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Integrated watershed modeling is needed to couple
water resource recovery facilities (WRRFs) with agricultural
management for holistic watershed nutrient management. Surrogate
modeling can facilitate model coupling. This study applies artificial
neural networks (ANNs) as surrogate models for WRRF models to
efficiently evaluate the long-term treatment performance and cost
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struvite recovery (EBPR-S), in a high-fidelity simulation program
(GPS-X). The five WRRFs were based on an existing plant that
treats combined domestic and industrial wastewater. The ANNs
have satisfactory performance in capturing nonlinear biological behaviors for all five WRRFs, even though the prediction
performance (R-square) slightly decreases as the model complexity increases. We advanced ANNs application in WRRF models by
simulating long-term (10-yr) performance with monthly influent fluctuations using ANNS trained by simulation data from steady-
state models and evaluated their performance on Phosphorus (P) and Nitrogen (N) removal. EBPR-S shows the most resilience,
while EBPR is more sensitive to influent characteristics impacted by stormwater inflow. When comparing life cycle costs of N and P
removal for each layout over the 10-yr simulation period, EPBR-S is the most cost-effective alternative, highlighting both the
operational and cost benefits of side-stream P recovery. By capturing both nonlinear behaviors of biological treatment and operating
costs with computationally lean ANNS, this study provides a paradigm for integrating complex WRRF models within integrated
watershed modeling frameworks.
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nonpoint (e.g., agricultural runoff) and point source (waste-

Nitrogen and phosphorus pollution from urban and industrial water treatment effluent) management are needed. For

point sources, and agricultural nonpoint sources are the major
contributors to harmful algal blooms and hypoxia in both
critical drinking water resources and saltwater ecosystems.' ™
This phenomenon is especially detrimental to aquatic
organisms that cannot tolerate low dissolved oxygen levels
(generally below 2 mg/L), as is the case of the hypoxic zone in
the Gulf of Mexico,” which covered 5480 km? in 2020.* In
response to the 2018 Gulf Hypoxia Action Plan by the federal
Environmental Protection Agency, the Illinois Environmental
Protection Agency (IEPA) initiated the Illinois Nutrient Loss
Reduction Strategy (NLRS) to reduce 45% of the nitrogen and
phosphorus load by 2045.> To achieve the nutrient reduction
goal outlined in the NLRS, considerable changes to both
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nonpoint sources, nutrient pollution can be reduced by
adopting various agricultural best management practices.”’
For point sources, nutrient pollution can be reduced by
optimizing the existing wastewater treatment and resource

recovery processes used in water resource recovery facilities
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(WRRFs) or upgrading to a more advanced treatment process
with new infrastructure.”” Integrated models that simulate the
effectiveness of point source and nonpoint source nutrient
reductions are reguired for holistic nutrient management at
watershed scales.'”""

Various computer programs (e.g, GPS-X and BioWin) have
been developed that allow for simulation of WRRF treatment
alternatives. >~'° In practice, these simulators help identify
alternative processes that best align with point source nutrient
reduction goals and determine the most cost-effective
approaches to nutrient reduction.”””"® These types of
simulations also allow for scenario-based experimentation
without disturbing a real WRRF’s operation. However,
integration of a point source model with other nonpoint
source models for system-based solutions to watershed
optimization studies are challenging, as process modeling
software are typically proprietary and do not natively integrate
with external programs. Though some software have recently
begun providing application programming interface (API) to
enable integration, they usually come with the requirement of a
commercial license to use their APIL. Integrating models with
commercial license requirements discourages modelers as such
requirements would make the developed models less likely to
be transferred and reused by others. Moreover, the
computation time for such API-connected integrated models
can be expensive. Developing ANN-based WRRF surrogate
models can facilitate the integration of WRRF models with
other models on the same platform. In another work that
focused on model integration coupling multiple process and
empirical models, we demonstrated the importance of
surrogating a process model to facilitate model integration.''
WRRF plant-wide models can also be computationally
expensive to execute, depending on the degree of complexity
for various treatment processes (e.g., activated sludge versus
enhanced biological phosphorus removal), number of simu-
lations required, and temporal scales (e.g, real-time, daily,
monthly, annual).'® By developing data-driven WRRF
surrogate models, wastewater treatment performance under
various combinations of influent characterisitics and fluctua-
tions can be evaluated efficiently, instead of using process-
based WRRF models in a commercial software package to run
the simulation. Therefore, different variants of surrogate
models (also called emulators, data-driven models, etc.) have
been applied and are needed to approximate the nonlinear
behaviors of process-based models with efficient computation
time while maintaining satisfactory performance.

Among various surrogate models, artificial neural networks
(ANNs) have grown in popularity with promising applications
for which a high degree of nonlinearity exists within a data
set.'/7*° ANNs have also shown to be capable of predicting
WRRF treatment performance in various settings.”' > In
some applications, historical WRRF operational data are used
to train and test ANNs; while this method can accurately
reflect the process operation, ANNs directly trained with
historical data cannot compare proposed treatment process
scenarios for nutrient removal and recovery. In addition, the
sizes of data sets are usually limited (e.g., less than 100 data
points) and can result in overfitting issues.”””’ Another
limitation in the literature derives from ANNs trained solely
with simulated data based on the activated sludge models
(ASMs) with simple process layouts.”*® Moreover, simulating
the long-term dynamic treatment performance of WRRFs is
challenging because of the lack of detailed knowledge of
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influent wastewater characteristics and how rainfall events
would translate to plant influent and operational changes (e.g.,
sludge wastage, airflow, recycle rate, etc.) over the long-term.
Therefore, further investigation into how ANNs perform when
they are used to predict the performance of complex process
layouts and nutrient recovery scenarios are needed.

