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Proportionate Adaptive Filtering Algorithms Derived
Using an Iterative Reweighting Framework

Ching-Hua Lee

Abstract—In this paper, based on sparsity-promoting regular-
ization techniques from the sparse signal recovery (SSR) area,
least mean square (LMS)-type sparse adaptive filtering algorithms
are derived. The approach mimics the iterative reweighted £ and
£, SSR methods that majorize the regularized objective function
during the optimization process. We show that introducing the
majorizers leads to the same algorithm as simply using the gradient
update of the regularized objective function, as is done in existing
approaches. Different from the past works, the reweighting for-
mulation naturally leads to an affine scaling transformation (AST)
strategy, which effectively introduces a diagonal weighting on the
gradient, giving rise to new algorithms that demonstrate improved
convergence properties. Interestingly, setting the regularization
coefficient to zero in the proposed AST-based framework leads
to the Sparsity-promoting LMS (SLMS) and Sparsity-promoting
Normalized LMS (SNLMS) algorithms, which exploit but do not
strictly enforce the sparsity of the system response if it already
exists. The SLMS and SNLMS realize proportionate adaptation for
convergence speedup should sparsity be present in the underlying
system response. In this manner, we develop a new way for rigor-
ously deriving a large class of proportionate algorithms, and also
explain why they are useful in applications where the underlying
systems admit certain sparsity, e.g., in acoustic echo and feedback
cancellation.

Index Terms—Affine scaling, iterative reweighted, proportionate
adaptation, sparse adaptive filter, sparse signal recovery.

1. INTRODUCTION

DAPTIVE filters [1]-[4] have been an active research
A area over the past few decades for their capabilities of
estimating and tracking time-varying systems. In several appli-
cations, the impulse responses (IRs) of the underlying systems
to be identified are often sparse or compressible (quasi-sparse),
i.e., only a small percentage of the IR components have a
significant magnitude while the rest are zero or small. Exam-
ples include network and acoustic echo cancellation [5]-[7],
hands-free mobile telephony [8], acoustic feedback reduction in
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hearing aids [9], and underwater acoustic communications [10],
to mention a few. Designing adaptive filters that can exploit the
sparse structure of the underlying system response for perfor-
mance improvement over the conventional approaches, e.g., the
least mean square (LMS) and normalized LMS (NLMS), is of
great interest and importance especially for acoustic and speech
applications. In this paper, we utilize the iterative reweighted ¢
and ¢, algorithms that have been developed in the sparse signal
recovery (SSR) area to minimize diversity measures as a starting
point [11]. By incorporating an affine scaling transformation
(AST) strategy [12], [13] into the algorithm design process,
a new methodology for developing a large class of adaptive
filters is presented that leverage the sparse nature of the system
responses.

A. Related Work

An early and influential work on identifying sparse IRs is
the proportionate NLMS (PNLMS) algorithm proposed by Dut-
tweiler [5] for acoustic echo cancellation. The main idea behind
the approach is to update each filter coefficient using a step size
proportional to the magnitude of the estimated coefficient, as
opposed to the NLMS which assigns a uniform adaptation gain to
all coefficients. Consequently, when the system is sparse, larger
coefficients are adapted using relatively large steps compared
to the smaller ones with PNLMS. The overall convergence
can thus be sped up by focusing on adjusting the significant
coefficients, rather then treating them all equally as in NLMS.
Although PNLMS was developed in an intuitive way, i.e., the
equations used to calculate the proportionate factors that realize
step-size control were not based on any optimization criterion
but were based on good heuristics, it has motivated many new
proportionate variants for sparse system identification. The pro-
portionate class of algorithms represent an important subset
among sparsity-aware adaptive filters.

The recent progress on SSR has led to a number of compu-
tational algorithms, e.g., [14]-[19], among others. This makes
available a plethora of approaches for systematically design-
ing sparsity-aware adaptive algorithms that are a natural com-
plement to the SSR batch estimation techniques. As a re-
sult, different from the proportionate approaches, another class
of sparse adaptive filters have been introduced by utilizing
sparsity-inducing regularization to speed up the adaptation of
near-zero coefficients in sparse systems. This has led to sev-
eral sparse adaptive filtering algorithms and even obtaining a
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general framework of adaptive filters that incorporate sparsity.
SSR-motivated adaptive algorithms represent another important
class of sparsity-aware adaptive filters. We now discuss a few
works on the proportionate class followed by the SSR variants.

Several variations of the PNLMS have been proposed and [20]
provides a good summary. Examples include the improved
PNLMS (IPNLMS) [21], IPNLMS based on the /5 “norm™!
(IPNLMS-4y) [22], etc. In [23], Martin et al. utilized a natural
gradient framework to deduce adaptive filters having similar
features to the PNLMS that can exploit the sparse structure. Rao
and Song [24] and Jin [25] proposed a framework for promot-
ing sparsity in adaptive filters based on minimizing diversity
measures. The framework is quite general and encompasses a
broad range of adaptive filtering algorithms having similarity
with the PNLMS algorithm. Benesty et al. [26] derived the
PNLMS from a different perspective by using a basis pursuit [17]
formulation. Following them, Liu and Grant [27] proposed a
general framework of proportionate adaptive filters based on
convex optimization and sparseness measures, which covers
many traditional proportionate algorithms.

Several SSR-inspired algorithms have been introduced by
integrating a sparsity-inducing regularizer into the original LMS
objective function to accelerate the convergence of near-zero
coefficients in sparse systems. For example, Chen ef al. [28]
proposed the zero-attracting LMS (ZA-LMS) derived by includ-
ing the ¢; norm penalty in the objective function. They also
proposed the reweighted ZA-LMS (RZA-LMS) obtained by in-
corporating the log-sum penalty. Later, using the approximation
of the £y “norm” as a sparsity-inducing term, Gu et al. [29]
proposed the £y-LMS that is capable of better estimating sparse
systems. In [30], the authors utilized the p-norm-like penalty and
considered the quantitative learning of the regularizer. Another
work in this area is the new reweighted ¢/; norm penalized
LMS algorithm proposed and studied in [31] for improving the
ZA-LMS and RZA-LMS.

Recently, some works have considered both proportionate
adaptation and sparsity-inducing regularization together. For
example, [32] presents a modified PNLMS update equation
with a zero attractor as in the ZA-LMS for all the taps, derived
by introducing a carefully constructed ¢; norm penalty in the
PNLMS objective function. Other than the ¢; norm, [33], [34]
apply the ¢, norm penalty to the PNLMS cost function and
derive £,-norm-constrained proportionate algorithms for im-
proved broadband multipath channel estimation and active noise
control. [35] encompasses a number of sparsity-aware adaptive
filtering algorithms that go beyond the LMS and NLMS, includ-
ing proportionate and regularization-based approaches. [36],
[37] provide a general framework to combine proportionate
updates and sparsity-inducing regularizers. In Section III, we
will derive algorithms whose update rules also consist of a pro-
portionate term and another term due to regularization. However,
our derivation follows a very different path from these previous
works.

The £ “norm” of a vector is defined as the number of its nonzero entries.
The quotation marks are used to warn that it is not a proper norm.

B. Contributions of the Paper

In this paper, inspired by the conceptual similarity with SSR,?
our goal is to add to this interesting body of work on adaptive
filtering and sparsity. The contributions of the paper are the
following:

1) The sparsity-aware adaptive filters developed lie at the
intersection of the proportionate-class and SSR-inspired
adaptive algorithms and provide an interesting bridge.
We start with the rigorous formulation of a regulariza-
tion framework and derive novel sparse adaptive filtering
algorithms. Specifically, based on diversity measure mini-
mization in SSR, we adopt the iterative reweighted ¢5 and
{1 approaches [11] and utilize an AST methodology [12],
[13] in the algorithm development, naturally leading to a
general class of proportionate adaptive filters. This is an
unique feature of this work. The combination of AST and
the reweighting frameworks contribute to the main inno-
vation of our adaptive algorithm development framework.

