calculation
process in almost arbitrary way, this step can be replaced by any
solution to Fuzzy Counting. That holds, because Fuzzy Counting
exactly captures the necessary conditions that processes must fulfill
to simulate the all-to-all communication, that is it guarantees that
candidate values of non-faulty processes are included in the num-
bers O}, and Z}, calculated by any processor p. Thus, rather than
using all-to-all communication, our algorithms utilizes the effective
FuzzyCoUNTING algorithm where active processes are those who
have their current choice equal 1. The output of this algorithm
serves as the number O, while the number Z;, is just n — O;. For
the sake of completeness, we also provide the pseudocode of the
algorithm. We conclude the above algorithm in Theorem 2.
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Algorithm 4: a-B1AsEDCONSENSUs. The parts in which
our algorithm differs from the SYNRYN algorithm from [9]
algorithm are underlined.

input: P, p, by, a
1 if FuzzyCouNTING(P, p,bp) > a - |P| then x, — by & 1;

2 else xp < 0;

3 r«1; Nfl = NOV « n;decided « FALSE ;

4 while TRUE do

5 participate in CHEAPCOUNTING execution with input bit
being set to by; let O7, Z] be the numbers of ones and

zeros (resp.) returned by CHEAPCOUNTING;
r r r.
6 Np — Zp + OP’

7 if (N;, < 4/n/logn) then

8 send by, to all processes, receive all messages sent to

pinround r +1;
9 run any deterministic Consensus protocol on the set
P of all processes, working in at most /n/logn

rounds and using all-to-all communication, c.f.,, [8];

10 end

1n | if decided = TRUE then

12 diff Ny~ NT;

13 if (diff < N;*Z /10) then STOP;
14 else decided « FALSE;

15 end

16 if 0j, > (7N£ —1)/10 then by « 1, decided < TRUE;
17 else if O;, > (6N£ —1)/10 then by, « 1;

18 else if er, =0 then b, «— 1;

19 else if OI’, < (4N1§ —1)/10 then

20 bp «— 0, decided « TRUE;

21 else if O; < (SN;C —1)/10 then b;, « 0;

22 else set by, to 0 or 1 with equal probability;

23 re—r+1;

24 end
/* consensus value */

1N}
@

return bp ;

THEOREM 2. The a-BIASEDCONSENSUS algorithm solves a-Biased
Consensus with probability 1. The algorithm has expected running

time O(f /\n-log®/? n) and expected amortized bit complexity O( f /\/n-

13/2

log™°/ n), for any number of crashes f < n.

Setting o := % we get a better randomized solution to classic Con-
sensus problem.

CoROLLARY 1. The %-BIASEDCONSENSUS algorithm is a solution
to Consensus. The algorithm satisfies agreement and validity with
probability 1, has expected running time O(f/«/n - logs/2 n), and
the expected amortized bit complexity O(f//n - 10g13/2 n), for any
number of crashes f < n.

Monte Carlo version. The original algorithm a-B1ASEDCONSENSUS
has the expected running time O(\/ﬁloglg/2 n). However, we can
force all processes to stop by that time multiplied by a constant. In
such case, the worst-case running time will be always O(+/n) while

the correctness (agreement) will hold only whp.
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7 GOSSIP AND FUZZY COUNTING

In this section we design and analyze an algorithm, called Gossip
which, given a set of processes P, solves the Gossip problem in
O(1) rounds and uses O(|R|) communication bits amortized per
process, where |R| is the number of bits needed to encode initial
rumors of all processes. A small modification of this algorithm will
result in a solution to the Fuzzy Counting problem with the same
time and only logarithmically larger bit complexity.

7.1 Bipartite Gossip

We start by giving a solution to Gossip problem in a special case,
called Bipartite Gossip, in which processes are partitioned into two
groups P and P each of size [n/2] at most. Processes starts with
at most two different initial rumors r; and rz such that processes
of each group share the same initial rumor. The partition and the
initial rumor is assumed to be an input to the algorithm. The goal
of the system is still to achieve Gossip.