To address these limitations, the objective of this work is to
develop different numerical process models based on the
operation of an existing plant and apply Monte Carlo sampling
to generate sufficient training data sets that represent various
influent compositions for ANN model training. The trained
ANN models were then used to compare the long-term
performance of multiple plant layouts using several years of
historical monthly data. We also used ANNS to estimate costs
based on predictions for certain operational variables (e.g,
airflow demand, biosolids production, chemical consumption).
We then compared the life cycle costs of treatment alternatives
for nutrient removal and recovery under various influent
compositions and wet weather conditions. The surrogate
models developed in this work have been further coupled with
other nonpoint source hydrological models for integrated
technology-environment-economics modeling (ITEEM),
which is part of a separate work focused on surrogate-based
model coupling.''

We first developed five steady-state WRRF treatment
alternatives in GPS-X (Hydromantis, Inc.) under stochastic
influent characteristics (10000 random combinations of
influent characteristics within their ranges). The first WRRF
model was an activated sludge (AS) process that served as the
baseline treatment level and was designed to mirror the
existing WRREF in our test watershed. The modeling accuracy
was assessed by comparing the AS simulation results to
historical data obtained from a similar process used in a WRRF
located in Illinois, USA.

The operating conditions and unit processes’ dimensions/
capacities used in the model were matched with the real
WRRF to ensure the GPS-X model was calibrated to the
characteristics of the plant. The operating conditions included
mainline treatment SRT and HRT, DO values in aeration
basins, anaerobic digestion unit residence time, primary and
secondary clarification capacity, and underflow solids concen-
tration in the sludge thickening unit. The steady-state WRRF
model was further calibrated to the average effluent nitrate and
TP concentrations of the plant’s historical data (see Figure
2a,c). The current calibration approach had a limitation as it
was not calibrated to the dynamic effluent data of the plant
using a dynamic mode; however, calibrating a WRRF model
over a long-term period in a dynamic mode could be very
challenging as the plant had undergone various operational
changes over time that could significantly impact the plant’s
treatment performance.

Furthermore, partial denitrification was implemented in the
simulations to match the process with the existing WRRF. The
other four WRRF treatment alternatives included additional
chemical and biological nutrient removal (BNR) processes. We
then cleaned the simulation data by removing runs that had
failed to converge on a steady state solution. ANNs were
subsequently applied to surrogate the five WRRF treatment
alternatives with different degrees of complexity.

The developed ANNs predicted the effluent nutrient
concentrations and other operational data, such as aeration
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Figure 1. Schematic workflow of this study: Section 2.1, developing WRRF models in GPS-X simulation software (a); section 2.2, ANNs
development (b); section 2.3, long-term simulation (c); section 2.4, techno-economic analysis of WRRF models (d).

requirements, sludge production, chemical use, and fertilizer
recovery potential, which were further used to conduct a
techno-economic analysis (TEA) of nutrient removal and
recovery potential for the five WRRF alternatives. After the
ANNs were successfully developed and validated, we
compared the nutrient treatment performance and cost
effectiveness among the five WRRF treatment alternatives for
10 years (2006—2015) of historical influent conditions. The
overall workflow of this study is provided in Figure 1.

2.1. Plantwide Modeling of Five WRRF Treatment
Alternatives. In this section, we present the details of
plantwide modeling development for the five WRRF treatment
alternatives as well as the design space for characterizing
stochastic influent characteristics, including wastewater flow,
rainwater flow, total phosphorus (TP), total Kjeldahl nitrogen
(TKN), and chemical oxygen demand (COD).

2.1.1. Plant Layout Design for WRRF Treatment
Alternatives. The plant-wide models provided a comparison
of the effectiveness of plant configurations in P removal and
potential phosphorus recovery as struvite. Full-scale WRRFs
were modeled and simulated using GPS-X software from

Hydromantis, Inc. for an existing WRRF located in Central
Hlinois. The WRRF receives high strength nutrient influents
from various industrial users and has a design average flow rate
of 41 million gallons per day (MGD) with a design maximum
flow of 125 MGD. The plant currently operates with an
activated sludge treatment process to meet numeric criteria for
total suspended solids (TSS), biochemical oxygen demand
(BOD), and ammonia and anticipates a future total P
discharge limit of 1 mg-P L~'. The nutrient removal
configurations considered are activated sludge (AS), activated
sludge with ferric chloride chemical precipitation for P removal
(ASCP), modified Bardenpho enhanced biological phosphorus
removal (EBPR), EBPR with acetate addition (EBPR-A), and
EBPR with side-stream struvite precipitation (EBPR-S). As
one of the modeling goals was to achieve minimum nutrient
effluent concentrations, we also applied the built-in optimiza-
tion tools of GPS-X to each treatment alternative.

In the AS and ASCP GPS-X process layouts (Supporting
Information, Figure Slab), influent wastewater flow and
rainwater were mixed before being directed to a primary
clarifier unit, followed by aeration tanks (three reactors in
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series). The chemical (FeCly) in the ASCP process was added
based on a 1:1 molar ratio between Fe* and influent PO,>~.**
A diffused aeration system was used in the aeration tanks with
dissolved oxygen (DO) set points of 0.5, 2.3, and 3.3 mg O,/L
in reactors 1 to 3 in accordance with current operations at the
plant. Two secondary clarifier units were used in series, before
the disinfection unit. Part of the underflow from the secondary
clarifiers was directed back to mainline treatment, and part of it
was directed to solids handling unit processes as wasted sludge.
Wasted sludge combined with the primary clarifier underflow
entered a sludge thickening unit, followed by anaerobic
digestion. The digestion unit effluent was directed to a
dewatering unit, where the dewatered sludge was hauled out of
the treatment plant, and its effluent was returned to mainline
treatment. The ASCP layout had a FeCl; chemical addition
tank upstream of the secondary clarifiers.

