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Abstract

In this paper, the authors propose a dimension reduction level set method (DR-LSM) for shape
and topology optimization of heat conduction problems on general free-form surfaces utilizing
the conformal geometry theory. The original heat conduction optimization problem defined on a
free-form surface embedded in the 3D space can be equivalently transferred and solved on a 2D
parameter domain utilizing the conformal invariance of the Laplace equation along with the ex-
tended level set method (X-LSM). Reducing the dimension can not only significantly reduce the
computational cost of finite element analysis but also overcome the hurdles of dynamic boundary
evolution on free-form surfaces. The equivalence of this dimension reduction method rests on the
fact that the covariant derivatives on the manifold can be represented by the Euclidean gradient
operators multiplied by a scalar with the conformal mapping. The proposed method is applied to
the design of conformal thermal control structures on free-form surfaces. Specifically, both the
Hamilton-Jacobi equation and the heat equation, the two governing PDEs for boundary evolution
and thermal conduction phenomena, are transformed from the manifold in 3D space to the 2D
rectangular domain using conformal parameterization. The objective function, constraints, and
the design velocity field are also computed equivalently with FEA on the 2D parameter domain
with properly modified forms. The effectiveness and efficiency of the proposed method are sys-
tematically demonstrated through five numerical examples of heat conduction problems on the
manifolds.

Keywords: Heat conduction, Conformal topology optimization, Conformal mapping, Conformal
geometry theory, Dimension reduction level set method (DR-LSM)

1. Introduction

The increasing maturity of additive manufacturing has made possible the realization of struc-
tural designs with great geometrical complexity [1–3]. Powered by that, topology optimization,
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which seeks to find the optimal material distributions of the design for the desired performance, has
also gained growing popularity [4, 5]. With the lifting of restrictions imposed by conventional man-
ufacturing methods, researchers from topology optimization community now have more freedom
and flexibility to optimize structures with multiple materials [6–10], at multiple scales [11–13],
and in high conformality [14–16]. One way to ensure conformality requires solving topology op-
timization problems on thin-shell structures, commonly seen in, for instance, architectural design
[17, 18], flexible electronics [19, 20], and aerospace engineering [21], to name a few. There have
been many endeavors for thin-shell-based topology optimization. For example, some studies have
[22–24] focused on structural optimization of composite laminates with varying fiber orientations.
Using the homogenization method [25–27], Maute et al. [28] proposed an adaptive topology opti-
mization scheme for shell structures, where maximum stiffness problems were tackled considering
design model adaptivity. Ansola et al. [29] developed an automated approach for simultaneously
optimizing the shape and topology of shell structures. A combined shape and reinforcement layout
optimization of shell structure was subsequently investigated by Ansola et al. [30]. Clausen et al.
[31] introduced a 3D topology optimization approach for shell structures with porous infill using
solid isotropic material with penalization (SIMP) method. Tröff et al. [32] solved the topology
optimization of ultra high-resolution shell structures using an efficient parallel multigrid precondi-
tioner also in the SIMP framework. Density-based topology optimization methods are efficient to
implement but subject to some numerical instabilities such as checkerboard pattern and mesh de-
pendency [33]. The numerical instabilities can be effectively mitigated through filtering techniques
[34, 35].

Mathematically, solving topology optimization problems on thin shells involves solving partial
differential equations (PDEs) on surfaces. There are various approaches to solving surface varia-
tional problems. A common way is to use the finite element method [36, 37] directly on surfaces,
which are usually discretized by surface triangulation. In some cases, the orthogonal projection
will be required to ensure that the covariant derivatives are tangent to the surface [38]. Moreover,
the discretization becomes nontrivial, and the computation of geometric quantities, such as surface
normals or curvatures, poses a challenge in this method. Bartezzaghi et al. [39] dealt with the
numerical approximation of high-order PDEs mainly on closed surfaces represented by B-splines
or NURBS. Another popular approach is based on the level set method, where the original PDE is
extended from the surface of interest to a narrow band [40] or 3D volume [41] such that the finite
difference methods can be used for the numerical solution. The numerical implementation on the
Cartesian grids makes this approach robust, accurate and efficient.

The variational problems or PDEs on surfaces can also be solved by parameterizing the surface
onto a 2D parameter domain [42]. The extended level set method (X-LSM) proposed by Chen and
Gu et al. [14, 43] has systematically investigated the structural shape and topology optimization
on manifolds by integrating the conformal geometry theory [38, 44] into the level set framework.
The key ingredient of the X-LSM is to conformally map the original manifold in 3D space to a
2D rectangular domain where the modified Hamilton-Jacobi equation is solved to evolve the struc-
tural boundaries. The rationality behind this modification lies in that the corresponding covariant
derivatives on a surface can be represented by the Euclidean differential operators multiplied by
a scaling factor based on the conformal parameterization [42]. This method elegantly extends the
conventional level-set-based topology optimizations from the Euclidean space to manifolds.

Among the various topology optimization methods [25, 26, 45–50], the level set methods
[46, 47] receive particular attention because of their clear boundary expression and flexibility in
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handling topological changes. The conventional level set based topology optimization algorithms
typically work on fixed 2D or 3D grids, making them not well-suited for thin-shell structures.
Based on X-LSM, a number of topology optimization problems on free-form surfaces were tack-
led, such as thermal problems [51, 52] and soft robots design problems [53–55]. Besides X-LSM,
it is worth mentioning that Park et al. [56] proposed the adaptive inner-front (AIF) level set method
for topology optimization of shell structures, where the set of transformation rules [57] were ap-
plied to convert the level set equation from Cartesian coordinates to curvilinear coordinates. Ho-
Nguyen-Tan et al. [58] considered the minimization of both the compliance and stress of shell
structures with trimmed quadrilateral shell meshes and the level set function defined directly on
the surfaces.

In the original X-LSM [14], only the Hamilton-Jacobi equation that governs the boundary evo-
lution, is transferred from the original manifold in 3D space to the mapped 2D domain. However,
finite element analysis (FEA) is still performed on the freeform surface, which costs most of the
computation time in topology optimization [59]. In this paper, we propose a Dimension Reduction
Level Set Method (DR-LSM) for shape and topology optimization by incorporating the conformal
geometry theory and X-LSM. Both the physics equation and the Hamiton-Jacobi equation, which
govern the physics phenomena and the structural boundary evolution, are transferred and resolved
from free-form surfaces in 3D space to 2D parameter domain. This dimension reduction formula-
tion can significantly reduce the computational cost and algorithm complexity. The concept of the
dimension reduction was first proved by Xu et al. [51], yet the computational saving capability of
the DR-LSM was not systemically investigated. We apply the proposed DR-LSM to the design of
conformal thermal control structures on free-form surfaces.

Efficient thermal management is critical to many engineering applications to maintain a mod-
erate temperature field and extend the lifespan of the devices. Topology optimization has become a
powerful tool for thermal structural design in recent years [60–64]. In particular, extensive studies
have been carried out on topology optimization of heat conduction problems [65–70]. Previous
attempts on pure heat conduction topology optimization problems mainly focused on planar 2D or
solid 3D cases. For instance, Iga et al. [71] carried out topology optimization of thermal conduc-
tors considering the design-dependent effects using the homogenization method. Gersborg-Hansen
et al. [72] used the solid isotropic material with penalization (SIMP) based topology optimization
method and the finite volume method (FVM) to solve a 2D thermal conduction problem. Qing et
al. [73] applied the evolutionary structural optimization (ESO) to effectively reduce the tempera-
ture at selected control points. Zhuang et al. [74] tackled the problem of level-set-based topology
optimization on heat conduction under multiple load cases. Xia et al.[75] revisited the heat con-
duction topology optimization problems by combining the level set method with the bidirectional
evolutionary optimization (BESO) approach to achieve better hole nucleation flexibility. Yamada
et al. [76] studied a thermal diffusivity maximization problem with generic heat transfer bound-
aries under the level-set framework, where a fictitious interface energy was incorporated to regulate
the topology optimization problem.

