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Abstract: Previously, spectra of certain weighted composition operators Wy, , on H 2 were determined under
one of two hypotheses: either ¢ converges under iteration to the Denjoy-Wolff point uniformly on all of D
rather than simply on compact subsets, or ¢ is “essentially linear fractional.” We show that if ¢ is a quadratic
self-map of D of parabolic type, then the spectrum of Wy, ,, can be found when these maps exhibit both of the
aforementioned properties, and we determine which symbols do so.
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1 Introduction

Let H? denote the classical Hardy space, the Hilbert space of analytic functions f(z) = Z anz" on the open

n=0
unit disk D such that

oo
2 2
IFI7 =3 Jan)? < oo.
n=0

A composition operator Cp on H 2 is given by Cof = f o @. We call ¢ the symbol of the associated composition
operator. When ¢ is an analytic self-map of D, the operator Cy is bounded. Composition operators on H 2
have been extensively studied for several decades; [5] and [7] are seminal books on the subject. One reason
for their study is the deep connection to multiplication operators. H*, the space of bounded on analytic
functions on D, is the multiplier algebra of H?: if ) € H> and f € H?, then f € H2. Thus, for any ) € H>,
the multiplication operator Ty, on H?is givenby T wf = Yf, and all such operators are bounded. Throughout
this paper, we will always assume ¢ € H™. We write Wy, , := Ty Cy and call such an operator a weighted
composition operator.

The spectrum of an operator T on a Hilbert space H, denoted o(T), is given by {A ¢ C : T -
Al is not invertible}. A thorough treatment of the spectrum of composition operators on H? is given in [5,
Chapter 7]. Determining the spectra of weighted composition operators on H? is still largely an open ques-
tion, and some results are given in [4] and [2]; in both papers, the results depend on the behavior of ¢ on
D.

Building on the work of [4] and [2], our goal is to answer the following:
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If ¢ is a quadratic self-map of D and ¥ € H*, can we determine O(W,M,) ?

While we are interested in quadratic maps, this is not the only way we will classify our choice of symbols. The
Denjoy-Wolff theorem guarantees that any analytic self-map of DD (apart from elliptic automorphisms) will
have a unique attracting fixed point w in D, and that ¢ converges, uniformly on compact subsets of D, to that
point under iteration. This behavior generally splits into three categories:

e wis properly in D with |¢’(w)| < 1 (elliptic),

e wison the boundary and ¢’(w) < 1 (hyperbolic), or

e wison the boundary and ¢’(w) = 1 (parabolic).

If ¢ is not analytic on oD, the boundary fixed point cases need to be stated more carefully (see [5]), but that
will not be an issue for our quadratic symbols.

While our primary goal is to determine o(Wy, ,,), a secondary goal of ours is to show the interplay between
the conditions imposed on ¢ in [4] and [2]. In the rest of the introduction, we will explain the concept of
uniformly convergent iteration found in [4], use it to narrow down which quadratic maps we consider, and
also explain the concept of essentially linear fractional maps found in [2].

1.1 Uniformly convergent iteration.

Let @, = @o@---o¢ (ntimes). An analytic function ¢ : D — D with Denjoy-Wolff point w exhibits uniformly
convergent iteration (UCI) if ¢,, — w uniformly on all of D, rather than simply on compact subsets of D. The
main result we need is the following:

Theorem 1.1. [4, Corollary 10] Suppose ¢ : D — D is analytic with Denjoy-Wolff point w, ¢, — w uniformly
inD, and € H* is continuous at z = w with Y(w) # 0. Then we have

O'p(',b(W)Qp) - O'ap(Wlp,q;) - O(Wlp,<p) - U(lp(W)Cw)
In particular, if 0p(Cy) = 0(Cy), then (T, Cyp) = a(p(w)Cyp).

If we can show that our quadratic maps exhibit UCI, then Theorem 1.1 gives us a(Wl/,’(p) C o(yp(w)Cy). How-
ever, we get more than that. If the Denjoy-Wolff point w is on oD and ¢'(w) < 1, we know that 0,(Cyp) = (Cy)
[5, Theorem 7.26], and in conjunction with Theorem 1.1, we have

o(Wy,,) = 0 (pW)Cop) .