In the EBPR layout (Figure S1c), the effluent of the primary
clarifier unit (same as AS and ASCP) was directed to biological
treatment basins. The acetate dosing tank was off-line in this
process, and biological treatment basins consisted of one
anaerobic tank, two anoxic tanks, and two aeration tanks. The
combined flow of wasted activated sludge and primary clarifier
underflow were directed to thickening and digestion units
operated under the same conditions as the AS and ASCP
processes. A centrifuge was used for dewatering the sludge
(removal efficiency of particulate inert material = 0.95), with
dewatered sludge being hauled, and the effluent directed back
to headworks. The EBPR-A layout had the acetate dosing tank
operational, upstream of the anaerobic tank, where acetate was
added to maintain a COD/TP ratio of 26—30 based on
influent concentrations. In the EBPR-S process (Figure S1d),
the effluent of the centrifuge was not directed back to the
headworks, instead, it was mixed with MgCl, and NaOH
before entering the fluidized bed reactor. MgCl, was added
based on a molar ratio of 1.3 between Mg>* and PO,*”, and
NaOH was added to have a 1:1 molar ratio with Mg*".**
Struvite pellets were collected from the bottom of the reactor,
and the reactor effluent was directed back to headworks. Unit
process dimensions are presented in SI Tables S1 and S2.

2.1.2. Design Space for Characterizing Stochastic
Influents. Once the plantwide models were developed, we
generated the stochastic influent characteristics to represent
the intrinsic variability of sewage characteristics and wet
weather. The influent characteristics (e.g, wastewater flow,
rainwater flow, COD, TP, TKN) were obtained from the
existing WRRF and their ranges are provided in Table 1. For
the intrinsic variability of sewage characteristics, we used
maximum and minimum influent characteristics (e.g, COD,
TP, TKN) reported by the WRRF as the range to uniformly
sample data. The uniform distributions were selected to evenly
span samples across the parameter space and facilitate ANNs

Table 1. Characterization of Stochastic Influent for the
WRREF to Generate Dataset for ANN Training and Testing

influent characteristics range unit distribution
influent flow 20-55 MGD (US) uniform
wastewater flow 20-30 MGD (US)
rainwater flow 30-5S5 MGD (US)
total phosphorus (TP) 11.0-389 mgP L™ uniform
total Kjeldahl nitrogen (TKN) 146-494 mgNL™! uniform
chemical oxygen demand 447752 mg L™ uniform
(cop)
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learning of nonlinear behavior across a wide range of
parameter space. The influent flow, including wastewater and
rainwater flow, was uniformly sampled between 20 and SS
MGD to reflect the variability of wet weather. On the basis of
personal communication with the plant operator, the inflow
lower than 30 MGD was considered as only wastewater flow
from sanitary sewage (e.g,, domestic and industrial), while any
flow exceeding 30 MGD was attributed to rainwater to account
for its dilution impact on influent concentration. Typical values
of rainwater characteristics (e.g, COD, TP, TN) from the
literature were used to account for pollutant loadings in
combined influents.”” Monte Carlo methods were used to
uniformly generate 10000 sampled influent characteristics
(i.e., flow rate, total P, TKN, COD) that represented the range
of influent characteristics based on historical influent data for
each WRRF treatment alternative (Figure 1a). The generated
samples were subsequently used to train and validate ANNs to
predict the treatment performance of each alternative in
various combinations of influent characteristics within the
defined range (Table 1).

2.2, Development of ANNs as Efficient Surrogates for
Five WRRF Models. Fully connected feed-forward back-
propagation ANNs,”" consisting of multilayer perception
(MLP), were trained as surrogate models for the five WRRF
treatment alternatives (Figure 1b). The first MLP layer
represented the input layer with each node being one input
variable while the last layer represented the output layer with
each node being one output variable. The hidden layers
between input and output layers were used to approximate
nonlinear behavior between inputs and outputs. Since the
configurations of the five WRRF treatment alternatives were
based on an existing WRREF, the input variables for the ANNs
only included the four influent characteristics that were
historically measured, including total flow (sum of wastewater
and rainwater flow), TP, TKN, and COD. The output
variables consisted of multiple effluent variables of interest,
including COD, TP, TSS, TN, nitrate, sludge production, total
aeration requirement (for energy consumption estimation), as
well as struvite formation and recovery in the EBPR layouts.

Among the 10000 simulations, we found that as the
complexity of the WRRF model increased, there was a
subsequent increase in the number of simulations that failed
to reach a steady state solution. There are two possible causes
responsible for failure runs. First, certain extreme combinations
of undesirable conditions could result in failed simulations,
especially in EBPR layouts that are considered more complex
than AS and ASCP layouts. For example, as the influent
wastewater composition was randomly generated, there could
be instances of highly imbalanced COD/TP ratios causing
excessively long computation time that did not reach steady
state. Second, EBPR layouts require more computational
resources to solve simulations, which in combination with
hardware limitations, resulted in shutdown of GPS-X before
converging to a steady state solution in certain cases.
Therefore, those failed simulations did not represent a normal
wastewater treatment performance, and it was necessary to
remove those runs, otherwise the data would be contaminated
and propagate uncertainty to ANNs. We removed failed
simulations from the dataset if they met one of the two criteria:
(1) low newberyite concentration in anaerobic digestor (<1
mg MgHPO,-3H,0 L™"); newberyite in anaerobic digestor is a
byproduct that was predicted to form within a system
abundant with polyphosphate accumulating organisms

https://doi.org/10.1021/acsestengg.1c00179
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(PAOs); or (2) extremely low nitrate effluent (<0.001 mg
NO;—N L) as a result of highly imbalanced and unfavorable
influent composition that typically did not reach steady state.
After removing the failed runs, the dataset for each WRRF
model was randomly divided into three groups (60% as
training, 20% as validation, 20% as testing) for ANN training
and validation. Lastly, a S-fold cross-validation method was
further applied to validate the ANNs trained in this work.
The input combinations of influent characteristics and GPS-
X simulation outputs were normalized between 0 and 1 to
avoid undesired impacts due to unit differences between inputs
and outputs. Hyperparameters (e.g, number of hidden layers,
neurons, learning rates, algorithms for optimizing weights) of
ANNs were chosen based on trial and error, including the
activation functions, learning rates, the number of neurons in
hidden layers, the number of hidden layers, etc. By trial and
error, we considered two of the most widely used activation
functions to convert linear combinations of weighted neurons
into nonlinear relationships: rectified linear (ReLu) unit (¢ =

