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Abstract: Previously, spectra of certain weighted composition operatorsWψ,φ on H2 were determined under
one of two hypotheses: either φ converges under iteration to the Denjoy-Wol� point uniformly on all of D
rather than simply on compact subsets, or φ is “essentially linear fractional.”We show that if φ is a quadratic
self-map ofD of parabolic type, then the spectrum ofWψ,φ can be foundwhen thesemaps exhibit both of the
aforementioned properties, and we determine which symbols do so.

Keywords: uniform convergence; essentially linear fractional; composition operator; weighted composition
operator

MSC: 40A30; 47B33; 47B35; 47A10

1 Introduction

Let H2 denote the classical Hardy space, the Hilbert space of analytic functions f (z) =
∞∑
n=0

anzn on the open

unit disk D such that
‖f‖2 =

∞∑
n=0
|an|2 < ∞.

A composition operator Cφ on H2 is given by Cφ f = f ◦ φ. We call φ the symbol of the associated composition
operator. When φ is an analytic self-map of D, the operator Cφ is bounded. Composition operators on H2

have been extensively studied for several decades; [5] and [7] are seminal books on the subject. One reason
for their study is the deep connection to multiplication operators. H∞, the space of bounded on analytic
functions on D, is the multiplier algebra of H2: if ψ ∈ H∞ and f ∈ H2, then ψf ∈ H2. Thus, for any ψ ∈ H∞,
the multiplication operator Tψ on H2 is given by Tψ f = ψf , and all such operators are bounded. Throughout
this paper, we will always assume ψ ∈ H∞. We write Wψ,φ := TψCφ and call such an operator a weighted
composition operator.

The spectrum of an operator T on a Hilbert space H, denoted σ(T), is given by {λ ∈ C : T −
λI is not invertible}. A thorough treatment of the spectrum of composition operators on H2 is given in [5,
Chapter 7]. Determining the spectra of weighted composition operators on H2 is still largely an open ques-
tion, and some results are given in [4] and [2]; in both papers, the results depend on the behavior of φ on
D.

Building on the work of [4] and [2], our goal is to answer the following:
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If φ is a quadratic self-map of D and ψ ∈ H∞, can we determine σ(Wψ,φ) ?

While we are interested in quadratic maps, this is not the only waywewill classify our choice of symbols. The
Denjoy-Wol� theorem guarantees that any analytic self-map of D (apart from elliptic automorphisms) will
have a unique attracting �xed point w inD, and that φ converges, uniformly on compact subsets ofD, to that
point under iteration. This behavior generally splits into three categories:
• w is properly in D with |φ′(w)| < 1 (elliptic),
• w is on the boundary and φ′(w) < 1 (hyperbolic), or
• w is on the boundary and φ′(w) = 1 (parabolic).
If φ is not analytic on ∂D, the boundary �xed point cases need to be stated more carefully (see [5]), but that
will not be an issue for our quadratic symbols.

While our primary goal is to determine σ(Wψ,φ), a secondary goal of ours is to show the interplay between
the conditions imposed on φ in [4] and [2]. In the rest of the introduction, we will explain the concept of
uniformly convergent iteration found in [4], use it to narrow down which quadratic maps we consider, and
also explain the concept of essentially linear fractionalmaps found in [2].

1.1 Uniformly convergent iteration.

Let φn = φ ◦φ · · · ◦φ (n times). An analytic function φ : D→ Dwith Denjoy-Wol� point w exhibits uniformly
convergent iteration (UCI) if φn → w uniformly on all of D, rather than simply on compact subsets of D. The
main result we need is the following:

Theorem 1.1. [4, Corollary 10] Suppose φ : D → D is analytic with Denjoy-Wol� point w, φn → w uniformly
in D, and ψ ∈ H∞ is continuous at z = w with ψ(w) ≠ 0. Then we have

σp(ψ(w)Cφ) ⊆ σap(Wψ,φ) ⊆ σ(Wψ,φ) ⊆ σ(ψ(w)Cφ)

In particular, if σp(Cφ) = σ(Cφ), then σ(TψCφ) = σ(ψ(w)Cφ).