2) Under the proposed framework, we introduce Sparsity-
promoting LMS (SLMS) and Sparsity-promoting NLMS
(SNLMS) algorithms that promote sparsity without hav-
ing to bias the adaptation process by adopting A = 0,
where A is the regularization coefficient associated with
the sparsity penalty. This is not possible for the class of
algorithms currently in existence that utilize a sparsity-
inducing regularization penalty.> The SLMS and SNLMS
can be viewed as realizing proportionate adaptation like
the PNLMS class of algorithms [5]. Therefore, our frame-
work provides theoretical support to existing proportion-
ate algorithms which were mostly developed based on
good heuristics rather than on optimization criteria, and
paves the way for explaining why they are useful in
circumstances where the channels to be estimated admit
certain sparsity. More importantly, unlike most of them
that design the proportionate factors heuristically, our
SSR-motivated framework leads to a more systematic
way of designing the factors, and permits incorporation
of a broad class of diversity measures that have proved
effective for SSR in our algorithms.

3) Compared to existing derivations of proportionate-type
algorithms, using the proposed framework we derive the
algorithms in a more natural way in terms of incorporating
sparsity using a regularization framework. For instance, in
some of the existing works modified objective functions
were proposed that impose sparsity on the “change” of
the filter rather than on the filter itself, e.g., [24]-[27],
[32]. However, since the assumption is that the filter
itself is sparse, the motivation for enforcing sparsity on
the “change” rather than on the filter is not clear and at
best indirect. In contrast, we work with the general mean

2This similarity has been noticed in [38] where sparse adaptive filtering
techniques were utilized for solving the SSR problem. Here we take the opposite
direction as we are interested in utilizing SSR techniques for assisting the
adaptive filtering algorithms. Both cases exploit the connections between SSR
and adaptive filtering but the objectives are different.

3The algorithms usually reduce to the standard LMS or NLMS algorithm if
the regularization coefficient A is set to zero.
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squared error (MSE) criterion in which sparsity can be
directly imposed via regularization on the filter.

4) Steady-state analysis of the proposed algorithms is con-
ducted and simulation results are provided to demonstrate
the effectiveness of the proposed algorithms compared to
existing approaches. Examples with the acoustic channel
response measured on a real-world hearing aid device
using speech input are also presented.

A portion of this work has been previously published as a
conference paper [39]. To a fuller extent, the current paper
provides a general framework for incorporating flexible diversity
measures into sparse adaptive filters, together with theoretical
discussion and supporting simulated results.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
provides background on adaptive filters and iterative reweight-
ing SSR algorithms. Section III derives adaptive filters that
incorporate sparsity based on diversity measure minimization
by utilizing the reweighted /5 and ¢; frameworks together with
the AST methodology. Section IV introduces the SLMS and
SNLMS that adopt A = 0. Section V discusses the steady-state
analysis. Section VI presents simulation results. Section VII
concludes the paper.

D. Notation

Let RM denote the M-dimensional real Euclidean space.
RN*M denotes the set of N x M real matrices. R, denotes
the set of non-negative real numbers. Superscript 7 denotes the
transpose of a vector or matrix. E[-] denotes the mathematical
expectation. Vectors and matrices are denoted by boldface low-
ercase and uppercase letters, respectively. Scalars are denoted
by italics. For a vector X = [zg, 21, ...,73 1] € RM, the Ly
norm* (where p > 0) is defined as: ||x||, = (3" |2iP) /7.
We use diag{z;} to denote the M-by-M diagonal matrix
whose i-th diagonal element is z;. We use sgn(-) to denote
the component-wise sign function. Vx denotes the gradient
operator’ w.rt. x. d denotes the differential operator. tr(X)
denotes the trace of a square matrix X € RM*M T denotes
the identity matrix. 1 denotes the vector of all ones. 0 denotes
the vector of all zeros. We use N(-,-) to denote the normal
distribution with the first and second arguments being the mean
and (co)variance, respectively.

II. BACKGROUND ON ADAPTIVE FILTERING AND SSR

We provide some preliminaries of adaptive filters in the
context of system identification and present several examples
of existing sparsity-aware adaptive filtering algorithms. We also
discuss the iterative reweighting SSR frameworks for developing
our adaptive algorithms in later sections.

“Note that [|x||, for 0 < p < 1 does not satisfy the required axioms for a
norm and therefore it is not technically a norm. For exposition simplicity, since
the range of p considered is from 0 to 2, we use the norm terminology to cover
this range.

5By abusing the notation we use V also for the subgradient operator without
explicitly noting it.
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A. Adaptive Filtering for System Identification

Leth,, = [hon, h1n,-- -y har—1.0]" denote the adaptive filter
of length M at discrete time instant n. Assume the IR of
the underlying system is h® = [hg, hS,...,hS, ;] and the
model for the observed or desired signal is d,, = ufho + v,,.
W, = [Up,Up_1,. .., Un_pr11)7 is the vector containing the M
most recent samples of the input signal u,, and v,, is an additive
noise signal. The output of the adaptive filter ul'h,, is subtracted
from d,, to obtain the error signal e,, = d,, — ughn. The goal in
general is to sequentially update the coefficients of h,, upon the
arrival of a new data pair (u,,, d,, ), such thateventually h,, = h°;
i.e., to identify the unknown system.

The most classic adaptive filtering algorithms are the LMS
and NLMS [1]-[3], which can be derived based on minimizing
the MSE objective function:

. A 2 T1)2
min Jh)£E[el] =E [(dn —u,h) ] . (1

The method of steepest descent (gradient descent) for opti-
mizing (1) suggests the following recursion for updating the
filter coefficients [2]:

.1 =h, — gvhJ(hw, @)

where 1 > 0 is the step size. To develop adaptive algorithms, in
practice the gradient Vi, J (h,,) = —2E[u,e,,] is replaced by the
instantaneous estimate —2uye,,, i.e., the stochastic gradient [2],
[3], leading to the standard LMS algorithm:

hn+1 = hn + pupen,. (3)

The normalized version of (3), i.e., the NLMS algorithm, can
be derived based on the principle of minimum disturbance [2].
Alternatively, it can be obtained by performing exact line search
for the optimal step size for each iteration [40]. Then, practically,
a scaling factor ;i > 0 is introduced to exercise control over the
adaptation® and a small regularization constant § > 0 is also
employed to avoid division by zero [2], leading to the standard
NLMS algorithm:

gy ey

h,t1=h, + ——.
+1 + W, 40

“

1) Sparsity-Aware Adaptive Filtering Algorithms: When the
underlying system response is sparse, a class of algorithms real-
izing proportionate adaptation [20] are able to take advantage of
the structural sparsity. A typical update rule with proportionate
adaptation is:

hn+1 =h, + Mrnunen; (5)
or the normalized version:
opune,
h,,.=h,+ ——7-—, 6
+1 + W, +0 (6)
where
I"n = diag{%,m Tiny .- 77M—1,n} (7)

®Formally, /i is called the normalized step size. For brevity, we still refer to it
as the step size but keep in mind that it does not have the same significance as
the p in (3). Note that it is also common in the literature that the same notation
of the step size is shared for both LMS and NLMS without explicit distinction.
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is an M-by-M diagonal matrix assigning different weights to
the step sizes for different filter taps, referred to as the propor-
tionate matrix. It redistributes the adaptation gains among all
coefficients and emphasizes the large ones in order to speed up
their convergence. Typically, at the n-th iteration the diagonal
entries are computed as:

Tin
M-1__
ijo Tj,n

Vi=0,1,...,M —1, where m;, is algorithm-dependent
and examples of such algorithms include the PNLMS [5],
IPNLMS [21], IPNLMS-{, [22], etc. In general, if the estimated
filter coefficients h; ,, are sparse, the resulting m; ,, (thus 7; )
will also tend to be sparsely distributed (with positive values).
Another class of algorithms, inspired by developments in the
SSR area, take sparsity into account using a regularization-based
approach, e.g., [28]-[31]. The algorithms are obtained by adding
a sparsity-inducing term G (h) to the MSE objective function:

min J% M) £ J(h) + AG(h), )

Yin = ; ®)

where A > 0 is the regularization coefficient. By simply apply-
ing (stochastic) gradient descent’ on (9):

A
hn+1 =h, + HUp€n — %va(hn)a (10)

various algorithms can be obtained with different sparsity-
inducing functions G(-). Examples include the ZA-LMS [28],
RZA-LMS [28], and ¢,-LMS [29], [41].