Furthermore, [4, Theorem 4] gives a clear sufficient condition to check for when ¢ is UCI if w is on oD and
¢'(w) < 1, so there is no real work to do with quadratic maps. Likewise, if w is properly in D and ¢ is UCI, then
Wy, ,, is power-compact [4, Corollary 2], and again we have o(Wy, ,) = o((w)Cy) by Theorem 1.1. Therefore,
we are really only interested in parabolic maps (w is on the boundary with ¢’(w) = 1).

1.2 ¢ is of parabolic type

For the rest of the paper, we assume that ¢ is analytic in D with a single fixed point w on the boundary, given
by a quadratic polynomial, and ¢’(w) = 1. Since C,u, is a unitary operator, we can conjugate Cy by C,u,
to rotate the fixed point without affecting the spectrum; therefore we may assume that w = 1. We can then
simplify the generic quadratic ¢(2) = a,2z? + a;z + a by noting

a+a;+a=1

2a, +a; =1
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which gives a; = 1 - 2a,, and a, = a, so we have
p(z) = az’> +(1-2a)z +a.
We now need to confirm exactly when ¢ maps D into D.

Proposition 1.2. Suppose ¢(z) = az* + (1 - 2a)z + a so that (1) = ¢’(1) = 1. Then ¢ is a self-map of D if
and only if |a - %| < % Furthermore, the only elements of 0D that are not mapped by ¢ into D are the point

z = 1and, in the case where |a - 7| = #, the point z = 1.

Proof. Note that ¢(-1) = 4a — 1, so we require that |4a — 1| < 1 for ¢ to be a self-map of D. Equivalently, we
have |a - #| < %, so that a is contained in the disk of radius } centered at .

Now suppose instead that |a — | < 7 is given. Then, we will find the image of the unit circle under ¢.
Thinking of ¢ as a function of a, we know by the Maximum Modulus Principle that |f(z)| will be maximized
when |a - }| = 1. Therefore, writing a = A + Bi, we have A? + B = 1A, and if z = X + Yi, we have X? + Y2 = 1.

If p(z) = az> +(1-2a)z+a = (A+Bi)(X + Yi)?> + (1 - 2A - 2Bi)(X + Yi) + (A + Bi), then | ¢(2)|? can be directly
computed, resulting in a 28-term algebraic expression we will not force the reader to endure. However, using
the aforementioned equations, we are able to simplify the expression to 24X? — 2A + 1. This is a real-valued
quadratic in X defined on [-1, 1], with vertex (0, -2A + 1) (which has a nonnegative y-value for 0 < A < %,
as needed). Since the graph is a parabola whose defining equation has a positive leading coefficient, the
maximum values in the domain occur at the endpoints x = 1 and x = —1, which both result in |¢(2)|> = 1.
Note, however, that equality is always attained at ¢(1) = 1, but equality at x = -1 only happens for ¢(-1) =
4a - 1 when |a - %| = %; otherwise ¢(-1) is properly in D. In any case, for any other value of X, we have

lp(2)|? < 1, so D is mapped by ¢ into ID as desired. O

While the primary purpose of Proposition 1.2 is to discover exactly when ¢ is a self-map of D, we should also
note a few key facts from this result that we will use later. In particular, we see that Re a > 0 and |a| < 3.
Furthermore, we will take advantage of knowing exactly which points on the unit circle are mapped by ¢
back onto the unit circle. As we have seen in this proof, |a - #| <  is a separate case from |a - | = . This
will remain true throughout the paper.

1.3 Essentially linear fractional.

First we give the definition of essenitally linear fractional found in [2]:

Definition 1.3 ([2]). An analytic self-map ¢ of D is essentially linear fractional if all of the following hold:

1. (D) is contained in a proper subsdisk of D internally tangent to the unit circle at some point n € oD;

2. ¢ ({n}) := {v € oD : n belongs to the cluster set of n of ¢ at~} consists of one element, say { € oD;
and

3. @' extends continuously to D U {{}.

