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Statistical estimates from survey samples have traditionally been ob-
tained via design-based estimators. In many cases these estimators tend to
work well for quantities, such as population totals or means, but can fall short

LIRS

as sample sizes become small. In today’s “information age,” there is a strong
demand for more granular estimates. To meet this demand, using a Bayesian
pseudolikelihood, we propose a computationally efficient unit-level model-
ing approach for non-Gaussian data collected under informative sampling de-
signs. Specifically, we focus on binary and multinomial data. Our approach
is both multivariate and multiscale, incorporating spatial dependence at the
area level. We illustrate our approach through an empirical simulation study
and through a motivating application to health insurance estimates, using the
American Community Survey.

1. Introduction. An important dichotomy in the realm of small-area estimation is that
of area-level vs. unit-level modeling approaches. In general, area-level models use the design-
based direct estimate as a response within a statistical model. These models tend to smooth
the noisy direct estimates in some fashion and estimate the true latent population value. In
contrast to this, unit-level models treat the individual survey respondents as observations in
the statistical model. Predictions can then be made for the entire population and aggregated
as necessary to produce the desired estimates. As the need for more granular estimates be-
comes essential, area-level models may perform poorly, due to underlying direct estimates
with extremely small or nonexistent sample sizes. Unit-level approaches offer an attractive
alternative by modeling the individual survey responses directly rather than smoothing the
direct estimators. Although unit-level methodologies offer many advantages over their area-
level counterparts, they also face their own set of challenges.

The primary difficulty with modeling survey data at the unit level is the consideration of
informative sampling. Many surveys are sampled in an informative manner, whereby there is
dependence between the probability of selection and the response of interest. When this re-
lationship is not accounted for, increased bias may be present in the corresponding estimates
(Pfeffermann and Sverchkov (2007)). The basic unit-level model, introduced by Battese, Har-
ter and Fuller (1988), assumes that the sample model holds for the entire population, and
thus does not account for informative sampling. Parker, Janicki and Holan (2019) review
the current methods for addressing the problem of informative sampling. Of primary interest
is the pseudo-likelihood (PL) method (Skinner (1989), Binder (1983)), which exponentially
weights each unit’s likelihood contribution according to the corresponding survey weight.
Savitsky and Toth (2016) extend the PL approach to Bayesian settings and provide theoreti-
cal justification. Other methods to account for the survey design include modeling the design
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variables (Little (2012)), nonlinear regression on the survey weights (Si, Pillai and Gelman
(2015), Vandendijck et al. (2016)) as well as specifying a sample model and weight model to
find the implied population model (Pfeffermann and Sverchkov (2007)).

Although the problem of informative sampling has been studied in depth, there are other
concerns with unit-level modeling that have received considerably less attention. In general,
one major difference between area and unit-level approaches is dimensionality. Modeling
survey data at the unit level can result in sample sizes that are magnitudes larger than those
considered at the area level. Unit-level models are fit to individual survey responses which
can number in the millions for large-scale surveys. In contrast, area-level models are typi-
cally fit to aggregated survey statistics, such as survey-weighted means, which may number
in the thousands. For example, the American Community Survey (ACS) samples 3.5 million
households annually which may reasonably fall under the realm of “big data.” With these
extremely large sample sizes comes computational concerns that must be addressed in order
to make unit-level modeling viable. To further exacerbate the problem, many survey vari-
ables are non-Gaussian which can lead to nonconjugate full conditional distributions when
modeling dependence relationships using traditional Bayesian hierarchical models. Sampling
from these posterior distributions can require Metropolis steps that are not efficient and can
be cumbersome to tune.

Bradley, Holan and Wikle (2020) introduce a class of conjugate prior distributions that
may be used to model dependence for non-Gaussian data in the natural exponential family.
This covers important cases, such as Binomial, Multinomial, and Poisson data. Parker, Holan
and Janicki (2020) extend this approach to model-count data at the unit level under infor-
mative sampling through the use of a PL. Unfortunately, sampling from the full conditional
distributions can be difficult under these approaches when observations fall on the boundary
of the data (i.e., zero for Poisson data, zero or one for Bernoulli data, etc.). Parker, Holan
and Janicki (2020) work around this by using an importance sampling scheme that works
well when there are not an excessive number of boundary values (zeroes for Poisson data).
However, many surveys contain a multitude of Binomial or Bernoulli random variables which
results in an abundance of boundary counts.

There are a number of data augmentation approaches that have been developed to yield
conjugate full-conditional distributions for Bernoulli data. Albert and Chib (1993) use la-
tent Gaussian variables in conjunction with a probit link function to model Bernoulli data.
More recently, Polson, Scott and Windle (2013) use latent Pélya-Gamma random variables
to model binomial data with a logit link function. This approach may also be used to model
negative binomial as well as multinomial data.