B. Iterative Reweighting Algorithms in SSR

The optimization of (9) is actually an SSR problem. The
sparsity regularization term G /() represents the general diversity
measure that when minimized encourages sparsity in its argu-
ment. A separable function of the form G(h) = S>M* g(h;)
is commonly used, where g(-) has the following properties [11]:

Property 1: g(z) is symmetric, i.e., g(z) = g(—z) = g(|z]|);

Property 2: ¢g(|z|) is monotonically increasing with |z

Property 3: ¢(0) is finite;

Property 4: g(z) is concave in |z| or 22.

Any function that holds the above properties is a candidate
for effective SSR algorithm development.

The concave nature of the regularization penalty G (h) poses
challenges to the diversity measure minimization problem (9).
The iterative reweighted ¢5 [15], [18] and ¢; [19] methods are
popular batch estimation algorithms for solving such minimiza-
tion problems in SSR. By introducing a weighted ¢ or /;
norm term as an upper bound for the diversity measure term
in each iteration, they form and solve a convex optimization
problem at each step to approach the optimal solution [11].
Specifically, instead of (9), at iteration n the reweighted ¢
framework suggests solving:

[l

minJ;2(h) £ J(h) + A[|W,,"h|3, (11)

7By abusing the terminology we implicitly use “gradient” also for subgradient
whenever appropriate.

and the reweighted ¢; framework suggests solving:

min ;! (h) £ J(h) + AW hlls, (12)
where W,, = diag{w;, ,,} is positive definite® and each w; ,
is computed based on the current estimate h; 5, depending on
which framework (reweighted /5 or /1) and diversity measure
(choice of G/(-)) are used.

To elaborate, for using the reweighted ¢5 (11), the diversity
measure function g(z) has to be concave in 2 for Property 4;
i.e.,itsatisfies g(z) = f(2?), where f(z)isconcave forz € R .
Based on [11], we have w; ,, given as:

wm:(df(z) )
7 dz z=h?

For using the reweighted ¢; (12), g(z) has to be concave in |z| for
Property 4; i.e., it satisfies g(z) = f(|z]), where f(z) is concave
for z € R,.. In this case, w; ,, is given as:

q “1
Wi.n = (f(Z) > )
z=|h;i x|

dz
To utilize the reweighting frameworks, we first choose an
appropriate diversity measure G'(h) and then use (13) or (14) to
obtain the corresponding update form of W ,. Several examples
will be presented is Section I'V-B.

13)

(14)

III. PROPOSED FRAMEWORK FOR INCORPORATING SPARSITY
IN ADAPTIVE FILTERS

Our framework for developing sparse adaptive filters is also
based on (9). However, we will be deriving algorithms in a
different way rather than using a simple gradient descent as is
typically done in existing regularization-based adaptive filtering
approaches, e.g., (10). Our novel derivation consists of two
stages: 1) adapting the iterative reweighting frameworks [11]
popular in SSR to the adaptive filtering setting, followed by ii)
incorporating the AST strategy [12], [13] from the optimization
literature to obtain new adaptive filtering algorithms.

A. Reweighting Methods for Adaptive Filtering

The reweighting methods introduced in Section II-B actually
belong to the more general class of majorization-minimization
(MM) algorithms [42]. In each iteration n, the weighted /5
or ¢1 norm term majorizes G(h) at the current estimate h,,,
thereby providing a surrogate function (or majorizer) .J2 (h) or
JE1(h) for the regularized objective function J%(h). Sequen-
tially minimizing the surrogate functions allows the algorithm
to produce more focal estimates as optimization progresses.
Hopefully when the number of iterations is large enough, the
optimal solution can be well approached or even achieved [11].

In SSR, it is typical that the surrogate function is exactly
minimized in each iteration n. For the purpose of developing

8The positive definiteness can be shown to hold for a wide variety of diversity
measures used in SSR. In cases where it is not, the positive definiteness can still
be ensured by utilizing some small regularization constant.
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adaptive filtering algorithms, here we consider performing only
one step of gradient descent per iteration. In this sense, it
corresponds to the generalized MM [43] where one does not
need to minimize the majorizer but only to assure that it de-
creases in every iteration. Indeed, the MM viewpoint provides an
interesting observation of using gradient descent for optimizing
(9) and the reweighting formulations (11) and (12), as stated in
the following proposition:

Proposition 1: For any point h,, at which G(h) is differen-
tiable, the gradient vector of the surrogate function J%2(h) or
JE (h) evaluated at h,, coincides with that of the regularized
objective function J%(h), i.e., Vi J(h,) = Vi J%(h,,) for
the reweighted /5 case and Vi J/ (h,,) = V,J%(h,,) for the
reweighted ¢; case.

Proof: Since the surrogate function majorizes J(h) at h,,,
the tangent plane (supporting hyperplane) of the majorizer co-
incides with that of .J%(h) at h,,. Consequently, the gradient
vectors are the same at h,,.

The observation in Proposition 1 implies that, if the gra-
dient descent (when using a fixed step size) is utilized for
optimization,® then adopting the reweighting frameworks (11)
and (12) will be equivalent to directly working on (9) and
lead to the existing regularization-based algorithms such as
the ZA-LMS. In the following, we introduce the AST strategy
naturally suggested by the reweighting frameworks, leading
to new algorithms markedly different from those obtained by
directly optimizing (9) with gradient descent.

B. AST-Based Adaptive Filtering Algorithms

The reweighting frameworks (11) and (12) naturally suggest
the following reparameterization in terms of the (affinely) scaled
variable q:

q=W,'h (15)

This step can be interpreted as the AST commonly employed
by the interior point approach to solving linear and nonlinear
programming problems [12], where W,, is used as the scaling
matrix. It is pre-calculated and treated as a given matrix at
iteration n to perform a change of coordinates (variables) [44]
from h to q, acting as a scaling technique in gradient descent
methods [45]. In the optimization literature, AST-based methods
transform the original problem into an equivalent one, favorably
positioning the current point at the center of the feasible region
for expediting the optimization process [13]. While we do not
claim this argument is rigorous in the context of adaptive filter-
ing, where the convergence behavior is hard to characterize due
to the nonlinear nature of the update equations and the long term
dependency on the data, the numerical results appear to support
this observation of enjoying the benefits of AST for convergence
speedup.

Now we apply (15) to reparameterize the objective functions
J*2(h) and J' (h) and perform minimization w.r.t. g, that is:

min Jt2(q) £ T2 (Wea) = J(Wea) + Alall3 (16)

9For a point at which G (h) is non-differentiable, this can still hold by properly
choosing the subgradients.
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and

min  J'(q) £ JH(W,q) = J(W,q) + Allql|1,

a

a7

for the reweighted /5 and ¢; cases, respectively. The overall
update process conceptually can be summarized as follows: 1)
given an h compute W, followed by q. ii) Update q using a
gradient descent algorithm. iii) Use this new q to obtain the
updated h. iv) Repeat Steps 1)—iii) till convergence.

More formally, to proceed with gradient-based updates, fol-
lowing [40] we define the a posteriori AST variable at time n:

A = W, 'hy, (18)
and the a priori AST variable at time n:
An+1jn £ Wy_llthrl- (19)

The recursive update by using gradient descent in the q
domain can be formulated as:

L ~

and

l’L ~
qn+1\n = q.n|n - §Vq Jrl;l (qn|n)7 (21)

for optimizing (16) and (17), respectively.
Using the chain rule'® and the AST relationships (15) and
(18), we can write (20) and (21) respectively as:

qn—&-l\n = qn\n - gwnvthLQ (hn) (22)

and

Ao 1fn = Gnjn — gwnvth;l (h,). (23)

Premultiplying W, on both sides of (22) and (23) and noting
the relationships (18) and (19), we transform the q domain
updates (22) and (23) back to the h domain respectively as:

1 =h, — %WﬁvhJﬁ2 (h,,) (24)

and

hy 1 = h, — gwivhJﬁl (hy). (25)
By Proposition 1, we canreplace Vi, J/2 (h,,) and Vi, JX! (h,,)
with VhJG(hn). Thus, (24) and (25) can both be written as:

hoyr = h, — gwivhﬁ' (hy,). (26)

Note that based on the aforementioned update process i)-iv),
we can in fact directly apply (15) to reparameterize J (h) to
obtain (26) without going through the reweighting formulation,
as long as the scaling matrix W, is specified. In this sense,
the reweighing methods essentially play the role of suggesting
a suitable W,, that eventually becomes a diagonal weighting
matrix W2 on the gradient V;,J%(h,) in the update rule.
Hopefully, it alters the ordinary descent direction in such a
way that leads to convergence improvement. We should also

10Note that the chain rule here is basically Vq = W, Vy, as a result of the
change of variables (15) for a given W, at iteration n.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 29,2022 at 00:55:56 UTC from IEEE Xplore. Restrictions apply.