We are interested in these maps because of certain spectral results in [2]. The essential spectrum c.(T) is
the spectrum of T in the Calkin algebra B(H)/X(H), the bounded operators on a Hilbert space H modulo
the compact operators. The essential spectrum is always a subset of the spectrum. In particular, we will find
symbols where O‘e(W,/,,(p) = 0e(P(w)Cyp), and combined with Theorem 1.1, we will arrive at the main theorem
of the paper:

Main Theorem. Suppose ¢(z) = az* + (1 - 2a)z + a maps D into D and |a - %| < %. Then for any € H™
continuous at 1, we have
0(Wy,p) = 0(h(1)Cy) = {1h(1)e > : t > 0} U {0}.
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The rest of the paper proceeds as follows. In Section 2, we show that if ¢(z) = az® + (1 - 2a)z + a with
la - 7| < 7, then ¢ exhibits UCI. In Section 3, we determine exactly which of these symbols are essentially
linear fractional. In Section 4, we combine these results to arrive at our main theorem, as well as a few other
results. In Section 5, we discuss the connection between uniformly convergent iteration and essentially linear
fractional maps, and propose questions for further research.

2  converges uniformly under iteration on all of D (UCI)

Rather than iterating our quadratic maps directly, we will circumvent this issue by taking alternate ap-
proaches to showing that ¢, — 1 uniformly on all of D. For |a - %| < 1, we rely on arguments from com-
plex dynamics. When |a - %| = %, we work directly with the following alternate characterization of uniform
convergence.

Proposition 2.1. Let ¢ be an analytic self-map of . Then ¢, converges uniformly on D to its Denjoy-Wolff
point w if and only if
,3325WAd—wvﬁ&

Theorem 2.2. Suppose ¢(z) = az® + (1 -2a)z+aand |a- %| = L, a # 0. Then the iterates of ¢ converge
uniformly to 1 on the entire open disk D.

Proof. We will find a recursive pattern for sup, _p |@,(2) — 1| that approaches 0.
Suppose sup, ) [¢,(2) - 1| = rx (the value depends on n) and consider |@,,,,(2) - 1|. This factors as

al|p,(2) - 1] ‘(pn(z) - (1 - %) ’ )

Since ¢,, is an analytic map of D, we know that sup LD l9,(z) - 1| = ry is attained at some point z; in D,
which also lies on the circle with center 1 and radius ry, (call this circle C). We wish to find an upper bound on
the distance from z; to zo = 1 - %. To do this, we also need to find the image of the circle |a - }| = ; (ignoring
a = 0) under this transformation. Again, if a = A + Bi, then A%+ B? = %A. Then we have

1__1 _A-Bi _24-B)_, B,
a A+Bi A2+B? A A~
sowehavezp = 1 - % =-1+ gi, and we know 0 < A < % Without loss of generality, assume B is positive.

Then the furthest point from C, still within D, from zy is the point where C intersects the unit circle in the
fourth quadrant (see Figure 1). Writing x*> + y> = 1 and (x — 1)?> + y> = r2, we can write z; in terms of ry:

(1-1%/2) - (rm/l - %r%) i. We now wish to find |z; - zo| :
1 B2 2B 1
’(pn(z)— (1— E) <|z1 - zo| = \/1+2r$, ta3 T /1= Zrﬁ.

To incorporate the rest of our original expression for |, (z) - 1|, we recall that |a| = VA2 + B2 = /1A
and |¢,(2) - 1| = rx. We can also substitute B = |/ 3A — A2 to get

SUP |@,,1(2) — 1| < Tny | TRA + 1_ In (lA —A2> (1 - 1rﬁ).
2D 4 2 4
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Figure 1: An example scenario for z; and zp.

For our base case, consider r; = |@(z) - 1|. Then for z = X + Yi € oD, if a = A + Bi, by direct computation
we have

|p(z) - 112 =2 - 2AX? + 4AX - 2A + 4(X - 1)\/A[2 - A2V1 - X2 - 2X.

For smaller values of A, this value is maximized at X = —1. However, when |(4a-1)-1|* = [4A-2+4Bi* = 1,
we have A = %, and the situation changes. For % <Ac< %, we have |¢(z) - 1| < 1 forallz € D. For0 < A < %,

the maximum value of |@(z) - 1| is 2v/1 - 24, so r; = max{2v'1 - 24, 1}.