In this paper we develop methodology to model binomial and multinomial data at the
unit level in a computationally efficient manner, while accounting for informative sampling.
This is done through the use of Bayesian hierarchical modeling in order to capture various
sources of dependence. As previously alluded to, the weights are essential to account for the
sampling design, and without them we could end up with significantly biased estimates of
the target tabulations. Conversely, depending on the problem, using the pseudolikelihood can
still result in a computationally intensive estimation problem. For this reason we develop a
variational Bayes approach, based on using fixed weights from the survey provided by the
official statistical agency. As such, we consider both a Gibbs sampling approach with fully
conjugate full conditional distributions as well as a variational Bayes approach to model
fitting.

As a motivating example we consider the problem of estimation of the proportion of peo-
ple with health insurance at the county level for different income to poverty ratio (IPR)
categories. Currently, the Small Area Health Insurance Estimates (SAHIE) program within
the U.S. Census Bureau produces estimates of health insurance rates, using an area-level
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small area model, fit to direct survey estimates using ACS data (Bauder, Luery and Szelepka
(2018)). The model-based estimates produced by SAHIE are the only source of single year
health insurance coverage estimates at the county level. While the estimates are generally
more precise than the corresponding direct estimates, there are serious modeling challenges
with developing area level models for health insurance coverage. First, there are boundary
issues in that many of the direct estimates at the county level are exactly equal to either O
or 1, making use of continuous models impossible. Second, there are policy requirements to
benchmark lower-level county estimates to state-level estimates so that users have confidence
in the quality of the data. Third, there are multiple within-county estimates that need to be pro-
duced, such as health insurance coverage by income level, and accounting for within-county
dependencies in an area-level model can be difficult. Finally, the computational requirements
of fitting the model used by SAHIE are enormous, due to the complexity of the model and
the number of estimates that are produced, despite the fact that an area-level model is used.

The model proposed in this paper eliminates many of these problems. The boundary is-
sues are resolved by using non-Gaussian likelihoods at the unit level. There is no need to
benchmark estimates, as the PL. produces predictions at the unit level, which can then be
aggregated up to any desired geographic level. Spatial and multivariate dependencies are
handled through careful specification of the process model. Finally, computational efficiency
is achieved through a variational Bayes approximation. This work builds upon Zhang et al.
(2014), who use a pseudolikelihood for binary data in a frequentist context. In particular, we
extend to the multinomial setting, which allows for categorical response data, as well as to
the Bayesian pseudolikelihood which allows for straightforward uncertainty quantification.
This paper provides several contributions to the existing literature. Importantly, our unit-level
model provides a multiscale approach, bringing in spatial dependence at the area level, while
modeling unit-level responses. Also, through the use of our multinomial specification, we
are able to seamlessly combine multiple responses into one coherent modeling framework.
In terms of computation, we develop a Gibbs sampling approach to model fitting, through
the use of P6lya-Gamma data augmentation, building upon Polson, Scott and Windle (2013).
Finally, we extend the variational Bayes approach of Durante and Rigon (2019), which is
intended for logistic regression, to be used in the case of our pseudo-likelihood mixed model.

The remainder of this paper is organized as follows. Section 2 introduces some neces-
sary background material and then presents our proposed models as well as the method-
ology used to fit the models. We conduct an empirical simulation study in Section 3. We
also provide a data analysis in Section 4 where we estimate the health insurance rate for
each county and five different income categories for the entire continental U.S. Finally, we
provide concluding remarks and discussion in Section 5. Although the data used herein is
confidential microdata, we provide code and an example using ACS public-use microdata at
https://github.com/paparker/Unit_Level _Non-Gaussian as well as in the Supplementary Ma-
terial (Parker, Holan and Janicki (2022)).

2. Methodology. Letl/ ={1,..., N} be an enumeration of a finite population of inter-
est. Suppose the finite population, I/, can be represented as the union of m nonoverlapping
subpopulations or small areas, ¢/; = {1, ..., N}, where Z’]’Ll N;j=N,and j €{l,...,m}
indexes the small areas. Associated to each unit i € U; is a characteristic of interest, Z;;, and
a vector, x;;, of auxiliary information.

A sample, S C U, is selected from the finite population according to a known sampling
design. Let 7; = P(i € S) be the sample inclusion probability for unit i in the finite popula-
tion, and let w; = 1/m; be the survey weight. A typical inferential goal is estimation of the
finite population means

1 i
(1) Zj=—-> 7
Nji3
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from the observed survey responses. The Horvitz—Thompson estimator (Horvitz and Thomp-
son (1952))

2 1
(2) Zj=+ > wijZij,
J i€S;

where §; = S NU; is a design-unbiased and design-consistent estimator of the finite popula-
tion mean, Z j- We refer to any estimate, which only used the observed survey data, such as
(2), as a direct estimate.