176 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

emphasize that the scaling matrix W,, suggested by (24) and
(25) will in general be different for a given G/(h) despite the fact
that both can be expressed as (26).

In practice, the following update rule is suggested over (26)
for avoiding instability and slow convergence issues:

h, 4, =h, — gsnvhJG(hn), 27)
where
W2
Sn - %7 (28)
a7t (W2)

referred to as the sparsity-promoting matrix, is the normalized
version of W2, As a fixed step size p is used, performing
normalization of the weighting matrix compensates for any
arbitrary scaling inherent in W2 that might cause instability
(scaling too large) or slow convergence (scaling too small).
Note that by (28) we always have tr(S,,) = M, aligned with the
non-AST case (i.e., using the ordinary gradient descent) which
essentially has S,, = I whose trace is also M.

Finally, to obtain the adaptive algorithm, we follow the
standard procedure of replacing Vi, J(h,,) = —2E[u,e,] +
AVnhG(hy,) in (27) with its instantaneous estimate —2u,,e,, +
AVhG (h,,), leading to:

(29)

A
hn+1 =h, + Msnunen - %Snva(hn)-

We see that there is a term with a diagonal weighting S,, on
the LMS update vector u,e,, similar to that in proportionate
algorithms (5) and (6). We also see another term weighted by
A which is due to the introduction of the regularizer, like that
of (10). Therefore, the AST framework leads to a more general
algorithm comprised of proportionate adaptation and sparsity-
inducing regularization. We thus refer to (29) as the generalized
sparse LMS algorithm.

C. Discussions

It may seem at the first glance that applying the reweighting
techniques to (9) straightforwardly leads to our algorithm. We
stress that it is not true. If the AST (15) was not considered,
adopting the reweighting schemes would still end up with an
update rule like (10) according to Proposition 1, rather than
the proposed (29). It is also worth mentioning that there is
considerable difference between the proposed algorithm (29)
and existing SSR algorithms based on (11) and (12) — the
conventional SSR techniques are batch estimation methods for
recovering the underlying sparse representation, while the pro-
posed algorithm is specifically tailored for the adaptive filtering
scenario. That being said, as gradient descent is adopted for
optimization, we actually perform a gradual update of the filter
coefficients in each iteration n, rather than looking for an exact
minimizer of the surrogate function as is typically pursued in
SSR. This enables the algorithm to track temporal variations
and environmental changes. Certainly, considering the gradient
noise in real scenarios, it may post the issue of whether the
algorithm is convergent. However, even the standard LMS and
NLMS that are based on gradual updates, work well in many

practical situations with gradient noise. In Section VI, exper-
imental results will demonstrate that the proposed algorithm,
like the LMS and NLMS, also behaves well when certain level
of environmental noise is present.

Finally, the following theorem establishes the convergence of
the q domain recursions (20) and (21) and their relationships to
(9) to shed light on the convergence of the adaptive algorithm
(29) developed based on them:

Theorem 1: For the objective function J%(h) in (9) with
the general diversity measure G (h) satisfying Properties 1-4 in
Section II-B,!! there exists a step size sequence {1, }>°_ such
that each of the update recursions (20) and (21) monotonically
converges to a local minimum (or saddle point) of (9) under a
wide-sense stationary (WSS) environment, i.e., u,, and d,, are
jointly WSS.

Proof: See Appendix A.

IV. SPARSITY-PROMOTING ALGORITHMS ADOPTING A = 0

An interesting situation arises when we consider the limiting
case of A — 07 for the proposed framework. By setting A = 0 in
(29), we see the A-weighted term due to regularization vanishes,
leading to a simpler equation:

h,y1 =h, + uS,u,e,. 30)

The main feature of (30) is that it is able to promote sparsity
of the system (through S,,) if it already exists while not strictly
enforcing it (as A = 0). This property shall become clearer in
later discussions. We refer to the algorithm (30) as the Sparsity-
promoting LMS (SLMS).

The normalized version of (30) can also be developed by
performing exact line search for the optimal step size at iteration
n just like that when deriving the NLMS:

B . T 2 = !
po = arg min (d =y (B + iSuttnen))” = e

(3D
Similar to the NLMS, we introduce 2 > 0 to exercise control
over the adaptation and § > 0 to avoid division by zero, resulting
in:

ﬂ Sn Un€n

h =h,+ 77—
n+1 , T+ ugsnun P

(32)

We refer to the algorithm (32) as the Sparsity-promoting NLMS
(SNLMS).

An obvious benefit of adopting A = 0 is that the computation
for the term due to regularization is no longer needed, and we do
not have to tweak this coefficient anymore (which is typically
not a trivial task in practice). Still, the SLMS and SNLMS have
the ability to leverage sparsity owing to the diagonal weighting
S.,, which is similar to the proportionate matrix I',, in (5) and
(6). Again, this is made possible due to the use of the AST (15),
wherein the gradient descent update is performed w.r.t. the q
variable rather than in the original h domain. Otherwise, we

"Note that for Property 4, Theorem 1 holds for (20) of the reweigthed £o
framework if g(z) is concave in z2. On the other hand, it holds for (21) of the
reweighted ¢; framework if g(z) is concave in |z|.
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will end up with algorithms like (10) that reduce to the ordinary
LMS/NLMS when using A = 0.

The SLMS and SNLMS can in fact be viewed as a broader
class of proportionate algorithms. Actually, with certain choices
of diversity measures and corresponding parameters, we can
have the PNLMS (approximately) as a special case. For example,
as we will see in Section I'V-B, using p = 1 in (34) for W,,, the
sparsity-promoting matrix S,, approximates the proportionate
matrix I';, of the PNLMS. Indeed, one of the main advantages of
the SLMS and SNLMS is their ability to incorporate flexible di-
versity measures. It allows the algorithms to fit the sparsity level
of the system response by optimizing corresponding sparsity
control parameters in a more informed manner due to the under-
lying connections to SSR. Furthermore, the derivations provide
theoretical support to the class of proportionate algorithms that
were mostly motivated based on heuristics, explaining why they
are useful in practical identification tasks with sparse channels,
e.g., in acoustic echo/feedback cancellation, from an SSR view-
point.

A. Interpretation of & = 0 From Optimization Perspective

We further discuss the interpretation of using A = 0 in our
framework from an optimization perspective. Recall that the
AST reparameterization (15) results in the optimization prob-
lems (16) and (17). Setting A = 0 leads both to:

m(in J(W,q). (33)
This actually applies a change of coordinates to the unregular-
ized problem (1) via (15). Since W, is invertible, the problem of
finding the h that minimizes .J(h) is equivalent to finding the q
which minimizes J(W,,q). Therefore, the advantage of solving
(33) is that the solution is guaranteed to also be a solution of (1),
which is not true for (9) with A > 0. Thus, the optimization is
unbiased while promoting sparsity — it is able to take advantage
of sparsity whereas without having to supplement a sparsity
penalty that incurs bias to the MSE objective. As noted in [45],
the performance of gradient-based methods is dependent on the
parameterization — a new choice may substantially alter conver-
gence characteristics. Introducing variable scalings may speed
up convergence by altering the descent direction toward the
optimum. In our case, solving (33) with appropriately selected
‘W, can expedite the adaptation procedure toward the optimum
of (1).

