
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR
UNBIASED DNN PRUNING

Ching-Hua Lee⇤, Igor Fedorov†, Bhaskar D. Rao⇤, and Harinath Garudadri⇤

⇤Department of ECE, University of California, San Diego
†ARM ML Research

ABSTRACT

While deep neural networks (DNNs) have achieved state-of-the-art
results in many fields, they are typically over-parameterized. Param-
eter redundancy, in turn, leads to inefficiency. Sparse signal recovery
(SSR) techniques, on the other hand, find compact solutions to over-
complete linear problems. Therefore, a logical step is to draw the
connection between SSR and DNNs. In this paper, we explore the
application of iterative reweighting methods popular in SSR to learn-
ing efficient DNNs. By efficient, we mean sparse networks that re-
quire less computation and storage than the original, dense network.
We propose a reweighting framework to learn sparse connections
within a given architecture without biasing the optimization process,
by utilizing the affine scaling transformation strategy. The result-
ing algorithm, referred to as Sparsity-promoting Stochastic Gradient
Descent (SSGD), has simple gradient-based updates which can be
easily implemented in existing deep learning libraries. We demon-
strate the sparsification ability of SSGD on image classification tasks
and show that it outperforms existing methods on the MNIST and
CIFAR-10 datasets.

Index Terms— Deep learning, sparse signal recovery, network
pruning, iterative reweighting, affine scaling

1. INTRODUCTION

Deep neural networks (DNNs) have become extremely powerful
models for many engineering tasks [1, 2, 3]. Due to the lack of prin-
cipled architecture design techniques, DNNs are typically designed
to be quite large, equipping the model with sufficient representation
power [4]. Thus, DNNs can be over-parameterized [5], exhibiting
more flexibility and complexity than strictly required by the data
at hand [6]. Due to their significant redundancy, DNNs can waste
storage and computational resources, restricting their deployment
on real-time, embedded devices such as hearing aids [7].

Recently, compressing large DNNs into smaller ones for effi-
cient processing has become an active research topic. Han et al.
[8] have proposed a compression strategy composed of 3 stages: i)
train a network to learn the importance of each connection instead of
the parameter values; ii) apply hard thresholding to remove unimpor-
tant connections based on their magnitudes; iii) fine-tune the remain-
ing connections, starting from the trained values, to regain accuracy.
Since then, there has been a growing line of work on pruning DNNs
[9, 10, 11, 12, 13, 14, 15]. Interestingly, sparse signal recovery (SSR)
techniques [16, 17, 18, 19, 20] that have proved successful in learn-
ing compact and sparse solutions to linear problems have fueled the
trend of efficient DNN research [21, 22, 23, 24, 25, 26, 27, 28].

This work was supported by NIH/NIDCD under Grants R01DC015436
and R33DC015046 and NSF/IIS under Award 1838830.

In this paper, we propose a framework for learning sparse con-
nections of a given DNN architecture by adopting iterative reweight-
ing methods well-known in SSR [29, 17, 19, 20]. Starting with
an optimization formulation with sparsity regularization, we utilize
the affine scaling transformation (AST) [30, 31] to arrive at algo-
rithms that promote sparsity without biasing the optimization pro-
cess. Existing regularization-based approaches for learning sparse
DNNs [23, 24, 4, 6, 26, 27] use a sparsity-inducing regularizer such
as the `1 norm weighted by a nonzero regularization coefficient �.
The proposed method, on the other hand, allows the regularization
coefficient �! 0+, thereby avoiding any bias incurred by the intro-
duction of the regularizer while promoting sparsity.