For0 < A < 1, define
1 1 1
- ly2a4 X 1 _ a2 )
fx) xA+4 x\/<2A A)(l 4x>,

so f satisfies 0 < f(x) < 1 for O < x < max{2v'1 - 24, 1}. Then

Tnil = Tny | TRA + % - rn\/<;A —A2> <1 - %rﬁ) = rnf(rn) < In,

and thus, our sequence is decreasing. Since ry is positive and 0 < f(rn) < 1 forall n > 1, we know that the
sequence 1y is bounded below by 0. Since our sequence is monotonically decreasing and bounded below, it
converges. Then ¢ = lim r,,,1 = lim rn, which means that ¢ = ¢f(c) where f is defined as above. We have already
established that f is always positive, so the only solution is ¢ = 0. Therefore, lim;—soo sup,.p lp,(2)-1|=0,
so ¢, converges under iteration to 1 uniformly on all of D.

O

For |a - %| < %, we now turn to traditional results in complex dynamics, via Beardon [1].

Theorem 2.3. Suppose ¢(z) = az? + (1 - 2a)z + a and |a - %| < % Then the iterates of ¢ converge uniformly
to 1 on the entire open disk D.

Proof. Consider the family of degree two polynomial maps ¢ : D — D given by

o(z) = az> +(1-2a)z +a,
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where |a — 1/4| < 1/4. These maps all have a parabolic fixed point at z = 1 and, as maps of C, are conjugate
to the map z — z — z2. Specifically, for the maps g, 0: C — C given by

1
N

|
N
QO
=)
o

g(2)

1
o(z -—z+1,
@ - -
we have g = o lo @ ooonC. Since @ is forward invariant on the disk, g is forward invariant on Dy := o YD),
and we have the following commutative diagram:

Da L]D)a

D——D
¢

In particular, ¢, converges uniformly to 1 on ID if g, converges uniformly to 0 on Dy.

For specific details regarding the dynamics of one complex variable, we refer the reader to ([1, 3, 6]). The
domain of g is partitioned into two totally invariant sets, the Julia set, denoted J(g), and the Fatou set, denoted
F(g). The Fatou set is the set of points for which the sequence of iterates forms a normal family, and the Julia
set is the complement of the Fatou set. In this case, F(g) is just the disjoint union of the two open sets:

B(g,0) = {zeC:gn(z) >0} and
B(g, o)

{z € C: gn(z) — oo},

called the basin of zero and the basin of infinity, respectively. The set J(g) has no interior, so it must be that
Dq is a subset of B(g, 0) or B(g, o). Note that 671(0) = a, and we have assumed that |a - 1/4| < 1/4. Define

A={aecC:la-1/4]<1/4}.

Since
o2 1)
a-a 4'

a- 1
2

'g(a)— i‘ =

we have that A, an open set with nonempty interior, is forward invariant by g, so A is a subset of either B(g, 0)
or B(g, o). It is easily verified that for real a € A, gn(a) — 0. Thus, we have A C B(g, 0) (see Figure 2), so
071(0) € B(g, 0) as well. It follows that D, c B(g, 0), and g» converges uniformly on compact subsets of
B(g, 0).

We complete the proof by adapting the proof of the Petal Theorem from [1], for which we need one more
conjugacy. Observe that g is conjugate by 0o(z) = 1/zto h: C — C given by

h(z)=z+1+

z-1"

The fixed point z = 0 for g corresponds to the fixed point at oo for h. It is easy to show that the half plane
{z € C: Rez > 3} is forward invariant by h, so it is contained in B(h, ). The image of this set by 0y is a disk
of radius 1/6 centered at 1/6, contained in B(g, 0) (since the original set was contained in B(h, oo)). However,
based on the picture of this basin in Figure 2, it appears we can construct a much larger forward invariant set.
Instead of starting with a half plane for h, we will use the following parabolic region. For each ¢ > 0, let

II+t:= {z=x+iy:y2 >12@3 +t-x)}.

It can be shown that IT := IT + 0 is forward invariant by h. In particular, if z ¢ II, we will show that h(z) ¢
II+1/2.Letz=x+iy,h(z)=X+iY,and1/(z-1)=u+iv,soX=x+1+uand Y =y + v; then
(y+v)2—12(3+1/2—(x+1+u))

¥y -123+1/2-x)+v? +2yv+12(1 + u)

Y2-123+1/2-X)
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Figure 2: B(g, 0) contains A.

