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Abstract—We propose a new adaptive feedback cancellation
(AFC) system in hearing aids (HAs) based on a well-posed
optimization criterion that jointly considers both decorrelation
of the signals and sparsity of the underlying channel. We show
that the least squares criterion on subband errors regularized
by a p-norm-like diversity measure can be used to simulta-
neously decorrelate the speech signals and exploit sparsity of
the acoustic feedback path impulse response. Compared with
traditional subband adaptive filters that are not appropriate for
incorporating sparsity due to shorter sub-filters, our proposed
framework is suitable for promoting sparse characteristics, as
the update rule utilizing subband information actually operates
in the fullband. Simulation results show that the normalized
misalignment, added stable gain, and other objective metrics of
the AFC are significantly improved by choosing a proper sparsity
promoting factor and a suitable number of subbands. More
importantly, the results indicate that the benefits of subband
decomposition and sparsity promoting are complementary and
additive for AFC in HAs.

Index Terms—hearing aids, feedback cancellation, whitening,
decorrelation, sparsity, adaptive filter

I. INTRODUCTION

The acoustic feedback or so-called howling effect induced
by the strong coupling between the receiver (loudspeaker)
and the microphone in hearing aids (HAs) deteriorates the
intelligibility, quality and maximum stable gain of the input. To
mitigate this feedback problem, adaptive feedback cancellation
(AFC) is commonly employed to continuously identify or
approximate the time-varying impulse response (IR) of the
acoustic feedback path [1]. Due to the strong correlation
between the microphone and the receiver signals [2], adaptive
filters without decorrelation capability in AFC give biased
estimates and result in degraded performance in convergence,
e.g., the classic least mean square (LMS) and the well-known
normalized LMS (NLMS) [3]-[5]. More importantly, adaptive
filters without leveraging sparsity of the acoustic feedback path
are prone to have slower initial convergence rate [6]-[8].

Therefore, to improve the performance of AFC, both decor-
relation and sparsity may be jointly exploited. However, in
the AFC literature, many works have been dedicated to either
decorrelation [9]-[18] or promoting sparsity [7], [8]; a joint
exploration on both is lacking. Recently, a sparsity promoting,
subband AFC [19] was developed based on solving a con-
strained optimization problem with ¢; norm penalty. However,
there are still several aspects that deserve further investiga-
tions. On the theoretical part, the cost function considered
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in [19] was based on the least perturbation principle which
is not as straightforward as direct minimization on subband
errors. On the experimental part, the effect of using different
degrees of decorrelation and sparsity promoting on AFC was
not studied (only evaluated on four subbands). Moreover,
the additional benefit that the widely used prediction error
method (PEM) [14]-[16] adding to the subband system for
deccorrelation was not quantified.

Based on our previous work [20] which only studied a
theoretical problem, in this paper, we extend the joint frame-
work for leveraging decorrelation and sparsity to a real-world
application in HAs. We propose and evaluate a new AFC
system in HAs based on a well-posed optimization criterion
that simultaneously explores decorrelation and sparsity. Using
different speech input signals, feedback paths and amplifica-
tions, we extensively study the efficacy of AFC using different
numbers of subbands and degrees of promoted sparsity. In
addition, we study the benefits of using the PEM on top
of our system. Both commonly used AFC evaluation criteria
and objective evaluations on intelligibility and quality are pre-
sented on a large speech corpus to illustrate the effectiveness
of the proposed AFC framework. We show that the benefits
of decorrelation and sparsity promoting for AFC are additive
and complementary.

II. BACKGROUND

To address the bias issue in AFC systems, several methods
have been proposed [9]-[16], [21]. One of the bias reduction
methods in AFC is the usage of subband adaptive filters
(SAFs) [6], [17], [18], [22]. A conventional SAF for AFC
like that in [17] utilizes an independent adaptive filter for
each subband. However, SAFs are known to suffer from the
aliasing problem and band-edge effects [6]. To avoid these
issues, a family of new SAFs or normalized subband adaptive
filters (NSAFs) [23]-[25] which compute the gradient before
the subband projection were proposed. For example, in [18], a
delayless NSAF on top of the PEM was introduced to improve
AFC. Besides, the acquisition of fullband filter taps in NSAFs
is important since inducing sparsity on shorter sub-filters does
not seem logical in conventional SAFs.