This study employs the proposed DR-LSM to address a minimum thermal compliance topol-
ogy optimization problem on free-form surfaces. Under the conformal parameterization, the FEA
is now conducted on the 2D parameter domain by solving a modified heat equation. The modi-
fied Hamilton-Jacobi equation is also solved on the 2D parameter domain to evolve the structural
boundary. In addition, the related physics quantities, i.e., the objective function (thermal com-
pliance), current volume and normal velocity field, will also be evaluated with properly modified
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forms on the 2D parameter domain. In this way, the 3D topology optimization problem is treated
as a 2D problem. Several numerical examples are provided with comparisons with conventional
X-LSM to demonstrate the effectiveness and advantages of the proposed DR-LSM.

1.1. Contributions
The major contribution of this work is to propose the dimension reduction level set method

(DR-LSM) for shape and topology optimization on manifolds by incorporating the conformal ge-
ometry theory and the extended level set method (X-LSM). As a result, both the Hamilton-Jacobi
equation and the thermal conduction equation, which are the two governing PDEs for the boundary
evolution and the conductive heat transfer phenomena, are transformed from the manifold in 3D
space to the 2D rectangular domain using conformal parameterization. The benefits of the pro-
posed DR-LSM are as follows:

• Rigorous: the conformal geometry theory and the conventional level set based topology op-
timization method have solid mathematical foundations. The equivalence of this dimension
reduction formulation is guaranteed.

• Efficient: By reducing the dimension from the manifold in 3D space to the 2D parameter
domain, where well-developed numerical techniques can be employed, it can considerably
reduce the computational costs.

• Consistent: the conformal parameterization is implemented to ensure the geometrical and
physical consistency between the dimension-reduced problem and the original problem.

• General: the proposed method is applicable to free-form surfaces with different typologies
and geometries. In addition, it can be extended to other physics problems other than heat
conduction.

This paper is organized as follows: Section 2 will provide a theoretical background, including
the conventional level-set method, the conformal geometry theory, the X-LSM, and the DR-LSM.
The original problem formulation on the manifold will be detailed in Section 3, followed by the
equivalent problem formulation on the 2D parameter domain in Section 4. The DR-LSM imple-
mentation algorithm is described in Section 5. Numerical examples will be presented in Section 6.
Discussions and conclusions are given in Section 7.

2. Theoretical background

This section will provide theoretical background underlying the formulation of the proposed
method.

2.1. Conventional level-set method
Initiated by Sethian and Wiegmann [77] and further completed by Wang [46] and Allaire [47],

the level set approach has become a promising shape and topology optimization method, partic-
ularly for multimaterial and multiphysics problems. The level set method is able to generate and
maintain a clear boundary during the optimization process. The structural boundary is implicitly
represented as the zero contours of the one-higher dimensional level set function. This is a pre-
ferred property when a detailed description of the boundary is required. In the classical level set
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framework, the level set function is defined on a fixed background grid. The structural design is
implicitly embedded in the level set function Φ(x, t) as follows:

{ Φ(x, t)> 0, x ∈Ω, material
Φ(x, t) = 0, x ∈ ∂Ω, boundary
Φ(x, t)< 0, x ∈ D\Ω, void

(1)

The geometric level set model for a 2D structural boundary is shown in Figure 1. For the

Figure 1: The level set representation of a 2D design

structural boundary, it always satisfies the equation Φ(x, t) = 0. Differentiating both sides of the
equation with respect to a pseudo time t leads to the Hamilton-Jacobi (H-J) equation [78]:

∂Φ(x, t)
∂ t

−Vn · |∇Φ|= 0, (2)

where Vn = V · (− ∇Φ

|∇Φ|) =
dx
dt · (−

∇Φ

|∇Φ|). The above H-J equation governs the dynamics of the
structural boundary evolution. The shape sensitivity analysis can be conducted using the adjoint
sensitivity method. The design velocity field is constructed case by case depending on specific
optimization problems. It is worth mentioning that the conventional level set framework only
works on 2D or 3D problems in the Euclidean space where the minimum distance between two
points is the length of a line segment between them. The classical level set framework is unsuitable
for topology optimization problems defined on general free-form surfaces.

2.2. Conformal geometry theory
In mathematics, conformal geometry studies the invariants under conformal transformations.

Numerous theorems and algorithms have been developed in this area [44]. The plane-to-plane con-
formal mapping is governed by the Cauchy-Riemann equation and is one of the principal subjects
of complex analysis. The surface-to-surface conformal mapping is described by the Dirac equa-
tion [79]. Our particular interest in this paper is the surface-to-plane conformal mapping, which
is computed using Hamilton’s Ricci flow theory [80]. Interested readers are referred to [81] for a
detailed introduction to the Ricci flow.
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2.2.1. Conformal mapping of Riemannian surfaces
Surface mapping will inevitably introduce distortions, such as distortions of distance, direction,

shape, or area. Conformal mapping is essentially a function that preserves local angles but not
necessarily lengths. It originates from differential geometry on the Riemannian manifold [44]. A
visualization of the angle preservation property of conformal mapping is shown in Figure 2, where
the infinitesimal circles on a surface are mapped to infinitesimal circles on a 2D disk.

Figure 2: Conformal mapping from surface in 3D space to 2D disk [44]

Here, a strict mathematical definition of conformal mapping is provided. A Riemannian mani-
fold M is normally accompanied with a Riemannian metric g, which is essentially the inner product
in each tangent space and allows us to measure lengths and angles. Suppose we are given two Rie-
mannian manifolds (S, g) and (T , h). A smooth function ϕ : S→ T is called conformal if the
pull-back metric induced by ϕ differs a factor of scalar function with the original metric, i.e.,
ϕ∗h = e2λ g, where e2λ : S→ R is a scalar function called conformal factor. Although the confor-
mal mapping will induce some area distortion, the distortion can be characterized by the conformal
factor e2λ . Geometrically, e2λ describes the area scaling effect, which varies from point to point.
The factor eλ will give the length scaling. To clearly show the geometric meaning of the conformal
factor e2λ , an example of conformal mapping is provided in Figure 3. Specifically, a semi-sphere
with a uniform triangulation is conformally mapped to a rectangle on the 2D plane. The region
with a denser 2D triangulation has a higher conformal factor value. This is consistent with the e2λ

plot in Figure 3c.

2.2.2. Differential operators on manifolds
The conformal geometry theory has found many applications in the fields of engineering. Our

particular interest is its application for solving PDEs on manifolds [38, 42]. With the conformal
parameterization, the differential operators defined on the manifolds can be transferred into their
Euclidean forms with a combination of the conformal factor e2λ describing the scaling effect of
the conformal mapping.

Specifically, let M be a manifold in R3 and φ : R2→M be a global conformal parameterization
of M. Suppose that the conformal factor of φ is e2λ . A scalar function is defined on the manifold
as f : M→R. With conformal parameterization, we can do calculus on surfaces in R3 as we do on
planes in R2. We first define the partial derivative Dxi f . On R2, the partial differential is usually
defined by taking the limit, e.g., ∂ f

∂x = lim∆x→0
f (x+∆x,y)− f (x,y)

∆x . When defining Dxi f in the same
manner, we must take into account the stretching effect of conformal mapping. The Dx f is given
as follows:
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Figure 3: A conformal mapping of a half sphere to a 2D rectangle

Dx f = lim∆x→0
f ◦φ(x+∆x,y)− f ◦φ(x,y)

dist(x+∆x,x)

= lim∆x→0
f ◦φ(x+∆x,y)− f ◦φ(x,y)

eλ ∆x

= e−λ ∂ f ◦φ

∂x

(3)

Dy f can be defined similarly. Then the gradient of f on the manifold can be represented as:

∇M f = ∂x f i+∂y f j

= e−λ ∂ f ◦φ

∂x
i+ e−λ ∂ f ◦φ

∂y
j,

(4)

where i = e−λ ∂

∂x , j = e−λ ∂

∂y . For detailed derivations, interested readers are referred to [38, 42].
In this way, the Riemannian gradient can be expressed by the Euclidean differential operators
multiplied by a scalar function. This provides a sound mathematical basis for the X-LSM and the
DR-LSM proposed in this paper.