> vie2yv+12(1+u)
> 2yv+12(1+u)

> 12 -2|yv|-12|u]

> 0,

where the last inequality can be derived from the fact that z € IT implies |z| > 3. Since Y2 > 12(3 + 1/2 - X),
we have h(z) € IT + 1/2. We also have inductively that if z € IT, then for all positive integers n,

hn(z)eH+g.

Thus, for hn(x) + Xn + Yy,
\hn(z)\2 =X2+Y2>X2+122+n/2-Xn)=Xn-6)+6n>n,
S0 |hn(2)| > v/nand hn(z) — oo uniformly on I1. The image of II by 0y is the cardioid
P:=0¢(Il)={z = rel: 6r<1+cos 0},

and gn(z) — O uniformly on P. The set P is the “petal” referred to in the Petal Theorem.
The preimage of D, by 0y is the half plane

Hg :=00(Dg) = {z=x+1y: 2Rea + 2Ima > 1}.

Note that 0H,, the boundary of Hg, intersects the x-axis at x = 1/(2Re a), and since Re a > 0, it is also never a
horizontal line. Moreover, 0II is a horizontally oriented parabola, intersecting the x-axis at x = 3. See Figure
3. Thus, if 1/6 < Re a < 1/4, then 0H, intersects the x-axis at x < 3, so dH, must intersect oII at exactly two
finite points. If 0 < Rea < 1/6, then 0H, intersects 9T at exactly two finite points, one point (at which 0H,
is tangent to oII), or zero points. In the last two cases, we have H, C II.

Returning to the coordinates centered at zero, this implies that either D, C P or 0D, intersects oP at
exactly two nonzero points. Recall that the set Dy is a disk of radius |a| centered at a, so both 0P and 0D
always contains the origin. If 0D, intersects OP at exactly two nonzero points, Ds\P is nonempty with a
boundary consisting of the curve segment of 0 P between the two nonzero intersections and the curve segment
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Figure 3: On the left are I1, H, and H,\II. On the right are the images of these sets under 0o: the cardioid, P, and Dq with
boundaries intersecting at two nonzero points.

of 0D, outside P and between the two nonzero intersections. Thus, ﬁa\P is closed and bounded, so it is
compact. It follows that D4\ P is always a strict, compact (sometimes trivially) subset of B(g, 0).
Since gn converges uniformly on P and D,\P C B(g, 0), we have that g, converges uniformly on Dg.
Therefore, ¢,, converges uniformly on D.
O

Now we have the full picture:

Corollary 2.4. Suppose ¢(z) = az* + (1 - 2a)z + a and |a - %| < +. Then the iterates of ¢ converge uniformly
to 1 on the entire open disk D.

3 ¢ is essentially linear fractional

We have shown that when ¢(z) = az® + (1 - 2a)z + a with |a - }| < #, ¢ converges uniformly on all of D.

Thanks to the work of [4], we know that for any i) € H*, we have a(Wy, ,) C a(i(a)Cyp). We would like for

this containment to become equality, and in order to do so, we introduce another property that ¢ exhibits.
Here we remind the reader of Definition 1.3. An analytic self-map ¢ of D is essentially linear fractional [2]

if all the following hold:

1. (D) is contained in a proper subsdisk of D internally tangent to the unit circle at some point n € oD;

2. ¢ '({n}) := {v € oD : n belongs to the cluster set of n of ¢ at ~} consists of one element, say { € oD;
and

3. @' extends continuously to D U {{}.

We will quickly verify that most of the the maps ¢(2) = az? + (1 - 2a)z + a satisfy these conditions. (Again,

we assume a # 0.) To do so, we need another result from [2].

Proposition 3.1 ([2], Proposition 1.3). Let ¢ be an analytic self-map of D that extends to be continuous on
oD. Suppose that ¢ € C2(1), that ¢(1) = 1, and that |p({)| < 1 for { € oD\{1}.If

1 B (p”(l)
Re <¢/(1) 1+ (p’(l)Z) >0 (3.1
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then ¢(D) is contained in a proper subdisk of D internally tangent to oD at 1.