Let n be the total number of sampled units, and let n; be the number of sampled units in
&;. In many surveys the overall sample size, n, and many of the area-specific sample sizes,
n;, are large. For these areas the large-sample properties of the Horvitz—Thompson estimator
guarantee that (2) will be a precise estimator of the finite population mean (1). However, it is
also often the case that, for many of the small areas of interest, n; will be too small for (2) to
be reliable. In such situations, precision can be increased by using models for the survey data
which incorporate auxiliary information to “borrow strength” by relating the different small
areas and increasing the effective sample sizes.

Models for small area estimation (SAE) often include area-level random effects in order
to link the small areas and incorporate spatial dependence. These random effects are typi-
cally modeled using a latent Gaussian process (LGP), and Bayesian hierarchical modeling is
a common technique used to fit these models. This may be computationally efficient when
considering a Gaussian response, as it leads to conjugate full conditional distributions; how-
ever, when the data model (likelihood) is non-Gaussian, sampling from the posterior distribu-
tion can become difficult, as it may require the use of Metropolis type steps. These sampling
mechanisms require tuning that can become unwieldy especially in high-dimensional situa-
tions.

Polson, Scott and Windle (2013) use a data augmentation scheme to allow for conjugate
sampling under logistic likelihoods. Importantly, this includes both Bernoulli and multino-
mial responses, which is useful, as binary and categorical data are two often observed types of
non-Gaussian survey data. This class also includes the negative-binomial distribution which
may be used to model count data.

Specifically, Polson, Scott and Windle (2013) define a random variable X to have a Pdlya-
Gamma distribution with parameters b > 0 and ¢ € ‘R, denoted PG(b, ¢), if X is equal in
distribution to

1 & 8k
272 ,; (k—1/2)2 + 2/ (472’

where gi ng Gamma(b, 1). Furthermore, they show that

¥ya 00

3) ﬁ — 2 bV /0 e~V 2 p(w) do,

where k =a — b/2 and p(w) is a PG(b, 0) density. They also show that (w|y) ~ PG(b, V).
Thus, with a binomial likelihood, using this data augmentation scheme and Gaussian prior
distributions, one can sample from Gaussian full conditional distributions for the parameters,
and Pélya-Gamma distributions for the latent augmentation variables. The BayesLogit
package in R provides efficient sampling of P6lya-Gamma random variables (Windle, Polson
and Scott (2013))
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2.1. Pseudolikelihoods. One of the main difficulties when implementing unit-level mod-
els for survey data is accounting for an informative sampling design. For example, certain
demographic subgroups may be sampled with higher probability, but there may also be a re-
lationship between these subgroups and the response variable of interest. Under this scenario
the sample is not representative of the population, and thus the sample likelihood should be
adjusted to account for this. Parker, Janicki and Holan (2019) give a review of modern meth-
ods for unit-level modeling under informative sampling. One general approach is to use a
pseudolikelihood, introduced by Skinner (1989) and Binder (1983), by weighting each unit’s
likelihood contribution using the reported survey weight wj,

4) [[rzi16),
ieS
where S indicates the sample and Z; represents the response value for unit ;.
The PL can be maximized, using maximum-likelihood techniques; however, Savitsky and
Toth (2016) show that a PL may also be used in a Bayesian setting, thus generating a pseudo-
posterior distribution

#012.8) o {[] £(Zi10)" |70).
ieS
They emphasize the importance of scaling the weights to sum to the sample size, w; =
nﬁ, in order to prevent contraction of the PL and achieve appropriate variance esti-
j=1%J

mates.

Using a unit-level model such as this, it is simple to generate predictions for any unob-
served units, thereby effectively generating the population. It is then straightforward to ag-
gregate units in order to estimate any finite population quantities, such as for SAE purposes.
Under a Bayesian framework this can be done for each sample from the posterior distri-
bution, thus yielding a posterior distribution over any desired estimates. In the special case
where all covariates are categorical in nature, this approach can be seen as a type of poststrat-
ification (see Gelman and Little (1997) and Park, Gelman and Bafumi (2006) for examples
of poststratification outside of a pseudo-likelihood framework). For special cases where the
poststratification variables include all survey design variables, poststratification alone may
be used to account for the sample. However, this is typically not the case for complex survey
designs; thus the pseudolikelihood may be used in conjunction with poststratification. Zhang
et al. (2014) provide an example of a pseudolikelihood and poststratification combination for
small area estimates in a frequentist framework, whereas Parker, Holan and Janicki (2020)
take a Bayesian pseudolikelihood and poststratification approach.