On the other hand, to achieve faster convergence rate of the
AFC filter, the sparse characteristics of the acoustic feedback
path may be taken into account [6]—[8]. This can be carried
out by utilizing the proportionate adaptation scheme originated
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from the proportionate NLMS (PNLMS) [26] algorithm. In the
adaptive filtering literature, the PNLMS [26] was introduced to
improve convergence behavior by intuitively assigning a step
size proportional to the magnitude of the estimated coefficient
to each filter tap. Many proportionate-type NLMS (PtNLMS)
algorithms [27] were later proposed to enhance PNLMS.
Based on PtNLMS, a family of proportionate-type NSAFs
(PtNSAFs) [28]-[30] have been proposed on top of NSAF to
speed up convergence as they exploit the sparse structure of
the fullband filter taps and reduce signal correlation. Finally,
the update rule recently proposed in [20] is a generalization
of PINSAFs. The criterion is straightforward in a sense that
it minimizes errors in each subband but penalizes a weighted
norm in the fullband.

III. THE PROPOSED AFC FRAMEWORK
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Fig. 1: Block diagram of the proposed AFC framework.

The proposed AFC framework is depicted in Fig. 1. The
microphone signal d(n) is the sum of the speech signal z(n)
and the feedback signal y(n), i.e., d(n) = z(n) + y(n). u(n)
denotes the receiver signal which is given by passing the
feedback-compensated signal e(n) through the HA processing
G(z). Assuming that the acoustic feedback path is a finite
impulse response (FIR) filter F'(z), we have y(n) generated
by filtering u(n) through F'(z). The goal of AFC is to have the
estimated feedback signal g(n) close to y(n) by continuously
adapting the filter S(z). Together with a set of fixed analysis
filters H,;(z),i = 1,2, ..., M, the prediction-error filter A(z)
from PEM forms a time-varying analysis filter bank, i.e.,
A(z)H,;(z) where the coefficients in A(z) are adapted by using
the linear prediction of e(n). Notice that the synthesis filters
are not needed in our proposed framework. The subband error
signals are computed and then aggregated together to update
the fullband filter taps. The block of coefficient adaptation in
Fig. 1 is the core of the AFC and a novel update rule in this
block is discussed in the following paragraphs.

We propose the following optimization criterion to jointly
exploit sparsity and achieve decorrelation:

M
J(s) =) ei(n) +lsly (1)
i=1

where 7 — 01 is a regularization parameter, e;(n) =
di(n) — ul(n)s is the i*" subband error scalar; d;(n) and

u;(n) are the i*" subband desired scalar and the i*" subband
input vector, respectively. M is the number of subbands and
the optimization variable s = [s1 sy - s L]T e RE
denotes the adaptive filter of length L. We have used the p-
norm-like diversity measure Hs||£ = ZiL=1|si|p for promoting
sparsity where the parameter p € (0, 2] controls the degree of
sparsity promoting [31], [32]. By minimizing the cost function
(1) using the reweighted /> framework [31], affine scaling
transformation [32] and the regularized Newton’s method [20],
the resulting LMS-like update rule is given by

s(n+1) =s(n) + pkW(n)U(n)®(n)e(n) (2)

where e(n) = [ei(n) e2(n)
RM is the subband error vector and s(n)
[s1(n) s2(n) sL(n)]T is the adaptive
filter. The subband input data matrix is given by
U(n) = [ui(n) uz(n) uy(n)] € REXM where the
columns are subband signals.

For the proportionate matrix W (n) = diag{w;(n), wa(n)
,- - ,wr(n)}, it is given by

eM(n)}T €

2-p
wiln) = (|si(n)| +c) =12, L 3)

where ¢ > 0 is a regularization constant for avoiding stagna-
tion and instability. The suggested range of the parameter p for
sparse, compressible (quasi-sparse) and dispersive solutions
are [1.0,1.2], (1.2,1.8) and [1.8, 2.0], respectively [7].