Now to verify which our family of symbols ¢ satisfy Definition 1.3:

1. For our symbols, the left side of expression 3.1 simplifies to 2a, and we know Re a > 0. However, Proposi-
tion 3.1 also requires that the rest of the unit circle be mapped into D. If |a - % | < %, Proposition 3.1 applies
and ¢(D) is contained in a subdisk of I internally tangent at 1. However, we cannot use this proposition
if |a - }| = %, since -1 maps to 4a - 1. If a # %, however, it is worth noting that ¢ o ¢ satisfies the
definition.

2. Since our function is analytic on the boundary, we are asking that ¢ ~1({1}) contain only a single point
from oD. The points that map to 1 are 1 and 1 - 1, and the latter is outside of D if a # 3.1f a = 1, then
@ is not essentially linear fractional since —1 also maps to 1, and neither is any iterate of ¢, so we will
handle that case separately.

3. Since ¢""(z) = 0, this is trivial.

Unsurprisingly, just as with our work on UCI, we see that the definition of essentially linear fractional splits

our work into the cases when |a - #| < 1 and |a - #| = 1. This continues in the following spectral results.

4 Spectrum of Wy,

We now have all the pieces we need; first we remind the reader of Theorem 1.1 from the introduction:

Theorem 1.1. [4, Corollary 10]. Suppose ¢ : D — D is analytic with Denjoy-Wolff point a, ¢,, — a uniformly in
D, and Y € H* is continuous at z = a with (a) # 0. Then we have

op(Y(a)Cyp) C 0ap(TyCy) C 0(TyCy) C o(p(a)Cy)

In particular, if op(Cyp) = 0(Cy), then o(T,Cy) = a(p(a)Cy).

Composition operators with parabolic symbols are notoriously difficult when it comes to spectral problems,
and this situation is no different. We have little information about 0,(Cy); instead we will only use the fact
that Theorem 4 gives us a(Wy, ,) € o(¥(a)Cy). We now turn to two results from [2] regarding essentially
linear fractional maps.

Theorem 4.1. [2, Theorem 3.3] Suppose that ¢ is an essentially linear fractional self-map of D fixing 1. Suppose
also that for s = ¢’'(1), Re s > 0. Then

0(Cyp) = 0e(Cyp) = {7 : t 20} U{0}.

Theorem 4.2. [2, Theorem 4.3] Suppose ¢ is essentially linear fractional with ¢(1) = 1, and p € H* is contin-
uous at 1. Then Wy, , = (1)Cy modulo the compact operators.

Putting these facts together, we arrive at our main theorem.

Theorem 4.3 (Main Theorem). Suppose ¢(z) = az*> + (1 - 2a)z + a maps D into D and |a - %| < % Then for

any € H™ continuous at 1, we have
a(Wy,p) = 0(1)Cp) = {P(1)e>* : t 2 0} U {0}.

Proof. By Theorem 4, we have a(Wy, ,) € 0(1)(1)Cy). By Theorem 4.1, we have 6(Cyp) = 0e(Cyp). By Theorem
4.2, we have ae(Wl,,,(p) = 0¢(1(1)Cyp). Putting these together, we have

o(1)Cy) = 0e(W(1)Cy) = 0e(Wyy ) C (W, ,) C o(h(1)Cy),
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and since the first and last sets in the containment are equal, we have a()(1)Cy) = a(Wy, ,,). By Theorem 4.1,
noting ¢ (1) = 2a, we have
o(Wy,,) = {p(1)e > : £ 2 0} U {0}.

O

We now investigate the situation when |a - % | = % While we have shown that ¢ still converges under iteration
to 1 uniformly on all of D, it is not essentially linear fractional since |¢(-1)| = |4a - 1| = 1. Here, we must
actually divide our special case yet again: if a # 1, then ¢, = p o ¢ is essentially linear fractional (since 4a-1
is then mapped into D) and of course ¢, is uniformly convergent under iteration on all of D. Therefore, we as
a corollary to Theorem 4.3, we get the following:

Corollary 4.4. Suppose ¢(z) = az® + (1 - 2a)z+ amaps Dinto D and |a - }| = } for a ¢ R. Then for any
Y € H*™ continuous at 1, we have

0o(Wy,p.) = 0(p(1)Cyp ) = {p(1)e™ " : t 2 0} U {0}
where @, = @ o @.

