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ABSTRACT

With specific fold patterns, a 2D flat origami can be converted into a complex 3D structure under an external
driving force. Origami inspires the engineering design of many self-assembled and re-configurable devices. This
work aims to apply the level-set-based topology optimization to the generative design of origami structures. The
origami mechanism is simulated using thin shell models where the deformation on the surface and the deformation
in the normal direction can be simplified and well captured. Moreover, the fold pattern is implicitly represented
by the boundaries of the level set function. The folding topology is optimized by minimizing a new multi-objective
function designed to balance kinematic performance with structural stiffness and geometric requirements. Besides
regular straight folds, our proposed model can mimic crease patterns with curved folds. With the folding curves im-
plicitly represented, the curvature flow is utilized to control the complexity of the folds generated. The performance
of the proposed method is demonstrated by the computer generation and physical validation of a thin-shell origami

gripper.

1 Introduction
1.1 Origami-Inspired Design: State of the Art

Demonstrating the ability to transform from 2D to 3D, origami-inspired deployable structures have been applied in the
engineering [1], such as packaging, deployable solar panels, self-deployable mechanisms, and metamaterial design [2,3,4,5].
Mathematicians examined origami from a geometric perspective to comprehend the relationship between the fold pattern
and the folded status [6]. Hull [7, 8] studied the relation between the folding angles and the crease patterns and delivered
a theorem for the local flat-foldability. However, the theorem is insufficient for global foldability. Robert Lang applied the
circle packing technique and proposed the software-TreeMaker that can compute the crease patterns from stick figures [9].

As for the analysis of the distortion of origami structures, various models have been developed. One well-adopted
approach is the so-called rigid-origami, which assumes that all the deformation occurs in the folding lines, and the facets
between folding lines are rigid [8,10,11]. Tachi [12,10] developed a simulation software for rigid origami. The configuration
of the model, in other words, the deformed shape, is explicitly represented by crease angles, and the trajectory is calculated
by projecting angle motion into the constrained space. This pioneering work provided some freedom to the user to revise the
folding lines and avoid local self-intersections. However, the global self-intersection still exists. Similarly, Wei ef al. [13]
studied the periodic pleated origami using geometric mechanics. To address the problem on non-negligible fold thickness or
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with maximum curvature at the folds [14], Lagoudas ez al. [15,16] presented smooth folds model for rigid origami simulation
which can simulate the realistic folds of nonzero surface area and contain higher-order geometric continuity.

However, the rigid origami model cannot completely express the actual behavior of an origami. In reality, the facet
area undergoes non-negligible deformation, such as bending, stretching, and shearing. To solve the problem, Schenk and
Guest [11] proposed a pin-joint framework to track the motion of a partially folded sheet with a low computational cost.
Their model also links the pure kinematics to the stiffness matrix approach. Liu and Paulino [17, 18] proposed a nonlinear
formulation to simulate large-displacement origami structures. They simplified the bar-and-hinge model [19] as pin-jointed
bar networks with virtual rotational springs for origami simulations, and thus reduced the degree of freedom and improved
the computational efficiency. The model can globally capture the essential features of origami, including folding, bending,
and multi-stability. Based on the bar-and-hinge model, Ghassaei et al. [20] introduced a high-speed origami simulator
using a Graphics Processing Unit (GPU). This work is promising regarding the computational speed and interactivity that
offering real-time simulation and interaction. However, compromises have to be considered between geometric accuracy and
simulation speed, and instability will occur on facets with high-aspect-ratio triangles. Another engineering approach is by
using shell or membrane element in finite element analysis to simulate the deployment of the origami [21,22]. Cai ef al. [22]
conducted the nonlinear finite element analysis using the variable Poisson’s ratio model to revise the stress distribution of
membrane element and successfully tracked the deployment of the famous Miura-ori pattern.

Recently, in the field of computer graphics and architectures, the studies of origami with curved folds are emerging [23,
24,25], since its potential in kinetic systems for architectural application [26] and shape-programmable structures [27,28].
In the design of the complaint mechanism, Nelson et al. [29] addressed the importance of curved origami in designing
developable structures. Their subsequent work [30,31,32] presented an energy method based on the normalized coordinate
equations to identify the natural configurations of general curve folds. Moreover, in engineering, one of the significant
applications of flexible electronics- the wearable soft electronics, complaint origami with curved creases- is more desirable
because of easier conformal to the human body than conventional rigid origami.