The reweighting and AST strategies have recently been adopted
in sparsity-aware adaptive filtering [32, 33]. Here we show that
they can be successfully transferred to DNN learning. The work
in [34] has explored these strategies for sparsifying pre-trained net-
works. We extend the idea and derive a gradient-based optimization
formula for learning better network connectivity. The proposed al-
gorithm, referred to as Sparsity-promoting Stochastic Gradient De-
scent (SSGD), admits simple updates in which a diagonal weighting
is introduced on the gradient, and thus can be easily implemented
in existing DNN libraries. We demonstrate the sparsification abil-
ity of SSGD for image classification tasks on the MNIST [35] and
CIFAR-10 [36] datasets with convolutional neural networks (CNNs).
The proposed method is shown to work well for both fully-connected
(FC) and convolutional (CONV) layers, and be compatible with pop-
ular techniques like batch normalization [37] and dropout [38].

2. PROBLEM FORMULATION

Let D be a dataset of N input-output pairs {(xn,yn)}N�1
n=0 . We

consider the optimization problem:

min
✓

J(✓, D) =
1
N

N�1X

n=0

L
�
h(xn;✓),yn

�
, (1)

where J(·, ·) is the empirical risk, ✓ is the parameter set of the hy-
pothesis h(·;✓), and L(·, ·) corresponds to the loss function. For
a DNN with M network parameters (weights and biases), we treat
✓ = [✓0, ✓1, ..., ✓M�1]

T as a vector consisting of all M parameters.
In DNN training, stochastic gradient descent (SGD) is widely

used for updating the parameters:

✓t+1 ✓t � ⌘r✓J(✓t, dt), (2)

where ⌘ > 0 is the learning rate, t is the timestep, dt is a subset
(mini-batch) of the training set D given to the model at timestep t,
and r✓J(✓t, ·) denotes the gradient of the objective function with
respect to ✓ evaluated at ✓t. For the rest of the paper, we omit the
dependency of J(·, ·) on the data for brevity.

5410978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:54:05 UTC from IEEE Xplore. Restrictions apply.

3. PROPOSED FRAMEWORK

We propose to add a sparsity regularization term G(✓) to the empir-
ical risk in (1) to promote sparse solutions ✓:

min
✓

J(✓) + �G(✓), (3)

where G(·) is a penalty function weighted by � that induces sparsity
in its argument. In the SSR literature, G(·) is usually referred to
as the general diversity measure that serves as an alternative to the
`0 “norm” for encouraging sparsity. We further define a separable
diversity measure that has the form G(✓) =

PM�1
i=0 g(✓i), where

g(·) has the following properties [29]:
Property 1: g(u) is symmetric, i.e., g(u) = g(�u) = g(|u|);
Property 2: g(|u|) is monotonically increasing with|u|;
Property 3: g(u) is finite;
Property 4: g(u) is strictly concave in|u| or u2.
Any function that holds the above properties is a candidate for effec-
tive SSR algorithms.

3.1. Iterative reweighting frameworks

The iterative reweighting methods in SSR [29] are popular batch
estimation algorithms for solving (3), particularly for linear models.
By introducing a weighted `2 [17, 19] or `1 [20] norm term as an up-
per bound for G(✓) in each iteration, they form and solve for a new
optimization problem to approach the optimal solution [29]. In the
following, we show how the reweighting frameworks can be adapted
to nonlinear DNN models.

In the iterative reweighted `2 framework, we deal with a
weighted `2 norm minimization problem at timestep t:

min
✓

J(✓) + �
���⌦�1

t ✓
���
2

2
, (4)

while in the iterative reweighted `1 framework we approach the
sparse solution by considering a weighted `1 norm minimization
problem:

min
✓

J(✓) + �
���⌦�1

t ✓
���
1
, (5)

where ⌦t = diag{!i,t} is positive definite and each !i,t (the i-th di-
agonal element of ⌦t) is computed based on ✓i,t (the i-th entry of the
current estimate ✓t), depending on which framework (reweighted
`2 or `1) and diversity measure (choice of G(·)) are used. In each
timestep t, the matrix ⌦t provides a surrogate function for the objec-
tive function in (3) to form a new minimization problem accordingly.
This allows the algorithm to produce more focal estimates as opti-
mization progresses [29]. Note that we make no assumptions about
the form of the model hypothesis h(·;✓) in (1).