2.3. Extended level set method (X-LSM)
Resting on equation (4), in 2019 the authors [14] proposed the extended level set method (X-

LSM) to address the shape and topology optimization problems on manifolds. The key idea of the
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X-LSM is to transfer the conventional H-J equation from manifolds to the 2D parameter domain
under conformal parameterization. Similar to the Euclidean H-J equation (2), the H-J equation on
manifolds is given as follows:

∂Φ(x, t)
∂ t

−Vn · |∇MΦ|= 0, (5)

where Vn is the normal velocity field on the manifold, ∇MΦ is the Riemannian gradient of Φ on
the tangent plane of the manifold M. Let φ : R2→M be a conformal parameterization of M with
a conformal factor e2λ . We can then readily write the modified H-J equation on the Euclidean 2D
parameter domain as below:

∂Φ(x, t)
∂ t

− e−λVn · |∇Φ|= 0. (6)

In this way, the boundary evolution on the manifold embedded in the 3D space can be realized
by solving the modified H-J equation on the 2D parameter domain. As such, the X-LSM elegantly
extends the conventional level-set-based topology optimization methods from Euclidean space to
general free-form surfaces, opening up a larger design space. In the authors’ early work on X-LSM
[14], only the H-J equation is transformed from manifolds to 2D parameter domain, but the finite
element analysis (FEA) is still performed on the manifold.

2.4. Dimension reduction level set method (DR-LSM)
In this paper, we propose a dimension reduction level set method (DR-LSM) for shape and

topology optimization on manifolds. In the DR-LSM formulation, both the H-J equation and
the Laplace equation, which are the two PDEs governing boundary evolution and manifold heat
conduction, are transformed from the manifold in 3D space to the 2D rectangular domain using
conformal parameterization. In order to conduct the FEA also on the 2D parameter domain, we
need to apply the conformal parameterization to the governing physics PDE to obtain a modified
one defined on the 2D parameter domain. For the heat conduction problems studied in this paper,
the governing equation is the Laplace equation, where there is no body heat source. One charac-
teristic of the Laplace equation is its conformal invariance, meaning that the solutions are invariant
under the conformal parameterization. A brief derivation for the plane to plane conformal mapping
cases can be readily given as follows with the aid of complex analysis.

Consider the real-valued function U(ξ ,η) and the analytic map w= f (z)= f (x+iy)= ξ (x,y)+
iη(x,y), where ξ and η are real-valued functions. If U(ξ ,η) is a harmonic function of ξ and η ,
then the composition u(x,y) =U(ξ (x,y),η(x,y)) is also a harmonic function of x, y. To prove this,
we first apply the chain rule below:

∂u
∂x

=
∂U
∂ξ

∂ξ

∂x
+

∂U
∂η

∂η

∂x
,
∂u
∂y

=
∂U
∂ξ

∂ξ

∂y
+

∂U
∂η

∂η

∂y
. (7)
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∂ 2u
∂x2 =

∂ 2U
∂ξ 2 (

∂ξ

∂x
)2 +2

∂ 2U
∂ξ ∂η

∂ξ

∂x
∂η

∂x
+

∂ 2U
∂η2 (

∂η

∂x
)2

+
∂U
∂ξ

∂ 2ξ

∂x2 +
∂U
∂η

∂ 2η

∂x2 .

(8)

∂ 2u
∂y2 =

∂ 2U
∂ξ 2 (

∂ξ

∂y
)2 +2

∂ 2U
∂ξ ∂η

∂ξ

∂y
∂η

∂y
+

∂ 2U
∂η2 (

∂η

∂y
)2

+
∂U
∂ξ

∂ 2ξ

∂y2 +
∂U
∂η

∂ 2η

∂y2 .

(9)

Then the conformal mapping on 2D satisfies the Cauchy-Riemann equation:

∂ξ

∂x
=−∂η

∂y
,
∂ξ

∂y
=

∂η

∂x
. (10)

After some algebra, we arrive at the following equation:

∆u =
∂ 2u
∂x2 +

∂ 2u
∂y2 = [(

∂ξ

∂x
)2 +(

∂η

∂x
)2](

∂ 2U
∂ξ 2 +

∂ 2U
∂η2 ) = |g

′(z)|2∆U. (11)

This equation implies that if u is harmonic in a region of the z-plane, U is also harmonic in a
conformally mapped region of the w-plane.

When the heat equation is general with an arbitrary body heat source and boundary heat flux,
it does not possess the conformal invariance property. In this case, we need to derive the modified
heat equation under the conformal parameterization. Details are given in Section 4.

3. Conformal topology optimization of heat conduction problems on manifolds

3.1. Problem formulation
In this study, a stationary thermal conductivity problem is considered. All the material proper-

ties are assumed to be isotropic. The equations governing thermal conduction phenomena are as
follows:

− k∇
2T = b, in Ω

k∇T ·n = q, on ΓN

k∇T ·n = 0, on ΓH

T = T0, on ΓD

(12)
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Figure 4: Diagram of a heat conductor

where k is the thermal conductivity; T is the state variable temperature; b is the rate of internal
heat generation; n is the outward unit normal vector of the structural boundary; q is the heat flux
in the inward normal direction. As shown in Figure 4, the structural boundaries are composed of
a Dirichlet boundary ΓD with T = T0, a homogeneous Neumann boundary ΓH which is adiabatic,
and a non-homogeneous Neumann boundary ΓN with a heat flux q. It is noted that when there is
no body heat source, that is, b = 0, the heat equation is reduced to the Laplace equation, which
holds the property of conformal invariance.

The weak form of the heat equations can be obtained by first multiplying a test function T̄ ,
integrating over the whole domain, utilizing the product rule, and applying the 2D divergence the-
orem with the boundary conditions as mentioned above. The weak form of the governing equation
is as follows:

a(T, T̄ ) = l(T̄ ), ∀T̄ ∈Uad (13)

where T̄ is the test function for the temperature and Uad is the space of the virtual temperature
field meeting the same boundary condition. The bilinear function at the left side of equation (13)
is defined as:

a(T, T̄ ) =
∫

Ω

k∇T ·∇T̄ dΩ. (14)

The linear function at the right side of equation (13) is defined as:

l(T̄ ) =
∫

Ω

bT̄ dΩ+
∫

ΓN

qT̄ ds. (15)

The objective of the optimization problems is to minimize the thermal compliance under a volume
constraint, which is set as follows:
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In f
Ω

J =
∫

Ω

bT dΩ+
∫

ΓN

qT ds,

S.t. a(T, T̄ ) = l(T̄ ), ∀T̄ ∈Uad

V (Ω) =V ∗,

(16)

where V (Ω) =
∫

Ω
dx denotes the volume of the design, and V ∗ is the target volume.