High level idea of algorithm BIPARTITEGOsSIP. If there were no
crashes in the system, it would be enough if processes span a bi-
partite expanding graph with poly-logarithmic degree on the set
of vertices P; U P, and for O(1) rounds exchange messages with
their initial rumors. In this ideal scenario the O(log n) bound on the
expander diameter suffices to allow every two process exchange
information, while the sparse nature of the expander graphs con-
tributes to the small bit complexity. However, a malicious crash
pattern can easily disturb such naive approach. To overcome this,
in our algorithm processes will adapt to the number of crashes
they estimate in their group, by communicating over denser ex-
pander graphs from a family of ©(logn) expanders, every time
they observe a significant reduction of non-faulty processes in
their neighborhood.

Precisely, the internal communication within group P; uses

graphs from a family of @(log n) expanders:
Gin = {Gin(0),...,Gin(logn)}, for t = O(logn), spanned on the
set of processes P; and such that Gin (i) € Gin(i + 1), the degree
and expansion parameter of the graphs double with the growing
index, and the last graph is a clique. Initially, processes from #;
span an expander graph G;n(0) with O(log n) degree on the set #,
in the sense that each process in #; identifies its neighbors in the
graph spanned on #;. In the course of an execution, each process
from P; keeps testing the number of non-faulty processes in its
O(log n) neighborhood in Gip(0). If the number falls down below
some threshold, the process upgrades the used expanding graph by
switching to the next graph from the family - Gi,(1). The process
continues testing, and switching graph to the next in the family
if necessary, until the end of the algorithm. The ultimate goal of
this ’densification’ of the overlay graph is to enable each process’
communication with a constant fraction of other alive processes in
%1. Note here that this procedure of adaptive adjustment to failures
pattern happens independently at processes in P17, therefore it may
happen that processes in $; may have neighborhoods taken from
different graphs in family Gjp.

The external communication of processes from $; with processes
from P, is strictly correlated with their estimation of the number
of processes being alive in their O(log n) neighborhood in 1 using
expanders in Giy, as described above. Initially, a process from P
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sends its rumor according to other expander graph Goyt (0) of de-
gree O(log n), the first graph in another family of expanders graphs
Gout = {Gout(0),...,Gout ()}, for t = O(logn), spanned on the
whole set of processes P1 U Py, such that Goyt (i) S Gout (i + 1),
the degree and expansion parameter of the graphs double with
the growing index, and the last graph is a clique. Each time a pro-
cess chooses a denser graph from family G, in the internal group
communication, described in the previous two paragraphs, it also
switches to a denser graph from family Goyt in the external com-
munication with group P». The intuition is that if a process knows
that the number of alive processes in its O(log n) neighborhood in
%1 has been reduced by a constant factor since the last check, it
can afford an increase of its degree in external communication with
group P, by the same constant factor, as the amortized message
complexity should stay the same.

Estimating the number of alive processes in O(logn) neighbor-
hoods. In the heart of the above method lies an algorithm, called
LocALSIGNALING that for each process p, tests the number of other
alive processes in p’s neighborhood of radius O(log n). As a side
result, it also allows to exchange a message with these neighbors.
The algorithm takes as in input: a set of all processes in the sys-
tem P, an expander-like graph family G = {G(0), ..., G;} spanned
on P, together with two parameters § and y, describing a diame-
ter and a maximal degree of the base graph G(0); the name of a
process p; the process’ level £ which denotes which graph from
family G the process uses to communicate; and the message to
convey r. Let 7 denote a graph U,ep NG, (v), that is a graph with
set of vertices corresponding to P and set of edges determined
based on neighbors of each vertex from a graph on the proper level.
Provided that LoCALSIGNALING is executed synchronously on the
whole system it returns whether the process p was connected to
a constant number of other alived processes at the beginning of
the execution accordingly to graph 7. Assumed that, the algorithm
guarantees that p’s message reached all these processes and vice
versa - messages of these processes reached p. On the other hand,
we will prove that the amortized bit complexity of a synchronous
run of the LOCALSIGNALING algorithm is O(n). This is the most
advanced technical part used in our algorithm. It’s full description
and detailed analysis is given in Section 8.