For using the reweighted `2 framework, note that the function
g(u) of the diversity measure has to be concave in u2 for Property
4; i.e., it satisfies g(u) = f(u2), where f(z) is concave for z 2 R+.
Let d denote the differential operator. We have !i,t given by:

!i,t =

0

@df(z)
dz

����
z=✓2i,t

1

A
� 1

2

. (6)

For using the reweighted `1 framework, the function g(u) has to be
concave in |u| for Property 4; i.e., it satisfies g(u) = f(|u|), where
f(z) is concave for z 2 R+. In this case, !i,t is given by:

!i,t =

0

@df(z)
dz

����
z=|✓i,t|

1

A
�1

. (7)

To utilize the proposed framework, we first choose an appropriate
diversity measure G(✓) and then use (6) or (7) to obtain the update
form of !i,t. Several examples will be presented is Section 3.3.

3.2. Affine scaling transformation (AST)

Before proceeding, we reparameterize the problem in terms of the
(affinely) scaled variable q:

q , ⌦�1
t ✓, (8)

in which ⌦t is used as the scaling matrix. This step can be inter-
preted as the AST commonly employed by the interior point ap-
proach to solving optimization problems [30]. In the optimization
literature, AST-based methods transform the original problem into
an equivalent one, in which the current point is favorably positioned
at the center of the feasible region [31].

Applying (8) to the objective functions in (4) and (5) results in
the alternative forms J(⌦tq) + �kqk22 and J(⌦tq) + �kqk1 for
the reweighted `2 and `1 cases, respectively. Interestingly, if we set
� = 0 and perform minimization with respect to q, that is:

min
q

J(⌦tq), (9)

then we actually apply a change of coordinates to the original prob-
lem (1). Since ⌦t is invertible, the problem of finding the ✓ which
minimizes J(✓) is equivalent to finding the q which minimizes
J(⌦tq). Therefore, the advantage of solving (9) is that the solution
is guaranteed to also be a solution of (1), which is not true for (3)
with � > 0. As noted in [39], the performance of gradient descent is
dependent on the parameterization – a new choice may substantially
alter convergence characteristics. For the case of a unique solution,
introducing variable scalings may speed up convergence by altering
the descent direction, while still converging to the same solution.
In the case of multiple optima, an appropriate scaling matrix may
push the optimizer toward sparser solutions. In other words, if there
are multiple solutions to (1), then iteratively solving (9) will tend
to produce sparse choices of ✓. It is well known in the context of
SSR that AST-based methods converge to sparse solutions [30, 17].
While we do not claim this argument is rigorous for DNNs, where
multiple local minima are hard to characterize, the numerical results
appear to support this observation.

To proceed, define the a posteriori AST variable at timestep t:

qt|t , ⌦�1
t ✓t (10)

and the a priori AST variable at timestep t:

qt+1|t , ⌦�1
t ✓t+1. (11)

We formulate a recursive update by using SGD in the q domain:

qt+1|t qt|t � ⌘rqJ(⌦tqt|t). (12)

Using the chain rule, (8), and (10), we get:

qt+1|t qt|t � ⌘⌦tr✓J(✓t). (13)

Finally, premultiplying ⌦t on both sides of (13) and applying (10)
and (11), we transform the update rule back to the ✓ domain:

✓t+1 ✓t � ⌘⌦2
tr✓J(✓t). (14)

This is the Sparsity-promoting Stochastic Gradient Descent (SSGD).

5411

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:54:05 UTC from IEEE Xplore. Restrictions apply.

In (14), the term ⌦2
t provides a weighting factor !2

i,t to the
learning rate ⌘ for updating the corresponding parameter ✓i,t. This
weighting !2

i,t is typically a function of |✓i,t|, the magnitude of the
parameter. In this sense, SSGD is similar to the proportionate nor-
malized least mean square (PNLMS) algorithm [40] well-known in
sparse adaptive filtering. The main idea behind PNLMS is to up-
date each filter coefficient using a learning rate proportional to the
magnitude of the estimated coefficient to speed up convergence. In
contrast, the purpose of SSGD is to promote sparse solutions.