3.2. Shape sensitivity analysis
To evolve the structural boundaries by solving the Hamiltion-Jocabi equation under the level-

set framework, the shape derivatives need to be conducted to provide a proper normal velocity field
that can drive the boundary propagation toward the next better design [46, 47]. In this study, the
material derivative method [82] and the adjoint method [83] are employed for the shape sensitivity
analysis. The Lagrangian of the optimization problem is defined as

L = J(T )+a(T, T̄ )− l(T̄ ). (17)

The material derivative of the Lagrangian is given:

DL
Dt

=
DJ(T )

Dt
+

Da(T, T̄ )
Dt

− Dl(T̄ )
Dt

. (18)

The material derivative of the objective function J(T ) is:

DJ(T )
Dt

=
∫

Ω

(b′T +bT ′)dΩ+
∫

Γ

bTVnds

+
∫

Γ

(q′T +qT ′)ds+
∫

Γ

(
∂ (qT )

∂n
+ kcqT ) ·Vnds.

(19)

The material derivative of the weak-form governing equation is:

Da(T, T̄ )
Dt

− Dl(T̄ )
Dt

=
∫

Ω

k[∇T ′ ·∇T̄ +∇T ·∇T̄ ′]dΩ

+
∫

Γ

k∇T ·∇T̄ ·Vnds−
∫

Ω

(b′T̄ +bT̄ ′)dΩ−
∫

Γ

bT̄ ·Vnds

−
∫

Γ

(q′T̄ +qT̄ ′)ds−
∫

Γ

(
∂ (qT̄ )

∂n
+ kcqT̄ ) ·Vnds.

(20)

Collecting all the terms containing T̄ ′ as follows:
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∫
Ω

k∇T ·∇T̄ ′dΩ−
∫

Ω

bT̄ ′dΩ−
∫

Γ

qT̄ ′ds = 0. (21)

The weak form of the state equation is retrieved as a(T, T̄ ′) = l(T̄ ′), for ∀T̄ ′ ∈Uad . Assuming that
the b and q are not time-dependent, and q is a nodal flux, the material derivatives for the Lagrangian
can be rewritten as:

DL
Dt

=
∫

Ω

bT ′dΩ+
∫

Γ

bTVnds+
∫

Γ

qT ′ds

+
∫

Ω

k[∇T ′ ·∇T̄ ]dΩ+
∫

Γ

k∇T ·∇T̄ ·Vnds

−
∫

Γ

bT̄ ·Vnds.

(22)

By collecting the terms containing T ′ and making the sum equal to zero, one can obtain the adjoint
equation:

∫
Ω

bT ′dΩ+
∫

Γ

qT ′ds+
∫

Ω

k[∇T ′ ·∇T̄ ]dΩ = 0. (23)

We can readily solve the adjoint variable T̄ =−T . The remainder of the material derivatives of the
Lagrangian is as follows:

DL
Dt

=
∫

Γ

bTVnds+
∫

Γ

k∇T ·∇T̄ ·Vnds

−
∫

Γ

bT̄ ·Vnds.
(24)

By substituting T̄ =−T for the above equation and applying the steepest descent method, the de-
sign velocity field can be constructed as follows:

Vn1 =−2bT + k∇T ·∇T. (25)

For the volume constraint, the augmented Lagrangian method [82, 84, 85] is employed. The aug-
mented objective function will be given as:

Ĵ = J+ϕ(Ω) = J+λ (V (Ω)−V ∗)+
1

2µ
(V (Ω)−V ∗)2, (26)
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where λ is the Lagrangian multiplier, and µ is a penalty parameter set by the designer and is close
to zero. During the optimization process, the update schemes for λ and µ are as follows:

λ
k+1 = max{0,λ k +

1
µk (V (Ω)−V ∗)},

µ
k+1 = α ·µk,

(27)

where α ∈ (0,1). After conducting the material derivative of ϕ(Ω) and applying the steepest de-
scent method, the velocity field responsible for the volume constraint can be given as:

Vn2 =−(λ +
1
µ
(V (Ω)−V ∗)). (28)

Another functional J3 is introduced to for the boundary smoothing purpose, which is given as
J3 = α

∫
Γ

dΓ where α is a positive parameter. The velocity field accountable for J3 is given as
Vn3 =−αkc, where kc is the mean curvature.

Finally, the normal velocity field that drives the boundary evolution can be given as:

Vn =Vn1 +Vn2 +Vn3 =−2bT + k∇T ·∇T − (λ +
1
µ
(V (Ω)−V ∗))−αkc. (29)

4. Equivalent topology optimization of heat conduction problems on 2D parameter domain
by DR-LSM

4.1. Modified heat equation on the 2D parameter domain
Figure 5 illustrates the workflow for the proposed method. The first step is to conformally map

the manifold in 3D space to a 2D rectangular parameter domain, where the level-set function is
initialized to give the initial design. In the proposed DR-LSM, consistency between the geometrical
and physics models is maintained. That is, we apply the conformal parameterization not only to
the geometrical model but also to the physics equation. On the 2D parameter domain, we need
to conduct the FEA with a modified heat equation. Applying the same principle as in Section
2.2.2, the modified heat equation under the conformal parameterization is given in equation (30)
as follows:

− k · e−2λ
∇

2T = b, in S

k · e−λ
∇T ·n1 = q, on ΓN1

k · e−λ
∇T ·n1 = 0, on ΓH1

T = T0, on ΓD1

(30)

where e2λ is the conformal factor associated with this conformal parameterization and n1 is the
outward unit normal vector on the 2D parameter domain.
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Figure 5: The flowchart of the DR-LSM

Figure 6: The boundary condition correspondences

The correspondences of boundary conditions is also illustrated in Figure 6. The whole struc-
tural boundary of the original manifold Ω consists of a Dirichlet boundary ΓD with T = T0, a
homogeneous Neumann boundary ΓH and a non-homogeneous Neumann boundary ΓN . There is
also a uniform body heat source b over the original design domain Ω. As part of the conformal
parameterization, we need to make proper modifications to the boundary conditions on the 2D
parameter domain. For the body heat source, we assign an equivalent value of b · e2λ on the 2D
parameter domain, where e2λ is the conformal factor associated with this conformal parameteriza-
tion. Geometrically, the conformal factor stands for the area ratio between the original manifold
and 2D parameter domain, which varies from point to point. Physically, this modification of the
body heat source makes sense in that the integral of the body heat source over the domain gives
the total power imported into the system. Therefore, such a modification on the body heat source
can keep the same total energy input for the manifold and the 2D parameter domain.

As for the Dirichlet boundary, we assign the same T0 to the correspondingly mapped boundary
ΓD1 on the 2D parameter domain since the scalar field T does not change its value under the
conformal mapping. As far as the Neumann boundary conditions are concerned, an equivalent
heat flux q · eλ is assigned on the correspondingly mapped non-homogeneous Neumann boundary
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ΓN1 on the 2D parameter domain. Physically, this makes sense in that the integral of the heat flux
along the non-homogeneous Neumann boundary actually gives the power, which can be seen as
the energy source into the system. Due to the scaling effect of the conformal parameterization, the
length of the non-homogeneous Neumann boundary on the manifold differs a factor of eλ from
that on the 2D parameter domain. Assuming the manifold and the 2D parameter domain share the
same thickness, then the heat flux on the 2D domain can be approximately given as q · r, where r
is the ratio between the length of the non-homogeneous Neumann boundary on the manifold and
the 2D parameter domain. The remaining boundary ΓH1 corresponding to the adiabatic ΓH on the
original manifold will still be adiabatic.

4.2. Modified problem-setting on the 2D parameter domain
In a typical implementation of the level-set-based topology optimization, the objective func-

tion, the current volume, and the velocity field are usually evaluated where the FEA is conducted.
In this study, since the FEA is transferred onto the 2D parameter domain, we want to compute the
above three quantities equivalently on the 2D domain. On the original manifold, the expressions
for the objective function, the current volume, and the normal speed are respectively given as fol-
lows:

J =
∫

Ω

k∇MT ·∇MT dΩ,

V =
∫

Ω

dΩ,

VnT =−2bT + k∇MT ·∇MT ,

(31)

where VnT is the normal velocity component directly pertaining to the Lagrangian L (see equation
(29)). Under the conformal parameterization, the above formulas should be properly modified as
below according to Section 2.2.2:

J =
∫

S
k∇T ·∇T dS,

V =
∫

S
e2λ dS,

VnT =−2bT + k · e−2λ
∇T ·∇T.