BIPARTITEGOSSIP algorithm and its analysis. In this paragraph
we give a pseudocode of the BIPARTITEGOSSIP algorithm which im-
plements the idea discussed before. We start by formal description
of utilized graphs and connected to them subroutines.

The graphs used by processes are grouped into two families: Gin,
and Gout. Denote t = [logn], § = 2logn, y = 241log n. Consider a
process p; it gets as an input the partition of set [n] into groups
Py, Py, thus it can determine the group it belongs to. The family
Gin = {Gin(0),...,Gin(t + 1)} serves for communication inside
each group.

A single graph Gip (i), for i € {0,...,t}, is a union of
G(n/2, #, d,y), over j € {0,...,i}, of graphs given in the Theo-
rem 6 with nodes being the processes in p’s group, that is Gip (i) =
Uj:f) G(n/2, #, d,y). Graph Gy41 is a clique with nodes being the
processes of p’s group.
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The family Gout = {Gout(0),...,Gout(t + 1)} serves for com-
munication outside each group. A single graph Goyt (i), for i €
{0,...,t},isaunion of G(n, 32% d,y),over j € {0,...,i}, of graphs
given in the Theorem 6 with nodes being all the processes, that is
Gout (i) = j;l) G(n, 32% d,y). Graph G4 is a clique with nodes
being all the processes.

Observe, that those families and parameters t, §, y are determin-
istic and can be precomputed by each process, assumed the knowl-
edge of partition P; and P,. As a such, they are assumed to be
known to the algorithm on every stage of the algorithm.

The EXCHANGE communication scheme for a graph G, used
in the BIPARTITEGOSSIP algorithm: This communication scheme
takes two rounds. In the first round p sends a message containing
a bit and the set R, being a set of all learned so far rumors by p, to
every process in the set Ng(p) that is not faulty according to p’s
view on the system. The receiver treats such a message as both a
request and an increment-knowledge message. In the second round
of the EXCHANGE, p responds to all the received requests by sending
R to each sender of every request received in the previous round.

Algorithm 5: BIPARTITEGOSSIP

input: partition 1, Po; p, r, R = {r}
1 fori < 1to 2t do

2 repeat 3 times

3 do EXCHANGE on graph Gout (i + 1);

4 repeat 2y + 1 times
5 ‘ do EXCHANGE on graph Gin (i +7);
6 repeat t + 2 times
7 do EXCHANGE on graph Gin (i + 2);
8 survived « LOCALSIGNALING(p, Gin, i, J, ¥, R);
9 if survived = false then

10 | i min(i+1,t+1)

11 end

12 end

13 return R; /* set R of learned rumors */

Analysis of correctness. We call a single iteration of the main
loop of the BipARTITEGOSSIP algorithm an epoch. First, we show
that if in a single epoch a big fraction of processes from the groups
P; and P, worked correctly, then by the end of the epoch every
process has learned both rumors r; and ry. Let & be an epoch. Let
BEGIN; (BEGIN2) be the set of processes from the group P; (group P
respectively) that were non-faulty before the epoch & started. Let
END; (END2) be the set of those processes from the group P; (group
P, respectively) that were non-faulty after the epoch & ended. We
assume that epoch & is such that:

|END;| > £[BEGIN;| and [ENDz| > %|BEGIN].

LEMMA 12. After the first iteration of the loop from line 2 in
epoch &, each non-faulty process from the group Py is on level j, >

log (577 \E?EGINI [ )-

LEMMA 13. There exists a set C1 C ENDy of size at least w

such that after the second iteration of the loop 2 of epoch & each
process p from set C1 has the other rumor ry in its set R.
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LEMMA 14. After the epoch & ends, each process from the set END;
knows the other rumor rs.

Analysis of communication complexity. Let L;i(r) be the set of
non-faulty processes that at the beginning of the round r are on
level i or bigger. We show that for any round r > 2 and for any
i € [t], the number |L;(r)| is at most 22—?