x
[4

e+ 1
normalized input to neurons. The learning rate was selected
as 0.01, the number of neurons as n = 20, and the number of
hidden layers as two. The generic form of ANN structure can
be described using eqs 1-3:

max(0, x)), and Sigmoid (¢ = ) where x is the

Jiw = oWy, " a_; + by,,) (1)
f; = {fl,l"" fl,n—l’ f;,n } (2)
Fan () = S U (5 (%)) (3)

where f;, is the output from neuron n in layer I, where I
€{hidden layer 1(h1), hidden layer 2(h2), output}, o; is the
activation function used in layer I, a;_, is the vector of inputs
from previous layer -1, W;, is the vector of weights for the
neuron # in layer [, by, represents the vector of bias for neuron
n in layer I, and f; is the Ith layer of neurons. fyyy is
hierarchically composed of each layer, starting from the input
layer, hidden layers, and the output layer. The weights and bias
in each neuron and each layer were optimized by Adam solver
(a widely used stochastic optimization algorithm) to minimize
the error on training data during the backpropagation
process.” The ANN surrogate models were trained using
the “Keras” package in Python. The performance of trained
ANNss was evaluated using two commonly used metrics for the
predictive accuracy of the ANNs: mean square error (MSE)
and coefficient of determination (R?).

2.3. Long-Term Simulation with Monthly Average in
ANN. To evaluate the long-term simulation of nutrient
removal in each WRRF treatment scenario, we simulated
monthly loading over a period of 10 years (2006—2015). For
each month, the total inflow (domestic and industrial
wastewater + rainwater), TKN, and TP were randomly
sampled 1,000 times with triangular distributions (Figure
1c). Triangular distributions, rather than fitted distributions for
each month were applied due to limitations in monthly data
(8—15 data points per month). To reflect monthly influent
variability, we chose triangular distributions with minimum,
maximum, and mode values determined, using monthly
historical data over 10 years (2006—2015) for inflow, TKN,
and TP. As historical COD data at a monthly scale was not
available, the distribution of COD was assumed to be the same
for all months; that is, 1000 samples of influent COD were
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sampled each month with the same triangular distribution. The
minimum, mode, max values of flow, TP, TKN, COD for each
year of the long-term simulations are provided in Table S3. We
checked the correlation between influent TKN and TP using
historical data and found a weak correlation (Pearson’s
correlation: r = 0.239 and coefficient of determination: R*
0.0571). Therefore, we did not consider their correlation
during the Monte Carlo sampling. The correlation was weak
because the plant receives most of its influent P from an
industrial source (nearly 90%), and most of its N from
domestic sources.

Calibrating a dynamic long-term period (e.g, 10 years)
simulation in GPS-X could be challenging for three reasons.
First, the lack of detailed knowledge of real-time influent
wastewater characteristics and how rainfall translates to plant
influent characteristics could introduce uncertainty. Without
this information, it was not possible to calibrate and validate a
dynamic model. Second, process modifications at the real
WRRF made in 2011 and other key external variables (e.g,,
temperature) that have significant impacts on the treatment
performance, were difficult to incorporate for long-term
simulations. Third, to generate sufficient data for the ANN
training within a reasonable amount of time, both the process
layout and operational considerations were simplified. To
simulate the long-term treatment performance, we limited
simulation failures in higher complexity process layouts by
using a single aeration basin and steady-state operation. We
further assumed that each month was a steady-state and used
monthly average values to represent the states. Details of each
model’s performance with simplified treatment layouts are
provided in section 3.3.

2.4, Techno-economic Analysis of WRRF Models. Full
plant layouts were built in CapdetWorks (v4.0; Hydromantis
Environmental Software Solutions, Inc.) to calculate the fixed
costs of capital construction and equipment, labor, and supply
materials for the five WRRF models (Figure 1d). CapdetWorks
provides comprehensive vendor data for cost estimation of
construction projects related to wastewater treatment plants.
Direct costs include site preparation, mobilization, and yard
piping, while indirect costs include design fee, inspection,
contingency, etc. The labor and maintenance costs were also
estimated with CapdetWorks. The capital, labor, and
maintenance costs for the five WRRF models are provided in
Supporting Information (SI), Table S4. As a single struvite
recovery reactor unit process was not available in Capdet-
Works, a continuous stirred tank reactor (CSTR) with similar
dimensions was added instead. It is important to note that the
capital cost of a fluidized bed struvite reactor may be greater
than a CapdetWorks CSTR reactor (because of the special
equipment and the reactor body material), but this was done as
an approximation to account for the total cost differences
between the EBPR and EBPR-S processes. Variable operational
costs that change with influent conditions (e.g, flow rate,
phosphorus, COD) were calculated with engineering design
equations derived from the literature and GPS-X manual.”
Specifically, the variable operational costs included (1)
aeration energy, (2) pumping energy, (3) heating energy,
(4) mechanical mixing energy, (5) miscellaneous energy, (6)
chemical dosage, and (7) sludge disposal costs. Among those
operational costs, the pumping energy, heating, and sludge
disposal costs were based on the outputs (e.g, aeration
requirement, sludge production) predicted by ANNs (Figure
3d). It is recognized that TEA results could be highly
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Figure 2. GPS-X Simulation results of five WRRFs treatment alternatives under 10000 Monte Carlo samples: nitrate effluent (a); COD effluent

(b); TP effluent (c); TN effluent (d); biosolids production (e).

uncertain, given the fact that unit costs vary across spatial and
temporal scales, such as costs associated with chemical
additives. For a transparent comparative analysis, we have
provided detailed parameters and major unit costs applied in
this study in SI, Tables S3—S9. The discount rate for capital
costs was set at 3% based on the US EPA’s Water
Infrastructure Finance Innovation Act (WIFIA) program,
while the discount rate for annual operating costs was assumed
to be 7%.”’ From the operating and capital costs, the
equivalent annual cost (EAC, $/yr) of the five developed
WRRF models was calculated to allow for comparison of the
cost effectiveness of annual nutrient removal across different
WRREF alternatives.