3.3. Example diversity measures for promoting sparsity

To illustrate the flexibility of the proposed framework, we provide
examples of SSGD algorithms instantiated with popular diversity
measures that have proved effective in SSR.

Consider the p-norm-like diversity measure with g(✓i) = |✓i|p,
0 < p  2 for the reweighted `2 framework [17, 30]. Using (6)
leads to the update rule for ⌦t:

!i,t =

✓
2
p

�
|✓i,t|+ c

�2�p
◆ 1

2

. (15)

Note that we have added a small regularization constant c > 0 for
stability purposes. The p-norm-like diversity measure can also be
adopted in the reweighted `1 framework if 0 < p  1. In this case,
we apply (7) to obtain the update rule for ⌦t:

!i,t =
1
p

�
|✓i,t|+ c

�1�p
. (16)

Again, a small constant c > 0 is added. In general, using a smaller
p for (15) and (16) promotes more sparsity.

We can consider the log-sum penalty with g(✓i) = log(✓2i + ✏),
✏ > 0 for the reweighted `2 framework as well [19]. The function
is readily amenable to the use of (6) to obtain the update rule for ⌦t

as:

!i,t =
⇣
✓2i,t + ✏

⌘ 1
2
. (17)

Or consider the log-sum penalty with g(✓i) = log(|✓i| + ✏), ✏ > 0
for the reweighted `1 framework [20]. Using (7), the update rule for
⌦t becomes:

!i,t = |✓i,t|+ ✏. (18)
For both (17) and (18), using a smaller ✏ induces stronger sparsity.

3.4. Practical implementation

In practice, we find that normalizing the ⌦2
t term in (14) helps sta-

bilize SSGD. Normalization is also performed in the PNLMS [40].
We thus propose the practical SSGD update rule:

✓t+1 ✓t � ⌘Str✓J(✓t), (19)

where St = diag{si,t}, referred to as the sparsity-promoting matrix,
is the normalized version of ⌦2

t :

si,t =
!2
i,t

1
|I(k)|

P

j2I(k)

!2
j,t

, for i 2 I(k), (20)

where I(k) denotes the index set of parameters of layer k, ✓i,t is in
layer k, and |I(k)| is the cardinality of I(k). Algorithm 1 summa-
rizes the SSGD algorithm which can be implemented using standard
deep learning libraries without much effort.

Algorithm 1: The proposed SSGD algorithm for learning
sparse DNN connections. !t and st denote the vectors
consisting of the diagonal elements of ⌦t and St, respec-
tively. � denotes element-wise multiplication.
1 Input: ⌘: learning rate, dt: training data at timestep t, and

the choice of the diversity measure
2 Output: ✓t: estimated model parameters
3 Initialize: ✓0

4 for t = 0, 1, 2... do
5 Compute scaling factors: !t according to the specified

diversity measure (e.g., using (15), (16), (17), or (18))
6 Compute sparsity-promoting factors: st by (20)
7 Update parameters: ✓t+1 ✓t � ⌘ · st �r✓J(✓t, dt)
8 end for

3.5. Application to DNN compression

Han et al. [8] have proposed a 3-stage compression scheme: i) learn-
ing important connections, ii) pruning unimportant parameters by
hard thresholding, and iii) fine-tuning the remaining ones. We adopt
the same scheme, using SSGD in stage i). In [8], it is observed that,
`1 regularization leads to sparser networks after stage i), but the net-
work loses significant accuracy after stage ii), and is not able to re-
cover from this accuracy drop even after stage iii). The authors posit
that the discrepancy between using `1 regularization during stage i)
and not using it during stage iii) leads to poor performance. SSGD
circumvents such issues because it finds (sparse) solutions to (1) di-
rectly, instead of switching between (3) and (1) like [8].