Conventionally, the design of origami is based on the analysis and alteration of several well-known crease patterns.
Fuchi et al. [33,34] did some pioneering work on topology optimization of origami structures. They proposed an optimization
framework to achieve an optimal origami design by adding or removing folding lines to or from a reference crease pattern.
Later, they enriched the work with a nonlinear truss model to model the sequenced motion and the large deformation of an
origami [35,36]. In addition, a recent work proposed by Paulino et al. [37] offered a novel perspective of generating origami
design. They applied a shape grammar formalism and coupled with an interpreter to construct and modify an origami
tessellation. These origami design frameworks are mainly based on rigid-origami, which are composed of rigid patches with
straight creases working as rotational joints.

1.2 Topology Optimization

Topological optimization aims to find the best design geometry for optimal performance under certain constraints. The
density-based approach, such as the homogenization method [38, 39,40] and the Solid Isotropic Material with Penalization
(SIMP) method [41, 42], is the most popular way of doing topology optimization on the surface. However, the design
obtained by the density-based optimization method can contain checkerboard patterns or grey elements. In contrast to the
density-based method, the level set method can provide a clear boundary design. Moreover, since the level set functions
are defined in the space with one higher dimension, the higher-order geometric information, such as curvatures and normal
vectors, is embedded naturally in the geometric model. It allows the level set method for an exclusive capability of dealing
with topological changes [43]. The level-set-based topology optimization (TO) approach has been considered a powerful
tool in generating innovative designs ever since the shape sensitivity analysis was cast into the framework [44,45,46,47].

In this work, a systematic solution to simulate and conceive origami-inspired compliant structures is presented. We
integrate the shell model with the level-set topology optimization framework. The origami is modeled utilizing finite element
analysis with shell elements. Thus the in-plane membrane, out of plane bending and shear deformation, can be well captured.
Moreover, by incorporating the level-set based topology optimization method, the crease patterns are represented implicitly
by the boundaries of the level set functions. The optimization problem is formulated as a multi-objective problem that aims to
achieve an optimal distribution of the folding lines to fulfill the prescribed requirements. The topology of the crease pattern
is optimized by solving the PDE, the so-called Hamilton-Jacobi equation. Rather than adopting straight folding lines, our
optimization method can form curved folds.

The remainder of the paper is organized as follows: Section. 2 introduces the background on level-set-based topology
optimization framework and the shell model for simulating origami structures. In Section. 3, we formulate the problem of
optimizing origami structures and provide the sensitivity analysis. Next, an example of an origami gripper and an origami
twisting mechanism are presented in Section. 4. Section. 5 first discusses the effects of initial designs and then shows the
performance of the objective function through a numerical example. Finally, in Section. 6, the conclusions are drawn, and
the future work is also briefly discussed.



Fig. 1: The flow chart

2 Method Overview

In this work, we propose a solution to systematic modeling and optimization of the origami structures to meet the
mechanical requirements. The method is based on the level-set topology optimization framework and a modified shell
model. The flow chart is shown in Fig. 1.

2.1 Level Set Representation for Origami Structures

In this work, a level set representation for topology optimization of an origami structure is proposed. Basically, we
divide the design domain into two sections: the crease (folding line) and the facet area. A convex (concave) crease is called
the mountain, or valley, fold line. Thus, two level set functions are introduced. Similar as the conventional level set method,
the level set functions ¢ are defined in R? or R? as a implicit function on one higher dimension [44]. The boundaries of each
level set functions represent the mountain and valley folds, respectively, and the areas apart from boundary are the facets as
shown in Eq. 1.

{q)k(x,r) =0, xeTk(t),k=V,M,folding lines o

0k (x,1) £ 0, xe D\I'*(r),facet

where D is a bounded area represents the design domain and D C R. X is a point inside the design domain. k represents
the different level set functions. In our case, the number of k is 2. M and V represent the mountain folds and valley folds,
respectively as shown in Fig. 2.

The crease pattern’s topology is optimized by solving the Hamilton-Jacobi equation as Eq. 2, which is defined by
differentiating the level set function with respect to the time 7 [44].