LEMMA 15. For any roundr > 2 and any level i € [t] the number
of processes in the set L;(r) is at most 22—’1'

Putting the above Lemmas together, Theorem 5 could be proved.

7.2 The Gossrp Algorithm

Here, we describe an algorithm based on the divide-and-conquer
approach, called Gossip that utilizes the BIPARTITEGOSSIP algo-
rithm to solve Fault-tolerant Gossip. Each process takes the set P,
an initial rumor r and its unique name p € [|P]] as an input. The
processes split themselves into two groups of size at most [n/2].
The groups are determined based on the unique names. The first
[n/2] processes with the smallest names make the group #1, while
the n — [n/2] processes with the largest names define the group P».
Each of those two groups of processes solves Gossip separately by
evoking the Gossrp algorithm inside the group only. The processes
from each group know the names of every other process in that
group, hence the necessary conditions to execute the GossIp recur-
sively are satisfied. After the recursion finishes, a process from $;
stores a set of rumors R of processes from its group, and respec-
tively a process from P stores a set of rumors Rz of processes from
its group. Then, the processes solve Bipartite Gossip problem by
executing the BIPARTITEGOSsSIP algorithm on the partition Py, P
and having initial rumors R; and Rj. The output to this algorithm
is the final output of the Gossip, for which Theorem 3 holds.

Modification for Fuzzy Counting. We define the Fuzzy Counting
problem as follows. There is a set n processes, , with unique
names that are comparable. Each process knows the names of other
processes (i.e. they operate in KT-1 model). Each process starts
with an initial bit b € {0, 1}. Let Z denote the number of processes
that started with the initial bit set to 0 and never failed. Similarly,
0 denotes the number of processes that started with 1 and never
failed. Each process has to return two numbers: zeros and ones.
An algorithm is said to solve fuzzy counting if every non faulty
process terminates (termination condition) and the values returned
by any process fulfill the conditions: zeros > |Z|, ones > |0| and
zeros + ones < n (validity condition).

To solve this problem, we use the GossIp algorithm with the
only modification that now we require the algorithm the return
the values Z and 0, instead of the set of learned rumors. We apply
the same divide-and-conquer approach. That is, we partition #
into groups $; and 2 and we solve the problem within processors
of this partition. Let Z;, 0; and Z3, 02 be the values returned by
recursive calls on set of processes P and P, respectively. Then,
we use the BIPARTITEGOssIP algorithm to make each process learn
values Z and O of the other group. Eventually, a process returns
a pair of values Z; + Z3 and 01 + O3 if it received the values from
the other partition during the execution of BIPARTITEGOSSIP; or it
returns the values corresponding to the recursive call in its partition
otherwise. It is easy to observe, that during this modified execution
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processes must carry messages that are able to encode values Z
and 0, thus in this have it holds that |R| = O(logn). The above
modification leads to Theorem 4.

8 LOCAL SIGNALLING - ESTIMATING
NEIGHBORHOODS IN EXPANDERS

The LocALSIGNALING algorithm, presented in this section, allows to
adapt the density of used overlay graph to any malicious fail pattern
guaranteeing fast information exchange among a constant fraction
of non-faulty nodes with amortized O(n|R|) bit complexity, where
R is the overhead that comes from the bit size of the information
needed to convey.

It is formally denoted LocalSignaling(P,p, G, 4.y, 1, r), where
P is the set of all processes, p is the process that executes the pro-
cedure and G = {G(1),...,G(¢)} denotes the family of overlay
graphs that processes from # uses to select processes to directly
communicate — those are neighborhoods in some graph of the fam-
ily G. In our case, the family will consist of graphs with increasing
connectivity properties. Parameters y, § correspond to the property
of (y, §)-dense-neighborhoods which the base graph G(1) must
fulfill. They are also related to the time and actions taken by pro-
cesses if failures occur, respectively. The parameter ¢ < ¢ is called
a starting level of process p and denotes the communication graph
from family G from which the node p starts the current run of the
procedure. This parameter may be different for different processes.
Finally, the parameter r denotes a rumor that process p is supposed
to deliver to other processes. Since processes operates in KT—-1
model, the implementation assumes that each process uses the
same family G (see the corresponding discussion after Theorem 6).

