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Abstract: The Household Pulse Survey, recently released by the U.S. Census Bureau, gathers infor-
mation about the respondents’ experiences regarding employment status, food security, housing,
physical and mental health, access to health care, and education disruption. Design-based estimates
are produced for all 50 states and the District of Columbia (DC), as well as 15 Metropolitan Statistical
Areas (MSAs). Using public-use microdata, this paper explores the effectiveness of using unit-level
model-based estimators that incorporate spatial dependence for the Household Pulse Survey. In
particular, we consider Bayesian hierarchical model-based spatial estimates for both a binomial and a
multinomial response under informative sampling. Importantly, we demonstrate that these models
can be easily estimated using Hamiltonian Monte Carlo through the Stan software package. In doing
so, these models can readily be implemented in a production environment. For both the binomial
and multinomial responses, an empirical simulation study is conducted, which compares spatial and
non-spatial models. Finally, using public-use Household Pulse Survey micro-data, we provide an
analysis that compares both design-based and model-based estimators and demonstrates a reduction
in standard errors for the model-based approaches.

Keywords: Hamiltonian Monte Carlo; ICAR; small area estimation; spatial; Stan

1. Introduction

In recent years, COVID-19 has spread across the globe, causing immeasurable disrup-
tion in nearly every country. Governments and policy-makers around the world have been
forced to institute a range of public heath and social measures, from movement restrictions
to the closure of schools and businesses. In the United States, many impactful measures
have been taken at the state or local level, such as mask mandates, testing, and contact
tracing protocols. Furthermore, the societal effects of COVID-19 may differ across states for
reasons such as population density, economic conditions, and demographic composition.
According to the CDC [1], Black and Latino Americans are four times more likely to be
hospitalized in comparison to non-Hispanic Whites, resulting in lost wages and healthcare
expenses and deepening the racial wealth gap. To study this impact, the U.S. Census
Bureau, in collaboration with multiple federal agencies, commissioned the Household
Pulse Survey [2]. Other efforts to measure the societal effects of COVID-19 include the
Research and Development Survey (RANDS) administered by the National Center for
Health Statistics (NCHS). RANDS focuses on healthcare, such as telemedicine and access,
as well as loss of work due to illness [3].

These surveys can better inform the American public as well as lawmakers, not
only regarding the efficacy of the U.S. pandemic response but also the effects of stimulus
measures that were enacted in order to sustain the economy. To address COVID-19,
Congress has passed the CARES Act. Due to the frequent and timely dissemination
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of tabulations from the Household Pulse Survey, this survey may be a suitable tool to
evaluate the efficacy of CARES and the demand for follow-up legislation. The Household
Pulse Survey should inform law and policy-makers as to the magnitude of intervention
necessary to secure Americans’ health and financial well-being. Additionally, the 116th U.S.
Congress passed the Consolidated Appropriations Acts [4], which included $900 billion for
COVID-19 relief; top ticket items included $325 billion for small businesses, $166 billion
for stimulus checks, and $120 billion for increased federal unemployment benefits. With
the inauguration of the 117th U.S. Congress, the $1.9 trillion American Rescue Plan [5] was
also passed.

Historically, small-area estimation (SAE) techniques have been used in conjunction
with survey data in order to provide population estimates for domains with small sample
sizes [6]. There is a considerable literature on area-level models, such as the foundational
Fay–Herriot model [7]. However, recently, there has been an increased demand for unit-
level models that act on the survey data directly. For example, the basic unit-level model,
or nested-error regression model [8] links individual survey units to geographic domains.
This model can easily be fit using the sae package in R [9]. The choice of whether to model
at the unit- or area-level is often the result of practical considerations, e.g., data availability.
From a data-user perspective, area-level models may be necessary, as access to microdata
(often confidential) may not be possible at the level of granularity desired for a specific
analysis. From the perspective of an official statistical agency, this barrier may not be
present. See [10] for additional discussion.

Unit-level models can offer greater precision as well as other benefits, such as a reduced
reliance on ad-hoc benchmarking techniques; however, these come with their own set of
challenges. First, it is critical to account for sample design in unit-level modeling, in order to
mitigate biases [11]. The authors of [12] review many of the modern methods for accounting
for an informative sampling design. One common approach is the use of a survey weighted
pseudo-likelihood [13,14]. For example, [15] uses a pseudo-likelihood in conjunction with
poststratification in order to estimate the prevalence of Chronic Obstructive Pulmonary
Disease (COPD). Another approach to the informative sampling problem is the use of
nonlinear regression techniques on the survey weights [16,17]; however, this approach can
be quite computationally expensive and does not naturally incorporate covariates.

A second concern when using unit-level models is that they are often much more com-
putationally demanding than their area-level counterparts. This is driven by increasingly
large datasets at the unit level, as well as the prevalence of non-Gaussian data types. The
authors of [18] use conjugate distribution theory to efficiently model Poisson data under a
pseudo-likelihood, whereas [19] explore the use of data augmentation and a variational
Bayes algorithm for binary and categorical data types under a pseudo-likelihood.