Now, an unweighted binomial likelihood has the form

(elﬁi)zi
1_[ (14 eViyni”

ieS
By using a pseudolikelihood instead, the form becomes
(eVi)Zi Wi (eVi)Zi
() =g
ieS ¢ ies (L +e¥i)"

where Z* = Z; x w; and n} =n; x w;. The PL given by (5) is of the same form as that
given in (3); thus, we are able to sample from conjugate full conditional distributions, using
a binomial type PL with Gaussian prior distributions, and PG data augmentation variables.
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2.2. Binomial response model. Using the P6lya-Gamma data augmentation scheme, we
develop a computationally efficient pseudo-likelihood mixed model for binomial survey data
(PL-MB) under informative sampling,

Z|B,n « [ [ Bin(Zi|n;, pi)™",

ieS§
logit(p;) =x; B + ¢},
(6) 77|0;72NNr(0r»0'31r),

B ”Nq(oqaaélq)’
oy ~1G(a, b),

og,a,b>0,

where Z; represents the response for unit i € S. We model the data using a binomial pseu-
dolikelihood, with n; representing the number of trials and p; representing the probability
of a positive response (e.g., a unit having health insurance) for unit i. In many survey data
scenarios, including those explored here, the data is binary; thus, n; = 1, Vi. The vector x:.
represents a g-dimensional set of covariates, and f is the g-dimensional vector of fixed ef-
fects. In this work the vector ¢} represents either an r-dimensional vector of spatial basis
functions or an incidence vector, indicating in which area unit i resides. In this way the
r-dimensional vector 5 acts as area-level random effects. Note that the binomial pseudolike-
lihood can be rewritten using (3). Although we do not present the model this way for the sake
of readability, we take advantage of this fact when we construct the Gibbs sampling scheme
which introduces a step to sample the latent Pélya-Gamma random variables. The full condi-
tional distributions for Gibbs sampling, which rely on the Pélya-Gamma data augmentation,
can be found in Appendix A. As an alternative to Gibbs sampling, for manageable sample
sizes Hamiltonian Monte Carlo could be used, for example via Stan (Stan Development Team
(2021)).

2.3. Variational Bayes approximation. In many high-dimensional settings it can become
a computational burden to sample from the posterior distribution via MCMC, even through
the use of Gibbs sampling with fully conjugate full conditional distributions. For example,
using the Pélya-Gamma data augmentation scheme, a latent random variable must be drawn
for every sample observation at every iteration of the MCMC. As sample sizes become very
large, this may become infeasible, even after allowing for parallel computing techniques. One
popular solution to this computational problem is the variational Bayes approach (Jordan
et al. (1999), Wainwright et al. (2008)) for which an approximation to the posterior distribu-
tion is used rather than the true posterior distribution. A class of distributions, D, is chosen
for ¢g*(@), the approximation to the true posterior, p(6|x). Optimization techniques may then
be used to minimize the Kullback-Leibler (KL) divergence between the approximate and true
posterior distributions,
(7 q"(0) = argminKL(q(8)||p(0]x)).

q(0)eD

Beal and Ghahramani (2003) focus on a specific case known as the variational Bayes EM
algorithm. The approximating distribution can be factored into a product of global param-
eters and local latent variables, ¢(0) = q(B) [17_; ¢(&). With this factorization an iterative
approach can be used to minimize the KL divergence, where

q(B)" o exp{E i1 ), log[p(BIZ, §)]},

®)
q &) ocexp{E -1 gy log[p&ilZ. & ;. )]}, i=1,....n.



UNIT-LEVEL MODELS FOR NON-GAUSSIAN DATA 893

Algorithm 1: VB EM algorithm for PL-MB model
Initialize 5,% and éi, i=1,...,n;
Let D=[X,®]and ¢ =(B",7) ;
for t = 1 until convergence do

Diag(%tanh(él /2), ..., %tanh(én /2);

3= (blockdiag(aiél,,, “f}:z/zl,) +D'9D) !,
y=Z(p+D:(p+r, (p+D:(p+nk
(R i) =ED'(w O (Z ~1/2));
g = b+ 3 (i, + (Ey));
fori=1tondo

| & =(DiZDi+ D)
end

[l
Il

Qu = M
Il

end

In models that use fully conjugate full conditional distributions as well as likelihoods from
the exponential family, these factorized approximate distributions are of the same class as
their corresponding full conditional distribution. Importantly, this includes the case of logistic
regression via Pélya-Gamma data augmentation for which Durante and Rigon (2019) explore
a variational Bayes EM algorithm approach.

