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We propose a Bayesian hierarchical Jolly-Seber model that can accom-
modate a semiparametric functional relationship between external covariates
and capture probabilities, individual heterogeneity in departure due to an in-
ternal time-varying covariate and the dependence of arrival time on external
covariates. Modelwise, we consider a stochastic process to characterize the
evolution of the partially observable internal covariate that is linked to depar-
ture probabilities. Computationally, we develop a well-tailored Markov chain
Monte Carlo algorithm that is free of tuning through data augmentation. Infer-
entially, our model allows us to make inference about stopover duration and
population sizes, the impacts of various covariates on departure and arrival
time and to identify flexible yet data-driven functional relationships between
external covariates and capture probabilities. We demonstrate the effective-
ness of our model through a motivating dataset collected for studying the
migration of mallards (Anas platyrhynchos) in Sweden.

1. Introduction. Migration is a common phenomenon in birds, especially in areas with
pronounced seasonal variation. However, in most species, migration is not conducted as a sin-
gle flight from the breeding area to the nonbreeding area; rather it is broken down into shorter
legs interspersed with stopovers of variable length at suitable sites where energy spent during
migration can be replenished (e.g., see Newton (2010), and the references therein). Mostly
determined by the time spent at stopover sites, the overall speed of migration is tightly linked
to behaviors at stopover sites, and the distribution and quality of stopover sites impacts the
success and survival of birds during migration. A key to stopover duration analysis rests on
understanding various species-specific stopover behaviors and how intrinsic factors, such as
internal condition (e.g., body condition), and external factors, such as environmental condi-
tions, contribute to these behaviors. For this reason, the primary objectives in stopover studies
include estimating the timing of arrival and departure, stopover duration (i.e., the length of
stay at a stopover site), stopover population sizes at different levels and understanding the
role of internal and external factors.

Capture—recapture models are still the gold standard for studying population level pro-
cesses, such as entrance, capture and departure, and to estimate parameters related to
these processes (Williams, Nichols and Conroy (2002), Royle and Dorazio (2008)), which
makes them good candidates for stopover duration analysis (e.g., see King et al. (2010),
Matechou (2010), Pledger et al. (2009), and the references therein). To exemplify this, Kaiser
(1995), Dinsmore and Collazo (2003) and Rice et al. (2007) demonstrate applications of the
Cormack—Jolly—Seber (CJS) model to achieve stopover duration estimation. Importantly, the
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resulting estimate of the stopover duration from the CJS model can be biased due to the con-
ditional nature of the model and unknown arrival time (Pledger et al. (2009)). Building upon
the Schwarz and Arnason (1996) formulation of the Jolly—Seber (JS) model (Jolly (1965),
Seber (1965)), Pledger et al. (2009) develop a flexible stopover model to allow capture prob-
ability and stopover retention probability (i.e., the probability of staying at a study site) to
depend on an unknown time since arrival. Apart from deriving indirect estimate of the mean
stopover duration, they also consider modeling the stopover retention curve to examine dif-
ferent stopover departure patterns. To extend the model by Pledger et al. (2009), Matechou
et al. (2014) develop a mixture model where captured individuals do not need to be correctly
and distinctly marked. In other words, data for such an extended model consists of counts of
individuals captured in each sampling period rather than the encounter history of uniquely
marked individuals. Subsequently, Lyons et al. (2016) develop a Bayesian stopover model
that accommodates both encounter histories of uniquely marked individuals and counts of
unmarked individuals. Their model allows for the estimation of capture and stopover reten-
tion probabilities, entrance probabilities, stopover population sizes and stopover duration.

Particularly for individual heterogeneity, Bonner and Schwarz (2009) develop a JS model
that can account for individual heterogeneity in capture and survival probabilities due to a
time-varying continuous individual covariate using a two-step Bayesian approach. The pri-
mary disadvantage of this two-step approach is that the entrance probability does not appear
in the likelihood, disallowing us to link entrance probabilities to external covariates or to
estimate stopover duration. Schofield and Barker (2011) present a general framework for a
variety of open population models (the JS model included) with individual heterogeneity and
demonstrate how freely available software programs, such as BUGS (Lunn et al. (2000)),
can be used for Bayesian estimation of these models. In principle, the authors provide a
convenient framework that can be adapted for stopover analysis; however, in practice, their
approach is limited to smaller datasets due to computational inefficiency. Recently, Matechou
et al. (2016) develop a stopover model by extending the JS model to allow individuals to ar-
rive in different groups and, hence, their model accounts for heterogeneity in departure due
to a group effect.

Despite the usefulness of the aforementioned stopover models, many real-world applica-
tions require development of an application-specific model. For our mallard migration stud-
ies, key objectives are to understand migratory decisions and stopover behaviors and their
contributing factors and to estimate stopover duration and population sizes at different scales.
Specifically, we need to relate various type of covariates to the processes that are tightly cou-
pled with the population dynamics in order to test hypothesis and to identify the drivers for
certain migratory behaviors. On the one hand, it remains to be known how mallards adjust
individual departure behavior according to their refueling rates at the stopover site and their
current body condition in terms of fat loads (Berthold (2001)). As a result, our model should
be able to address individual heterogeneity in departure decisions due to the internal factor—
body condition—which varies with both time and individual. On the other hand, weather has
known link to bird migration during departure and also aloft. In general, birds prefer initiating
a flight when winds provide flight assistance, that is, tailwinds, and under other conditions
favorable for flying, such as under low rainfalls (Berthold (2001)). Consequently, we need
to link the timing of arrival and capture probabilities to some external weather covariates to
understand how weather conditions affect mallard’s migratory decisions. Last, we need to
allow flexible modeling of covariate effects on capture outcome.