This observation can also be illustrated by looking at (9) which
indicates a trade-off between estimation quality, as reflected in
the MSE objective function, and solution sparsity as controlled
by A. In the limiting case of A — 0T, the objective function
exerts diminishing impact on enforcing sparsity on the solution,
meaning that eventually no sparse solution is favored over other
possible solutions. To elaborate, with A = 0 and under a WSS
environment, all the algorithms derived from (9) minimize the
MSE and converge toward the Wiener-Hopf solution. However,
not surprisingly, the path they take is different and depends on
how the iterations are developed. If the Wiener-Hopf solution is
sparse, then all will converge toward the same sparse solution
asymptotically. Interestingly, the SLMS and SNLMS, because
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of their proportionate nature similar to the PNLMS-type al-
gorithms, can take advantage of the sparsity and are capable
of speeding up convergence without compromising estimation
quality should sparsity be present. This observation will later be
supported by experimental results in Section VI-B.

B. Example Diversity Measures and Corresponding W ,,

To illustrate the flexibility of the proposed framework, we
provide example algorithms instantiated with popular diversity
measures that have proved effective in SSR.

Consider the p-norm-like diversity measure with g(h;) =
|hi?, 0 < p <2 for the reweighted ¢5 framework [12], [15].
Using (13) leads to the update form of W ,:

2
Wiy = <2 (|hin| + c)2p> (34)
p

Note that we have empirically added a small regularization con-
stant ¢ > 0 for avoiding algorithm stagnation and instability,'?
which also ensures the positive definiteness of W, [39]. The
parameter p € (0,2] in (34) is responsible for controlling the
sparsity degree, as the p-norm-like diversity measure is asso-
ciated with super-Gaussian prior distributions. In general, a
smaller p corresponds to a heavier-tailed distribution, encour-
aging stronger sparsity in the parameters. It is worth noting that
using p — 1in (34) results in a proportionate factor close to that
of the PNLMS. On the other hand, letting p = 2 recovers the
standard LMS/NLMS.

The p-norm-like diversity measure can also be adopted in
the reweighted ¢, framework if 0 < p < 1. Applying (14), we
obtain the update form of W, in this case:

+o)'P.

Wipn = (35)

L (Jhin
p
Again, a small constant ¢ > 0 is added. The sparsity control
parameter of (35) isnow p € (0, 1]. In this case, using p — 0.5in
(35) results in a proportionate factor close to that of the PNLMS,
whereas letting p = 1 recovers the standard LMS/NLMS.

We can also consider the log-sum penalty with g(h;) =
log(hf + €), € > 0 for the reweighted (> framework [18]. The
function is readily amenable to the use of (13) to obtain the
update form of W, as:

win = (A2, +€)?. (36)

Or consider the log-sum penalty with g(h;) = log(|h;| + €), € >
0 for the reweighted ¢; framework [19]. Using (14), the update
form of W,, becomes:

The sparsity control parameter is € > 0 for the two log-sum
penalty cases. From (36) and (37) we can see that e controls
how much proportionate adaptation is encouraged: as € be-
comes smaller, the term k2 or |k; | becomes more dominant.
Consequently, they exhibit a stronger proportionate adaptation

12We suggest that ¢ be kept relatively small as compared to the amplitude of
the filter coefficients so that it would not affect the convergence significantly.
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characteristic. On the contrary, as e becomes larger, the influence
of hfm or |h; | reduces. Thus, the algorithm will approach the
standard LMS/NLMS when € >> h? or € > |h; ,,|. In practice,
one can start from a large € and reduce it to find a suitable value.

More example functions can be found in [27], [46], including
g(h;) = arctan(|h;|/€), € > 0 also suggested in [19], which
works for both the reweighted ¢5 and ¢ frameworks. Note that
different diversity measures can result in different computational
complexity for calculating W,,. Notably, for example, the p-
norm-like function resulting in (34) or (35) might incur extra
computation for calculating the quantity to the power 2 — p or
1 — p for some p value (e.g., non-integer power).

Algorithm 1 summarizes the proposed SLMS and SNLMS.
A MATLAB implementation of the algorithms is available at
https://github.com/chinghualee/SLMS_SNLMS.

Algorithm 1: SLMS and SNLMS.

1: Input: step size p > 0 (or i1 > 0), regularization
constant § > 0, input signal u,,, desired signal d,,, and
the choice of the diversity measure

2:  Output: estimated filter h,,

Initialize: hg

3: forn=20,1,2,... do

4. Compute error signal: e,, = d,, — uz:hn

5: Compute scaling matrix: W, according to the

specified diversity measure (e.g., using (34), (35),
(36), or (37))

6: Compute sparsity-promoting matrix: S,, by (28)
7: Update adaptive filter coefficients:
8: *SLMS: h,, 11 = h,, + uS,u,e,
i Syupe,
9: *SNLMS: hy, ;1 =h, + —5——
+ + ul'S,u, +46
10: end for

C. Comparison to Existing Work on PNLMS-Type Algorithms

Note that in IPNLMS [21] and IPNLMS-/, [22] there is also
a parameter for fitting the sparsity degree, which was heuris-
tically introduced to weight between proportionate and non-
proportionate updates. However, this empirical parameter does
not reflect the sparsity level of the underlying system directly. In
our algorithms, we have the sparsity control parameters that play
a similar role for fitting different sparsity levels. However, based
on diversity measures in SSR, they have direct connections to
the system sparsity, thereby offering a more intuitive parameter
selection procedure. Our algorithms thus have the advantages
of enjoying theoretical support and leveraging sparsity more
straightforwardly.

In terms of algorithm derivations, PNLMS-type algorithms
were mostly developed from a constrained optimization problem
following the principle of minimal disturbance, e.g., [24]-[27],
[32], in which modified objective functions have been proposed
that impose sparsity on the “change” of the filter rather than on
the filter itself. For example, [24], [25], [32] considered enforc-
ing sparsity on the difference between the current and updated
filters; [26], [27] imposed sparsity on the so-called correctness

component as defined in [26] which also represents the change in
the filter coefficients. However, since the assumption is that the
filter itself is sparse rather than the difference between successive
updates, the motivation to enforce sparsity on the “change” of
the filter is less clear. Sparsity, in turn, does not seem to fit
in straightforwardly under the commonly adopted constrained
optimization framework. In contrast, we work with the general
MSE criterion in which filter sparsity can be directly imposed
viaregularization, which is more straightforward and also makes
intuitive sense.

V. STEADY-STATE PERFORMANCE ANALYSIS

The signal model of system identification described in
Section II-A is employed for performance analysis. We further
assume the noise vy, is i.i.d. according to (0, o2). We also intro-
duce several other assumptions useful for simplifying analysis.
Although these assumptions may seem restrictive, they make
meaningful analysis possible without significant loss of insight
and are also commonly adopted in the literature. We shall later
see that these assumptions lead to theoretical results that are
supported by experiments.

Assumption 1: The input data vector u,, is independent of
uy, for n # k. Furthermore, u,, is independent of vy, for all n
and k. In practice and from past experience in adaptive filters,
this assumption simplifies the analysis and does lead to useful
insights [2], [3], despite the fact that it does not in general hold
true.

Assumption 2: The input data vector obeys u,, ~ N'(0,R)
for all n. This technical assumption facilitates the analysis by
taking advantage of the useful results on Gaussian random
variables [4].

Assumption 3: At steady-state, the diagonal matrix W, in the
update equations can be view as a fixed matrix. As suggested
in [5], [23], when the system is at steady-state and when the step
size is sufficiently small, the coefficients converge in both mean
and mean squared senses. Thus, replacing W, by a fixed matrix
becomes reasonable and convenient.

For convenience we shall consider the algorithm of the fol-
lowing form for performance analysis:

hn+1 =h, + Nsune'ru (38)
where S = diag{s;} withs; >0, Vi =0,1,..., M — 1.

For a fixed underlying system h°, define the steady-state

excess MSE [4]:

. o 2
Joo 2 Tim B [(uf (h° — h,)) } . (39)
Under Assumption 1, we have the steady-state MSE:
J 2 lim E [e}] = 05 + Jux. (40)

n—oo

The following theorems characterize the steady-state behavior
of (38):

Theorem 2 (Steady-state excess MSE): Under Assumptions
1-2 with a sufficiently small x and assume R = O'ZI, for the
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adaptive filter (38), the steady-state excess MSE is given by:

o2s;

W Z’L O 2—-2uo?s; 0_2
M-1 o2s; Ch
1- 2 Zizo 2—2/wﬁsi

Proof: See Appendix B.