Algorithm 1 provides an extension of the one explored by Durante and Rigon (2019),
which is intended for unweighted logistic regression, and thus not directly applicable to our
pseudo-likelihood mixed model. The main extension of this algorithm is the inclusion of the
pseudolikelihood rather than the original binomial likelihood. This algorithm may be used in
place of MCMC in order to fit the PL-MB model in high-dimensional settings. Independent
samples from the variational approximation to the posterior of ¢ = (8, ") may be drawn
by sampling from a N(ix, %) distribution which may then be used to produce any desired
Monte Carlo estimates. We give more details about prediction using poststratification with
the variational distribution in Appendix B.

2.4. Multinomial response model. In addition to binomial data, multinomial or categor-
ical data is often observed in survey data. In a similar fashion as the PL-MB model, we can
write the pseudo-likelihood mixed effect multinomial model (PL-MM) with K categories as

Z|B, 1 o [ | multinomial (Z; |n;, p;)™,
ieS
_exp(¥ir)
B Zf:l exp(ll’ik)’
Vi = x:'ﬂk + ¢:"Ik,
nklog ~Ne(0p 00 1)), k=1,... . K—1,

Dik

®

Bi~N,(0,,051,), k=1,....K—1,
oy ~1G(a.b), k=1,....K—1,

og,a,b>0,
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where B and 5 are constrained to be equal to zero for identifiability. The K -dimensional
vector Z; represents the number of successful outcomes in each of the K categories for
survey unit i, and the K-dimensional vector p; represents the probability of each category
for unit ;.

Although Algorithm 1 is intended for binomial data, a stick-breaking representation of
the multinomial distribution can be used to expand the applicability of this VB approach.
Specifically, Linderman, Johnson and Adams (2015) show that the multinomial distribution
may be written as a product of independent binomial distributions,

K—1
(10) multinomial(Z|n, p) = [ [ Bin(Zklnk, p).

k=1
where

~ Pk
(11) ne=n->y_Zj, pp=———— k=2,...,K.
j<k I - Zj<k p]
Under this view of multinomial data, we can rewrite the PL-MM model as
K—1 ~
Z|B,n o [ [ [] Bin(Ziklnix. pin)™"
ieS k=1
logit(pix) = x; By + P; 0.

(12) nklo'y?k'\’Nr(Or,UnzkIr)» k=155K_15

Bi~Ny(0,.051,), k=1,... K—1,
oy ~1G(a,b), k=1,....K—1,
og,a,b>0,
where njx =n; — Y ; 4 Zij and pix = %, k=2,...,K. Thus, the PL-MM model
j< ij
may be fit as a series of K — 1 independent binomial models, using either MCMC or the

VB approach outlined in Algorithm 1. Note that, after fitting the model, the stick breaking
probabilities p; can be transformed back to the original probabilities p; for inference.

3. Empirical simulation study. In order to mimic a real survey data setting, our sim-
ulations revolve around resampling of an existing survey dataset rather than generating a
synthetic population from a parametric distribution. Specifically, we treat the existing survey
sample as our population and then take a further sample with probability proportional to s;, a
size variable that is constructed in an informative manner. This informative sampling scheme
can be validated by comparing the weighted design-based estimator to an unweighted design-
based estimator. Under an informative design the unweighted estimator will result in greater
bias.

3.1. Multinomial response simulation. An important SAE application is the Small Area
Health Insurance Estimation (SAHIE) program (Bauder, Luery and Szelepka (2018)). The
goal of SAHIE is to estimate the proportion of individuals with health insurance by county
for a number of income to poverty ratio (IPR) categories. IPR is defined as family income,
divided by the appropriate federal poverty level. The IPR categories under consideration are
0-138%, 138-200%, 200-250%, 250-400%, and 400+ %. The thresholds for the first three
IPR categories are motivated, in part, by needs of the Centers for Disease Control and Pre-
vention, which provides breast and cervical cancer screenings for low income and uninsured
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women. The IPR categories are also relevant to the Affordable Care Act which increased
access to health insurance. In participating states, Medicaid programs expanded health insur-
ance access to individuals and families with IPR less than 138% and provided tax credits for
those with IPR between 138% and 400%.