(32)

In this way, the objective function, current volume, and the normal velocity field can now be
equivalently evaluated on the 2D parameter domain.

4.3. Equivalence of the DR-LSM formulation
This sub-section summarizes the key ingredients of the DR-LSM formulation and emphasizes

the equivalence of this dimension reduction. The fact that the optimality of the target problems is
maintained after conformal mapping will be briefly justified.

The original topology optimization problem defined on a general free-form surface in 3D space
is essentially a PDE-constrained optimization problem. It involves solving the governing physics
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equation to obtain the state variables, based on which the objective function J, current volume
V , and normal velocity Vn are evaluated in the level set framework. In the DR-LSM formulation
proposed in this paper, the governing equation is solved equivalently on the 2D rectangle domain
using conformal parameterization. Geometrically, a one-to-one mapping relation from the mani-
fold to the 2D rectangle domain is found by the conformal mapping algorithm as shown in Figure
3. Note that the conformal mapping algorithm works with triangulation.

With the conformal parameterization, the differential operators defined on the manifolds can be
transferred into their Euclidean forms with a combination of the conformal factor e2λ describing
the scaling effect of the conformal mapping. The derivation process is detailed in subsection 2.2.
Resting on equation (4), we can readily derive the modified PDE to be solved on the 2D parameter
domain. Taking the pure heat conduction problem studied in this paper as an example, the modified
heat equation is given in Figure 7. Recall that the conformal mapping gives a one-to-one mapping
between a triangulation vertex on the original manifold and the 2D parameter domain (see Figure
3). Suppose a vertex A on the manifold is mapped to vertex A′ on the 2D parameter domain.
Since the state variable for the pure heat conduction problem is a scalar temperature field T , it
does not change its value under conformal mapping. By solving the modified heat equation on the
2D parameter domain, the temperature T ′A at vertex A′ will be the same as TA at original vertex
A, which could be obtained by solving the original heat equation directly on the manifold. This
relation will hold for all the A-to-A′ pairs, i.e., there also exists a mapping between the temperature
fields T and T ′, obtained by solving the original heat equation on the manifold and the modified
heat equation on 2D parameter domain, respectively.

As for the related physical quantities, i.e., objective function, current volume, and normal ve-
locity, they all have an appropriately modified form according to the conformal parameterization
as shown in Figure 7. This modification makes sure that no matter where you conduct the finite
element analysis, on the manifold or the 2D rectangle domain, the above three physics quantities
will have the same evaluated values for a specific material distribution during the optimization pro-
cess. Thus, the equivalence of performing the finite element analysis on the 2D parameter domain
by solving a modified heat equation is justified.

Another involved PDE is the Hamilton-Jacobi equation, which is solved iteratively to update
the level set function to drive the evolution of the structural boundary. As a major contribution
of the paper [14] from our research group, the modified Hamilton-Jacobi equation given as equa-
tion (6) is obtained by applying the conformal parameterization on the original Hamilton-Jacobi
equation defined on the manifold. The modified H-J equation is equivalently solved on the 2D pa-
rameter domain to circumvent the hurdle of structural boundary evolution directly on the original
manifold. In the DR-LSM formulation, we still resort to the modified H-J equation (also shown in
Figure 7) to update the level set function and evolve the structural boundary on the 2D parameter
domain.

To sum up, the optimality of the target optimization problem is maintained after the conformal
mapping in the DR-LSM formulation. It is not only justified by the above mathematical derivation
and reasoning but also demonstrated using the first three numerical examples in Section 6.1, 6.2
and 6.3. Specifically, the comparisons between the results obtained by the conventional X-LSM
and the proposed DR-LSM are quite promising and convincing. The optimal designs obtained
from X-LSM and DR-LSM are almost identical for those above three numerical examples. There
is little discrepancy in the final objective function value. The volume constraints are satisfied for
both methods. All these support the point that the optimality of the original optimization problems
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is maintained in the DR-LSM formulation.

Figure 7: The summary of DR-LSM formulation

5. Numerical implementation

5.1. Algorithm
Here, we present the algorithm in Alg. 1 to implement the proposed DR-LSM. First, a trian-

gulated manifold model Ω in 3D space is imported to define the original topology optimization
problem. Then, we apply the conformal parameterization both geometrically and physically. Ge-
ometrically, the manifold Ω is conformally mapped to a 2D rectangle, which will serve as the
2D parameter domain S. Physically, we apply the conformal parameterization to the governing
equation to obtain a modified heat equation on S. Besides, the related physics quantities, e.g., the
objective function, current volume, and normal velocity, will have a properly modified form on S.
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Then, the level set function Φ is initialized on S, and the modified heat equation is solved to obtain
the temperature field T , from which the design velocity field is constructed. Finally, the level set
function is updated by solving the modified H-J equation on S to evolve the structural boundaries.
Steps 5-7 are repeated until the convergence criterion is satisfied. In this paper, the convergence
criterion of the optimization is |Ji− Ji+1|/Ji ≤ ε , where ε is a small parameter.

Algorithm 1: A DR-LSM for Shape and Topology Optimization on Manifolds
Input: A triangulated manifold Ω with original problem-setting defined on it
Output: The 3D minimum thermal compliance design

1 Conformally map the manifold Ω to a 2D rectangle parameter domain S;
2 Apply the conformal parameterization to the governing equations to obtain a modified
heat equation;
3 Modify the expressions for related physics quantities properly to be evaluated on S;
4 Initialize the level set function Φ on S;
5 Solve the modified heat equation on S;
6 Construct the design velocity field on S;
7 Update the level set function Φ by solving the modified H-J equation on S until conver-
gence;
8 Obtain the final optimized design on Ω from Φ;

6. Numerical examples

In this section, several numerical examples are provided to demonstrate the effectiveness of
the proposed methodology. Some comparisons between the proposed DR-LSM and the conven-
tional X-LSM are also given to exhibit the computational savings due to the dimension reduction
formulation. These numerical examples differ in both geometrical model complexity and physical
boundary conditions. The dimensions are given in meters for all the numerical examples with an
even thickness of 0.01.

6.1. Spherical surface patch with boundary heat flux
The first numerical example is a spherical surface patch as the manifold shown in Figure 8

with the boundary conditions. The surface model can be obtained by partitioning a semi-spherical
surface with two parallel planes. A Dirichlet boundary condition of T = 0 is assigned to the top and
bottom curve segments in blue color. A heat flux of q= 10W/m2 is applied to the two laterial curve
segments represented in red. The adiabatic thermal boundary condition is applied to other edges.
Mathematically, the governing equation corresponds to the Laplace’s equation, which possesses
the property of conformal invariance. These four curve segments in color sit in the middle with
the length set at 1/10 of the respective boundary edge lengths. The overall size of the manifold
is 1×1.4×2. The volume ratio target is set as Vf = 0.4. The thermal conductivity of the solid
material is given as k = 10W/(m∗K). To avoid singularity, an ersatz material model is employed
with k = 0.001W/(m∗K) for the weak material.