00F  k ok
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where V¥ = ¥ is the velocity field for the folding line. During the topology optimization, each level set function involves
individually. Thus, in the rest of the paper, for simplicity, we use ¢ to represent a general level set function unless otherwise
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Fig. 2: A schematic of the level set representation of an origami structure

stated. The presented Hamilton- Jacobi equation can be solved using the upwind spatial derivative to update the design
iteratively [45]. A velocity extension step is needed to expand the normal velocity from the boundaries to the whole com-
putational domain. In our case, the natural extension method is applied since the strain field is defined on the entire design
domain [48].

Instead of assuming straight folding lines, with our model, we can form a general fold pattern with both regular straight
folds as long as curved ones. With the level set method, higher-order geometric information, such as curvature, can be used
to control the length and straightness of the generated crease patterns.

2.2 The Shell Model for Simulating Origami Structures

The origami mechanism is simulated using shell models where the in-plane membrane, out of plane bending, and shear
deformation can be well captured. For simplicity, at this point, we assume the problem to be linear elastic. The crease is
considered a region of locally weak material with directional imperfections on the shell. A similar technique has been used in
studying shells with curved creases [28], and the collapse of a thin-walled tubular [49]. We define the thickness and Young’s
modules on the crease to be half of those in the facet area.

Lfacets = 2tf0ldh (3)
Efucetx = 2Efoldsa

where 7 is the local thickness, and E represents Young’s modules. Moreover, we modify the local offset plane in the area
near the crease with a sign relevant to the crease type as shown in Fig. 3. The fold locations are determined by the boundary
of the level set functions calculated by the following smoothed delta function [45].

“

0 else
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where eAcontrols the size of the transition area, which is chosen as twoAtimes the mesh size [47,43]. Then we normalize the
3(¢) to 0(0), where the maximum value is equal to 1, and couple the 6(¢) on the shell model. The scheme of the level set
representation of a modified shell model is shown in Fig. 3. It is worth noting that the smoothed delta function can provide a
gradual transaction in the thickness direction. The middle surface location r of the shell model can be represented as [50,51].

(&%) =rp (6'.8%) +Con (6',8%) Q)

where rg is the meshed surface, & ,&, are the two curvilinear coordinates in the middle surface, and n is the normal direction
on the shell. The {y is the offset in the thickness direction, which related to o(¢) as Eq. 6.

+S(¢)M X % X tiolds, On mountain folds
Co=10, on facet area 6)
~8(¢)y x  Xtrougs,  on valley folds



Fig. 3: The schematic of level set representation of a modified shell model

(a) Modelling of origami structures with straight folds (b) Modelling of origami structures with curved folds

Fig. 4: Origami structures modeled by modified shell

The strain of the undeformed middle surface can be evaluated as the following equation.

or  org on
9o~ 9E + CO@ (7

where o ranges from 1 to 2. Thus, with the offset, an extra term is added onto the strain, and acts as a small perturbation
to model. We testify the modified shell model with different crease patterns with both straight and curved folds, and their
deformed shapes are shown in Fig. 4. It is worth noting that the physics properties of the intersections between mountain
and valley folding lines have already been implied. The thickness and Youngs modulus still follow the creases ones, but
the offsets in the thickness direction cancel out. Thus, the overlaps are essentially areas with weak material but without the
in-thickness offsets.

In the finite element analysis of the continuum shell, we adopt the classic Mindlin-Reissner plate shell theory that takes
into account the through-thickness shear deformation [52, 53, 54]. The background information regarding the shell model
and the derivation of the linear elastic strain energy density is introduced in the Appendix.A. In terms of the numerical
implementation, the SC6R element is applied, which consists of 6 nodes, and each node has six degrees of freedom (DOF)
in 3D in which including three translational DOF and three rotational DOF [53,54,55].

3 Problem Formulation and Shape Sensitivity Analysis

The topology optimization of an origami mechanism is equivalent to finding the optimum crease pattern to meet the
engineering design requirements. In this work, we solve the optimization problem by minimizing a multi-objective function,
which comprises three sections:

- the the engineering target (J1) to meet the kinematic requirements;
- the characteristic requirements for the design to be an origami structure (J3);
- the perimeter constraint for achieving concise designs.