If we can show that our quadratic maps exhibit UCI, then Theorem 1.1 gives us σ(Wψ,φ) ⊆ σ(ψ(w)Cφ). How-
ever, we get more than that. If the Denjoy-Wol� point w is on ∂D and φ′(w) < 1, we know that σp(Cφ) = σ(Cφ)
[5, Theorem 7.26], and in conjunction with Theorem 1.1, we have

σ(Wψ,φ) = σ
(
ψ(w)Cφ

)
.

Furthermore, [4, Theorem 4] gives a clear su�cient condition to check for when φ is UCI if w is on ∂D and
φ′(w) < 1, so there is no real work to dowith quadraticmaps. Likewise, ifw is properly inD and φ is UCI, then
Wψ,φ is power-compact [4, Corollary 2], and again we have σ(Wψ,φ) = σ(ψ(w)Cφ) by Theorem 1.1. Therefore,
we are really only interested in parabolic maps (w is on the boundary with φ′(w) = 1).

1.2 φ is of parabolic type

For the rest of the paper, we assume that φ is analytic inDwith a single �xed point w on the boundary, given
by a quadratic polynomial, and φ′(w) = 1. Since Ceiθz is a unitary operator, we can conjugate Cφ by Ceiθz
to rotate the �xed point without a�ecting the spectrum; therefore we may assume that w = 1. We can then
simplify the generic quadratic φ(z) = a2z2 + a1z + a by noting

a2 + a1 + a = 1
2a2 + a1 = 1
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which gives a1 = 1 − 2a2, and a2 = a, so we have

φ(z) = az2 + (1 − 2a)z + a.

We now need to con�rm exactly when φ maps D into D.

Proposition 1.2. Suppose φ(z) = az2 + (1 − 2a)z + a so that φ(1) = φ′(1) = 1. Then φ is a self-map of D if
and only if |a − 1

4 | ≤ 1
4 . Furthermore, the only elements of ∂D that are not mapped by φ into D are the point

z = 1 and, in the case where |a − 1
4 | = 1

4 , the point z = −1.

Proof. Note that φ(−1) = 4a − 1, so we require that |4a − 1| ≤ 1 for φ to be a self-map of D. Equivalently, we
have |a − 1

4 | ≤ 1
4 , so that a is contained in the disk of radius 1

4 centered at 1
4 .

Now suppose instead that |a − 1
4 | ≤ 1

4 is given. Then, we will �nd the image of the unit circle under φ.
Thinking of φ as a function of a, we know by the Maximum Modulus Principle that |f (z)| will be maximized
when |a − 1

4 | = 1
4 . Therefore, writing a = A + Bi, we have A2 + B2 = 1

2A, and if z = X + Yi, we have X2 + Y2 = 1.
If φ(z) = az2 +(1−2a)z+a = (A+Bi)(X+Yi)2 +(1−2A−2Bi)(X+Yi)+(A+Bi), then |φ(z)|2 can be directly

computed, resulting in a 28-term algebraic expression we will not force the reader to endure. However, using
the aforementioned equations, we are able to simplify the expression to 2AX2 − 2A + 1. This is a real-valued
quadratic in X de�ned on [−1, 1], with vertex (0, −2A + 1) (which has a nonnegative y-value for 0 ≤ A ≤ 1

2 ,
as needed). Since the graph is a parabola whose de�ning equation has a positive leading coe�cient, the
maximum values in the domain occur at the endpoints x = 1 and x = −1, which both result in |φ(z)|2 = 1.
Note, however, that equality is always attained at φ(1) = 1, but equality at x = −1 only happens for φ(−1) =
4a − 1 when |a − 1

4 | = 1
4 ; otherwise φ(−1) is properly in D. In any case, for any other value of X, we have

|φ(z)|2 < 1, so D is mapped by φ into D as desired.

While the primary purpose of Proposition 1.2 is to discover exactly when φ is a self-map ofD, we should also
note a few key facts from this result that we will use later. In particular, we see that Re a > 0 and |a| ≤ 1

2 .
Furthermore, we will take advantage of knowing exactly which points on the unit circle are mapped by φ
back onto the unit circle. As we have seen in this proof, |a − 1

4 | < 1
4 is a separate case from |a − 1

4 | = 1
4 . This

will remain true throughout the paper.