For the whitening matrix ®(n), a time-varying diagonal
regularization matrix A(n) can be employed as

®(n) = [AM) + V'MW Un)| RN @

where A(n) = diag{d1(n),d2(n), -+ ,0np(n)} and 06;,7i =
1,2, ..., M depends on the estimated time-varying variance of
the subband error e;(n). However, the proper estimation of
d; needs further investigations and empirical research. In this
paper, we use A(n) = ¢I where § > 0 is a samll constant.

In sum, (2), (3) and (4) give the proposed Sparsity-
promoting Normalized Subband Adaptive Filter algorithm (S-
NSAF). Indeed, the proposed update rule (2) is a generalized
framework for some well-known adaptive filtering algorithms
including NLMS, affine projection algorithm (APA), etc. We
hereby summarize the behaviors in TABLE L.

M=1 M>SILHZI | M>L,H=1
p=2 NLMS [4] NSAF [23] APA [33]
2>p>0 | PINLMS [27] | PINSAF [29] PtAPA [34]

TABLE I: Different cases of S-NSAF. For the correspondence
to NSAF and PINSAF, ®(n) needs to be approximated by a
diagonal matrix using a proper analysis filter bank.

Different from the direct combination method, i.e., the
PEM-based PINLMS for AFC [35], our proposed AFC frame-
work jointly combines decorrelation (first term in (1)) and
tunable sparsity exploiting (second term in (1)) in one cost
function and update rule. The PEM in our framework can be
considered as a way to establish a time-varying analysis filter
bank for better decorrelation.
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Fig. 2: The performance of AFC is better with higher M for a given p; and p = 1.5 is better than p = 2.0 for a given M, in
terms of normalized misalignment and ASG. Noticeably, the case of M = 4 and p = 1.5 outperforms all the other cases. If
the PEM is used, the performance can be further enhanced; there is approximately ASG improvement of 2.0 dB in all cases.

IV. SIMULATION RESULTS
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Fig. 3: The truncated FIR filters of different feedback paths
were measured from a HA on a dummy head. (a) represents the
IRs and (b) shows the magnitudes of the frequency responses.

In this section, we evaluate the performance of using S-
NSAF for AFC in HAs. To be more specific, the effects
of using different numbers of subbands M and different
degrees of sparsity promoting, namely, the p value, are jointly
investigated. In addition, the relationship between the PEM
and the proposed method is studied.

Experimental Setup: The experiments were conducted at
16 kHz with the input speech signal xz(n) from the TIMIT
dataset [36] and two feedback paths measured from the real-
world setup as shown in Fig. 3. In order to get realistic
simulations of human experiences, long speech signals (89.11
seconds) created by concatenating speech files were used.

The forward path, i.e., the HA processing, was simulated
by G(z) = g2~ where g was the gain in the linear scale and

d was the samples of delay corresponding to a fixed latency
of 8 milliseconds. In the setting of the S-NSAF, the length
L = 100 was set to the same size as the truncated FIR filter
in Fig. 3 and all taps were initialized by 0. For PEM, the order
of the prediction-error filter A(z) was 20 and the filter was
updated every 10 milliseconds via Levinson-Durbin recursion
with the window length of 160 samples [18]. The analysis
filter bank H is a cosine-modulated pseudo-quadrature mirror
filter (QMF) bank. M = 1, 2,4 were chosen to be evaluated.
We maintain the same length N = 16 of the analysis filters
for M = 2 and M = 4. The p values which were chosen
to be tested are 1.5 [7] and 2.0. For regularizations, we used
§ = 1075 and ¢ = 1073 for all simulations. The step size
is given by p = ﬁ x 1073 so that the comparison is fair for
adaptive filters using different M. All curves in Fig. 2 and Fig.
4 were ensemble averaged over 100 different speech signals.
During all experiments, a sudden change of the feedback path
was introduced at half time where this new path was given by
the one with obstruction in Fig. 3.