4. EVALUATION

For evaluation, we use the PyTorch [41] library and consider two
image classification tasks:

• CNN-1 on MNIST database [35]: We define a model (referred to
as CNN-1) that has 2 CONV layers (# input channels ⇥ # output
channels: 1⇥32�32⇥64) using 5⇥5 kernels followed by 3 FC
layers (# input neurons⇥ # output neurons: 2304⇥ 128� 128⇥
64� 64⇥ 10) for this task. Max pooling is performed after each
CONV layer. A rectified linear unit (ReLU) activation is adopted
for all layers and we use cross-entropy for J(✓).

• CNN-2 on CIFAR-10 database [36]: We define a more compli-
cated model (referred to as CNN-2) with 6 CONV layers (3 ⇥
64�64⇥64�64⇥128�128⇥128�128⇥256�256⇥256)
using 3⇥3 kernels followed by 3 FC layers (4096⇥256�256⇥
128 � 128 ⇥ 10) for this task. Each of the CONV layer is fol-
lowed by batch normalization [37] before activation. Max pool-
ing is performed after the second, forth, and last CONV layers.
Dropout [38] with a rate of 0.2 is applied to the first and second
FC layers. ReLU activation is adopted for all layers and we use
cross-entropy for J(✓).

We use (15) within SSGD, setting c = 0.001. We compare
SSGD with SGD and SGD applied to an `1 regularized objective (de-
noted as ‘L1 reg.’), i.e., usingk✓k1 for the diversity measure G(✓) in
(3), with � = 10�6 and 10�5 for CNN-1 and CNN-2, respectively.

Fig. 1 shows the training loss vs. epochs for SGD, SGD for the
`1 regularized objective, and SSGD with p = 1.0, 1.2, and 1.5. We
train CNN-1 on MNIST for 100 epochs and CNN-2 on CIFAR-10
for 150 epochs. The same initialization is used among different al-
gorithms for each model. A learning rate ⌘ = 0.1 and a batch size of

5412

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:54:05 UTC from IEEE Xplore. Restrictions apply.

64 are used for all cases. For reference, CNN-1 and CNN-2 achieve
99.27% and 85.21% test accuracy with normal SGD training, re-
spectively. Fig. 1 shows that SSGD is able to converge toward the
same loss as SGD, supporting the argument that SSGD finds solu-
tions to (1). The `1 regularized case, however, ends up at a higher
loss due to the bias introduced by a nonzero �.

(a) (b)

Fig. 1. Training loss vs. epochs for (a) CNN-1 on MNIST and (b)
CNN-2 on CIFAR-10.

Fig. 2 monitors the excess kurtosis vs. epochs for SSGD with
various p values. Distributions with excess kurtosis higher than 0
are called super-Gaussian, meaning that they have higher peaks at 0
and heavier tails compared to the Gaussian distribution, which has
an excess kurtosis of 0. Excess kurtosis can thus serve as a measure
of sparsity (the higher, the sparser). Fig. 2 shows that a smaller p
leads to greater sparsity. Note that when using (15) with p = 2,
SSGD reduces to normal SGD, resulting in near 0 excess kurtosis.

(a) (b)

Fig. 2. Excess kurtosis vs. epochs for (a) the first FC layer weights
of CNN-1 and (b) the last CONV layer weights of CNN-2.

Fig. 3 shows the test accuracy vs. % of nonzeros after pruning
for different cases. After running SSGD, we use the magnitude-
based strategy from [8] to fix small weights to 0. As can be seen in
Fig. 3, after pruning (solid lines), accuracy drops with decreasing %
of nonzeros (more aggressive pruning). SSGD (using p = 1) retains
the highest accuracy after pruning in both Fig. 3 (a) and Fig. 3 (b).
The `1 regularized case also maintains higher accuracy than the SGD
in Fig. 3 (b). As both cases are sparsity-aware training, this supports
the argument that sparsity is important for learning compact connec-
tivity of models [11, 15]. Now, to regain accuracy, fine-tuning is
necessary. Compared to the iterative process suggested in [8], one-
shot pruning and retraining is more desirable [11]. In addition, the
retraining period should also be kept short. Therefore, we fine-tune
the pruned models once (CNN-1 for 35 epochs and CNN-2 for 50
epochs only) by optimizing (1) using the Adam optimizer [42] with
a learning rate of 0.001. From Fig. 3, we see that after fine-tuning
(dashed lines, labeled with ‘(FT)’), accuracy can be regained to a
certain degree for all cases. Note that the case of SGD using an `1