Motivated by mallard migration studies, we develop a stopover model using data augmen-
tation (Tanner and Wong (1987)) under the Bayesian hierarchical state-space framework. The
methodological contributions can be described as follows. First, our model accounts for in-
dividual heterogeneity in departure due to a time-varying continuous individual covariate.
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Since the values of such a covariate are observable only when an individual is captured, a
stochastic process is proposed to characterize the change of this covariate over time. Second,
our model links the arrival time to external factors and, hence allows us to draw inference
about their impacts on the time of arrival. Furthermore, our model allows for a data-driven
functional relationship between the capture probabilities and external factors through the use
of smoothing splines, which enables us to detect nonlinear covariate effects. More impor-
tantly, we develop a well-tailored Markov chain Monte Carlo (MCMC) algorithm for our
model to achieve greater computational efficiency.

This paper is organized as follows. Section 2 introduces our motivating dataset from the
mallard migration studies. Section 3 provides details about our proposed model and two
goodness-of-fit criteria for model assessment. A simulated example, illustrating the effec-
tiveness of our modeling approach, is presented in Section 4. Section 5 demonstrates the
application of our methodology through a stopover duration analysis for our motivating data
collected by the Ottenby Bird Observatory in Sweden. Discussion is provided in Section 6.
Further details surrounding the full conditional distributions and our customized MCMC
sampling algorithm are provided in the Supplementary Material (Wu et al. (2021)).

2. The mallard migration data. The mallard (Anas platyrhynchos), is the most com-
mon and widespread dabbling duck in the Northern hemisphere and an important model
species for studies of ecological processes (Gunnarsson et al. (2012)), harvest management
(Nichols et al. (2007)) and epidemiology of bird borne infections (Latorre-Margalef et al.
(2009), van Toor et al. (2018a)). It is a partial migrant, where southerly populations in the
distribution range tend to be resident and the northernmost obligatory migrants, and in other
populations a mix of resident and migrants (Cramp and Simmons (1977)). The mallard is a
medium-sized bird with heavy wing loading where migration is energetically costly. From
ringing and telemetry studies it is clear that migratory mallards break up their journey into
shorter flights and spend a large proportion of their migration time at stopover sites, replen-
ishing resources and preparing for the next leg of migration (Gunnarsson et al. (2012)). Thus,
stopover sites play a key role in successful migration and survival of mallards, and a priority
for sustainable mallard management is to better characterize the ecology of birds at stopover.
This includes assessing the timing of migration and densities of birds at specific stopover
sites and to what extent internal and external factors (e.g., body condition and weather) affect
stopover behaviors.

The long-term capture of mallards has been carried out at Ottenby Bird Observatory on
the Swedish island of Oland in the Baltic Sea (56°12'N, 16°24’E) (see Figure 1). The south-
ernmost part of this island is an attractive stopover site for mallards within the Northwest
European Flyway, offering habitats for both roosting and foraging (Bengtsson et al. (2014)).
Mallards that utilize our study site—Ottenby—mainly originate from mainland Sweden, Es-
tonia, Finland and Russia (Gunnarsson et al. (2012)). After leaving Oland these mallards
migrate to wintering areas in Northwestern Europe, predominantly in southern Denmark,
northern Germany and the Netherlands (Gunnarsson et al. (2012)).

Data collection started in 2002 and, originally, aimed for monitoring presence of influenza
A virus in birds, but the data of banded individuals over time is also extremely suitable for
addressing stopover ecology questions. To collect data, Ottenby Bird Observatory used a
stationary trap at the study site to catch mallards for ringing and epidemiological studies. In
particular, mallards were attracted by bait grain and by the presence of a few (normally around
10) domestic ducks kept in a compartment of the trap. Traps were inspected daily during the
field seasons, and any wild duck captured was ringed and measured for structural size (i.e.,
the distance from the tip of the bill to the back of the head) and body mass and subsequently
released. This data-collection process, over the course of a stopover season, results in the
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FIG. 1.  Plot of study site for monitoring mallards in the Swedish island of Oland.

capture-recapture data. Data available for our analysis was collected from 2004—2011 during
the autumn migration season, which begins on August 1st and ends on December 16th of
each year.

Motivated by the mallard data at hand, our primary goal is to develop a model that accom-
plishes three important research objectives. The first objective is to determine whether there
is individual heterogeneity in mallards’ departure due to the internal factor—body condition
(i.e., body mass corrected by the structural size). The second objective is to estimate stopover
duration, stopover population sizes and to detect whether there is a temporal trend for daily
stopover population sizes. The third objective is to understand how external factors, such as
different weather measures, relate to the timing of arrival and capture outcome for mallards
at our study site.

3. Methodology.

3.1. Parameters and notation. Consider a capture—recapture experiment spanning over
T sampling occasions at distinct times ?1, #2, ..., 7 across a certain study area targeting a
population P regarding a particular species of interest. Let the total number of individuals
of P that visited the study area during the entire experiment be N, which is unknown and
needs to be estimated. For k =1,2,..., T — 1, let 8y = x| — tx denote the time interval
between two consecutive sampling occasions k and k + 1. Without loss of generality, we
assume t] <t < --- < tr;thatis, §y >0fork=1,2,..., T — 1.