The general objective function can be formulated as follows:

Minimize : J = IJ; + LJ, + 0|09,
Subject to : a(u,v) =1(v),¥v € Uyy. 8)

In the equation above, U, is the space kinematically admissible displacement [56], €2 is the region occupied with the linear
elastic material. [;, I, and o are constant weighting factors for kinematic target, characteristic objective and perimeter
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Fig. 5: A schematic of general boundary condition

constraint. The internal virtual energy a(u,v), and exterior virtual energy /(v) are defined as follows:

a(u,v)Z/QSij(u)Cijklgkl(V)an

©)
l(v):/vaa?Q—f—/r g-vdl,
N

where D is the design domain; I' = dQ is the boundary of the design; a(u,v) is a symmetric bi-linear function in terms of
the displacement u and the test function v, that is, a(u,v) = a(v,u); [ is a linear function in terms of the body force f and
the traction force g on the Neumann boundary conditions I'y, as illustrated in Fig. 5. We treat each of the objectives as a
subproblem and can make sensitivity analysis for each subproblem and collate the results. It is known that the sensitivity
analysis result of the perimeter constraint is the mean curvature ¥ and can be calculated by [57]:

Vo

AT

) (10)

Therefore, we will only show the detailed steps for sensitivity analysis of the kinematic (J1) and the characteristic require-
ments (J>).

3.1 Shape Sensitivity Analysis of the Kinematic Objective

Here, we adapt the classic objective function of kinematic requirement—the least square minimization between the dis-
placement u and a given target displacement ug of a selected zone w(x) in the design domain. w(x) is zero excepted on the
selected area

2
Minimize : J; = {/ w(x) |u —u0|2d§2 )
Q

1D
Subject to : a(u,v =1(v), Vv € Uy
The Lagrangian of the optimization problem is
Li(u,v)=Ji+a(u,v)—1(v). (12)
The material derivative of the Lagrangian equation respect to a pseudo time t is formulated as:
dLy(u,v) OLy(u,v) JL(u,v)
= 13
dt o T oq (13)
where the partial derivative with respect to time results in the so-called adjoint equation:
oL / /
E;t(V) =1, :CO/ w(x)(u—ug) - uW'dQ+a(u ,v), (14)
Q



where
co= [/Qw(x) |u—u0|2d§2]7% (15)

The convection term of the material derivative forms the shape derivative which is formulated as follows:

oL (u,v) @

oQ r2

(x) |"—uo\an1dS+/FSij(u)Cijkiﬁkz(V)ands—/Ff- VVn1dS—/F[a(§’;v) +xg-v|Vads.  (16)

Using steepest decent method while neglecting body force and traction force, the normal velocity can be written as:

Vit = = [Sow() o — o &1 () Ciaeia (v)] a7

3.2 Shape Sensitivity Analysis of the Characteristic Objective

Since an origami structure shows the characteristic of the deformation concentrated on the folding lines, the facets are
mainly flat, and the system undergoes large out of plane deformation [19]. Thus, we remount the objective functions by
optimizing a structure which, under a load scenario, the deformation of the system is preferred to satisfy the following
requirements:

1. The deformation occurs mainly in the crease area. Jo,
2. The out of plane deformation dominates. Jo,

The Jo; and J;;; can be represented as following equations:
(18)

where a(u,u) is the total strain energy, ar(u,u) is the total strain energy on the creases, and ap(u,u) is the total bending
energy.

ar(,¥) = [ &(u)Cijueuu)ds,
T

19)
ap(u,) = [ e (u)Cjuely ).
We can formulate the characteristic objective function J, as:
Jo = Jo oy (20)
Then the shape derivative of the J> can be represented as:
DqJr = Jo DoJo, +J2 Doy, - (21)

where Dg() = aaT()() In the next sections, we formulate the objective into two subproblems and derive the sensitivity for

DqJy, and DqJ,,, separately.

3.2.1 Minimizing the deformation in the facet area
We summarise the first condition as an objective function J,;, which minimizes the difference of total strain energy
a(u,u) and the total strain energy on the creases ar(u,u), as shown in Eq. 22

Minimize : J», = a(u,u) — ar(u,u),

22
Subject to : a(u,v) =1(v),¥v € Uy (22



The Lagrangian of the optimization problem can be formulated as follows:
Ly =a(u,v)—ar(u,v)+a(u,v)—1(v).
The material time derivative of the Lagrangian equation can be calculated as:

dL, _ oL, JL,

a o T

19
% =2a(u',u) —2ar (u',u)+a(u',v)
and
oL 88,“ u (C," Eplu
aT§ = [ &;(u)Cijuen (u)Vyords — / [W +Ka(u7")] Viouds + / &ij(u)Cijier (v)Vaords.
T T T

The adjoint equation Eq. 25 can be expressed as:

oL
871‘2 = 2/{28,-j(u’)C,-jk1£k1(u)dQ — Z/gzeij(u’)(c,-jklekl (u)8(¢)\V¢(x)|dQ + /Qsij(u’)Cijklek;(v)dQ,
where v is the adjoint variable and is achieved by solving Eq. 27 using finite element method.