Evaluation Metrics: To evaluate the performance of the
proposed AFC using S-NSAF, the normalized misalignment
(MIS), added stable gain (ASG) [14], [37], short-time objec-
tive intelligibility (STOI) [38], [39] and hearing-aid speech
quality index (HASQI) [40] were used. The normalized mis-
alignment and ASG given by (5) were evaluated for a fixed
HA processing G(z) with the gain value set to 20 in dB
scale. On the other hand, the objective metrics including
STOI and HASQI were used to quantify the performance
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Fig. 4: In (a), the speech intelligibility is better with higher M for a given p; and p = 1.5 is better than p = 2.0 for a given
M. In (b), the speech quality is improved by choosing higher M; and the p value seems to be irrelevant. If the PEM is used,
the performance gaps between different M reduce in terms of STOI and HASQL.

of AFC for different values of gain g in the HA processing
G(z). Measuring AFC performance in different gain values
is critical since the gain in HAs is subject to change in real-
world scenarios. The STOI and HASQI were computed via
the comparison between the input speech signal x(n) and the
feedback-compensated signal e(n). They both are scores of a
single scalar which ranges from 0 to 1, where the higher the
score, the better the intelligibility or quality.

Jo1S(e) — F(ej“’)’2 dw
I | F(ei+) |2 dw
max,, ’F(ej“) |2

max,,|S(edw) — F(eiw)|?

Misalignments and ASGs under a fix gain: We first
consider the case where the PEM is not incorporated. In this
case, increasing M is the only way to further decorrelate
the signals. In Fig. 2(a) and Fig. 2(b), it is obvious that the

performance of AFC is better with higher M for a given p;

and p = 1.5 is better than p = 2.0 for a given M. Noticeably,

the case of M = 4 and p = 1.5 outperforms all the other
cases in terms of normalized misalignment and ASG. On the
other hand, M =1 and p = 2.0, i.e., the NLMS, is the worst
case since it has nothing to do with decorrelation and sparsity

promoting of the sparse feedback path. We observe that a

better decorrelation scheme can be potentially achieved by

choosing a larger M (here we have shown this up to M = 4).

In addition, the benefits of subband decomposition and sparsity

promoting are additive and complementary for AFC.

MIS = 10log;,
o)

ASG = 10log;,

Now consider the situation where the PEM is incorporated.
In Fig. 2(c) and Fig. 2(d), we observe the same conclusions
we have drawn from Fig. 2(a) and Fig. 2(b). However, notice
that the performance of AFC is further enhanced with PEM.
Comparing Fig. 2(b) to Fig. 2(d), there is approximately
ASG improvement of 2.0 dB in all cases if the PEM is
used. This means that the decorrelation performed by subband
decomposition can even be improved by employing PEM on
top of it. To be more specific, the combination of the analysis
filter bank and the prediction-error filter induces a time-varying
analysis filter bank which gives a better approximation to the
input spectrum; the bias reduction is then enhanced in AFC.

STOI and HASQI under different gains: In Fig. 4(a),
we observe that the speech intelligibility is better with higher
M for a given p; and p = 1.5 is better than p = 2.0 for
a given M. In Fig. 4(b), we find that the speech quality is
improved by choosing higher M; and the p value seems to be
irrelevant. When the PEM is incorporated as in Fig. 4(c) and
Fig. 4(d), the performance gaps between different M reduce in
terms of STOI and HASQI. However, the incorporation of the
PEM does not seem to necessarily improve the performance
for M = 4 here. According to Fig. 4(c), the p value has larger
impact on speech intelligibility when the gain is increased.

V. CONCLUSION

Different from our previous work [20] which was only
evaluated in a theoretical system identification setting, a new
formulation of jointly exploring sparsity promoting and decor-
relation is proposed for practical AFC applications. In the
proposed method, the effectiveness of using different degrees
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of sparsity promoting and number of subbands are studied
extensively with a large speech corpus and different feedback
paths. The simulation results show that higher number of
subbands (up to a certain level) and a proper degree of
sparsity promoting give superior AFC performance in terms
of commonly used metrics regardless of the incorporation of
the PEM. Compared with the ordinary AFC using the NLMS,
our proposed method improves ASG by 2 to 3 dB, STOI and
HASQI from 0.91 to 0.94 and 0.76 to 0.81, respectively.
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