The initial and optimized designs on the 2D parameter domain and the original manifold ob-
tained using the proposed DR-LSM and X-LSM are shown in Figure 9. The 2D parameter domain
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Figure 8: Boundary conditions of the spherical surface patch with boundary heat flux

Figure 9: Initial and optimized designs for the spherical surface patch with boundary heat flux

is a 0.5625 × 1 rectangle. According to subsection 4.1, the heat flux on the non-homogeneous
Neumann boundary of the 2D parameter domain is set to be q · r = 10 × 2.093 = 20.93 W/m2.
There is little difference between the final optimized results achieved using the proposed DR-LSM
and the conventional X-LSM with FEA performed on the manifold. In addition, the results are
consistent with a 2D version heat conduction topology optimization result with similar boundary
conditions [76]. The convergence history plots are given in Figure 10. The Vf = 0.4 volumetric
constraint is met for both methods. It is worth noting that the objective function values are respec-
tively 3.2058 and 3.2842 for our proposed DR-LSM and the conventional X-LSM. The discrepancy
of the thermal compliance is only 2.39% and is well within the acceptable range, demonstrating

19



Figure 10: Convergence history of the spherical surface patch with boundary heat flux

Figure 11: Comparisons between DR-LSM and X-LSM for example 6.1

the equivalence of conducting FEA on the 2D parameter domain.
In order to illustrate the advantage of the proposed DR-LSM in saving the computational cost, a

comparison is given in Table 1. As shown in Table 1, the DR-LSM uses a total of 25442 triangular
elements, slightly higher than the X-LSM’s 25310. The DR-LSM runs only 449 total iterations
before convergence while the X-LSM performs 582 iterations to attain optimized design. In terms
of the total computation time and time per iteration, the DR-LSM costs 3420s and 7.62s compared
to the X-LSM’s 5940s and 10.2s, respectively. Specifically, the reduction by DR-LSM in terms
of total time and time per iteration can be up to 42% and 25.3%, respectively, which is rather
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Figure 12: The computational time versus finite element number for example 6.1. Left: total time. Right: average
time per iteration

promising. The reason for the decrease in computational costs will be further explained in Section
7. A bar graph is presented in Figure 11 to clearly show the differences between DR-LSM and
X-LSM.

Table 1: Computational cost comparisons for example 6.1

Method Mesh type Element number Obj Total iterations Total time Time per It
X-LSM Triangular 25310 3.2842 582 5940s 10.2s

DR-LSM Triangular 25442 3.2058 449 3420s 7.62s
Reduction by DR-LSM
Total time Avg. time

42% 25.3%

The scalability of the computational cost-saving capacity brought by the proposed DR-LSM
against the X-LSM is illustrated by plotting the computational time to the element number. For the
sake of conciseness of this paper, this comparison is made using only the first numerical example,
i.e., spherical surface patch with boundary heat flux. As shown in Figure 12, the total compu-
tational time and average time per iteration are plotted against the number of finite elements for
both the X-LSM and the proposed DR-LSM. The computational time monotonically increases as
a larger number of finite elements mean a lot more DOFs and longer solving time. The DR-LSM
costs less computational time for various mesh fineness compared with the X-LSM. Another inter-
esting observation we can make is that the finer the mesh is, the more relative computational cost
savings we will get from the DR-LSM. Specifically, for the four data points in Figure 12, the trian-
gular elements numbers are 6500, 11472, 25310, 35300, respectively. For the total computational
time and average time per iteration, the DR-LSM can save 17.78%, 20.49%, 25.33%, and 34.61%,
respectively, compared with the X-LSM.

6.2. Spherical surface patch with body heat source
The second numerical example is also a spherical surface patch but with a uniform body heat

source, as illustrated in Figure 13. A Dirichlet boundary condition T = 0 is assigned to the bottom
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curve segment in blue color. A uniform heat source b = 10W/m3 is applied all over the design
domain. The adiabatic thermal boundary condition is applied to other edges. Mathematically, the
governing equation is the Poisson’s equation. The curve segment in blue color sits in the middle
with the length set at 1/5 of the length of the bottom edge. The size of the manifold is 1×1.4×2.
The volume ratio target is set as Vf = 0.4. The thermal conductivity of the solid material is given
as k = 10W/(m∗K). To prevent singularity in finite element analysis, an ersatz material model is
employed with k = 0.1W/(m∗K) for the weak material.

Figure 13: Boundary conditions of the spherical surface patch with body heat source

Figure 14: Initial and optimized designs for the spherical surface patch with body heat source
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Figure 15: Convergence history of the spherical surface patch with body heat source

Figure 16: Comparisons between DR-LSM and X-LSM for example 6.2

The initial and optimized designs on the 2D parameter domain and the original manifold ob-
tained using the proposed DR-LSM and X-LSM are shown in Figure 14. The 2D parameter domain
is a 0.5625 × 1 rectangle. According to the subsection 4.1, the body heat source on the 2D param-
eter domain is modified to be b · e2λ = 10 e2λ W/m2, where e2λ is the conformal factor associated
with this conformal parameterization and it will vary from point to point. The designs obtained
from the proposed DR-LSM and the conventional X-LSM where the FEA is still conducted on the
manifold show little difference. In other words, both methods are consistent with one the other,
demonstrating the feasibility of the proposed DR-LSM. The convergence history plots are pro-
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vided in Figure 15. The volume ratio target Vf = 0.4 is achieved for both methods. It is promising
that the thermal compliance values are 467.1 and 472.9, respectively, for our proposed DR-LSM
and the conventional X-LSM. The discrepancy of the objective function is only 1.23% and can be
neglected.

Table 2 is given with a detailed comparison on the computational cost taken by the proposed
DR-LSM and the conventional X-LSM to fully display the advantage of the former. Specifically,
in Table 2, it is shown that the X-LSM utilizes in total 25344 triangular elements, slightly less
than DR-LSM’s 25356. The numbers of total iterations before convergence are 450 and 475,
respectively, for the proposed DR-LSM and the X-LSM. As far as the total computational time
and time per iteration are concerned, the DR-LSM’s 3420s and 7.6s, respectively, outweigh the
X-LSM’s 5100s and 10.7s, respectively. To be more accurate, the DR-LSM reduces 32.9% of the
total time and 29.2% of the average time per iteration compared with the X-LSM. Figure 16 depicts
the comparisons between DR-LSM and X-LSM in a more intuitive way.

Table 2: Computational cost comparisons for example 6.2

Method Mesh type Element number Obj Total iterations Total time Time per It
X-LSM Triangular 25344 472.9 475 5100s 10.7s

DR-LSM Triangular 25356 467.1 450 3420s 7.6s
Reduction by DR-LSM
Total time Avg. time

32.9% 29.2%

6.3. Quarter Schwarz P TPMS surface with nodal heat source
The third numerical example is a quarter Schwarz P triply periodic minimal surface (TPMS)

with a central nodal heat source. One interesting geometrical feature of a TPMS is its large surface
area, which is suitable for applications like chemical reactions or heat and mass transfer [86]. A
TPMS can be approximated by a level-set equation. Taking the Schwarz P surface as an example,
the approximation can be given as:

φP ≡ cos x+ cos y+ cos z = c, (33)

where c is a constant. A Schwarz P surface is shown in Figure 17. We select a quarter of Schwarz
P TPMS to serve as the design domain. The boundary conditions are shown in Figure 18. A
Dirichlet boundary condition T = 0 is assigned to the six boundary segments in blue. The top and
bottom four boundary segments in blue are symmetric, and each accounts for 1/8 of the respective
boundary edge lengths. The remaining two boundary segments in blue sit in the middle with the
length set as 1/16 of the respective boundary edge lengths. Two nodal heat sources q = 10W
are applied in the center of the top and bottom half of the model represented in red. All other
boundaries are adiabatic. The overall size of the Schwarz P TPMS unit is 6.2×6.2×6.2. For the
quarter unit cell, the overall size is 3.1×3.1×6.2. The volume ratio target is set to Vf = 0.4. The
thermal conductivity for the solid material is given as k = 10W/(m ∗K). To avoid singularity, an
ersatz material model is employed with k = 0.001W/(m∗K) for the weak material.
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Figure 17: A Schwarz P surface

Figure 18: Boundary conditions of the quarter Schwarz P surface

The initial and optimized designs on the 2D parameter domain and the original manifold ob-
tained using the proposed DR-LSM and X-LSM are shown in Figure 19. The 2D parameter domain
is a 0.3958× 1 rectangle. Based on subsection 4.1, the nodal heat source is still q= 10W on the 2D
parameter domain. Physically, it makes sense in that the total energy input is kept the same for the
original manifold and the 2D parameter domain. The results obtained by the proposed DR-LSM
and by the conventional X-LSM are almost identical. Figure 20 shows the convergence history
plots. The volume constraint Vf = 0.4 is satisfied for both methods. The final objective function
values are 34.34 and 33.64 for the DR-LSM and the conventional X-LSM, respectively. The dis-
crepancy of the objective function values is only 2.04% and is in the negligible range, which shows
the validity of the proposed DR-LSM. The final optimized design on the Schwarz P TPMS unit is
shown in Figure 21 with different views.