Theorem 3 (Convergence conditions): Under Assumptions
1-2 with a sufficiently small x and assume R = 021, for the
adaptive filter (38):

i) It converges in the mean sense if:

Amax{L — poS} < 1,

where Amax{X} denotes the largest eigenvalue of a square
matrix X in magnitude.
ii) It converges in the mean squared sense if:

M1 o -1
0< < . Tuvr .
a (Z 2— 2ua§si>

=0

Jox = (41)

(42)

(43)
Proof: See Appendix C.

A. Steady-State Performance of SLMS

Consider the case where Assumptions 1-3 are in position and
R = 021. For analyzing the proposed SLMS (30), first we need
to recognize an appropriate S with regard to Assumption 3. A
useful approximation at steady-state is to replace the occurrence
of h,, by the true system h’; thatis, touse S = — tr(WQ) , where
W = diag{w; } with w; given by (13) for the rewelghted {5 case,
or by (14) for the reweighted ¢; case, both computed based on

the corresponding true coefficient h9. Now, since tr(S) = M,
the excess MSE (41) can be approximated as:
I pYMt e, p%uS)
CT M 1“10”71 Z(S) "
1—pyiZ gt (44)
= 3 M 0’12)7
Moz — H

where for the approximation we assume a sufficiently small step
size pu such that 2u02s; < 2,Vi =0,1,..., M — 1.

Now, for the mean squared convergence condition, although
the upper bound in (43) of Theorem 3 contains p itself, after
some inspection it is clear that the lowest stability limit on p
occurs when S has its diagonal elements nonzero at one tap
position (with a value of M) and zero at all others [5]. With
such an S, it leads to:

O<pu<

. 45
3Mo?2 (45)
On the other hand, the largest stability limit is associated with a
proportionate matrix assigning equal gains at each position [5],
ie., S=diag{s;} with s;, =1, Vi=0,1,...,M — 1. With
such an S we have:

2

(24 M)o2’
For a large M, the largest stability limit can be approximated as

ez = oy Which is also the stability limit of the LMS [4].

0<pu< (46)
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This result is not surprising since using an S that assigns uniform
gains essentially becomes the LMS.

B. Steady-State Performance of SNLMS

Consider the case where Assumptions 1-3 are in position and
R = 021. For analyzing the proposed SNLMS (32), first we
must identify a fixed S to approximate the term uTg: ™ (where
we have ignored ), for which an exact characterization seems
difficult, if at all possible, to obtain. However, if we fix W,, =
W at steady-state by Assumption 3, where W is again computed
based on the true system h°, then we have:

W2
S L a(W?) oowr - W? 47
T (L) o WW?2u, o2 (W2)
n\ Fu(W?2) n
with  the  approximation ulW?2u, ~ E[ulW?3u,]=

o2tr(W?) utilized. A useful fact of (47) is that tr(S) = (02) 1.
We can thus use the following approximation for (41) to express

the excess MSE (and replace p by ji):

M-1 o2 sI ~ 92 M-1
) izo 2 HOudli—g Si o

Jox & o o
]V[ 1 o2s; U ~ 9 M-1 _ v
1—fyny =5 2—fio2 > 2o i

__ popu(S) o2 — fiog (o))" o2 — A 52
S 2-podw(S) " 2-jpoi(oZ) Y 2— 4
(48)
for i sufficiently small such that 2fo2s; <2, Vi=

0,1,...,M —1,

For the mean squared convergence condition, using the same
argument as in the SLMS case for (45) and (46), we can obtain
the lowest stability limit as:

[\

0<ji< 3 (49)

and the largest stability limit as:
0< i< . 50
Pz (50)

For alarge M, we have (50) approximately as 0 < & < 2, which
is the classic result of the NLMS [4].

VI. SIMULATION RESULTS

The proposed algorithms are evaluated using computer simu-
lations in MATLAB. We consider three system IRs as shown in
Fig. 1 which represent different sparsity levels: quasi-sparse,
sparse, and dispersive systems. The IR of the quasi-sparse
system is an acoustic feedback path between the microphone
and the loudspeaker of a hearing aid that was measured from a
real-world scenario. It represents a typical IR of many practical
system identification problems where certain degree of structural
sparsity exists. The sparse and dispersive IRs were artificially
generated. Each of these IRs has 256 taps. We conducted exper-
iments to obtain the MSE learning curves (i.e., the ensemble
average of e2 as a function of iteration n) for performance
comparison. The ensemble averaging was performed over 1000
independent Monte Carlo runs for obtaining each curve. In all
experiments, the adaptive filter coefficients were initialized with
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Fig. 1. IRs of (a) quasi-sparse, (b) sparse, and (c) dispersive systems. The
quasi-sparse IR is an acoustic feedback path of a hearing aid that was measured
from a real-world scenario. The sparse and dispersive IRs were artificially
generated.

all zeros. For the input signal, we mainly consider two types
of w, for theoretical analysis: i) a zero mean, unit variance
white Gaussian process and ii) a first order autoregressive (AR)
process according to w, = pu,_1 + 1,, Where p = 0.8 and
7Ny, is ii.d. according to N(0,1). We also include results of
speech inputs for demonstrating the algorithm performance with
non-stationary signals. The system noise v,, is i.i.d. according
to M (0,0.01). Regarding the algorithms, when using (34) for
updating W,,, a small positive constant ¢ = 0.001 was always
used.

A. Comparison of Algorithms With and Without AST

Fig. 2 compares the proposed generalized sparse LMS (29),
i.e., the AST-based approach, to some existing regularization-
based algorithms of (10), i.e., the regular gradient descent with-
out AST. Specifically, we use the p-norm-like penalty |h|/?
with p = 1 and the log-sum penalty S " log(|hs| + €) with
e = 0.1 as examples. These two choices of the sparsity-inducing
function G(h) in (10) result in the ZA-LMS and RZA-LMS [28],
respectively. We compare them with the corresponding AST-
based algorithms obtained from (29), also adopting the two
penalty functions for G(h) that lead to (34) and (37) for com-
puting W,,, respectively. We set ;n = 0.0025 and A = 0.001 in
all cases and used the white Gaussian process input. Fig. 2 (a)

R —ZA-LMS
10 - - -ZA-LMS w/ AST
w RZA-LMS
» - - ~RZA-LMS w/ AST
=
joRlnono— T TR '
0 500 1000 1500
Iteration (n)
(a)
4 —ZA-LMS
10 - - -ZA-LMS w/ AST
w RZA-LMS
» - - ~RZA-LMS w/ AST
=
102 ‘ ‘
0 500 1000 1500
Iteration (n)
(b)
Fig. 2. Comparison of algorithms with and without AST for identifying (a)

sparse and (b) quasi-sparse IRs with white Gaussian process input. Solid lines
are existing approaches as given by (10). Dotted lines are their corresponding
AST-based algorithms given by (29). It can be seen that AST leads to improved
performance.

shows the results of identifying the sparse IR and Fig. 2 (b)
is the case of estimating the quasi-sparse IR. From the results
we see that the AST strategy leads to algorithms (dotted lines)
that demonstrate faster convergence than the existing approaches
(solid lines).

B. Effect of Sparsity Control Parameter on SLMS and SNLMS

In this experiment we investigate the effect of the sparsity
control parameter on the convergence of SLMS (30) and SNLMS
(32). We use the p-norm-like diversity measure [|h[|P within
the reweighted /o framework, i.e., using (34) for updating W ,,,
for demonstration purposes. We study the cases of the sparsity
control parameter p = 1,1.2,1.5,1.8,2. We also include the
LMS (3) and NLMS (4) performance curves for reference. For
LMS and SLMS we used p = 0.0025. For NLMS and SNLMS
we used 1 = 0.5 and 6 = 0.01.