To compare the normalized life cycle cost of nutrient
removal for different treatment alternatives, we calculated the
normalized cost (Cyyieny $/Akg nutrient removed) of
nutrient removal (both N and P) relative to the baseline AS
process:

cost; — COStxg(paseline)

C =
Nutrient, i . .
Nutrlentefﬁ AS(baseline) — Nutrlentefﬂ ;

(4)

where Cost; ($/year) represents the annualized cost for
treatment alternative i € {ASCP, EBPR, EBPR-A, EBPR-S}.
Nutrient.g; is the nutrient effluent (N or P, kg/yr) for
treatment alternative i. Costas(baseline) and Nutrient,gag(baseline)
represent the treatment cost and nutrient effluent for the
baseline (AS), respectively. Note that in all cases, every
treatment alternative had higher nutrient removal and higher
costs compared to the baseline. Because of this, cases of
negative normalized costs or cheaper but less effective
treatments did not exist in our data set.
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3.1. GPS-X Simulation Results. 3.1.1. Comparison of
WRRF Models and Historical Data. Simulated effluent nitrate
concentrations in AS and ASCP processes were comparable to
historical data (Figure 2a). Since a uniform distribution for
influent data was used to generate sufficient variability for
ANN training, the number of days with rain events was higher
in influent data than in historical data, leading to simulated
nitrate results with greater variability. Although simulated AS
effluent nitrate and historical data were within the same range,
our simulations had slightly lower median concentrations.
Since partial denitrification was employed in the WRREF,
changes in controlled DO values over time could impact the
denitrification rate.”* As we only had access to data pertaining
to very recent controlled DO values in the plant, the lower
median simulated effluent nitrate concentrations could be
explained by historical differences in DO values used in the
aeration basins of the plant. Analysis on historical data further
revealed that effluent nitrate loadings were always higher than
influent ammonia, which could be caused by extra nitrogen
loads from a solids handling lagoon located in the vicinity of
the WRREF. This indicates that nitrification may not have been
the sole contributor to effluent nitrate in the historical data, as
it could also be affected by external nitrogen loads from the
lagoon. Simulated effluent TP concentration in the AS process
was in good agreement with the historical data as sludge/
hydraulic retention time, aeration basin volume, and sludge
settling capacity used in the models were consistent with the
WRREF. In terms of COD removal, all treatment alternatives
had acceptable performance to meet standard discharge limits,

https://doi.org/10.1021/acsestengg.1c00179
ACS EST Engg. 2021, 1, 1517—-1529


https://pubs.acs.org/doi/suppl/10.1021/acsestengg.1c00179/suppl_file/ee1c00179_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestengg.1c00179?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.1c00179?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.1c00179?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestengg.1c00179?fig=fig2&ref=pdf
pubs.acs.org/estengg?ref=pdf
https://doi.org/10.1021/acsestengg.1c00179?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS ES&T Engineering

pubs.acs.org/estengg

[ ]Effluent - Struvite Reactor|
[ Struvite Collection - Dewatering

—_ (a) Il Hauled Sludge (b) [ Anaerobic Digestion (€) | Thickener
-

5 3.0 —16 T -

2 o ‘ T 8

o c 14 c

£ 25 ) S

c e 12 I = R

S 20 S o

5 g1 =

2 2 g T

2 15 - ® 4

7} o ©

2 = 6 -

a 1.0 % =]

3 s £ 2

o 05 Z 2 ‘C

- = ]

o 2 0 x ,

= 09 ° TS R R b a® e

S < > S ! £ g
s Pﬁc €$? ?p?@ ?99? » Pﬁo ?9? %0?@ €$Q7~ p 69@

Figure 3. Phosphorus mass balance, precipitation, and recirculation in WRRF GPS-X simulations. TP distribution in plant output streams (a);
uncontrolled struvite precipitation in the AD unit (b); and recirculated phosphorus from solids handling operations (c). Error bars represent the

standard error of the average values.

with ASCP and EBPR-S having the lowest effluent COD
concentrations (Figure 2b).

Effective chemical and enhanced biological TP removal was
observed in all treatment alternatives. ASCP had the highest
removal (lowest effluent TP concentration), followed by
enhanced biological TP removal processes. EBPR performance
was improved with the addition of acetate or with side-stream
phosphorus recovery. In the ASCP process simulations, TP
concentration decreased significantly from an average influent
concentration of 25, to 025 + 0.10 mgP/L in the effluent
(Figure 2c). This was attributed to the formation of ferric
hydroxide and ferric phosphate.”® Simulated biological
phosphorus removal processes also showed significant removal
efficiencies. EBPR-A had higher TP removal efficiency
compared with basic EBPR, showing the positive impact of
maintaining a C/P ratlo between 26 and 30 to avoid PAO
carbon limitations.”® EBPR-S had the highest removal
efficiency and narrowest effluent TP range as it dramatically
reduced the amount of P returning from solids digestion and
thickening operations to mainline treatment, alleviating carbon
limitations and reducing sludge production (Figure 2c).”’