Denote z;; as a binary latent variable to indicate the state of an individual i € P at time ¢,
where the term “state” refers to two statuses of an individual. That is, fori =1,2,..., N and
1<t <T,z,=1ifindividual i is alive and present in the study area at time ¢; and z; ; =0
if individual i has not entered the study area or is dead at time ¢. Moreover, we assume that a
total of n individuals were caught during the study. For each individual being caught, denote

a row vector y; = (¥i.1, Yi.2,---, ¥i,T) as the corresponding capture history, where y; ; is a
binary variable indicating if individual i is caught at occasion ¢; that is, y; ; = 1 if individual
i is caught at occasion ¢ and O otherwise fori =1,2,...,nand t =1,2,...,T. Often, the

observed capture history is summarized using a n x 7" matrix yobs, whose ith row consists of
¥;. Upon the capture of each individual, measurements on a set of individual covariates are
taken and recorded.
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Motivated by the mallard data, we consider the single covariate case and allow the indi-
vidual covariate X to be continuous and to vary with both individual and time, for example,
body condition. The value of X; ; is observable when an individual i is captured at time ¢ and
unobservable otherwise. As a result, for each individual i we need to model the evolution of
X; ; over time f.

3.2. Modeling time-varying continuous covariates. Let X (t) be a continuous variable at
time r € 7 = [0, T]. We assume that X () follows an Ornstein—Uhlenbeck (OU) process; that
is, X (¢) satisfies a stochastic differential equation of the form

3.1) dX (1) =1(a — X (1)) dt + 0 dW (1),

where o > 0 controls the noise variance, T > O describes the rate of mean reversion, o is
the long-term (or asymptotic) mean and W (z) is a standard Wiener process on ¢ € 7. It is
straightforward to see that (3.1) reduces to the von Bertalanffy growth equation (von Berta-
lanffy (1938)) when o = 0. When o # 0, the extra random noise term in the OU process
provides increased flexibility, accounting for random noise resulting from several factors, for
example, measurement error and/or random variation due to changes in the environmental
conditions (Filipe et al. (2010)). Denote X; = X (¢) for t € T, the OU process is stationary
(.e., Xy, Xtpy ..., Xy,) and (X;, 45, Xty4h, - .., X)) are identically distributed), Marko-
vian (i.e., P(Xy, < x| X4, X1y, oo s Xy, ) = P(Xy, < x1Xy,_ ), and (X, Xyy, ..., Xy,) fOl-
lows a multivariate Gaussian distribution (see Finch (2004), and the references therein) for
tH<th<---<tgand h > 0.
For #;_1 < t, it follows that the transition distribution takes the following form:

X ()l 7,02, X (tx—1) = xx—1 ~ N(u (a1, T, Se—1, @), V(a2, 7, 85—1)),
where

w(xk—1, T, 8k—1, ) = exp(—T8k—1)xk—1 + {1 — exp(—18k—1) }e,

o {1 — exp(—2t8-1)}
2T

(see Filipe et al. (2010), and the references therein). Compared with the diffusion process
used by Bonner and Schwarz (2006, 2009) and Schofield and Barker (2011), the OU process
we consider provides estimates for the rate parameter T and long-term mean «.

We characterize the “growth” of an individual in terms of the measurement X (¢) on a
continuous time-varying covariate X at time ¢ € 7 by assuming that X (¢) satisfies the OU
process defined by (3.1). Denote X; ; as the measurement on covariate X for an individual i
at time ¢. At discrete sampling times t =2, ..., T, the conditional distribution of X; ,; takes
the following form:

V(o2 7,8-1) =

2 2
Xi,l|a, T,0, Xi,l‘—l =Xit—1"7" N(M(-xi,l—la T, 81‘—1’ a)a V(O- » T, 81‘—1))’
where X; | ES N(e, 002) is assumed for the initial condition.

3.3. Semiparametric Jolly—Seber model with individual heterogeneity. Our proposed
model is characterized by a state model, an observation model and a parameter model. The
state model describes how the latent state z; ; evolves over time, whereas the observation
model describes the capture outcome y; ; conditioning on the latent state z; ;. The parameter
model describes how capture probabilities, departure probabilities and entrance probabilities
are linked to some internal and external factors.
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Since the dimension of latent variable z; ; varies with the unknown parameter N, the num-
ber of parameters is not fixed, which will cause some computational disadvantages. To main-
tain a constant number of parameters, the data augmentation technique is often utilized (e.g.,
see Royle and Dorazio (2008)). At the core of data augmentation, we first introduce a param-
eter M > N and then augment the observed capture history yops by an artificial zero matrix
Yaug Of size (M —n) x T, each row of which represents the capture history of individuals that
were never captured during the study. As will be shown, this data augmentation also allows
us to formulate our model in a hierarchical manner.

3.3.1. State model. Following Royle and Dorazio (2008), the state model can be defined
by

(3.2) zi,1|7{ ~ Bernoulli(n{),
(3.3) Zi+112i Give, Ty ~ Bernoulli(ey 1zi s + 77, Rit)s

where R; ; = ]_[;:l 1(z;,s = 0) indicates whether an individual i can enter the population right
aftertime t fori =1,2,...,Mandt=1,2,...,T — 1. Here, 1(z = a) is the indicator func-
tion that takes value 1 if z = a and O otherwise. In addition, ¢; ; refers to survival probability
(or stopover retention probability in a stopover model), that is, the probability that an indi-
vidual i will remain in the study area at time ¢ + 1 given its presence in the study area at time

tfort=1,2,...,T — 1. Moreover, mr; denotes the conditional entrance probability at time
t, given that an individual has not entered the study area; that is,
Z] =t :3]

where B; is the entrance probability at time 7, that is, the probability that an individual enters
the study area between time ¢ and ¢ + 1. By definition, it follows that Z;T: 1Bi—1=1.

The interpretation of the state model described in (3.2) and (3.3) is straightforward. First,
(3.2) indicates that an individual i is subject to entrance with probability 7{ at time ¢ = 1.
In (3.3) we see that if an individual i has not entered the study area right before time ¢ + 1
(i.e., Ri; = 1), it is subject to entrance with probability 7/, ;. Second, if an individual i has
already entered and is present in the study area at time ¢, it will remain in the study area at
time ¢t + 1 with probability ¢; ;. Moreover, if an individual i is dead at time 7 (i.e., z; ; = 0),
it will remain dead (i.e., zj » =0fort*=r+1,...,T).