regularized objective is not necessarily better than normal SGD af-
ter retraining, e.g., in Fig. 3 (a). The proposed SSGD, on the other
hand, achieves the highest accuracy after fine-tuning. This demon-
strates the power of SSGD to learn better network connectivity in
the training phase and the benefit of using the AST to avoid possible
issues due to change of optimization modes in the fine-tuning stage.

(a) (b)

Fig. 3. Test accuracy vs. % of nonzeros for (a) CNN-1 on MNIST
and (b) CNN-2 on CIFAR-10. ‘FT’ stands for ‘fine-tuned.’

Table 1 compares the sparsification performance of the proposed
SSGD-based approach to some recent pruning methods. We com-
pare with [28], which also utilizes the iterative reweighting concept
in their pruning framework. However, their method prunes a pre-
trained network via log-sum minimization in a layer-by-layer fash-
ion. Our approach, on the other hand, sparsifies all layers simulta-
neously during training. Moreover, we have a broader framework
that covers the log-sum penalty as a special case. For comparison
purposes, we adopt the same network architectures as in their paper,
namely, a multi-layer perceptron on MNIST (referred to as MLP)
which consists of 4 FC layers, and a CNN on CIRAF-10 (referred
to as CNN-3) which consists of 2 CONV layers (each with batch
normalization added before activation) followed by 3 FC layers. We
also compare with Net-Trim [43], another pruning method also com-
pared with in [28]. For the proposed method, we train the models
with SSGD using p = 1. Then, we prune the models once and fine-
tune using Adam. From the results, we can see that the proposed
method achieves the highest sparsity with comparable, if not better,
accuracy compared to existing methods.

Table 1. Comparison of sparsification results.
Model Method Accuracy % of nonzeros

MLP

Original 98.62% 100.0
Net-Trim [43] 97.70% 30.5

Iter. Reweight. [28] 97.46% 14.8
Proposed 98.39% 3.7

CNN-3

Original 77.44% 100.0
Net-Trim [43] 75.92% 17.8

Iter. Reweight. [28] 74.17% 7.9
Proposed 74.54% 5.1

5. CONCLUSION

In this paper, we proposed an iterative reweighting framework for
learning sparse connections within DNNs. The framework utilizes
the AST to derive the SSGD algorithm that adopts a zero regular-
ization coefficient �, leading to an unbiased pruning approach. The
sparsification ability of SSGD has been demonstrated on image clas-
sification tasks and shown to outperform existing methods on the
MNIST and CIFAR-10 datasets.

5413

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:54:05 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Adv. Neural Inform.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Process. Mag.,
vol. 29, no. 6, pp. 82–97, 2012.

[3] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 26, no. 10, pp. 1702–1726, 2018.

[4] J. M. Alvarez and M. Salzmann, “Learning the number of neurons in
deep networks,” in Adv. Neural Inform. Process. Syst. (NIPS), 2016,
pp. 2270–2278.

[5] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Predict-
ing parameters in deep learning,” in Adv. Neural Inform. Process. Syst.
(NIPS), 2013, pp. 2148–2156.

[6] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing, vol.
241, pp. 81–89, 2017.

[7] L. Pisha, J. Warchall, T. Zubatiy, S. Hamilton, C.-H. Lee, G. Chock-
alingam, P. P. Mercier, R. Gupta, B. D. Rao, and H. Garudadri, “A
wearable, extensible, open-source platform for hearing healthcare re-
search,” IEEE Access, vol. 7, pp. 162083–162101, 2019.

[8] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Adv. Neural Inform. Pro-
cess. Syst. (NIPS), 2015, pp. 1135–1143.