Nitrification and partial denitrification in the AS process led
to a reduction in effluent TN concentration. This reduction
was slightly improved in the ASCP process, due to increased
sludge settleability from chemical addition. Significant bio-
logical nitrogen removal was observed in EBPR, EBPR-A, and
EBPR-S processes. This is indicative of the reliable perform-
ance of anoxic stages for strong denitrification and nitrogen gas
stripping, followed by nitrification in aerobic stages leading to
the removal of ammonia from the stream (Figure 2d). While
iron precipitation resulted in the lowest effluent P concen-
trations, it significantly contributed to sludge production
(Figure 2e). Chemical sludge productlon is reported to
increase linearly with coagulant dosage,”” while extra sludge
production in an EBPR process is expected to be between 30
to 60% of that obtained in a chemical process.*®

3.1.2. Phosphorus Mass Balance and Recirculation. All
four P removal treatment scenarios led to reductions in effluent
discharge, but design and operating decisions impacted
nutrient recovery and intraplant P recirculation. In the AS
process, the majority of influent TP leaves the plant through
the effluent, resulting in low P content in hauled sludge,
minimal uncontrolled struvite formation during sludge
digestion, and little recirculated P from solids handling. In
the ASCP process, however, most of the influent TP leaves the
plant through hauled sludge, because of the strong chemical
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phosphorus removal efficacy, with minimal TP load in the
effluent. In this scenario, the P is fixed to iron and there is little
remobilization during digestion, resulting in low struvite
formation and recirculation. Recent studies have indicated
that iron phosphate mineral vivianite forms during the
digestion of iron amended sludge.””™*' Potential impacts of
vivianite scaling on the return conduit were not accounted for
in cost estimates.

While all EBPR processes showed significant reductions in
TP load leaving the plant through effluent, EBPR-S proved to
have the highest TP removal performance, while also
channeling 42—58% of influent P to the struvite crystallization
reactor (Figure 3a). While the addition of acetate during
mainline treatment helped to reduce TP load in the effluent,
the re-release of P during solids handling elevated uncontrolled
struvite precipitation in the anaerobic digestion (AD) unit
when acetate was used (Figure 3b). This also led to higher
energy consumption associated with EPBR aeration to reach
defined DO set points (EBPR: 4.66—5.69 GWh/yr, EBPR-A:
4.77-9.21 GWh/yr, EBPR-S: 3.87—4.82 GWh/yr). Further-
more, the inclusion of a post digestion struvite crystallizer
reduced P cycling from solids handling operations (Figure 3c)
This reduction was highly impactful as the P returning from
solids handling was much greater than the plant influent load.
Cascading impacts could be observed in the P content of
hauled sludge and uncontrolled struvite precipitation in the
digester.

3.2. ANNs Simulation Performance for the Five WRRF
Models. The ANN and GPS-X simulation outputs including
nutrient effluent concentrations (nitrate, TN, TP), biosolids
production, airflow demand for aerobic reactors, and recovered
struvite (EBPR-S only) exhibited a strong correlation, with
overall R-squared higher than 0.985 and MSE lower than
0.000S for all five plant-wide models (Figure 4). As the model
complexity increased from activated-sludge-based layouts to
EBPR-based layouts, R-squared slightly decreased for EBPR-S
(from 0.998 for AS to 0.974). Although the impact of model
complexity seemed to be negligible on ANNs performance, it
had a considerable impact on the number of failed simulations.
For example, no outliers were detected for the AS and ASCP
layouts, while 2878 and 1786 failed simulations (out of
10000) were detected in EBPR-A and EBPR-S layouts,
respectively. The removal of outliers from failed GPS-X
steady-state simulations was the key to the success of
developing surrogate WRRF models with ANNs. Before
training ANNs without removing outliers, the R-squared
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Figure 4. Simulation outputs from GPS-X and ANN in evaluating test data (20% of the data set). Subplots include (a) activated sludge (AS); (b)
activated sludge with chemical precipitation (ASCP); (c) modified Bardenpho enhanced biological phosphorus removal (EBPR); (d) EBPR with
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used as an indicator for ANNs performance was 0.90 (as
compared to 0.99 after data filtering).

In addition to ANNs, there have been other reported
suitable surrogate models such as random forest, Kriging, radial
basis functions, and different variants of ANNs (e.g., long
short-term memory).”*** In our study, we did not explicitly
compare the performances among different surrogate methods,
but rather focused on developing surrogate models with
satisfactory performance to apply them for efficient long-term
simulations. It is also noted that additional uncertainty is
introduced when applying surrogate models. There are
multiple ways to quantify the uncertainty associated with the
ANN, such as Bayesian or bootstrap approaches.””** We did
not quantify the uncertainty of ANN models because (1) the
uncertainty introduced by ANN models was considered to be
small as R-squared values were very high; (2) the uncertainty
analysis could increase the computation time for ANN models.
For example, the bootstrap-based approach would create an
ensemble of ANNSs for the same WRREF treatment alternative,
of which the computation time will depend on the number of
ANN instances created within an ensemble.**

3.3. Long-Term Simulation of Wastewater Treatment
under Wet and Drought Weather. Following ANN
training and validation, the plant-wide surrogate models were
used to simulate long-term nutrient removal performance
(Figure S) using 10 years of historical influent data. The AS
treatment alternative predicted by ANN showed a similar
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concentration range to the historical nitrate and TP loading
using the typical ranges of influent characteristics (Figure Sa).
Our approach to long-term simulation, with the assumption
that each month is a steady-state and can be represented by the
monthly average effluents, has two advantages. First, the 1000
ANN simulations in ANNs based on average historical
monthly influent characteristics could be executed within
seconds, compared with a high-fidelity computer program
using a Matlab-controlled script, which took hours or days
(dependent on model complexity) in GPS-X. Second, WRRF
treatment performance could be easily simulated under
alternate future climate scenarios as long as the relationship
between precipitation and inflow was known. The relationship
between precipitation in different climate scenarios can be
predicted using historical precipitation data and inflow data.
While there are clear strengths, our approach has its
limitations. First, such simplification could lead to discrepancy
in effluent simulation. Second, our WRRF models were based
on steady-state simulations and could not be used to predict
the impact of extreme short-term events.