3.3.2. Observation model. The observation model is given by (Royle and Dorazio
(2008))

(3.4) w; | ¥ ~ Bernoulli(W),
(3.5 Yi.tlwi, zi.r, pr ~ Bernoulli(w; z; ¢ pt),

fori=1,2,...,Mandt=1,2,...,T. Here, p; is the probability of capturing an individual
that is alive at time ¢. The binary variable w; in (3.4) is introduced as a result of data augmen-
tation to indicate if an individual i is a member of P. Specifically, w; = 1 if an individual i
is a member of P and O otherwise. For an individual i that is captured at least once during
the study (i.e., y; #0), it is clear that w; = 1 is implied. According to (3.5), an individual i
is subject to capture at time ¢ only if it is alive and present in the study area (i.e., z; = 1). In
addition, the augmented capture history y; =0 fori =n + 1, ..., M can be accommodated
by (3.5).

An important feature of building the JS model from the “individual” up is that it enables
us to estimate certain quantities that are important in stopover duration analysis fairly easily.
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For example, the total number of animals that visited the site during the entire study period,
N, can be estimated as N = Zf‘il w;. It then follows from (3.4) that N ~ Binomial(M, V).
As aresult, if M is specified to be close to N, ¥ will approach 1, which would suggest that
M needs to be increased. On the other hand, the stopover population size at time ¢, N; can
be estimated as N; = Zf‘il w;z;;. Moreover, we can estimate the mean stopover duration
averaged over all captured individuals as (Lyons et al. (2016))

n T
_2i=1 Z;:l Zi,t

n

S

The number of individuals alive at both times #; and 1, say N;, ;,, can be estimated as N;, ;, =
M
Dim WiZin Ziey-

3.3.3. Parameter model. The parameter model links capture probabilities p;, departure
probabilities d; ; = 1 — ¢; ; and entrance probabilities B; with various covariates as follows:

K
(3.6) M4fﬂﬂ=@x+Zymfwm,t=mnwn
- pt k=1
1 — b
(3.7 log< ¢”I)=x§t0=90+91xi,,, t=1,2,...,T —1,
Gi1 ’
Bi—1 ,
(3.8) log =Ay, t=12,....T -1,
Br-1
where g, = (glt,gz,,...,th)’ is a Q x 1 vector that consists of values for exter-
nal covariates gi, g2,...,8¢ at time ¢, for example, trap and weather related covari-
ates; ¢ = (¢, Q,...,{Q)/ denotes a Q x 1 vector of regression coefficients, and u =
(i, uz,...,ug) ~ N(O0, (IMZSZ_I), where 2 is a matrix whose (k, [)th entry is |k — /c1|3

for 1 <k,l < K and K is the number of knot points. The fixed knot k; is chosen to be the
sample quantile of the o;’s corresponding to probability k/(K + 1) for k =1,2,..., K.
Moreover, A; = (Ay1s, Ao, ..., Ap;) denotes a P x 1 vector that consists of the val-
ues of external covariates A, Aa, ..., Ap at time ¢, for example, weather conditions, and
y=1,y2,...,vp) isa P x 1 vector of regression coefficients.

The semiparametric model for the capture probabilities in (3.6) has two parts: (1) a para-
metric part that posits a linear relationship between covariates g1, g2, ..., go and the logit
of p;, and (2) a nonparametric part that accommodates a nonlinear effect of the covariate o
on the logit of p,. Albeit many basis functions can be used for the nonparametric part of the
model (e.g., see Ruppert, Wand and Carroll (2003)), low-rank thin-plate splines are preferred
over other basis functions since the former leads to better mixing of the MCMC chains in
Bayesian analysis (Crainiceanu, Ruppert and Wand (2005)). Let O be a T x K matrix with
the (¢, k)th element being |o; — kP for1<t<Tand 1<k <K, (3.6) can be reparameter-
ized as

b% b )=£§+Lh
11— p;

where b = Qriu~ N (0, UMZIK) and Z; is the tth row of the matrix Z = 052%.

As shown in (3.7), the departure probabilities are linked to an internal covariate X that
varies with both time and individual (such as body condition) to account for individual het-
erogeneity. Strictly speaking, departures can arise from three outcomes—start of a migratory
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flight, relocation to another habitat that is not covered by traps and death. When the sam-
pling period is relatively short, as it is the case in our motivating mallard example, death
between two consecutive sampling periods is almost negligible. Consequently, the term de-
parture primarily refers to start of another migratory flight or relocation to another habitat.
The realization of X;, for an individual i at time ¢, x;,, is only observable when the indi-
vidual is caught. As a result, we assume that the “growth” of an individual in terms of the
internal covariate X follows the OU process discussed in Section 3.2 so that missing values
of X;, can be “imputed” by conditioning on the observed data.

In (3.8), we link the entrance probabilities to external factors to infer the impacts of these
factors on the timing of arrival. Due to the implied restriction Zthl Bi—1 =1, (3.8) is equiv-
alent to the following:

exp(A}y)
g1+ Z,T;élexpm;y)

14+ Y725 exp(Ay)

ifr=0,1,...,T =2,

ift=T-—1.