[9] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs,” in Adv. Neural Inform. Process. Syst. (NIPS), 2016, pp. 1379–
1387.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in Int. Conf. Learn. Repres. (ICLR), 2016.

[11] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” in Int. Conf. Learn. Repres. (ICLR),
2017.

[12] L. Mauch and B. Yang, “A novel layerwise pruning method for model
reduction of fully connected deep neural networks,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2017, pp. 2382–
2386.

[13] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no.
12, pp. 2295–2329, 2017.

[14] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 126–136,
2018.

[15] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in Proc.
Eur. Conf. Comput. Vision (ECCV), 2018, pp. 784–800.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Roy. Statist. Soc. Series B (Methodological), pp. 267–288, 1996.

[17] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: A re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, 1997.

[18] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[19] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 2008, pp. 3869–3872.

[20] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted `1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5, pp.
877–905, 2008.

[21] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proc. IEEE Conf. Compt. Vision
Pattern Recog. (CVPR), 2015, pp. 806–814.

[22] V. Lebedev and V. Lempitsky, “Fast ConvNets using group-wise brain
damage,” in Proc. IEEE Conf. Comput. Vision Pattern Recog. (CVPR),
2016, pp. 2554–2564.

[23] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
CNNs,” in Proc. Eur. Conf. Comput. Vision (ECCV), 2016, pp. 662–
677.

[24] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Adv. Neural Inform. Process. Syst.
(NIPS), 2016, pp. 2074–2082.

[25] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for
deep learning,” in Adv. Neural Inform. Process. Syst. (NIPS), 2017, pp.
3288–3298.

[26] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neu-
ral networks through L0 regularization,” in Int. Conf. Learn. Repres.
(ICLR), 2018.

[27] S. Oymak, “Learning compact neural networks with regularization,” in
Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 3966–3975.

[28] T. Jiang, X. Yang, Y. Shi, and H. Wang, “Layer-wise deep neural net-
work pruning via iteratively reweighted optimization,” in Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), 2019, pp.
5606–5610.

[29] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for
finding sparse solutions,” IEEE J. Sel. Top. Signal Process., vol. 4, no.
2, pp. 317–329, 2010.

[30] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for
best basis selection,” IEEE Trans. Signal Process., vol. 47, no. 1, pp.
187–200, 1999.

[31] S. G. Nash and A. Sofer, Linear and Nonlinear Programming,
McGraw-Hill Inc., 1996.

[32] C.-H. Lee, B. D. Rao, and H. Garudadri, “Proportionate adaptive filters
based on minimizing diversity measures for promoting sparsity,” in
Proc. Asilomar Conf. Signals Syst. Comput. (ACSSC), 2019.

[33] C.-H. Lee, B. D. Rao, and H. Garudadri, “Sparsity promoting LMS for
adaptive feedback cancellation,” in Proc. Eur. Signal Process. Conf.
(EUSIPCO), 2017, pp. 226–230.

[34] I. Fedorov and B. D. Rao, “Re-weighted learning for sparsifying deep
neural networks,” arXiv preprint arXiv:1802.01616, 2018.

[35] Y. LeCun, C. Cortes, and E. J. Burges, The MNIST Database of Hand-
written Digits, 1998.

[36] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Rep., Univ. Toronto, 2009.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2015, pp. 448–456.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[39] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th
edition, Springer, 2016.

[40] D. L. Duttweiler, “Proportionate normalized least-mean-squares adap-
tation in echo cancelers,” IEEE Trans. Speech Audio Process., vol. 8,
no. 5, pp. 508–518, 2000.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentia-
tion in PyTorch,” in Neural Inform. Process. Syst. Workshop (NIPS-W),
2017.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Int. Conf. Learn. Repres. (ICLR), 2014.

[43] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-Trim: Convex
pruning of deep neural networks with performance guarantee,” in Adv.
Neural Inform. Process. Syst. (NIPS), 2017, pp. 3177–3186.

5414

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:54:05 UTC from IEEE Xplore. Restrictions apply.