3.2.2 Maximizing the out-of-plane deformation

(23)

(24)

(25)

(26)

27)

The second characteristic requirement J;, can be formulated as maximization of the bending energy on the crease
patterns. With the observation that in the FEM model, the bending energy is concentrated on the area near the crease, we
further simplify the objective function as maximum the bending energy on the design domain. As such, the objective function

can be formulated as:

L
ap(u,u)’
Subject to : a(u,v) =1(v), W € Uyy

Minimize : J;, =

the optimization problem becomes:

Ly = +a(u,v)—1(v).

ap(u,u)
The material time derivative can be formulated as follows:

dL; _ 0l; dls

TR )
where

oLy —2a,(u',u)
ot a;,(u,u)2

oL -1
ETQ; = m/st?j(u)C,-jk;e,fl(u)Vnmds+/rs,-j(u)(C,-jk;skl(v)V,,zuds.

+a(u',v)— B/ u'vdlp,
r

(28)

(29)

(30)

3D



Fig. 6: Topology Optimization of an origami twister: A). boundary conditions; B). the evolution on 2D; C). the deformed
status on 3D

To solve the adjoint variable v, we solve the adjoint equation

2
a(u',v) — 2ap(',) B/u vdl'p (32)
ab u, u

Now we can substitute the shape gradient of each sections into Eq.21, assuming body force is zero and ignoring the
velocity along the zero-length Neumann boundary, the shape gradient of the objective function is:

DoJr = / GVppdl'p (33)
r
Thus, by applying steepest decent method, the normal velocity can be written as:
Vi = —G, (34)

where

0¢;(u))Cijen (u)
on

+au,u) - ar ()] [

) 1

G =ap(u,u)(e;j(u)Cijuen(u) — —xa(u,u)+€;j(u)Cijen (v)]
(35)

Cijuien () + & () Cijer (v)]

4 Numerical Implementation
4.1 An Origami Gripper Design

In this section, we present an optimization example to test the performance of the method. The objective is to obtain
an origami mechanism with a minimum crease number where the target area(s) would reach a displacement in the target
direction. In other words, the optimized structure can transfer force and displacement from the input port area to the output
port by deformation on the optimized origami.

(uau) —Cll‘(uau) +(X,|aQ‘,

l
Minimize : J =1 [/ w(x) [u—uol*dQ| +h
Q ab(”?”) (36)

Subject to : a(u,v) =1(v), W € Uyy.



Fig. 7: The optimization history of the origami gripper

(a) The fabricated origami gripper (b) The folded origami gripper

Fig. 8: Fabricated prototype

where 11, I, and o are constants that weights the kinematic target, characteristic objective, and perimeter constraint. In order
to reduce the difficulty of adjusting the weighting factors, a linear relationship is set as I = 1 — I>. Thus, the velocity filed
can be represented as:

V=LV, +LV,,+0x 37

The design domain is a 1-by-1 square, with a thickness of 0.003. The boundary conditions are shown in Fig. 6. A). In
the x-direction, the input displacements are set as 0.1, as shown in Fig. 6. A). The center point is fixed. The output areas
w(x) are 0.1-by-0.05 rectangles in the middle of the top and bottom sides. The target displacement uy is set to (0,0,1). Due to
the symmetry, the upper left quarter of the domain is discretized with a rectangular 100 x 100 mesh. The Young’s modulus
is 10°Pa on the facet and 5 x 10° Pa on the folding lines.

The evolution of the 2D design is shown in Fig. 6. B), and the corresponding deformed status is shown in Fig. 6. C).
Initially, the design is a flat thin-shell consisting of circular valley folds. It can be observed that the design evolves from a
group of uniformly distributed circles to a concise crease pattern. The optimization history plot is shown in Fig. 7. The plots
fluctuate during the first 50 iterations, where the topology of the design changes significantly; then, after 200 iterations, the
perimeter constraint dominates, so that helps smooth the folding lines and the objective curve changes to stability. Finally,
both objective plots converge around the 300th iteration.