1.3 Essentially linear fractional.

First we give the de�nition of essenitally linear fractional found in [2]:

De�nition 1.3 ([2]). An analytic self-map φ of D is essentially linear fractional if all of the following hold:
1. φ(D) is contained in a proper subsdisk of D internally tangent to the unit circle at some point η ∈ ∂D;
2. φ−1({η}) := {γ ∈ ∂D : η belongs to the cluster set of η of φ at γ} consists of one element, say ζ ∈ ∂D;

and
3. φ′′′ extends continuously to D ∪ {ζ}.

We are interested in these maps because of certain spectral results in [2]. The essential spectrum σe(T) is
the spectrum of T in the Calkin algebra B(H)/K(H), the bounded operators on a Hilbert space H modulo
the compact operators. The essential spectrum is always a subset of the spectrum. In particular, we will �nd
symbols where σe(Wψ,φ) = σe(ψ(w)Cφ), and combined with Theorem 1.1, we will arrive at the main theorem
of the paper:

Main Theorem. Suppose φ(z) = az2 + (1 − 2a)z + a maps D into D and |a − 1
4 | < 1

4 . Then for any ψ ∈ H∞

continuous at 1, we have
σ(Wψ,φ) = σ(ψ(1)Cφ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.
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The rest of the paper proceeds as follows. In Section 2, we show that if φ(z) = az2 + (1 − 2a)z + a with
|a − 1

4 | ≤ 1
4 , then φ exhibits UCI. In Section 3, we determine exactly which of these symbols are essentially

linear fractional. In Section 4, we combine these results to arrive at our main theorem, as well as a few other
results. In Section 5, we discuss the connection between uniformly convergent iteration and essentially linear
fractional maps, and propose questions for further research.

2 φ converges uniformly under iteration on all of D (UCI)
Rather than iterating our quadratic maps directly, we will circumvent this issue by taking alternate ap-
proaches to showing that φn → 1 uniformly on all of D. For |a − 1

4 | < 1
4 , we rely on arguments from com-

plex dynamics. When |a − 1
4 | = 1

4 , we work directly with the following alternate characterization of uniform
convergence.

Proposition 2.1. Let φ be an analytic self-map of D. Then φn converges uniformly on D to its Denjoy-Wol�
point w if and only if

lim
n→∞

sup
z∈D
|φn(z) − w| → 0.

Theorem 2.2. Suppose φ(z) = az2 + (1 − 2a)z + a and |a − 1
4 | = 1

4 , a ≠ 0. Then the iterates of φ converge
uniformly to 1 on the entire open disk D.

Proof. We will �nd a recursive pattern for supz∈D |φn(z) − 1| that approaches 0.
Suppose supz∈D |φn(z) − 1| = rn (the value depends on n) and consider |φn+1(z) − 1|. This factors as

|a|
∣∣φn(z) − 1

∣∣ ∣∣∣∣φn(z) −
(

1 − 1
a

)∣∣∣∣ .
Since φn is an analytic map of D, we know that supz∈D |φn(z) − 1| = rn is attained at some point z1 in D,
which also lies on the circle with center 1 and radius rn (call this circle C). Wewish to �nd an upper bound on
the distance from z1 to z0 = 1− 1

a . To do this, we also need to �nd the image of the circle |a − 1
4 | = 1

4 (ignoring
a = 0) under this transformation. Again, if a = A + Bi, then A2 + B2 = 1

2A. Then we have

1
a = 1

A + Bi = A − Bi
A2 + B2 = 2(A − Bi)

A = 2 − BA i,

so we have z0 = 1 − 1
a = −1 + B

A i, and we know 0 < A ≤ 1
2 . Without loss of generality, assume B is positive.

Then the furthest point from C, still within D, from z0 is the point where C intersects the unit circle in the
fourth quadrant (see Figure 1). Writing x2 + y2 = 1 and (x − 1)2 + y2 = r2

n, we can write z1 in terms of rn:(
1 − r2

n/2
)
−
(
rn
√

1 − 1
4 r2
n

)
i. We now wish to �nd |z1 − z0| :

∣∣∣∣φn(z) −
(

1 − 1
a

)∣∣∣∣ ≤ |z1 − z0| =

√
1 + 2r2

n + B2

A2 −
2B
A rn

√
1 − 1

4 r
2
n .