LoCALSIGNALING(P, p, G, 4, 7, £, r) takes 2y consecutive rounds.
The level of process p executing the procedure is initially set to ¢,
and is stored in a local variable i. Each process stores also a set R
of all rumors it has learned to this point. Initially, R is set to {r}.

0Odd rounds: Process p sends a request message to each process ¢
in Ng ;) (p), provided i > 0.

Even rounds: Every non-faulty process g responds to the requests
received at the end of the previous round - by replying to the
originator of each request a message containing the current level i
of process g and the set R of all different rumors g collected so far.
At the end of each even round, processes that requested informa-
tion in the previous round collect the responses to those requests.
If a single process p received less then § responses with level’s
value of its neighbors greater or equal than its level value i, then
p decreases i by one. Additionally, p merges every set of rumors
it received with its own set R. If i drops to 0, then p does not send
any requests in the consecutive rounds.

Output: We say that process p has not survived the LOCALSIGNAL-
ING algorithm if it ends with value i lower than its initial level i.
Otherwise, p is said to have survived the LocALSIGNALING algo-
rithm. p returns a single bit indicating whether it has survived
or not and the set R containing all rumors it has learnt in the
course of the execution.

LemMA 16. The procedure LOCALSIGNALING(P, p, G, 6.y, €, r) takes
O(y) rounds and uses ( :2 ILi|- NG, (Li)| -y - IR]) communication
bits, where L; denotes the set of processes that start at level i, the graph
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G is a union of graphs G(1),...,G(i), and the value |R| denotes
the number of bits needed to encode all possible rumors.

Surviving the LOCALSIGNALING — the consequences. Assume that
t > 1 and consider a sequence (k;);e[s]- Let G = {G(1),...,G(1)}
be a family of graphs G(i) = G(n, kj, §, y) defined as in Theorem 6.
We require, for any 1 < i < t that G(i) € G(i+1). Consider a simul-
taneous run of the procedure LocALSIGNALING(P, p, G, J, v, £, 1) at
every process p € P. Here, we require each process p € P to use
the same family of graphs G. Since our processes operates in KT—1
model, this requirement could be always satisfied.

Let Bp,1 be the start set on level ¢: it consists of the processes that
are non-faulty at the beginning of this instance of Local Signaling
and their level is at least ¢. Let By2 C Bp1 be the end set: it consists
of the processes that are non-faulty just after the termination of
this instance and their level at the beginning of this instance was
at least £. The processes in Br,1 \ By 2 are among those that have
crashed during the considered instance of Local Signaling.

LeEMMA 17. The following properties hold for arbitrary times of
crashes of the processes in By \ Bg2:

1 Ifthereis a (y, §)-dense-neighborhood for p € By in graph Gelp,,,

then process p survives Local Signaling.

2. If p survived the Local Signaling, then there is (y, §)-dense-
neighborhood for p € By in graph G(¢)|p,,. Moreover, p receives
the rumor r of any node from that (y, §)-dense-neighborhood.

3. Any process in a survival set C for By that started at level
exactly ¢ survives Local Signaling.

9 CONCLUSIONS AND OPEN PROBLEMS

We explored the Consensus problem in the classic message-passing
model with processes’ crashes, from perspective of both time and
communication optimality. We discovered an interesting tradeoff be-
tween these two complexity measures: Time X Amortized_Commu-
nication = O(n), which, to the best of our knowledge, has not been
present in other settings of Consensus and related problems. We
believe that a corresponding lower bound could be proved: Time X
Amortized_Communication = Q(n). Interestingly, a similar trade-
off could hold between time and amount of randomness, as our
main algorithm PARAMETERIZEDCONSENSUs™ satisfies the relation:
Time X Amortized_Randomness = O(n). Exploring similar tradeoffs
in other fault-tolerant distributed computing problems could be a
promising and challenging direction to follow. It is worth noting
that all our algorithms use messages of size O(log n), and thus can
be implemented in the congest model.
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