Fig. 8a is the fabricated prototype. As shown in Fig. 8b, the top and bottom of the gripper can be closed up by pushing
the middle portion of both sides.

10



Fig. 9: Topology Optimization of an origami twister:A). boundary conditions; B). the evolution on 2D; C). the deformed
status on 3D

4.2 An Origami Twister Design

This example shows a twister design. The design domain is set to be a 1 by 0.5 rectangle, and its thickness is 0.003. The
objective function consists of the mechanic requirements, the characteristic part, and the mean curvature control. The target
of the design is set to achieve a twist motion on the tip areas of the rectangle. The boundary condition are shown in Fig. 9.A).
On the two side edges, the prescribed displacement in the x-direction is set as 0.1. The center area of the design domain is
fixed. The output areas w(x) are 0.2-by-0.05 rectangles in the middle of the top and bottom sides. The target displacement
on the top window is set to (0.1,0,0.1) and (-0.1,0,0.1) on the bottom. The asymmetric boundary condition is applied on
the horizontal centerline of the rectangle. The upper domain is selected as the computational domain and discretized with a
rectangular 100 x 50 mesh. The Young’s modulus is 10°Pa on the facet and 5 x 10° Pa on the folding lines.

The evolution of the 2D design, as well as their deformed status, are shown in Fig. 9. The initial design are two groups
of circular folding lines which been evenly distributed in the design domain. We can observe that the final design is bending
outward, which is satisfied with the target Fig. 10 plots the displacement distribution in the x-direction, and the final design
is shown on the lower side of the figure.

Fig. 10: Prototype of the twister: A). The fabricated twister; B). The folded status

5 Discussion on the Initial Designs and the Characteristic Objective
5.1 The Effects of the Initial Design

To test the robustness of the method, we solve the problem again using different initial designs but with the same
boundary conditions. Fig. 11 shows the evolution of the design for two other models of different initial fold patterns. In
contrast to the example above in Fig. 6, the two designs introduce both the valley and the mountain folds as design variables.
In detail, the top group has the same total number of initial folds as Fig. 6, and the bottom group is initially made up of
more folding lines. It is worth noting that different initial designs can converge to the same optimum structure with the same
imposed boundary conditions. In other words, the proposed method is robust in the sense that it shows little dependency on
the initial designs, as shown in Fig. 11.

11



(a)

(b)
Fig. 11: Left to right: design evolution with different initialization
5.2 The Performance of the Characteristic Objective
As we discussed in Section. 3.2, the characteristic objective is an energy function essential for reaching a design where

most deformation happens on the folding lines.In this section, an example is applied to show the effect of the characteristic
objective J>. The objective function only contains the J, with the linear elastic constraint, as shown in the equations:

a(u, u)—ar(u, u)

)

Minimize : J, = /
Q ap (u7u)

Subject to : a(u,v) =1(v),¥v € Uyy.

(38)

The design domain is a unit square. Fig.12 shows the applied boundary conditions (a), the initial design (b) and the achieved
result (¢). The center of the square is fixed, and two prescribed displacements 8, in the x-direction are assigned on the two
sides to push the model move towards the center; the displacements in other directions are set as zero. The initial design
consists of mountain and valley circular folding lines. With the effect of the objective, the design converges from circles to
rhombuses. Since the perimeter constraints are not applied, the final result is not smooth and contains zigzags.

Fig.13 is presented to evaluate the performance of the given example. Fig.13.a shows the convergence plot of each parts
of the objective function. The solid line plots the total strain energy on the facet area, and the hidden line plots the one over
total bending energy in each iteration number. The two plots decrease in the first 20 iterations, then reach convergence and
vibrate within a range. Fig. 13.b is the distribution of the strain energy per unit area on the final design. We can observe that
the highest number of energy concentrates on the folding lines, which means the deformation mainly occurs on the folding
lines.

Fig. 12: a. boundary conditions; b. the initial design; c.the final design

6 Conclusions

The purpose of this work is to provide a systematic way of modeling and optimizing an origami-like structure to meet
engineering requirements, for instance, transforming force or displacement from one port to another. The origami is phys-
ically modeled by a shell model; thus, the in-plane stretching, out-of-plane bending, and shear deformation can be well

12



Fig. 13: Left to Right: a. convergence plots; b. unit area strain energy distribution on the final design

captured. Moreover, the folding lines are represented implicitly by the zero contours of the level set functions. Instead of
assuming straight folding lines, our model can form curved folding lines, and the straightness of creases can be controlled
by the perimeter constraint. An origami gripper, as well as a twisting mechanism, are optimized as demonstrations. The
proposed method shows little dependence on the initial crease patterns as long as the boundary conditions are the same.