The true number of people within each IPR category is unknown and must be estimated.
Thus, to create estimates of the proportion with health insurance by IPR category, health in-
surance and IPR category must be modeled simultaneously. Within each IPR category an indi-
vidual may be categorized as either having or not having health insurance. In this manner we
view individuals as falling into one of 10 distinct categories, (C1,0, ..., Cs,0,C1.1,-..,C5.1),
where C; x indicates an individual in IPR category j =1, ..., 5 and health insurance indica-
tor k = 0, 1. The multivariate structure of the data, with many IPR categories, and the need
to estimate both the number in each IPR category along with the proportion with health in-
surance makes unit-level modeling appealing for this dataset. In addition, there are areas for
which there is no sample, areas for which there are direct estimates on the boundary of the
parameter space that are exactly equal to zero or one, and direct estimates for which the sam-
pling variance estimates are not well defined, which makes area-level modeling challenging.
Since there is no established theory for applying area-level methodology to this type of survey
data, we restrict our simulation study to unit-level methods.

To construct health insurance estimates by county and IPR category, we fit the PL-MM
with 10 categories, using n; = 1 for all i. We let x; consist of poststratification variables,
including race category, sex, and age category. We also let ¢; be a vector indicating which
county unit i resides in. Thus, the model uses a county level random effect. We use a vague
prior distribution over 8 and 0772 by setting o*é = 1000 and a = b = 0.5. A sensitivity analysis,
given in Appendix C, confirmed that these prior choices had very little effect on the model
outcome, but for other data scenarios this choice should be considered carefully. The model is
fit using both the MCMC and VB fitting strategies, with both drawing a posterior sample size
of 1000, after discarding 1000 draws as burn-in for MCMC. For MCMC, convergence was
assessed visually through the use of traceplots of the sample chains along with the Geweke
convergence diagnostic (Geweke (1992)) for which no lack of convergence was detected.
After fitting the model on the sample data, predictions are made for all units in the popula-
tion. The synthesized population is then aggregated to the desired level of the estimates (i.e.,
county by IPR category). This is done for each posterior draw, giving a posterior predictive
distribution for the desired estimates.

To assess the SAE capability of our PL-MM model through simulation, we treat the 2014
one-year American Community Survey (ACS) sample in Minnesota as our population. This
data contains roughly 120,000 respondents across Minnesota’s 87 counties. We then take
a further probability proportional to size sample without replacement, using the Poisson
method (Brewer, Early and Hanif (1984)) with an expected sample size of 10,000. We use the
size variable s; = exp{w 4 2I(H; = 0)}, where w} is the original survey weight for unit i af-
ter scaling to have mean zero and standard deviation of one, and H; indicates whether or not
unit { had health insurance. Estimates are constructed using the PL-MM with both MCMC
and VB fits. We also construct a Horvitz—Thompson direct estimate as well as an unweighted
direct estimate. We repeat the sampling and estimation process 50 times in order to compare
MSE and bias across estimators.

A summary of the simulation results in given in Table 1, including average mean squared
error (MSE) and squared bias for the competing estimators as well as computation time and
95% credible interval (CI) coverage rates for the two model based estimators. The higher bias
of the UW estimator relative to the direct estimator indicates that the sampling scheme was
indeed informative. The two model based approaches yield significant reductions to MSE
when compared to the direct estimator. Surprisingly, the predictions using the VB approach
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TABLE 1
MSE and squared bias of the four estimators averaged across counties based on simulation results.
Average computation time in seconds and 95% credible interval coverage rate are also given for
the model based estimates

Estimator MSE Bias? Time (s) Coverage rate
Model MCMC 7.1 x 1073 3.7x 1073 7314 94%
Model VB 2.3x1073 1.7 x 103 140 87%
Direct 9.9 x 102 3.8 x 1072 - -

UW direct 1.6 x 1071 1.1 x 107! - -

had even lower MSE than the predictions using MCMC. The reason for the reduced MSE
is not entirely clear and is a subject for future research. The downside to the VB approach
is that the approximate posterior results in uncertainty estimates that are not optimal. This is
reflected in the lower 95% CI coverage rate for the VB approach, compared to the MCMC
approach. This is to be expected, as the VB approach only approximates the true posterior
distribution. However, the differences are relatively minor and can be justified through the
massive decrease in computation time.

We also show the MSE by county and IPR category for each estimator in Figure 1. The
largest reductions in MSE through model-based estimation tend to occur for the more rural
and sparsely populated regions of the state. These counties tend to have smaller sample sizes,
resulting in more erratic direct estimates. The model-based estimates borrow strength from
sampled units in all counties, resulting in more stable (i.e., lower MSE) estimates.