3.4. Priors and posteriors. To complete the specification of our model, we need to as-
sign prior distributions for the model parameters and derive the full conditional distributions.
Denote w={w; :i=1,2,...,.M}andz={z;,:i=1,2,....,M;t=1,2,..., T}, the set
of parameters in the model we propose is @ ={¢,b,0,y, ¥V, w, z, 002, a, 1,02, auz}. Denote
IG(A, B) as the inverse gamma distribution with shape parameter A and scale parameter B.
We assign prior distributions as follows: & ~ N(u,, X¢); b ~ N(0, GbZIK); 0 ~ N(png, Xp);
y ~ N([Ly, X)) w; i Bernoulli(¥) for i = 1,2,...,M; ¥ ~ Beta(ay, by); o*g ~
1G(q0,70); & ~ N(ta, 03); 02 ~1G(qg,70); T ~ Uniform(g,,r.); and o ~ 1G(qu, 1)
In our implementation we choose vague priors that are noninformative relative to the scale of
data.

Let Y = yobs U Yaug denote the augmented capture history. Assuming conditional indepen-
dence, the joint posterior distributions of the model parameters [@|Y] can be derived as

M /T—-1
[O]Y] x {]_[ ( [T zie+11zi0 . i, O xi g1 i, 0, T, 02]) [zi1 1Y ][xi1ler, oG ]

i=1 \t=1
T
x (H[yi,t|wi, zias & b]) [w; m}[0][o§][a][f][02][y][b|03][;][w][03],

t=1

where the square bracket [ ] denotes a probability density function.

3.5. Model assessment. An extremely important aspect of Bayesian modeling is to eval-
uate goodness-of-fit for the model being considered. In the context of capture—recapture mod-
els, the Bayesian p-value is often considered (e.g., see King et al. (2010), and the references
therein). Roughly speaking, the Bayesian p-value is a posterior probability that measures
the similarity between the data generated from the posterior predictive distribution under a
specified model and the observed data. To calculate the Bayesian p-value, we first define a
discrepancy function (D, ©), where D and © denote the data and the parameters for the
model being considered, respectively. Then, we calculate the value of the discrepancy func-
tion for both the observed data D* and the simulated data D’, which is generated conditioning
on the posterior distribution of model parameters. Finally, the Bayesian p-value is defined as
the percentage of times that values of the discrepancy function for D* exceeds those of the
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discrepancy function for D’. Mathematically, the definition of the Bayesian p-value, Pp, can
be formulated as P, = p(h(D*, ®) > h(D’, ®)|D*). As a rule of thumb, a Bayesian p-value
close to 0 or 1 indicates that the model being considered does not provide a good fit to the
data and that there is inconsistence between the model and data (Gelman (2003)).

For the model we propose, goodness-of-fit requires the assessment of two components.
On the one hand, we need to assess the goodness-of-fit for the overall JS model to the data.
On the other hand, we need to evaluate the goodness-of-fit for the OU process to the time-
varying continuous individual covariate X. Consequently, it suffices to calculate the Bayesian
p-values Pgs for the JS model and PbOU for modeling the internal covariate X using the OU
process. Among the many choices of discrepancy functions (e.g., see Brooks, Catchpole and
Morgan (2000)), we used the complete log-likelihood function for P})S; that is, A'S (D,0) =
£(Y,z|®_,, D), where £(Y, z|®, D) is the complete log-likelihood function of Y, z, given
all model parameters excluding z (i.e., ®_;) and the data D. Similar to King and Brooks
(2002), we consider the complete log-likelihood function as a discrepancy measure primarily
due to its tractability and computational advantages. Different from Bonner and Schwarz
(2009), for Pl?U, we compare the observed and expected value of the individual covariate for
each capture rather than recapture and consider the discrepancy function to be

hOU(D, ©) = Z ) {Xi,z—E<xi,flxi,t_1)}2,

e (hroer O (ilXig—1)

where 1. = Y ;cp 1| yi.s is the total number of captures over 7' sampling occasions and
o (x;i t]xis—1) denotes the standard deviation for the conditional distribution of x; /|x; ;1.

Our adoption of Bayesian p-values is intended only to provide an additional layer of pos-
terior predictive checks. Nevertheless, given our particular choices of discrepancy measures,
these Bayesian p-values alone should not be used to prove or disprove the legitimacy of our
proposed model. To this end, we acknowledge two major limitations of using Bayesian p-
value for assessing a model fit. First, different choices of discrepancy measures can lead to
different conclusions about goodness-of-fit. Second, it can be challenging to propose discrep-
ancy measures with high power for detecting misfit of a model to the data. Consequently, our
use of Bayesian p-values is meant as an indication of model adequacy.

4. Simulated example. To evaluate the performance of our proposed model, we con-
sider a simulated example where the exact model specification is chosen for illustration. For
this simulation we set N = 3000 and T = 138. The parameter model is given by (3.6), (3.7)
and (3.8). For the parametric part of (3.6), we con51der Q =3and ¢ =(1.0,-0.9,0.6)" with
covariates simulated according to glt, 821, 83t tid "N, 1) for t=1,2,...,T. For the non-
parametric part of (3.6), we set 0; = T fort=1,2,...,T, ou =0.25, and K =10.1In (3.7)
we set @ = (—1.8,0.3) and simulate Values of the internal covariate X from the OU pro-

cessw1thoo =1.37,«=0.20, 1 =0.19, 02 = 0.36, andSk—lO(fork_l 2,. —1).
For (3. 8) we consider P =3, y = (1.2, —0.8,0.6), and Ay, Ay, A3t i "N(O, 1) for t =
1,2,..., T — 1. This particular simulation setup ensures that the resulting encounter history

is neither too dense nor too sparse.

In terms of the prior specification, we set M = 6000 and ay = by = 1.0. For regression
coefficients @, ¢ and p, the prior distributions are given by: 8 ~ N(0, 100I,), £ ~ N(0, 100I3)
and y ~ N(0, 100I3). For variance parameter ouz, we consider auz ~1G(gqy, ry) with g, = 2.1
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and r,, = 1.1. For parameters related to the OU process, we consider the prior specification as:
0§ ~1G(goy Fop) With o, = 2.1 and 74y = 1.1 o ~ N(q, 02) with f1o = 5 and o2 = 100;
t ~ Uniform(g, ry) with g; =0.01 and r; = 1.0; o2~ 1G(gs,7s) With g = 2.1 and r, =
1.1. Our prior specification reflects vague prior distributions relative to scale of the simulated
data.