Proof. The proof follows exactly as before, except that ¢%(1) = 4a. O

The result of Corollary 4.4 suggests that it is most likely true that o(Wy ,) is the same as shown in Theorem
4.3 when |a - ;| = 7, but we do not have a proof.
However, even then, a = % proves itself to be an entirely distinct case. Here, instead of functional behav-

ior, we now rely on a linear algebra trick also used in [4].

Lemma 4.5. [4, Lemma 3] If A and B are bounded linear operators on a Hilbert space H, then d(AB) U {0} =
o(BA) U {0}.

Using this, we can now finish the story with a = %, which actually varies just slightly from the result in
Theorem 4.3.

Theorem 4.6. Suppose ¢p(z) = %zz + % an analytic self-map of D. Then for any \ € H* continuous at 1, we
have

o(Wy,,) = {(p(V)e™? : t 2 0} U {0}.

Proof. 1f f(z) = 3z + 1, then we have C = C,.Cy. By Lemma 4.5, we have o(Cy) U {0} = 0(C,.C) U {0} =
0(C;C,2)U{0} = 0(Cr2) U{0}. Note that f2(z) = ;2> + 3z+ %, which falls under Theorem 4.1 with s = . Since
we also know Cy is not invertible, we have o(Cyp) = {Y@)e? . t=01uU{0}.

Likewise, let y € H™ be continuous at 1 and consider Ty, Cy = Ty C,.Cy. Again by Lemma 4.5, we have
0(TyC,2Cr) U{0} = 0(C; Ty C,2) U {0} = 0(TyorCp2) U {0}. Since f maps D into D analytically and f is contin-
uous at 1, we still have that Y o f € H*® and and i o f is continuous at 1 (and ¥ o f(1) = (1)). Again, we also
know that Tl,, Cy is not invertible. Then, by Theorem 4.3 we have

o(Wy,,) = op(1)Cy) = {Y(1)e > : ¢ > 0} U {0}
O
While our guess is that Theorem 4.3 holds for |a - %| = % when a is complex, the exponent in our result
fora = % does not match up with Theorem 4.3, presumably because it is more distinct in its failure to be

essentially linear fractional. However, the final result is the same in practicality: for 0 < a < %, a(Wy ,) is the
closed line segment connecting (1) to the origin.
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5 Implications and Further Questions

There are two important concepts in this paper that could be pursued further. The first is extending our meth-
ods for showing quadratics exhibit uniformly convergent iteration to higher-degree polynomials. Certainly
Corollary 2.4 implies more than it says; e.g. ¢ o ¢ is a quartic self-map of D that also converges uniformly on
all of D. For any polynomial map fixing 1, ¢, (z) -1 will be a factor of ¢,,, , (z) - 1, suggesting that our recursive
approach used in Theorem 2.2 could be generalized, but it will require deeper geometric intuition than we
use here for quadratic maps.

The second important concept is the intersection of self-maps of D that exhibit uniformly convergent
iteration on all of D, and essentially linear fractional maps. Certainly they do not perfectly align; we have
already seen that %22 + % converges under iteration to 1 uniformly on all of D, but is not essentially linear
fractional. Likewise, a linear fractional map with both an interior and a boundary fixed point (e.g. ¢(2) = 5%;)
cannot converge uniformly on all of D; it must have only one fixed point in D [4, Theorem 3]. However, the
intersection of the two concepts is non-trivial, and leads to the following conjecture.

Conjecture 5.1. Suppose @ is an essentially linear fractional self-map of D with exactly one fixed point w in D.
Then ¢ converges under iteration to w uniformly on all of D.

Were this conjecture true, it would immediately provide a full description of a(Wlp, q,) for a rather broad class

of symbols, by the same arguments made in this paper. Thus we end with the following list of questions:

1. Whatis o(Wy ,)if ¢(z) = az® + (1 - 2a)z+aand|a- }| = ; fora g R ?

2. When do essentially linear fractional maps converge uniformly to their Denjoy-Wolff point on all of D?

3.  Which polynomial self-maps of D converge uniformly on all of D to the Denjoy-Wolff point?

4. Ify € H™ is continuous at the Denjoy-Wolff point w of ¢, and ¢ is not an automorphism, then when, if
ever, is a(Wy, ;) # o(Pp(w)Cyp)?
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