To incorporate the rest of our original expression for |φn+1(z) − 1|, we recall that |a| =
√
A2 + B2 =

√
1
2A

and |φn(z) − 1| = rn. We can also substitute B =
√

1
2A − A2 to get

sup
z∈D
|φn+1(z) − 1| ≤ rn

√√√√r2
nA + 1

4 − rn

√(
1
2A − A

2
)(

1 − 1
4 r

2
n

)
.
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Figure 1: An example scenario for z1 and z0.

For our base case, consider r1 = |φ(z) − 1|. Then for z = X + Yi ∈ ∂D, if a = A + Bi, by direct computation
we have

|φ(z) − 1|2 = 2 − 2AX2 + 4AX − 2A + 4(X − 1)
√
A/2 − A2

√
1 − X2 − 2X.

For smaller values of A, this value is maximized at X = −1. However, when |(4a−1)−1|2 = |4A−2+4Bi|2 = 1,
we have A = 3

8 , and the situation changes. For 3
8 ≤ A ≤ 1

2 , we have |φ(z) − 1| ≤ 1 for all z ∈ D. For 0 < A < 3
8 ,

the maximum value of |φ(z) − 1| is 2
√

1 − 2A, so r1 = max{2
√

1 − 2A, 1}.
For 0 < A ≤ 1

2 , de�ne

f (x) =

√√√√x2A + 1
4 − x

√(
1
2A − A

2
)(

1 − 1
4 x

2
)
,

so f satis�es 0 < f (x) < 1 for 0 ≤ x ≤ max{2
√

1 − 2A, 1}. Then

rn+1 = rn

√√√√r2
nA + 1

4 − rn

√(
1
2A − A

2
)(

1 − 1
4 r

2
n

)
= rn f (rn) < rn ,

and thus, our sequence is decreasing. Since r1 is positive and 0 < f (rn) < 1 for all n ≥ 1, we know that the
sequence rn is bounded below by 0. Since our sequence is monotonically decreasing and bounded below, it
converges. Then c = lim rn+1 = lim rn,whichmeans that c = cf (c)where f is de�nedas above.Wehave already
established that f is always positive, so the only solution is c = 0. Therefore, limn→∞ supz∈D |φn(z) − 1| = 0,
so φn converges under iteration to 1 uniformly on all of D.

For |a − 1
4 | < 1

4 , we now turn to traditional results in complex dynamics, via Beardon [1].

Theorem 2.3. Suppose φ(z) = az2 + (1 − 2a)z + a and |a − 1
4 | < 1

4 . Then the iterates of φ converge uniformly
to 1 on the entire open disk D.

Proof. Consider the family of degree two polynomial maps φ : D→ D given by

φ(z) = az2 + (1 − 2a)z + a,
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where |a − 1/4| < 1/4. These maps all have a parabolic �xed point at z = 1 and, as maps of C, are conjugate
to the map z 7→ z − z2. Speci�cally, for the maps g, σ : C→ C given by

g(z) = z − z2 and

σ(z) = −1
a z + 1,

we have g = σ−1 ◦φ ◦ σ onC. Since φ is forward invariant on the disk, g is forward invariant onDa := σ−1(D),
and we have the following commutative diagram:

Da
g //

σ
��

Da

σ
��

D φ
// D

In particular, φn converges uniformly to 1 on D if gn converges uniformly to 0 on Da.
For speci�c details regarding the dynamics of one complex variable, we refer the reader to ([1, 3, 6]). The

domain of g is partitioned into two totally invariant sets, the Julia set, denoted J(g), and the Fatou set, denoted
F(g). The Fatou set is the set of points for which the sequence of iterates forms a normal family, and the Julia
set is the complement of the Fatou set. In this case, F(g) is just the disjoint union of the two open sets:

B(g, 0) = {z ∈ C : gn(z)→ 0} and
B(g,∞) = {z ∈ C : gn(z)→∞},

called the basin of zero and the basin of in�nity, respectively. The set J(g) has no interior, so it must be that
Da is a subset of B(g, 0) or B(g,∞). Note that σ−1(0) = a, and we have assumed that |a − 1/4| < 1/4. De�ne

A = {a ∈ C : |a − 1/4| < 1/4}.