It can be observed that there are some fluctuations in the convergence history plots in Figure
10 and 20. A brief explanation is provided here. In this paper, we enforce the volume constraint
using the augmented Lagrangian method, which seeks to find the optimum of the original con-
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Figure 19: Initial and optimized designs for the quarter Schwarz P with nodal heat source

Figure 20: Convergence history of the quarter Schwarz P with nodal heat source

strained optimization problem by solving a series of unconstrained problems. According to the
shape sensitivity analysis in subsection 3.2, the final normal velocity Vn mainly consists of two
components Vn1 and Vn2 as shown in equation (29). Analogous to the minimum compliance opti-
mization problem in linear elasticity, the problem-setting tends to fill the whole reference domain
with solid material to reduce the thermal compliance when there is no volume constraint imposed.
For the initial designs, a greater amount of solid material than the volume target is given in order to
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Figure 21: Final design on a Schwarz P TPMS unit

Figure 22: Comparisons between DR-LSM and X-LSM for example 6.3

let the volume constraint play a role in the evolution of structures. In the early optimization stage,
the above normal velocity component Vn2 derived from the volume constraint will be dominant
to remove excess solid material. When the remaining solid material fraction is below the volume
target, the effect of Vn2 will gradually decline. Then the normal velocity component Vn1 derived
from the objective function J will take primary effect to add some solid material back. The "battle"
between Vn1 and Vn2 could span a number of iterations, where the change of dominance is reflected
as the fluctuations in the convergence history plots. This fluctuation is not uncommon when the
volume constraint is enforced using the augmented Lagrangian method. A similar convergence
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history plot can be found in [84]. One advantage of the augmented Lagrangian method is that it
can ensure accurate enforcement of the volume constraint.

Table 3 details the comparisons between the proposed DR-LSM and the conventional X-LSM
as far as the computational costs are concerned. Both the DR-LSM and the X-LSM employ the
triangular mesh type with a very close number of elements (23616 and 22958, respectively). Both
methods iterate 600 times. In terms of total computational time and average time per iteration,
the DR-LSM consumes 4380s and 7.3s, respectively, compared with X-LSM’s 5460s and 9.1s,
respectively. The DR-LSM can save 19.78% in total computational time and average time per
iteration as opposed to the X-LSM. Figure 22 shows a clearer view of the comparisons between
DR-LSM and X-LSM.

Table 3: Computational cost comparisons for example 6.3

Method Mesh type Element number Obj Total iterations Total time Time per It
X-LSM Triangular 22958 33.64 600 5460s 9.1s

DR-LSM Triangular 23616 34.34 600 4380s 7.3s
Reduction by DR-LSM
Total time Avg. time
19.78% 19.78%

6.4. Vase with body heat source
Through the first three numerical examples(Section 6.1, 6.2 and 6.3), the validity and advan-

tages of the proposed DR-LSM are illustrated by the comparisons with the conventional X-LSM.
The fourth numerical example is a vase with a uniform body heat source, which is solely tackled
by the DR-LSM to make this paper concise. The vase has a through hole and the boundary con-
ditions are shown in Figure 23. A Dirichlet boundary condition T = 0 is assigned to the bottom
circular boundary edge in blue color. A uniform heat source b = 1W/m3 is applied all over the
design domain. The adiabatic thermal boundary condition is applied to other edges. The overall
size of this manifold is 3.4×3.4×3.7. The volume ratio target is set to be Vf = 0.4. The thermal
conductivity for the solid material is given as k = 10W/(m ∗K). To avoid singularity, an ersatz
material model is employed with k = 0.1W/(m∗K) for the dummy material.

The design evolution on the 2D parameter domain and the original vase manifold are shown in
Figure 24. The 2D parameter domain is a 1.5126×1 rectangle, where the modified heat equation
is solved with a triangular mesh of 67014 elements. Similar to the spherical surface patch example
with body heat source in Section 6.2, an equivalent body heat source b ·e2λ = e2λ W/m2 is assigned
on the 2D parameter domain, where e2λ is the conformal factor associated with this conformal
parameterization and it will vary from point to point. The convergence history plot is shown in
Figure 25. The final objective function value is 80.92, and the volume ratio target of 0.4 is satisfied.

6.5. Human face with nodal heat sources
The fifth numerical example is a scanned human face with multiple nodal heat sources as

shown in Figure 26. For the sake of brevity, this example is also only solved by the proposed
DR-LSM. This surface model has no geometrical symmetry. There are a total of 7 nodal heat
sources with q = 1W . A Dirichlet boundary condition T = 0 is assigned to the boundary seg-
ment in blue. All remaining boundaries are kept adiabatic. The overall size of this manifold is
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Figure 23: Boundary conditions of the vase surface with body heat source

1.0875×0.9254×1.5778. The target for the volume ratio is 0.4. The thermal conductivity of the
solid material is given as k = 10W/(m ∗K). To avoid singularity, an ersatz material model is
employed with k = 0.001W/(m∗K) for the dummy material.

The design evolution on the 2D parameter domain and the original human face manifold are
shown in Figure 27. The 2D parameter domain is a 0.8849×1 rectangle, where the modified heat
equation is solved with a triangular mesh of 42297 elements. Similar to the quarter Schwarz P
TPMS surface example with nodal heat sources in Section 6.3 in terms of boundary condition
correspondences, there will be 7 nodal heat sources with q = 1W on the 2D parameter domain.
The convergence history plot is given in Figure 28. The final objective function value is 9.57,
and the volume ratio constraint of 0.4 is satisfied. Here, we give some explanations on the final
optimized design on the human face. First, the final design does not exhibit symmetry because
neither the human face pattern nor the nodal heat sources are symmetrical. Second, the objective
function of this optimization problem is thermal compliance. Minimizing the thermal compliance
is equivalent to minimizing the mean temperature of the domain. When there is no body heat
source, the final optimized design tends to connect the nodal heat source or boundary heat flux
with the Dirichlet boundary T = 0 with a shorter path so that the heat generated from the source
or flux can be quickly conducted over the domain to reduce the mean temperature. This tendency
may also be observed from the first and third numerical examples in Section 6.1 and Section 6.3,
respectively. Then the final optimized design shown in the last column in Figure 27 makes sense in
that the 7 nodal heat sources are connected to the bottom Dirichlet boundary with relatively short
paths. It is most obvious for the nodal heat source located in the central forehead region as its
pathway to the Dirichlet boundary circumvents the nose tip to avoid a longer conduction path.