IPRCAT: 1 IPRCAT: 2 IPRCAT: 3 IPRCAT: 4 IPRCAT: 5

44448
KERERY -
kerey-|
44448

FI1G. 1. Empirical mean squared error by county across the simulation based estimates for the state of Min-
nesota. Columns represent the different IPR categories and rows represent the different estimators.
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4. Data analysis. The simulation in Section 3 illustrates how the PL-MM model may
be used to generate SAHIE type estimates for a single state. However, the SAHIE program
is tasked with creating estimates for the entirety of the U.S. rather than a single state. The
bottleneck in the MCMC approach to the PL-MM model is the generation of P6lya-Gamma
random variables for every sample observation at every MCMC iteration. Although this ap-
proach is feasible at a state level, it becomes unwieldy at the national level, where the ACS
samples 3.5 million households annually. For this reason we rely on the VB approach to the
PL-MM model in order to create estimates of health insurance by county and IPR category
for the entire continental U.S.

Again, we use the PL-MM model with 10 categories and n; = 1 for all i. We also use
the same prior distribution and poststratification variables that were considered in Section 3.
There are over 3000 counties in the U.S., compared to only 87 in Minnesota; thus, we require
a form of dimension reduction for ¢; rather than using county indicators. To do this, we let
¢; be equal to a set of spatial basis functions evaluated for unit i. Specifically, for illustration
we use the first 307 (10%) eigenvectors of the county adjacency matrix as our spatial basis
functions. This choice was motivated, in part, by the suggestion of Hughes and Haran (2013)
to use 10% of the available eigenvectors as well as by the need for substantial dimension
reduction with respect to the random effects. In this problem, due to modeling at the unit level,
some form of dimension reduction is needed to avoid having memory issues that would result
from an approximately 4.5 million x 3000 dimensional matrix. Choosing the number of basis
functions is problem specific and constitutes an ongoing area of research; for example, see
Bradley, Cressie and Shi (2016) and the references therein.

We fit the PL-MM model, using the VB approach, with a sample size of roughly 4.5 mil-
lion. We then take 1000 independent draws from the variational posterior distribution in order
to construct the posterior predictive distribution of our estimates. Treating the posterior pre-
dictive mean as our point estimates, we plot the model-based estimates alongside the direct
estimates in Figure 2. In order to satisfy the disclosure avoidance requirements of the U. S.
Census Bureau, a small amount of noise was added to the direct estimates shown in the maps
in Figure 2. However, this is the only instance of any additional noise being added to data or
estimates. All models were fit to the raw ACS data, and all other results are presented with-
out any additional noise. Visually, the direct estimates are quite noisy, due to the very small
sample sizes in many counties. The model-based estimates are able to provide a degree of
smoothing through the use of borrowed information in the hierarchical model structure. This
results in model based estimates that have the same general spatial pattern as the direct esti-
mates without as much noise. We also plot the health insurance estimates by county without
regard to IPR category in Figure 3. Similar patterns can be noticed here.

We plot the ratio of the model-based standard errors to the direct-estimate standard errors
by county and IPR category in Figure 4. For the vast majority of estimates, the model-based
approach provides quite substantial reductions in standard error, with the largest advantage
occurring in the more sparsely populated southern and western regions of the country.

This example demonstrates how the PL-MB and PL-MM models may be used to model
complex dependence structures with non-Gaussian data in a computationally efficient man-
ner. The VB approach specifically was able to generate estimates for over 15,000 county and
IPR category combinations, utilizing a sample size of over four million, in roughly 17 hours.
These estimates are much less noisy than direct estimates, with substantially lower standard
errors. Furthermore, the simulation results of Section 3 indicate that these model-based es-
timates should have much lower MSE. In addition to advantages over the direct estimate,
this approach has many advantages over area-level modeling approaches, such as the one
currently in use for SAHIE. For example, unit-level models allow for easy aggregation to
multiple domains. A single PL-MM model may be used to give county- and state-level esti-
mates, whereas area-level modeling strategies require two separate models and often rely on
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FI1G. 2. Direct- and model-based estimates of the proportion of the population with health insurance by county
and IPR category for the continental United States.

ad hoc benchmarking techniques. Another advantage is that unit-level models do not require
a direct estimate for a given area in order to construct an estimate, in contrast to area-level
models.

5. Discussion. This paper establishes a framework for modeling binomial and multi-
nomial unit-level survey data, specifically under an informative sample. We envision this
methodology being used to create area-level estimates of population proportions with health
insurance (SAHIE) as our motivating example. The current methodology used to generate
SAHIE estimates is conducted at the area level which can cause a number of problems that
are alleviated through the use of unit-level modeling. Our unit-level approach is able to gen-
erate multiple levels of estimates through a single model without the need for benchmarking
techniques. We demonstrate this by producing health insurance estimates by county as well
as by IPR category within each county for the entire continental U.S. Our approach is also
able to produce very precise estimates, compared to traditional direct estimators, as demon-
strated by our empirical simulation study. Finally, these estimates can be produced in a very
computationally efficient manner either through the use of either Gibbs sampling with fully
conjugate full-conditional distributions or through a VB approximation to the posterior dis-
tribution.
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FIG. 3.  Direct- and model-based estimates of the proportion of the population with health insurance by county
for the continental United States.