Since ∣∣∣∣g(a) − 1
4

∣∣∣∣ =
∣∣∣∣a − a2 − 1

4

∣∣∣∣ =
∣∣∣∣a − 1

2

∣∣∣∣2 ≤ (∣∣∣∣a − 1
4

∣∣∣∣ + 1
4

)2
< 1

4 ,

we have that A, an open set with nonempty interior, is forward invariant by g, so A is a subset of either B(g, 0)
or B(g,∞). It is easily veri�ed that for real a ∈ A, gn(a) → 0. Thus, we have A ⊂ B(g, 0) (see Figure 2), so
σ−1(0) ∈ B(g, 0) as well. It follows that Da ⊂ B(g, 0), and gn converges uniformly on compact subsets of
B(g, 0).

We complete the proof by adapting the proof of the Petal Theorem from [1], for which we need one more
conjugacy. Observe that g is conjugate by σ0(z) = 1/z to h : C→ C given by

h(z) = z + 1 + 1
z − 1 .

The �xed point z = 0 for g corresponds to the �xed point at ∞ for h. It is easy to show that the half plane
{z ∈ C : Re z > 3} is forward invariant by h, so it is contained in B(h,∞). The image of this set by σ0 is a disk
of radius 1/6 centered at 1/6, contained in B(g, 0) (since the original set was contained in B(h,∞)). However,
based on the picture of this basin in Figure 2, it appears we can construct amuch larger forward invariant set.

Instead of starting with a half plane for h, we will use the following parabolic region. For each t ≥ 0, let

Π + t := {z = x + iy : y2 > 12(3 + t − x)}.

It can be shown that Π := Π + 0 is forward invariant by h. In particular, if z ∈ Π, we will show that h(z) ∈
Π + 1/2. Let z = x + iy, h(z) = X + iY, and 1/(z − 1) = u + iv, so X = x + 1 + u and Y = y + v; then

Y2 − 12(3 + 1/2 − X) = (y + v)2 − 12(3 + 1/2 − (x + 1 + u))
= y2 − 12(3 + 1/2 − x) + v2 + 2yv + 12(1 + u)
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B(g, 0)

B(g,∞)

A

J(g)

Figure 2: B(g, 0) contains A.

> v2 + 2yv + 12(1 + u)
≥ 2yv + 12(1 + u)
≥ 12 − 2|yv| − 12|u|
> 0,

where the last inequality can be derived from the fact that z ∈ Π implies |z| > 3. Since Y2 > 12(3 + 1/2 − X),
we have h(z) ∈ Π + 1/2. We also have inductively that if z ∈ Π, then for all positive integers n,

hn(z) ∈ Π + n
2 .

Thus, for hn(x) + Xn + iYn,

|hn(z)|2 = X2
n + Y2

n > X2
n + 12(2 + n/2 − Xn) = (Xn − 6)2 + 6n > n,

so |hn(z)| > √n and hn(z)→∞ uniformly on Π. The image of Π by σ0 is the cardioid

P := σ0(Π) = {z = reiθ : 6r < 1 + cos θ},

and gn(z)→ 0 uniformly on P. The set P is the “petal” referred to in the Petal Theorem.
The preimage of Da by σ0 is the half plane

Ha := σ0(Da) = {z = x + iy : 2Re a + 2Im a > 1}.

Note that ∂Ha, the boundary of Ha, intersects the x-axis at x = 1/(2Re a), and since Re a > 0, it is also never a
horizontal line. Moreover, ∂Π is a horizontally oriented parabola, intersecting the x-axis at x = 3. See Figure
3. Thus, if 1/6 < Re a < 1/4, then ∂Ha intersects the x-axis at x < 3, so ∂Ha must intersect ∂Π at exactly two
�nite points. If 0 < Re a ≤ 1/6, then ∂Ha intersects ∂Π at exactly two �nite points, one point (at which ∂Ha
is tangent to ∂Π), or zero points. In the last two cases, we have Ha ⊂ Π.