7. Discussions and conclusions

7.1. The computational cost saving by DR-LSM
In this paper, we propose a new dimension reduction level set method (DR-LSM) for shape

and topology optimization by incorporating the conformal geometry theory. As part of the confor-
mal parameterization, the original topology optimization problem defined on a general free-form
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Figure 24: The design evolution of the vase example

Figure 25: Convergence history of the vase example

surface in 3D space can now be equivalently transferred and solved on the 2D parameter domain.
This is made possible by the fact that the covariant derivatives on the manifolds can be represented
by the Euclidean gradient operators multiplied by a scalar with the conformal mapping. Resting
on this relation, both the physics equation and the Hamilton-Jacobi equation, which govern the
physics phenomena and the structural boundary evolution, can now be transformed and resolved
equivalently on the 2D parameter domain. Moreover, the related physics quantities such as the
objective function, current volume, and the normal velocity are also equivalently evaluated on the
2D parameter domain with a properly modified form. In this way, we convert the 3D topology
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Figure 26: Boundary conditions of the human face with multiple nodal heat sources

Figure 27: The design evolution of the human face example

optimization problem into a 2D problem.
By definition, a thin-shell structure is a shell with a thickness that is considerably small com-

pared to its other dimensions. In contrast to the 3D solid models, the thin-shell models will be
discretized with surface meshes, e.g., surface triangulation, for finite element analysis purpose.
When we employ a thin-shell model or plate structure, it is assumed that there is no variation of
the state variable in the thickness direction, although a specific thickness must be assigned to carry
out the FEA. In the X-LSM and DR-LSM proposed in this paper, the free-form shell manifolds
have a uniform thickness 0.01 for all the provided numerical examples. The same thickness 0.01
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Figure 28: Convergence history of the human face example

is assigned to the 2D parameter rectangle domains obtained from the conformal parameterization.
Although the thickness would have an impact on the final objective function value, i.e., thermal
compliance in this study, it does not affect the final optimized structures in terms of shape and
topology. According to our experience, the consistency will be guaranteed between the original
optimization problems defined on the thin-shell manifolds in 3D space and the modified ones on
the 2D parameter domains, as long as the same thickness value is applied to both 3D and 2D mod-
els. As a matter of fact, it is not advisable to assign a large thickness to the shell models, which
might violate the various assumptions specifically made for the thin-shell structures. In that case,
it would be more appropriate to treat it as a solid 3D model.

In this study, we apply the DR-LSM to solve a heat conduction topology optimization problem
on the manifold. The feasibility and validity of this dimension reduction formulation from the
proposed DR-LSM are demonstrated through the first three numerical examples (Section 6.1, 6.2
and 6.3) containing the comparisons with the conventional X-LSM. The final optimized designs
obtained from the proposed DR-LSM and the conventional X-LSM are nearly identical, and the
values of the objective functions show little difference. Moreover, the DR-LSM and the X-LSM
use the same parameters for the augmented Lagrangian method to impose the volume constraints
for each of the above three numerical examples. They share a close convergence history as shown
in Figure 10, 15 and 20. One main benefit of this dimension reduction formulation is the reduc-
tion of computational costs. The average cost reduction by the DR-LSM in terms of the total
computational time and time per iteration can reach 31.56% and 24.76%, respectively, for the
aforementioned three numerical examples. Comparing the workflow of the DR-LSM in Figure 5
and the X-LSM in Figure 29, we can observe that the X-LSM employs two more interpolation pro-
cesses. One is intended to interpolate the level set function from the 2D parameter domain to the
manifold in 3D space, where the FEA is conducted. The other one is used to interpolate the normal
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Figure 29: The flowchart of the X-LSM [14]

velocity field generated from the manifold back to the 2D parameter domain, where the modified
Hamilton-Jacobi equation is solved to evolve the structural boundaries. The elimination of the two
interpolation steps accounts for part of the computational savings induced by the DR-LSM. For
the FEA process, the DR-LSM and X-LSM employ a similar number of triangular elements. For
pure heat conduction topology optimization problems, the state variable is a scalar function, i.e.,
the temperature field T . The number of degree of freedom (DOF) does not change much when
we reduce the dimension of the FEA from the manifold in 3D space to the 2D parameter domain.
Nevertheless, the FEA process in the DR-LSM costs less time per iteration than the X-LSM as
there will be a z component in the heat equation for the latter.

7.2. The extension to other physics problems
Analogous to the minimum compliance problems in linear elasticity, the pure heat conduction

problems considered in this study are computationally friendly. They are self-adjoint in terms of
the shape sensitivity analysis. In other words, we can directly write down the explicit expression
for the normal velocity Vn in the level set framework. Under the conformal parameterization, the
normal velocity Vn will have a properly modified form on the 2D parameter domain to solve the
modified H-J equation. In most cases, however, the shape sensitivity analysis will come with an
adjoint equation, which needs to be solved for the adjoint variables and further the normal velocity
Vn. In such scenarios, we need to apply the conformal parameterization to the adjoint equation
as well to be able to solve it on the 2D parameter domain equivalently. In short, we can solve
the PDEs initially defined on manifolds equivalently on the 2D parameter domain with a properly
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modified form under the conformal parameterization.
The proposed DR-LSM can be easily extended to other physical problems when the state vari-

able is a scalable function. Examples include electric conduction problems, magneto-statics prob-
lems, and electrostatics problems, to name a few. In this paper, we assume that all the material
properties are isotropic. The physics property of interest is the thermal conductivity k, which will
be a scalar for isotropic thermal materials. When the solid thermal material exhibits anisotropic
thermal conductivity, the k in the heat equation will then be a tensor. For the original heat equation
defined on the manifold in 3D space, the k will be a 3× 3 tensor. When we apply the conformal
parameterization to obtain the modified heat equation on the 2D domain, the k will become a 2×2
tensor. How the transition from a 3×3 tensor to a 2×2 one is specifically finished requires further
investigation. Theoretically, it is achievable as an example of Navier-Stokes equation was reported
in [42], which is originally defined on the manifold in 3D space and equivalently solved on the 2D
parameter domain by applying the global conformal parameterization. Specifically, the original
Navier-Stokes equation defined on a manifold M can be given as:

∂u
∂ t

=−(u ·∇M)u+ v∆Mu+ f, (34)

where u = (u1,u2,u3) is the fluid velocity, v is viscosity and f = ( f1, f2, f3) are the external forces.
Suppose there is a conformal parameterization between the manifold M and the 2D domain S with
a conformal factor e2λ . Then the modified Navier-Stokes equation after conformal parameteriza-
tion can be given as:

∂ ū
∂ t

=−e−2λ (ū ·∇)ū+ e−2λ v∆ū+ f̄, (35)

where ū = (ū1, ū2) is the fluid velocity, v is viscosity and f̄ = ( f̄1, f̄2) are the external forces. In this
case, how the original 3×1 f vector is reduced as a 2×1 f̄ is worth an in-depth investigation.

The Navier-Stokes equation discussed above is somehow intuitive as the fluid flow only hap-
pens on surface. By "on surface", it refers to the fact that the computed state variable u at any
points on the manifold will be on its tangent plane, i.e., there will be no out-of-surface component.
Physically, it means the fluid can not flow out of the manifold except from the boundaries. A fur-
ther discussion can lead us to a more complex scenario, where the out-of-surface deformation can
happen. A typical example is the minimum compliance problem in linear elasticity on thin-shell
manifolds. In this scenario, the state variable will then be a displacement vector, which does not
necessarily lie on the tangent plane at a certain point on the manifold. Physically, it means the
out-of-surface deformation is allowed. On the 2D parameter domain, however, it is challenging to
consider the out-of-plane deformation since it is assumed there is no z component of the displace-
ment solution for a 2D planar model. In the future work, we will devote our efforts to figuring
out how the anisotropy of the thermal conductivity can be taken into account and how to extend
the DR-LSM to more complex physics problem with vector state variable fields, e.g., minimum
compliance problem in linear elasticity with the aid of tensor calculus [87].
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