When compared historical nitrate loading with the AS using
monthly influent characteristics distribution over 10 years, the
nitrate loading of AS predicted by ANN had a 22700 kg/
month underestimation (38%) (Figure Sb). The historical data
included wet (2008—2010) and drought (2011 June to 2013)
periods, allowing for an understanding of how different
treatment alternatives could respond to climate variability.
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Figure S. Nutrient effluent simulation between historical data and the five ANNs. Panels (a) and (b) show the nitrate and TP effluent loading for
historical data and the five WRRF treatment alternatives using typical ranges of influent characteristics presented in Table 1, respectively. Boxes
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The discrepancy observed between ANN nitrate loading
simulations and historical data was more significant during
wet periods when the plant received flushes of stormwater
from the combined sewer system (Figure Sc). As discussed in
section 3.1, based on the analysis performed on historical data,
it was suspected that nitrogen loading discharge from a lagoon
near the wastewater treatment plant could also contribute to
the effluent nitrate loading. However, the effluent nitrate
loadings predicted by the AS simulation model and ANN were
only a result of nitrification in the aeration basins, which could
be a source for the discrepancy between historical and
simulated data. Moreover, effluent nitrate loading in historical
data could be impacted by seasonal temperature variations and
inconsistent DO control strategies, especially during severe
rain events when increased aeration was required to maintain
optimum aerating conditions. Nitrite peaks have been reported
to be caused by a drop in oxygen concentration along with
spikes of TKN concentration in the influent, while increasing
aeration was only proven to be beneficial to effluent quality
and N,O emission up to a certain threshold.* Therefore,
possible inconsistency in aeration control during wet periods
could lead to increased effluent nitrate concentrations from the
plant. Also, since the temperature was kept constant in our
simulations, the ANNs could not have captured the impact of
temperature on denitrifying bacteria community and their
subsequent effect on nitrate reduction. A variance-based
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sensitivity analysis applied to an integrated activated sludge
model (ASM2d) revealed that maximum growth rate, growth
yield, and decay rate for heterotrophic bacteria introduced the
highest variance to nitrate concentration.*® While the growth
rate was increased at high temperatures,’” cell decay rate was
reported to be slower at low temperatures.* Therefore, it is
likely that the ANNs did not fully capture the seasonal
variations in activated sludge activity at the plant. Furthermore,
influent readily biodegradable and inert particular COD also
have a significant impact on eftluent nitrate concentrations, as a
lower degradable COD fraction could mean reduced
denitrification and higher effluent nitrate concentrations.*’
Therefore, uncertainty in the influent COD fractions of the
historical data and ANN simulations could lead to additional
discrepancies. Finally, the actual plant has gone through
operational modifications since 2011; as our simulations were
based on the most recent characteristics of the plant, this could
explain why the discrepancy between the historical data and
simulated effluent nitrate loading rates was most significant
before 2011 (Figure Sc).

Although our approach showed that estimates of nitrate
loading over a long-term period can result in significant
discrepancy, point source nitrate loading typically contributes a
small portion of total nitrate loading for agricultural water-
sheds, compared to the nonpoint source nitrate from landscape
loss. For example, the WRRF in our work only contributes
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Table 2. Breakdown of Equivalent Annualized Costs for the Five WRRF Treatment Alternatives

WRRE alternative fixed cost” energy cost?

AS 16.73 091 0.15

[0.77,1.05] [0.14,0.17]
ASCP 17.10 091 0.85

[0.78, 1.05] [0.58, 1.19]
EBPR 18.53 0.70 0.16

[0.66, 0.78] [0.14, 0.17]
EBPR-A 18.53 0.77 3.82

[0.67, 1.11] [0.58, 8.32]
EBPR-S 18.72 0.65 1.79

[0.61, 0.73] [1.46, 2.27]

chemical cost”

sludge handling cost? revenue of struvite” total cost?

0.04 17.82
[0.03, 0.05] [17.68, 17.99]
0.10 18.94
[0.07, 0.12] [18.81, 19.34]
0.08 19.47
[0.07, 0.11] [19.41, 19.57]
0.09 23.21
[0.07, 0.12] [19.43, 28.02]
0.06 0.59 20.62
[0.04, 0.08] [0.27, 1.18] [20.27, 28.36]

“Note: Fixed cost includes capital cost, labor cost, maintenance cost, and material cost. bAll values are in unit $Million/ year. Values within the

bracket represent the range of 95% confidence interval.

Normalized cost of enhanced

' (a)
§ 30
e 1
LR
2
5 S 20
‘g:’
o g 15
©
X 5 10 -
g&
e 5] —
Q ol N ]
Q Q h ’
2} o) & &
< & g 5
& &

120 A (b)

100 ~

N removal ($/Akg N)
H [*)) (o0]
o o o

N
o
1

o
1

&
&
&

Q_
g
&

&

Figure 6. Normalized cost of enhanced phosphorus (a) and nitrate (b) removal related to activated sludge. Calculation of normalized costs are

based on eq 4.

7.5% of total nitrate loading in the watershed. A 38%
underestimation of point source nitrate will lead to an overall
2.9% underestimation for the watershed, which is acceptable
for future watershed optimization efforts."'