However, some aspects need to be improved. First, in the current set-up of the problem, the design is based on linear
elasticity and small deformation. In the future, we will examine the relatively large non-linear deformation to capture the
origami transformation with greater precision. Second, the current formulation of the problem relies mainly on maximizing
or minimizing specific energies on the structure. We do not explicitly control the overlapping between mountain and valley
folds. The evolution of the design is driven by the velocity field derived from the physics equation. However, one particular
type of overlap, or termed vertex, should be discussed. Mathematicians [6] have shown that the number of vertices, mountain,
and valley folding lines determines an origami’s foldability. The geometrical concerns, such as foldability requirements, need
to be coupled into the problem formulation in future work. In addition, the origami structure is optimized as a mechanism
triggered by input loads in this work. The behaviors such as self-locking, face overlapping, and folding sequences have to
be taken into account.

In terms of applications, the work can be expanded into the design of programmable folding surfaces by considering the
manufacture of origami with active materials, such as ferromagnetic particles [58], thermal active polymers, and dielectric
elastomers. Under a specific stimulus, it automatically switches between the original state and a target form. Moreover,
with the topology optimization framework of free-form surface-the extended level set method [58,59, 60,61, 62,63], we can
optimize conformal origami structures on the surface with desired properties and kinematic performance.
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Appendix A
A The Strain Energy Density of a Linear Elastic Shell Structure

In this section, the background information of the linear elastic shell structure is introduced, and the derivation of the
strain energy density is presented. Typically, a shell structure consists of a curved external surface as well as a uniform
thickness, as shown in Fig. 14. Let £, &; be the two curvilinear coordinates in the middle surface, and &3 be the coordinate in
the thickness direction varying within [-1 1] [50,51]. Thus, any point on the shell structure can be represented as x(&;,&2,&3)
[64,65].

x(&1,82,83) =x"(61,82) + &

S8 6 )

The Jacobian matrix of the mapping between the middle surface and reference surface shown in the left corner at Fig .14,
where

ax,'
J==. 40
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Fig. 14: The schematic figure of shell structure

For linear elastic material, the strain tensor is defined as

1 au,' auj
gij(")—i(gj pel

41
VY2008, oxj 0 06, Ox;
1 8ul~ 1 al/tj 1
&ij(u) == — L
i) 2(a§m I T8, )
ui (42)
= S.W"(agm‘]mj )a
where &, represents the reference coordinates. The energy bilinear form for linear elasticity is shown as

a(u,v) = /Qeij(u)(cijkzskl(v)dQ (43)

where u stands for the displacement, and v is the test function.

According to the Reissner-Mindlin theory of plate [66], we can assume that the displacement along the thickness is
linear and the cross section of the shell structure remains flat after deformation. Then the deformation on shell can be written
as [67]

u=u'(&,&)+&u’(E1,8), (44)

where on the right-hand side, the first term represents the membrane deformation, and the second term stands for the bending
and shear deformation.

For the thin shell which the thickness is very small and can be neglected, the Jacobian are considered to be a function of
only &;,&; coordinates. Thus the equation (42) can be simplified as [67]:

g;j(u) =¢&];(u) + &3¢ (), (45)

where Sl-lj(u) and el»zl-(u) are the membrane-shear stain and bending strain respectively.
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Substitute equation (45) into equation (43) and integrate from &3 € [—1,1], we can rewrite the energy bilinear form
as [56,67]

afuw) = [ [ [ Il u) + s @ Coulel ) + 2 )] Wl ey

= [ ] [ebtielo) + beliw o
st () Copuey (v) + 83 (0) Ciae; ()19 dEadodSs.

(46)

since the second and third terms are odd functions over the interval &3 € [—1, 1], and thus equation (46) can be simplified
as below [56]

2
alu,y) = [ [2eh@)Cieh (VI + 5850 it () 014 @)

where the first term represent the coupled membrane-shear strain energy and the second term donates the bending strain
energy. In the later contents, we will use the a;,(u,u) to represent the bending strain energy.
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