Returning to the coordinates centered at zero, this implies that either Da ⊂ P or ∂Da intersects ∂P at
exactly two nonzero points. Recall that the set Da is a disk of radius |a| centered at ā, so both ∂P and ∂Da
always contains the origin. If ∂Da intersects ∂P at exactly two nonzero points, Da\P is nonempty with a
boundary consisting of the curve segment of ∂P between the twononzero intersections and the curve segment
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σ0

P

Da\P

DaΠ

Ha

Ha\Π

Figure 3: On the left are Π, H, and Ha\Π. On the right are the images of these sets under σ0: the cardioid, P, and Da with
boundaries intersecting at two nonzero points.

of ∂Da outside P and between the two nonzero intersections. Thus, Da\P is closed and bounded, so it is
compact. It follows that Da\P is always a strict, compact (sometimes trivially) subset of B(g, 0).

Since gn converges uniformly on P and Da\P ⊂ B(g, 0), we have that gn converges uniformly on Da.
Therefore, φn converges uniformly on D.

Now we have the full picture:

Corollary 2.4. Suppose φ(z) = az2 + (1 − 2a)z + a and |a − 1
4 | ≤ 1

4 . Then the iterates of φ converge uniformly
to 1 on the entire open disk D.

3 φ is essentially linear fractional
We have shown that when φ(z) = az2 + (1 − 2a)z + a with |a − 1

4 | ≤ 1
4 , φ converges uniformly on all of D.

Thanks to the work of [4], we know that for any ψ ∈ H∞, we have σ(Wψ,φ) ⊆ σ(ψ(a)Cφ). We would like for
this containment to become equality, and in order to do so, we introduce another property that φ exhibits.

Here we remind the reader of De�nition 1.3. An analytic self-map φ ofD is essentially linear fractional [2]
if all the following hold:
1. φ(D) is contained in a proper subsdisk of D internally tangent to the unit circle at some point η ∈ ∂D;
2. φ−1({η}) := {γ ∈ ∂D : η belongs to the cluster set of η of φ at γ} consists of one element, say ζ ∈ ∂D;

and
3. φ′′′ extends continuously to D ∪ {ζ}.
We will quickly verify that most of the the maps φ(z) = az2 + (1 − 2a)z + a satisfy these conditions. (Again,
we assume a ≠ 0.) To do so, we need another result from [2].

Proposition 3.1 ([2], Proposition 1.3). Let φ be an analytic self-map of D that extends to be continuous on
∂D. Suppose that φ ∈ C2(1), that φ(1) = 1, and that |φ(ζ )| < 1 for ζ ∈ ∂D\{1}. If

Re
(

1
φ′(1) − 1 + φ′′(1)

φ′(1)2

)
> 0 (3.1)
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then φ(D) is contained in a proper subdisk of D internally tangent to ∂D at 1.

Now to verify which our family of symbols φ satisfy De�nition 1.3:
1. For our symbols, the left side of expression 3.1 simpli�es to 2a, and we know Re a > 0. However, Proposi-

tion 3.1 also requires that the rest of the unit circle bemapped intoD. If |a− 1
4 | < 1

4 , Proposition 3.1 applies
and φ(D) is contained in a subdisk ofD internally tangent at 1. However, we cannot use this proposition
if |a − 1

4 | = 1
4 , since −1 maps to 4a − 1. If a ≠ 1

2 , however, it is worth noting that φ ◦ φ satis�es the
de�nition.

2. Since our function is analytic on the boundary, we are asking that φ−1({1}) contain only a single point
from ∂D. The points that map to 1 are 1 and 1 − 1

a , and the latter is outside of D if a ≠ 1
2 . If a = 1

2 , then
φ is not essentially linear fractional since −1 also maps to 1, and neither is any iterate of φ, so we will
handle that case separately.

3. Since φ′′′(z) ≡ 0, this is trivial.
Unsurprisingly, just as with our work on UCI, we see that the de�nition of essentially linear fractional splits
our work into the cases when |a − 1

4 | < 1
4 and |a − 1

4 | = 1
4 . This continues in the following spectral results.