For the MCMC implementation, we run three chains in parallel each with a total of 150,000
iterations. For each Markov chain we discard the first 100,000 iterations as burn-in and draw
inference based on every fifth remaining samples. The convergence of the Markov chain to
the stationary distribution is assessed by visualizing trace plots of the sample chains and
by Gelman and Rubin’s diagnostic (Brooks and Gelman (1998)) using the coda package
(Plummer et al. (2006)) in R (R Core Team (2018)). In this case, visual inspection of the
trace plots do not suggest lack of convergence for any model parameters. For Gelman and
Rubin’s diagnostic the upper 95% confidence limits of the potential scale reduction factors
for all model parameters are less than 1.07.

Table 1 provides posterior summary statistics for selected model parameters along with the
corresponding true values. It can be seen that the 95% credible intervals (CIs) of parameters
related to the parameter model and the OU process cover the true values in all cases. In
addition, we can see from Table 1 that the true values for mean stopover duration S and total
stopover population size N are recovered. For entrance probabilities 8;_; and time-specific
population size N;, Figure 2 graphically presents their 95% Cls along with the corresponding
true values, from which we can conclude that all true values are recovered. Figure 3 plots the
95% Cls of capture probabilities p; along with their corresponding true values, showing that
true values of p; are recovered.

For goodness-of-fit assessment, the Bayesian p-value for the JS model and the OU process
is 0.44 and 0.47, respectively. Hence, these p-values do not suggest any lack-of-fit for either
the JS model or the use of OU process. To summarize, this simulation suggests that we are
able to correctly estimate parameters in our proposed model.

TABLE 1
Posterior summary statistics for selected parameters in the semiparametric JS model with individual
heterogeneity for the simulated example. Note that S is the mean stopover duration averaged over all captured

individuals
Parameter Mpost Opost Q0.025 Q0.50 00.975 Truth
19| 0.99554 0.02622 0.94417 0.99554 1.04677 1.0
& —0.90057 0.02552 —0.95114 —0.90054 —0.85193 —-0.9
23 0.59768 0.02170 0.55443 0.59761 0.64088 0.6
6o —1.75835 0.03171 —1.82208 —1.75778 —1.69716 —1.8
01 0.31160 0.04431 0.22601 0.31093 0.40151 0.3
71 1.01647 0.25393 0.52347 1.01589 1.51425 1.2
V2 —1.02342 0.27839 —1.56250 —1.02357 —0.46578 —0.8
V3 0.47463 0.27251 —0.05276 0.47317 1.00610 0.6
(Ig 1.43562 0.16827 1.14986 1.41439 1.80354 1.37
o 0.17367 0.13093 —0.09156 0.17416 0.44537 0.2
T 0.18815 0.01471 0.15982 0.18725 0.21899 0.19
o2 0.36191 0.02886 0.31157 0.35991 0.42282 0.36
0,42 0.56438 0.38001 0.18654 0.46427 1.58137 0.25
S 7.05 0.04 6.98 7.05 7.13 7.13
N 3032 77.53 2871 3033 3175 3000
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FI1G. 2.  Plot of pointwise 95% credible intervals and true values for entrance probabilities B; _1 and population
sizes Nt fort = 1,2, ..., T in the simulated example. Note that the upper and lower value of each gray vertical
line denotes the 2.5th and 97.5th percentiles of posterior samples, respectively. Also, the solid black circle on each
gray line denotes the true value.
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FI1G. 3. Plot of pointwise 95% credible intervals and true values for capture probabilities p; in the simulated
example. Note that the upper and lower value of each gray vertical line denotes the 2.5th and 97.5th percentiles
of posterior samples, respectively. Also, the solid black circle on each gray line denotes the true value.
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5. Stopover duration analysis for mallard. We apply the model we propose to the
mallard, Anas platyrhynchos, stopover duration analysis. The mallard data was collected daily
between August 1st and December 16th each year from 2004 to 2011. Each day when a
mallard was captured, measurements on body mass and structural size were taken, based on
which body condition is calculated (as the ratio of body mass to structural size). For the
purpose of illustration, we only present the results from our model using the mallard data
collected in 2011, which includes 739 individual mallards caught over T = 138 days.

To address three research objectives of our mallard study, we consider the parameter model
as

K
1og(L> N+ Y wl— kP, t=1,2,....T,
1= p k=1

1_ .
log( ¢¢M) =00 +061Bcond;;, t=12,....T—1,

it

log<ﬁt_1 ) =Aly, t=1,2,...,T—1.
Br—1

Here, A; = (A1, Aor, Asg, Age, As;)' and the regressors are related to five daily weather
measures—wind direction, wind speed, atmospheric pressure, temperature and rainfall. In
particular, A reflects variation in rainfall with small values suggesting low precipitation;
A, describes the orthogonal wind (along the NNW-SSE axis) with negative (positive) values
suggesting strong NNW (SSE) winds; A3 represents dominant wind (along the WSW-ENE
axis) with negative (positive) values suggesting strong WSW (ENE) winds; A4 represents
temperature deviation with positive (negative) values suggesting temperature higher (lower)
than the seasonal norms; As reflects atmospheric pressure with smaller values suggesting
higher atmospheric pressure. Moreover, Bcond; ; denotes the body condition for an individ-
ual mallard i at day ¢. Since body condition varies with both individual and time, its change
over time is modeled via the OU process discussed in Section 3.2.