Fig. 3 and Fig. 4 show the resulting MSE curves for SLMS
using the white Gaussian noise input and SNLMS using the AR
process input, respectively. Recall that the proportionate factors
of SLMS/SNLMS using (34) for W,, approximate that of the
PNLMS when p — 1, and regenerate the LMS/NLMS when
p = 2, as has been discussed in Section IV-B. Therefore, the
parameter p plays the role for fitting different sparsity levels and
the selection of p can be crucial for obtaining optimal perfor-
mance for IRs with different sparsity degrees. The results in both
Fig. 3 and Fig. 4 suggest that for the quasi-sparse case, the fastest
convergence is given by p € [1.2, 1.5], which seems reasonable
in terms of finding a balance between PNLMS (p — 1) and
LMS/NLMS (p = 2). On the other hand, for the sparse system,
p € [1,1.2] gives the best results, which is also reasonable since
as the sparsity level increases, a more PNLMS-like algorithm can
be more favorable. Finally, for the dispersive system we see that
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Fig. 3.  Effect of sparsity control parameter p on convergence of SLMS for

(a) quasi-sparse, (b) sparse, and (c) dispersive IRs with white Gaussian process
input. It can be seen that the optimal p value varies with the sparsity degree.

p € [1.8, 2] results in the fastest convergence and is comparable
to, if not better than, the LMS and NLMS. This indicates that a
more LMS/NLMS-like algorithm is preferable when the system
IR is far from sparse. To conclude, the results show that the
algorithms exploit the underlying system structure in the way
we expect.

C. Effect of Step Size on SLMS and SNLMS

Fig. 5 studies the effect of the step size on the convergence
behavior of the SLMS and SNLMS. We again used (34) for
updating W,,. Fig. 5 (a) shows the resulting MSE curves ob-
tained by running the SLMS with p = 1.2 on the sparse IR with
various p values, using the white Gaussian noise input. Fig. 5
(b) shows the resulting MSE curves obtained by running the
SNLMS with p = 1.5 on the quasi-sparse IR with various
values, using the AR process input. The dotted lines indicate the
theoretical steady-state MSE levels computed from (40) using
(44) and (48) for SLMS and SNLMS, respectively. We can see
that similar to the well-known trade-off in LMS and NLMS, a
larger step size results in faster convergence while at the expense
of steady-state performance. We also see that as the step size
increases the theoretical prediction becomes less accurate; this is
probably due to the approximation made based on the small step
size assumption for arriving at (44) and (48). Nevertheless, the
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Fig. 4.  Effect of sparsity control parameter p on convergence of SNLMS for
(a) quasi-sparse, (b) sparse, and (c) dispersive IRs with AR process input. In the
colored input case here we have similar observations to the white input case of
Fig. 3.
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Fig. 5. Effect of step size p1 or 1 on convergence of (a) SLMS for the sparse
IR with white Gaussian process input and (b) SNLMS for the quasi-sparse IR
with AR process input. Dotted lines indicate the theoretical steady-state MSE
levels. It can be seen that the theoretical prediction agrees reasonably well with
the experimental results especially for a small step size.
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Fig. 6. Comparison of LMS-type algorithms with white Gaussian process

input on (a) quasi-sparse and (b) sparse IRs. One can see that the proposed
SLMS outperforms all the other approaches in both cases.

prediction agrees well with the stead-state MSE in most cases
for a small step size. In addition, though several assumptions
have been made to arrive at (40), (44) and (48), the results show
that they predict reasonably well in the case of white input and
even for correlated input.

D. Comparison With Existing Algorithms

We compare the proposed SLMS and SNLMS using (34) for
‘W, with existing LMS-type and NLMS-type algorithms. To see
how the algorithms behave in a changing environment, in each
of the following experiments, a change in the underlying system
was introduced by shifting the IR to the right by 16 samples in
the middle of the adaptation process [47].

Fig. 6 compares the LMS-type algorithms using the white
Gaussian process input. Fig. 6 (a) and Fig. 6 (b) show the MSE
curves obtained with the quasi-sparse and sparse IRs, respec-
tively. For LMS we used p = 0.0025. For ZA-LMS, RZA-LMS,
and ¢o-LMS we fixed ¢ = 0.0025 and then experimentally opti-
mized the remaining parameters to obtain the best performance.
For SLMS we used p = 1.5 and p = 0.002 in the quasi-sparse
case and p = 1.2 and p¢ = 0.0005 in the sparse case. The results
show that all the sparsity-aware algorithms outperform the LMS,
with SLMS demonstrating the best result. Comparing Fig. 6
(a) and Fig. 6 (b), we also see that the benefit brought by
existing sparsity-aware algorithms becomes limited when the
system is less sparse, while the SLMS still provides significant
improvement.

Fig. 7 compares the NLMS-type algorithms using the AR
process input. Fig. 7 (a) and Fig. 7 (b) show the MSE curves
obtained with the quasi-sparse and sparse IRs, respectively.
For all the algorithms we used i = 0.5. For NLMS we used
0 = 0.01. For PNLMS, IPNLMS, and IPNLMS-¢; we set § =
0.01/M according to [47], and experimentally optimized the
remaining parameters to obtain the best performance in each

10°
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Fig. 7. Comparison of NLMS-type algorithms with AR process input on (a)
quasi-sparse and (b) sparse IRs. One can see that the proposed SNLMS performs
better than all the other approaches in both cases.

case. For SNLMS we used p = 1.5 in the quasi-sparse case
and p = 1.2 in the sparse case. We used 6 = 0.01 for SNLMS,
same as NLMS.'? From the results we again observe the benefit
of using sparsity-aware adaptation. In addition, the SNLMS
demonstrates performance as good as, if not better than, the
other proportionate algorithms.

Fig. 8 considers a more practical scenario where we used a
speech signal as the input and the quasi-sparse IR, which repre-
sents an acoustic channel of practical interest, as the underlying
system. The input signal-to-noise ration (SNR) was set to 20 dB
using white Gaussian noise. For the SLMS and SNLMS we
used p = 1.5 which is a suitable choice for quasi-sparse sys-
tems. For evaluation we compare the normalized misalignment
[h° — h,||3/|h°||%. In Fig. 8 (a) we see that SLMS performs
much better than the LMS, while the £y,-LMS fails to provide
any improvement. This may be due to the fact that existing
regularization-based algorithms tend to enforce sparsity in a
more aggressive manner as they work with A > 0, and this may
not be beneficial, if not harmful, when the underlying system is
not truly sparse. In Fig. 8 (b) we see that SNLMS demonstrates
superior convergence behavior than the NLMS, and is also better
than the IPNLMS and IPNLMS-/.

Fig. 9 shows the results for a noisier environment, i.e., 0 dB
input SNR, for the same experimental setting of Fig. 8 (only
the step size parameters were further tuned due to the stronger
noise). We see that in Fig. 9 (a) the SLMS significantly outper-
forms the LMS, while the £y-LMS performs worse. The SNLMS
in Fig. 9 (b), on the other hands, still performs better than the
NLMS, and is comparable to other proportionate algorithms.
This indicates that our observation on the SLMS and SNLMS
superiority may be robust to the noise condition.

3Due to the division by ﬁ in (28) which is not present in (8) of existing
PNLMS-type algorithms, the division by M is not needed for § in SNLMS.
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Fig. 8. Comparison of (a) LMS-type and (b) NLMS-type algorithms for
identifying the quasi-sparse acoustic channel response with speech input at
20 dB SNR. In can be seen that the SLMS and SNLMS perform the best in
both cases.
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Fig. 9.  Comparison of (a) LMS-type and (b) NLMS-type algorithms for
identifying the quasi-sparse acoustic channel response with speech input at 0 dB
SNR. In the noisier setting here the SLMS and SNLMS perform comparably
well, if not better than, the competing algorithms.

VII. CONCLUSION

In this paper, we developed a mathematical framework for rig-
orously deriving adaptive filters that exploit the sparse structure
of the underlying system response. We started with the regular-
ized objective framework of SSR and developed algorithms that
are of the proportionate type. As a result, the adaptive algorithms
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are quite general and can accommodate a range of regularization
functions. The framework utilizes the AST methodology within
the iterative reweighted ¢5 and ¢; schemes, which is shown to
be crucial for obtaining improved adaptive filtering performance
over existing algorithms when gradient descent is concerned. We
further introduced the SLMS and SNLMS by adopting a zero
regularization coefficient, which take advantage of, though do
not strictly enforce, the sparsity of the underlying system if it
already exists. Note that the proposed framework is not limited to
the algorithms that we have presented so far. Any other penalty
function that satisfies the conditions imposed on the diversity
measure can potentially be a good candidate for obtaining ef-
fective adaptive algorithms by utilizing the framework.