4 Spectrum ofWψ,φ

We now have all the pieces we need; �rst we remind the reader of Theorem 1.1 from the introduction:

Theorem 1.1. [4, Corollary 10]. Suppose φ : D→ D is analytic with Denjoy-Wol� point a, φn → a uniformly in
D, and ψ ∈ H∞ is continuous at z = a with ψ(a) ≠ 0. Then we have

σp(ψ(a)Cφ) ⊆ σap(TψCφ) ⊆ σ(TψCφ) ⊆ σ(ψ(a)Cφ)

In particular, if σp(Cφ) = σ(Cφ), then σ(TψCφ) = σ(ψ(a)Cφ).

Composition operators with parabolic symbols are notoriously di�cult when it comes to spectral problems,
and this situation is no di�erent. We have little information about σp(Cφ); instead we will only use the fact
that Theorem 4 gives us σ(Wψ,φ) ⊆ σ(ψ(a)Cφ). We now turn to two results from [2] regarding essentially
linear fractional maps.

Theorem 4.1. [2, Theorem 3.3] Suppose that φ is an essentially linear fractional self-map ofD �xing 1. Suppose
also that for s = φ′′(1), Re s > 0. Then

σ(Cφ) = σe(Cφ) = {e−st : t ≥ 0} ∪ {0}.

Theorem 4.2. [2, Theorem 4.3] Suppose φ is essentially linear fractional with φ(1) = 1, and ψ ∈ H∞ is contin-
uous at 1. ThenWψ,φ ≡ ψ(1)Cφ modulo the compact operators.

Putting these facts together, we arrive at our main theorem.

Theorem 4.3 (Main Theorem). Suppose φ(z) = az2 + (1 − 2a)z + a maps D into D and |a − 1
4 | < 1

4 . Then for
any ψ ∈ H∞ continuous at 1, we have

σ(Wψ,φ) = σ(ψ(1)Cφ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.

Proof. By Theorem 4, we have σ(Wψ,φ) ⊆ σ(ψ(1)Cφ). By Theorem 4.1, we have σ(Cφ) = σe(Cφ). By Theorem
4.2, we have σe(Wψ,φ) = σe(ψ(1)Cφ). Putting these together, we have

σ(ψ(1)Cφ) = σe(ψ(1)Cφ) = σe(Wψ,φ) ⊆ σ(Wψ,φ) ⊆ σ(ψ(1)Cφ),
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and since the �rst and last sets in the containment are equal, we have σ(ψ(1)Cφ) = σ(Wψ,φ). By Theorem 4.1,
noting φ′′(1) = 2a, we have

σ(Wψ,φ) = {ψ(1)e−2at : t ≥ 0} ∪ {0}.

Wenow investigate the situationwhen |a− 1
4 | = 1

4 . While we have shown that φ still converges under iteration
to 1 uniformly on all of D, it is not essentially linear fractional since |φ(−1)| = |4a − 1| = 1. Here, we must
actually divide our special case yet again: if a ≠ 12 , then φ2 = φ◦φ is essentially linear fractional (since 4a−1
is then mapped intoD) and of course φ2 is uniformly convergent under iteration on all ofD. Therefore, we as
a corollary to Theorem 4.3, we get the following:

Corollary 4.4. Suppose φ(z) = az2 + (1 − 2a)z + a maps D into D and |a − 1
4 | = 1

4 for a ∉ R. Then for any
ψ ∈ H∞ continuous at 1, we have

σ(Wψ,φ2
) = σ(ψ(1)Cφ2

) = {ψ(1)e−4at : t ≥ 0} ∪ {0}

where φ2 = φ ◦ φ.

Proof. The proof follows exactly as before, except that φ′′2 (1) = 4a.

The result of Corollary 4.4 suggests that it is most likely true that σ(Wψ,φ) is the same as shown in Theorem
4.3 when |a − 1

4 | = 1
4 , but we do not have a proof.

However, even then, a = 1
2 proves itself to be an entirely distinct case. Here, instead of functional behav-

ior, we now rely on a linear algebra trick also used in [4].

Lemma 4.5. [4, Lemma 3] If A and B are bounded linear operators on a Hilbert spaceH, then σ(AB) ∪ {0} =
σ(BA) ∪ {0}.