In terms of the MCMC implementation, the number of iterations, burn-in and thinning
and the prior specification are similar to those in Section 4, except that we use the prior
002 ~ 1G(goy, 7oy) With g5, = 3.0 and ry, = 2.0 to achieve better mixing for the nuisance
parameter 002. To evaluate the robustness of our results to different choices of K and M,
we consider a sensitivity analysis. On the one hand, we consider four different choices of
K: K =10, K =15, K =20 and K = max{20, min(150, £)} = 34. On the other hand, we
consider two different scenarios where M = 3000 and M = 5000. For these choices of K
and M, the results are similar. Nevertheless, the mixing of the MCMC chains for parameters
related to OU process is better for K = 15 than for three other choices of K. As a result,
we present the results from our model with K = 15 and M = 3000. Regarding convergence
assessment, visual inspection of the trace plots does not suggest lack of convergence for any
model parameters. For the Gelman and Rubin’s diagnostic, the upper 95% confidence limits
of the potential scale reduction factors for all model parameters are less than 1.07.

For the purpose of interpretation, we conclude that a parameter is significant if its 95%
CIs do not cover 0. Table 2 provides posterior summary statistics for some selected model
parameters. According to Table 2, the regression coefficients ¢, and {5 are significant. Since
{» is positive significant, this suggests that, when holding other weather conditions constant,
the chance of capturing a mallard is larger on days with strong SSE winds than on days with
strong NNW winds. Moreover, {5 is negative significant, suggesting that, when holding other
weather conditions constant, the chance of capturing a mallard is larger on days with low
atmospheric pressure than on days with high atmospheric pressure. For entrance probabilities,
it is found that As has a negative significant impact on the timing of arrival for mallards
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TABLE 2
Posterior summary statistics for selected parameters in the semiparametric JS model with individual
heterogeneity for the mallard data. Note that S is the mean stopover duration averaged over all
captured mallards

Parameter Mpost Opost 0Q0.025 0Q0.50 00.975
i< 0.01094 0.03558 —0.05949 0.01068 0.07988
o 0.15518 0.04108 0.07430 0.15499 0.23528
&3 0.03289 0.04389 —0.05321 0.03289 0.11756
la —0.12164 0.08199 —0.28170 —0.12137 0.03762
Ls —0.08804 0.04125 —0.16958 —0.08807 —0.00737
6o —0.92251 0.56468 —2.03495 —0.92337 0.20819
04 —0.14132 0.05758 —0.25633 —0.14048 —0.02860
Y1 —0.42482 0.30720 —1.16999 —0.37924 0.04364
%) —0.13546 0.11436 —0.35944 —0.13399 0.08951
V3 0.03264 0.08606 —0.13415 0.03266 0.20231
V4 0.08025 0.06702 —0.04833 0.08068 0.21259
s —0.19530 0.07362 —0.34222 —0.19412 —0.05330
O‘g 1.21477 0.74716 0.32119 1.04971 3.30401
o 10.02102 0.24533 9.61002 9.99905 10.57637
T 0.08509 0.00902 0.06720 0.08483 0.10354
o 0.20948 0.02180 0.17505 0.20635 0.26394
auz 0.12737 0.04535 0.06647 0.11873 0.23666
S 12.78 0.19 12.43 12.77 13.18
N 1050 63 925 1052 1173

because the 95% Cls of its coefficient are entirely negative. This suggests that, when other
weather conditions are held constant, the chance of a mallard arriving at the stopover site is
larger on days with low atmospheric pressure than on days with high atmospheric pressure.
For the total stopover population size, N, our results suggest that there were about 1050
mallards that used our study area as a stopover site between August 1st and December 16th
in 2011, with the corresponding 95% Cls being [925, 1173]. For average stopover duration,
S, our results suggest that, on average, mallards spent 12.78 days at our study site during
migration, with the corresponding 95% ClIs of S being [12.43, 13.18].

From Table 2 we conclude that there is a significant negative impact of body condition on
departure probabilities since the 95% Cls of 6, are entirely negative. This result lends support
to the necessity of incorporating body condition into the model for departure probabilities to
account for individual heterogeneity in mallards’ departure. In terms of the impact of body
condition on departure decisions, our results suggest that mallards in low body condition have
a higher propensity to depart than birds in better body condition. This result is somehow op-
posite to what is expected during stopover, whereby birds refuel fat stores (and increase body
condition) in preparation for the next flight (Berthold (2001)). One potential explanation of
such a finding could be that, among mallards stopping over at our study site, those experienc-
ing poor refueling opportunities (e.g., due to insufficient food supply or competition), leave
the site soon in search of better refueling places so as to not waste more time in a site that is
not rewarding (e.g., see Schaub, Jenni and Bairlein (2008)). Our finding surrounding the de-
parture behaviors of mallards corroborates similar findings for migratory birds; for example,
see Kuenzi, Moore and Simons (1991) and Yong and Moore (1993).

Figure 4 provides pointwise posterior summary statistics for p;, the nonparametric part
Z:b and daily population sizes N;. According to Figure 4, we can conclude that the nonpara-
metric part of our parameter model for capture probability is needed because the 95% Cls for
Z,b exclude 0. Moreover, we note that both p; and Z;b demonstrate the same nonlinear trend
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FI1G. 4. Plots of pointwise summary statistics of capture probabilities p;, Z;b and daily population sizes N; for
mallards. Note that the gray dashed lines are the pointwise 95% credible intervals; the black dashed line is the
posterior mean.

with respect to time, indicating that capture probability is dominated by the nonparametric
part Z,b. This nonlinear time effect on capture probability is probably due to heterogeneous
daily sampling efforts that are unaccounted for. For daily stopover population size, N;, we
can see an overall upward trend starting from August to the end of November, when daily
stopover population sizes were peaked. Starting in December, there is an overall downward
trend in NV, suggesting that daily stopover population sizes decrease. The upward trend in
N, from August to November is attributed to the arrival of birds at our stopover site. The
decrease in daily population sizes in December is driven by the downward trend in entrance
probabilities shown in Figure 5 and the departure of birds from our stopover site. The abrupt
downward trend in N; starting in December, contrary to a more gradual upward trend in N;
from August to the end of November, reflects an effect of the phenology of migration, where
mallards departed from our stopover site at a faster rate in December than early in the season.
This is because mallards cannot afford to stay long at our stopover site to replenish as winter
approaches in December.