APPENDIX A
PROOF OF THEOREM 1

The proof follows the idea in [48]. We wish to show that the
regularized objective function J(h) in (9) is decreased in each
iteration when optimized via (20) and (21). Before proceeding,
we need the following lemmas:

Lemma 1: For the general diversity measure G(h) =
SM S g(hy) that satisfies Properties 1-4 in Section I1-B, with
g(z) being strictly concave in z? for Property 4, we have:

G(hpy1) — G(hy) < [[W  hpg |5 — W, hy |3, 5D

where W,, = diag{w; ,, } with w; ,, given by (13).

Proof: Since g(z) is strictly concave in 22, it satisfies g(z) =
f(2?) where f(z) is concave for z € R .. Due to the concavity,
we have the following inequality:

f(z2) = f(z1) < fl(z1)(22 — 21) (52)

hold for some 21, 2o € R.. Note that we use f’(2;) to denote
the first order derivative of f(z) w.r.t. z evaluated at z = z;.
Substituting z; = hfn and zp = hfn 1 into (52) gives:

f(hzz,n+1) - f(h’zz,n) < fl(h?,n)(h?,n+l - h?,n) (53)
Noting that f(h7,, 1) = g(hint1) and f(hZ,,) = g(hin), we
have:

g(hi,n+1) - g(hl,n) < f,(h’zz,n)(hzz,n-i—l - hzz,n)' (54)
From (13) we have f'(h?,,) = w; ~. Therefore,

9(hims1) = g(hin) <win(hi, 1 —hi,). (55

Summing over ¢ = 0,1, ..., M — 1 on both sides of (55) justi-
fies (51) of Lemma 1.

Lemma 2: For the general diversity measure G(h) =
Ziﬂial g(h;) that satisfies Properties 1-4 in Section II-B, with
g(z) being strictly concave in |z| for Property 4, we have:

G(hps1) — G(hy) < [[W hyga|lr — W, hy [l (56)

where W,, = diag{w; ,,} with w; ,, given by (14).

Proof: Since g(z) is strictly concave in |z|, it satisfies g(z) =
f(|z]) where f(z) is concave for z € R . Again, the inequality
(52) holds due to the concavity of f(z).

Substituting z1 = |h; | and zo = |h; ,41] into (52) gives:

F(himsa]) = f(hinl) < £ (i) (1Pimar| = [hinl). (57)
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Noting that f(|hint1]) = g(hint1) and f(|hin|) = g(hin),
we have:

g(hi,n+1) - g(hi,n) < f,(|hi,n )(|hi,n+1| - |h7n|) (58)
From (14) we have f'(|h; »|) = w;}L Therefore,
9(hiny1) — g(hin) < w';'rlL(|h’L'.,n+1| — |hinl)- (59)

Summing over ¢ = 0,1,..., M — 1 on both sides of (59), we
have (56) of Lemma 2 justified.

Now we are ready to show that J¢(h) decreases in each
iteration by using the update recursions (20) and (21).

First, for the reweighted (5 framework with J2(q) in (16),
we have:

JG (hn+1) -

J%hy) = [J(hpi1) + AG(hy41)]

)
— [J(h,) +1G(hy,)]

[J(hn_t,q) +)L||W hn+1|| ]
— [J(h,) + AW, b, |12]

A

[J(qun-l-l\n) + )‘”qn—i-l\n” ]
- [Jw

(anrl\n)

nqn\n +)‘||qn|n|| ]

J (qn|n)
(60)

The inequality follows from Lemma 1. The AST relationships
(18) and (19) are also utilized. As we perform optimization of
(16) with gradient descent, we can have J'2(q) decrease in each
iteration n, i.e., J (qn+1‘n) Jte (qn‘n) < 0, using some fi,,.
Therefore, the choice of {1, }2°_ ensures the decrease in J (h)
according to (60), and the update recursion (20) monotonically
converges to a local minimum (or saddle point) of (9) under a
WSS environment.

On the other hand, for the reweighted ¢; framework with
J(q) in (17), we have:

J ¢ (hn+1) -

JG(hn) = [J(hpt1) + 2G(hyy1)]

)

— [J(h,) + 2G(hy,)]
[T(hpy1) + AWy e |11]
— [J(h,) + AW, hy 1]
= [J(Wadai1jn) + Al dnipnlli]
- [7(W

(qn-i-l\n)

A

nqn\n + )”||qn|n ” ]

J (qn|n)

(61)
The inequality follows from Lemma 2. The AST relationships
(18) and (19) are also utilized. Similar to the above argument
of the reweighted (5 case, there exists a choice of {1, }52 that
ensures the decrease in J (h) according to (61), and the update
recursion (21) monotonically converges to a local minimum (or
saddle point) of (9) under a WSS environment.

APPENDIX B
PROOF OF THEOREM 2

The proof follows the discussion in [4], [5], [25]. Substituting

e, =d, — ughn into (38) we have:
h,;1 =h, — uSunu,TLhn + pSu,d, (62)
Using the fact that d,, = uZhO + v,,, we have:
h, 1 = h, 4+ uSu,u’ (h° — h,) + pSu,v,. (63)
Define the misalignment vector &,, as:
en, =h°—h,. (64)
Then from (63) we have:
ent1 = (I—pSu,uy) e, — pSu,v,. (65)
Next, based on (65) we have:
€n+1EZ;+1 = (I — uSunug) enel (I — uunuZS) 66)

+ p*v2Su,ul’s + B,

where = represents the remaining cross terms whose expecta-
tions are zero.

Let Q,, = Ele,e
we have:

Q.1 =E [(I — ,uSunuf)

1. Taking expectation on both sides of (66)

ener (I—pu,ulS)]

e (67)
+ 120%SRS.
Note that:
0 =09, - uSRQ,, — 2, RS
(68)
+ 1*SE [unufenEZunuZ] S.
With Assumptions 1 and 2 it can be shown that [4]:
E [u,ule,elu,ul] = 2RQ, R+ Rur(RQ,).  (69)
Thus,
0 =Q, — uSRQ,, — uQ, RS + 2,°SRQ, RS
+ 1*SRir(RR,,)S. 70
Then, with R = agI, in steady-state, i.e., n — 00,
Qo = Qoo — 10280, — o208 + 24%0180. .S
+ 12otStr () S + plolo?S?. 7y
This implies:
Woo = Woo — 2/103wa + 2u203S2wm + u o 1217w
+ u2030352
(72)

where w,, and s are the vectors consisting of the diagonal
elements of 2, and S, respectively, and s? denotes the element-
wise squares of the vector s.
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The steady-state excess MSE is then:

lim E {(ug (h° — h,,)) ]

JCX

n—0o0 n—o0

lim E [(u En)ﬂ

= lim tr (,.E [u,ul]) = oltr () = 0217w

n—oo
(73)
Using (73) for (72) and rearrange the equation, we have:
T i (74)
’ 2uo2s; — 2uloks?
Then it leads to:
M-1 M-1 9 2 2 2 2 2.2
2 Jox
Jex _ 0’3 Z Wi o = 0,5 Je + 14 02. gvsz ; (75)
5 ’ ; 2ps; — 2p202s:
=0 =0
which yields:
(72 S
D=
Jox = 0 2nousi 2 (76)

o2si

1- /’[’ZZ_O 2— 2;,&0'287,
This justifies Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Note that Assumption 1 ensures that h,, u,, and v, are
mutually independent. Thus, taking expectation of both sides
of (65) gives:

E [5n+1] = (I - :U'SR)E [En] . (77)

Therefore, the following condition is sufficient for convergence
in the mean sense [4]:

e {I — uSR}| < 1.

With R = 021, Theorem 3-i) is justified.
From (76) we see, by requiring:

(78)

M-1

1_“2

we obtain the stability bound for p as:

o2s;
0 79
2—2uos; (79

M-1 2 -1

O<p< |y Tudi

i=0

_ 80
2 — 2uo2s; ’ (80)

which justifies Theorem 3-ii).
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