Although this paper provides a methodological step forward for small-area estimates of
health insurance, further work would be necessary to create estimates that might replace the
current SAHIE program. For example, the current SAHIE methodology considers a number
of important covariates that were not considered here, due to disclosure limitations, including
data from the Supplemental Nutrition Assistance Program as well as Medicaid. Furthermore,
the method considered here is a type of generalized linear model, but there is potential for
improvement through the use nonlinear modeling techniques which is the subject of future
work.

APPENDIX A: FULL CONDITIONAL DISTRIBUTIONS FOR PL-MB MODEL

Let & = diag(w, ..., w,) and k = (W * (y; —n1/2), ..., Wy * (y, —n,/2))". Note that
k /o represents elementwise division,

wi|- ~PG(w; *ni, x;B+¥in), i=1,...,n,

n 1
nl-oc ] exp(xi(b;r] — i (®}n)” — i (¢§n)(x;-ﬂ)>
i=1

1 ’
X €Xp —ﬁﬂﬂ )
n
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F1G. 4. Ratio of model-based standard errors to direct-estimate standard errors by county and IPR category for
the continental United States. Counties with no available direct estimate are shown in gray.
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APPENDIX B: POSTSTRATIFICATION ROUTINE WITH THE VARIATIONAL

DISTRIBUTION

To construct our estimates, we require response predictions for every unit in the popula-
tion. We will assume for the sake of exposition that the responses are binary, but these same
techniques can be applied to categorical responses as well.

Because our model utilizes only categorical rather than continuous covariates, computa-
tion can be simplified through the use of poststratification cells. Specifically, let j =1,...,J
index the J unique poststratification cells (e.g., the unique combinations of categorical co-
variates and county indicators). Each cell is also associated with a population size, N ;. Within
each cell, population units are exchangeable, and predicted responses can be generated from
the same distribution. To estimate p;, the probability of a successful outcome in cell j, we
require estimates of B and n as well as the vector of cell covariates, x; and the vector of
spatial basis functions for the cell, ¢ ;.

To begin, we work with our variational distribution for ¢ = (8’, ’). We can sample from
this distribution by sampling from a N(ji, ¥) distribution, where ji and ¥ are estimated from
the variational Bayes procedure outlined in Algorithm 1. We take R total posterior samples,
yielding 8 ) and @) for r = 1,..., R. Then, for each posterior sample » and each cell

J, we generate the population (i.e., the number of positive responses) within the cell, s(r)

by sampling from Bin(N;, ( )) where p loglt_l(x B + ¢ 7). Having effectlvely
generated a synthetic populatlon we can aggregate the unlts w1th1n a given domain to gener-
ate a population estimate. For example, for a given iteration », we can create an estimate of
the population proportion in county c as

(r)
p(r) Z] GC
¢ Zj ec

Then, for our point estimate of the population proportion in county ¢, we use the posterior
mean,

me_

APPENDIX C: PRIOR SENSITIVITY ANALYSIS

The choice of prior distributions in our model construction was based on computational
efficiency; however, other distributions could be considered. Our choice of hyperparameters
was intended to induce a vague prior distribution, but we conduct a prior sensitivity analysis
to confirm that our results are not sensitive to this choice.

For one of the simulated datasets in Section 3, we fit our model, using the variational
Bayes procedure, under a variety of different hyperparameter settings. In particular, we con-
sider the grid over crg = {10, 1000, 10,000} and a = b = {0.1, 0.5, 2}. This results in eight

alternative hyperparameter settings that we can compare to our original choice (aé = 1000
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FIG. 5. Q-Q plots of standardized estimates for a simulated sample dataset under various hyperparameter
settings, compared to the specification chosen for analysis, where aé = 1000 and a =b =0.5.

and a = b = 0.5). For each hyperparameter setting, we construct a quantile-quantile (Q-Q)
plot of the standardized estimates, compared to the standardized estimates under our original
specification. These are given in Figure 5. In every case the points lie nearly perfectly on the
one-to-one line, confirming that the distribution of our estimates is not sensitive to the choice
of hyperparameters.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Computationally efficient Bayesian unit-level models for non-
Gaussian data under informative sampling with application to estimation of health
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insurance coverage” (DOI: 10.1214/21-AOAS1524SUPP; .zip). We provide code as well
as a data example using public use microdata.
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