Using this, we can now �nish the story with a = 1
2 , which actually varies just slightly from the result in

Theorem 4.3.

Theorem 4.6. Suppose φ(z) = 1
2 z

2 + 1
2 , an analytic self-map of D. Then for any ψ ∈ H∞ continuous at 1, we

have

σ(Wψ,φ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.

Proof. If f (z) = 1
2 z + 1

2 , then we have Cφ = Cz2Cf . By Lemma 4.5, we have σ(Cφ) ∪ {0} = σ(Cz2Cf ) ∪ {0} =
σ(Cf Cz2 )∪{0} = σ(Cf 2 )∪{0}. Note that f 2(z) = 1

4 z
2 + 1

2 z + 1
4 , which falls under Theorem 4.1 with s = 1

2 . Since
we also know Cφ is not invertible, we have σ(Cφ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.

Likewise, let ψ ∈ H∞ be continuous at 1 and consider TψCφ = TψCz2Cf . Again by Lemma 4.5, we have
σ(TψCz2Cf )∪ {0} = σ(Cf TψCz2 )∪ {0} = σ(Tψ◦f Cf 2 )∪ {0}. Since f mapsD intoD analytically and f is contin-
uous at 1, we still have that ψ ◦ f ∈ H∞ and and ψ ◦ f is continuous at 1 (and ψ ◦ f (1) = ψ(1)). Again, we also
know that TψCφ is not invertible. Then, by Theorem 4.3 we have

σ(W*ψ,φ) = σ(ψ(1)Cφ) = {ψ(1)e−t/2 : t ≥ 0} ∪ {0}.

While our guess is that Theorem 4.3 holds for |a − 1
4 | = 1

4 when a is complex, the exponent in our result
for a = 1

2 does not match up with Theorem 4.3, presumably because it is more distinct in its failure to be
essentially linear fractional. However, the �nal result is the same in practicality: for 0 < a ≤ 1

2 , σ(Wψ,φ) is the
closed line segment connecting ψ(1) to the origin.
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5 Implications and Further Questions
There are two important concepts in this paper that could be pursued further. The �rst is extending ourmeth-
ods for showing quadratics exhibit uniformly convergent iteration to higher-degree polynomials. Certainly
Corollary 2.4 implies more than it says; e.g. φ ◦ φ is a quartic self-map of D that also converges uniformly on
all ofD. For any polynomialmap �xing 1, φn(z)−1 will be a factor of φn+1(z)−1, suggesting that our recursive
approach used in Theorem 2.2 could be generalized, but it will require deeper geometric intuition than we
use here for quadratic maps.

The second important concept is the intersection of self-maps of D that exhibit uniformly convergent
iteration on all of D, and essentially linear fractional maps. Certainly they do not perfectly align; we have
already seen that 1

2 z
2 + 1

2 converges under iteration to 1 uniformly on all of D, but is not essentially linear
fractional. Likewise, a linear fractionalmapwith both an interior and a boundary �xed point (e.g. φ(z) = z

2−z )
cannot converge uniformly on all of D; it must have only one �xed point in D [4, Theorem 3]. However, the
intersection of the two concepts is non-trivial, and leads to the following conjecture.

Conjecture 5.1. Suppose φ is an essentially linear fractional self-map ofD with exactly one �xed point w inD.
Then φ converges under iteration to w uniformly on all of D.

Were this conjecture true, it would immediately provide a full description of σ(Wψ,φ) for a rather broad class
of symbols, by the same arguments made in this paper. Thus we end with the following list of questions:
1. What is σ(Wψ,φ) if φ(z) = az2 + (1 − 2a)z + a and |a − 1

4 | = 1
4 for a ∉ R ?

2. When do essentially linear fractional maps converge uniformly to their Denjoy-Wol� point on all of D?
3. Which polynomial self-maps of D converge uniformly on all of D to the Denjoy-Wol� point?
4. If ψ ∈ H∞ is continuous at the Denjoy-Wol� point w of φ, and φ is not an automorphism, then when, if

ever, is σ(Wψ,φ) ≠ σ(ψ(w)Cφ)?
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