Compared with the nitrate simulation, TP loading
simulations compared favorably to historical data (Figure
5d). The TP loading from AS followed the trend of historical
TP loading and the discrepancy was much smaller (18%
overestimate on average), as compared to the case of nitrate
loading. ASCP had the best performance in removing TP from
effluent. Simulation results indicated the notable variability of
EBPR performance in reducing effluent TP loading rates.
While EBPR-S exhibited a higher degree of performance
stability due to reduced P recirculation, EBPR and EBPR-A
had a fluctuating performance, especially during wet/drought
periods. These wet/drought periods subjected the simulated
models to intense variations in influent flow, leading to
fluctuations in HRT values in anaerobic, anoxic, and aerobic
basins. Shifts in the HRT value above or below an optimal
range (anaerobic 0.5—1.5, first anoxic 1—3, first aerobic 4—12,
second anoxic 2—4, and second aerobic 0.5—1 h*®) is reported
to adversely affect EBPR performance.”””" This would be a
major problem for the simulated hypothetical EBPR plants in
which the recirculated TP load was so much greater than
influent load, as increased rainwater flow would effectively
wash out the recirculated P.
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3.4. Normalized Lifecycle Cost Comparison of
Nutrient Removal Alternatives. Since economic consid-
erations often dictate decision-making when adopting modified
or new technologies in WRRFs,”” a techno-economic analysis
was conducted for each WRRF treatment alternative. The
equivalent annual costs differed for each scenario with AS
being the lowest and EBPR-S the highest (Table 2). As
expected, the greatest contribution to lifecycle cost came from
fixed costs (capital, labor, maintenance, and material cost). The
chemical cost could vary considerably with treatment
alternatives as shown in Table 2. The chemical cost in the
baseline (AS) included basic chemical needs (e.g., polymer for
sludge thickening, sodium hypochlorite for disinfection) and
cost 0.15 $MM/yr. For ASCP, the amount of iron addition was
calculated based on a 1:1 molar ratio of each mole of influent P
to one mole of iron (Fe), yielding an increase in the chemical
cost to 0.85 $MM/yr on average. EBPR-A had the highest
chemical costs ($3.82 MM/yr) due to acetate addition. For
EBPR-S, the revenue of recovered struvite was estimated at
0.59 $MM/yr (assuming the recovered struvite is worth $0.5/
kg). The energy cost, which included aeration, digestion
heating, pumping, and miscellaneous uses (mechanical
operations, rakes, etc), was lower in the three EBPR layouts
than the AS and ASCP, mainly due to decreased airflow
demand attributed to denitrification. It is also noted that
sludge handling costs in ASCP, EBPR, and EBPR-A were more
than twice of sludge handling cost in AS, although sludge
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handling costs for all treatment alternatives were relatively
negligible. However, this cost was based on the amount of
sludge production and did not take the impacts of nutrient and
heavy metal contents into account, and may underestimate the
cost of sludge disposal.

To compare the cost-effectiveness of nutrient removal to
baseline AS, we evaluated the incremental cost required for
removing additional nutrients (calculation details provided in
section 2.4). It was found that ASCP was the most cost-
effective treatment alternative for removing P, due to its low
additional fixed cost and most significant P removal (Figures
2c and 6a). However, it should be noted that the ASCP layout
does not provide the nitrogen removal benefits of EBPR
(Figure 6b). It is important to acknowledge the uncertainty of
cost inputs to these estimates as chemical costs can vary highly
depending on the region and time of purchase; moreover, the
capital cost estimation for the struvite crystalization reactor
was probably an underestimation, because this specific unit
process was not defined in CapdetWorks. To reduce chemical
cost uncertainty, we searched bid tabulations online to
estimate the bulk price of ferric chloride, acetate, magnesium
chloride, and sodium hydroxide (SI, Table S9). Owing to the
uncertainty of the cost of chemicals, the estimated operational
costs could be different, and depend on the location and time
of alternative scenarios. Given the lack of an struvite fluidized
bed reactor unit process in CapdetWorks, we designed a
concrete CSTR and settling basin for sidestream P recovery,
which could underestimate the fabrication cost of the high
aspect ratio (height/width) reactors often employed in the
field.

The normalized costs of N and P removal were lowest for
EBPR when chemical addition and struvite precipitation were
excluded. However, as noted earlier, EBPR without chemical
amendments is highly sensitive to influent conditions, which
could lead to discharge permit violations (e.g,, 1 mg/L TP).
The normalized nutrient removal costs of EBPR-A exhibited
the largest variability in removing P as its chemical cost is
related to the ratio of COD and TP in the influent, which can
have a high variability. The normalized cost of P removal with
EBPR-S was slightly higher than ASCP and EBPR, but
simulations indicated that it would provide the most stable
removal performance while generating a renewable fertilizer
product. Therefore, when considering both nitrate and TP
removal as well as the stability of cost-effectiveness, EBPR-S
appeared to be the best alternative, particularly if coupled with
side-stream sludge fermentation for in-situ volatile fatty acid
production to reduce mainline carbon limitations. It should
also be noted that due to the limitations mentioned earlier, the
capital cost estimation for the EBPR-S process could be an
underestimation and subject to uncertainty. This uncertainty in
capital cost estimation should be taken into account before
making final conclusions about the cost-effectiveness of the
EBPR-S process.

There have been efforts in the literature to model
eutrophication in a unified metric considering spatial and
temporal factors.”>>* Comparing the cost-effectiveness of
nutrient removal on such a unified metric would be beneficial
for a more holistic comparison, and is suggested for future
studies.

In this study, we applied a novel approach to compare the
long-term nutrient removal performance and cost-effectiveness
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of five WRRF treatment alternatives. We first developed five
high-fidelity WRRF models in GPS-X simulation software, and
then applied ANNs to surrogate the five WRRF models with
satisfactory performance. The developed ANN models showed
the capability of predicting the treatment performance of all
WRRFs under stochastic influent characteristics with a good
degree of accuracy. Removing failed simulations was a key step
in ensuring the success of the ANNs' development. Our study
highlighted the benefit of side-stream P recovery as
demonstrated both in process-based and ANN models.
Specifically, EBPR-S showed the highest treatment stability,
while EBPR without chemical addition was very sensitive to
influent flow rate and composition.

Applying the ANN models for long-term simulation can
significantly reduce the computational burden with acceptable
accuracy, which can facilitate the coupling of complex process
models. For example, the ANN models that represent point-
source nutrient removal and recovery have been coupled with
other hydrological models that simulate nonpoint source
contributors, while implementing economic models to evaluate
nonmarket valuations for water quality improvement in an
integrated watershed optimization framework. This method-
olgy could allow for a holistic watershed nutrient management
practice.11
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