Lastly, to assess goodness-of-fit for our proposed model, we compute the Bayesian p-
values for both the JS model to the mallard data and for the modeling of body condition via
the OU process. Using the complete log-likelihood function as the discrepancy function, the
Bayesian p-value for the JS model is 0.32 and the Bayesian p-value for the OU process is
0.61. Hence, these p-values do not suggest any lack of fit for either the JS model we propose
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FI1G. 5. Plots of pointwise summary statistics of daily entrance probabilities B;_1 for mallards. Note that the
upper and lower value of each gray vertical line denotes the 2.5th and 97.5th percentiles of posterior samples,
respectively. Also, the solid black circle on each gray line denotes the posterior mean.

for mallard data or for the OU process that is used to model the evolution of body conditions
over time.

6. Discussion. Of particular importance to strategic management and conservation plan-
ning is to understand the impacts of both internal and external factors on the migratory behav-
ior of wildlife. Motivated by mallard migration studies, we propose a stopover model that can
accommodate individual heterogeneity in departure, dependence of arrival time on covariates,
and nonlinear functional relationships between capture probabilities and external covariates.
In particular, we account for individual heterogeneity in departure via a time-varying con-
tinuous individual covariate that is assumed to follow an OU process. The semiparametric
regression for capture probabilities, using low rank thin-plate splines, allows us to identify
both linear and nonlinear covariate effects on capture probabilities. Collectively, these de-
velopments provide a framework with increased biological relevance that can be applied to
various migration studies of wildlife. This has big promise for migration and movement ecol-
ogy, as the length and behavior of birds during stopover are instrumental for overall speed of
migration with consequences at both the individual and the population level.

Regarding three important research objectives associated with mallard migration studies,
our results confirm that there is individual heterogeneity in mallards’ departure due to body
condition. Specifically, mallards in low body condition are more likely to depart than birds
in better body condition, which may indicate that mallards tend to leave the site as soon as
possible if they cannot refuel efficiently, likely in search for better refueling places, but also
to avoid wasting too much time in a stopover area that does not allow them to replenish
energy reserves quickly. Second, our results suggest that there were about 1050 (95% ClIs:
[925, 1173]) mallards that visited our stopover site from August 1st to December 16th in
2011. On average, mallards spent about 13 days at our stopover site for energy replenishment
before leaving our stopover site to continue their migratory flights. Our results also suggest
a temporal trend in daily stopover population sizes, with an upward trend from August 1st to
the end of November and a downward trend in December.

For the impacts of external weather covariates, our results indicate that mallards are more
likely to be captured on days with strong SSE winds and low atmospheric pressure. This
is expected, as general migration directions from the area lay in the S to W sectors (van
Toor et al. (2018b)) and strong SSE winds then are opposite to tailwinds and provide no
flight assistance for mallards. Furthermore, falling atmospheric pressure is also a predictor of
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harsh or inclement weather, under which mallards already present in the stopover site are less
likely to depart and, hence, are more likely to be captured. Regarding the timing of arrival,
our results suggest that mallards are more likely to arrive at our stopover site on days with
low atmospheric pressure than on days with high atmospheric pressure. As low atmospheric
pressure is linked to bad weather conditions, migrating mallards passing the stopover site
would likely be more prone to temporarily cease migration and land in the study area than to
continue migration, again increasing likelihood of being captured.

As shown by our results, it is advantageous to consider a semiparametric regression model
for capture probabilities due to the dominant nonlinear time effect after accounting for
weather covariates. This flexible modeling of nonlinear time effects on capture outcomes
allows us to address possible heterogeneous daily sampling efforts that are unaccounted for.
Despite the flexibility of semiparametric regression, different basis functions can be used.
For example, Gimenez et al. (2006) consider Bayesian penalized splines that utilize trun-
cated polynomial basis to model survival probabilities in the CJS model. Similarly, Bonner,
Thomson and Schwarz (2009) consider a Bayesian semiparametric regression for survival
probability in the CJS model that features B-spline basis functions. Instead of fixing the
number and location of knot points, they consider a Bayesian adaptive approach where a
reversible jump MCMC algorithm is employed to explore splines with different knot config-
urations. In addition, Bonner and Schwarz (2011) develop a model for the data that arises
from a Peterson-type mark-recapture experiment, where B-spline basis functions are con-
sidered for smoothing population size estimates. Among these choices we apply Bayesian
low-rank thin-plate splines to smooth capture probabilities in the JS model to achieve better
mixing of the MCMC chains (Crainiceanu, Ruppert and Wand (2005)).

In principle, our model can be estimated using freely available software programs, such as
BUGS, following the general framework presented by Schofield and Barker (2011). Never-
theless, Bayesian estimation of our model using these freely available software programs can
be inefficient due to lack of well-crafted MCMC algorithms. In contrast, the MCMC algo-
rithm that we develop for our model does not require any tedious tuning, making our method-
ology more computationally efficient, especially in the case of large datasets. Although our
model is application-specific, it is worth pointing out that our well-tailored sampling algo-
rithm, for example, the block updating scheme for latent state variables, can be applied to
other variants of the JS model with straightforward adaption.
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