Within SAE, a specification of spatial dependence structure is often used to improve
the precision of estimates. For example, at the area level, [20] consider conditional autore-
gressive priors on the area-level random effects, whereas [21] use Moran’s I basis functions.
At the unit level, [17] use intrinsic conditional autoregressive (ICAR) priors in conjunction
with a nonlinear regression on the survey weights. Alternatively, [19] use spatial Basis
functions combined with a pseudo-likelihood.

In this work, rather than relying on custom sampling and estimation techniques, we
demonstrate that openly available software can often be adequate for unit-level SAE. In
particular, we develop a set of both spatial and non-spatial models for both binary and
categorical survey data, within the popular probabilistic programming language, Stan [22].
Our model development is most similar in structure to that of [19], although we note that
we use ICAR prior distributions for the spatial random effects and estimate the model
automatically via Stan, rather than relying on custom sampling techniques. The primary
contribution of this work is in the application of these methods to an important and timely
dataset. In particular, as a motivating application, we construct state level estimates using
the Household Pulse Survey, in order to better understand the societal effects of COVID-19
in the United States.



Stats 2022, 5 141

1.1. Household Pulse Survey

The Household Pulse Survey (HPS) gathers individual information about the respon-
dents experiences regarding employment status, food security, housing, physical and
mental health, access to health care, and education disruption [23]. Estimates are produced
for all 50 states plus the District of Columbia (DC), as well as 15 Metropolitan Statistical
Areas (MSAs), for a total of 66 areas. The survey is designed to provide timely and accurate
weekly estimates. Samples are drawn from the Census Bureau’s Master Address File in
combination with the Census Bureau Contact Frame and contacted via email and text.
Once a household has completed the interview, their response remains in the sample for
two weeks. Sample sizes were constructed appropriately to detect a two-percentage-point
difference in weekly estimates, with an anticipated response rate of five percent. Sample
sizes averaged around 1778 units per state per week, with a median of 1555, but ranged
from as high as 9661 for California in Week 3 to as low as 360 for North Dakota in Week 2.

Sampling rates for each county are determined at the state level. Counties that belong
in an MSA would require a larger sample to satisfy MSA sampling requirements. For
example, the MSA counties within Maryland would require larger samples compared to
the remaining counties within the state. These sampling rates inform a set of base weights.
Sampling base weights in each of the 66 sample areas are calculated as the total number
of eligible housing units (HU) divided by the number of HUs selected to be in the survey
each week. In other words, the base weights of the sampled HUs sum to the total number
of HUs.

Base weights are then adjusted to account nonresponse, the number of adults per
household, and coverage. The base weights underwent four adjustments. (1) Non-response
adjustment: the weight of those that did not respond were allocated to those that did
respond for the same week and sample area. (2) Occupied HU ratio adjustment: HU weights
were inflated to account for undercoverage in the sampling frame by matching weights post
non-response adjustment to independent controls for the number of occupied HUs within
each state according to the 2018 American Community Survey (ACS) one-year, state-level
estimates. (3) Person adjustment converts HU weights into person weights by considering
the number of adults aged 18 and over living within a given household. (4) Iterative
Raking Ratio to Population Estimates: this weight adjustment uses the demographics of
our sample to match education attainment estimates by age and sex of the 2018 1-year
ACS estimates and the 2020 Hispanic origin/race by age and sex of the Census Bureau’s
Population Estimates Program (PEP) for each state or MSA [23].

The Household Pulse Survey is split into phases, and is currently in Phase 3.3. Phase
1 began on 23 April 2020 and ended on 21 July 2020. Phase 2 began on 19 August 2020
and ended on 26 October 2020. Phase 3 began on 28 October 2020 and is ongoing. The
Household Pulse Survey is released weekly and estimates (both point estimates and associ-
ated standard errors) are tabulated using the design-based Horvitz-Thompson estimator.
Geographies include United States, 50 states plus DC, and 15 MAS, and estimates are
further broken down by age, race, sex, education, etc. However, no cross-tabulations (for
example age by sex) are available.

The remainder of this article is organized as follows. In Section 2 we present a series of
unit-level models for binary and categorical survey data. Section 3 considers an empirical
simulation study that utilizes the HPS. In Section 4, we illustrate our methodology by con-
structing state-level estimates with the HPS. Finally, in Section 5, we provide a discussion
and concluding remarks. The Stan code files used to develop the simulations and data
analysis are openly available at https://github.com/QuarkofDorothy/Analysis-of-HPS-
Public-Use-Microdata-via-Unit-Level-Models-for-Informative-Sampling.git (accessed on 4
January 2022).

https://github.com/QuarkofDorothy/Analysis-of-HPS-Public-Use-Microdata-via-Unit-Level-Models-for-Informative-Sampling.git
https://github.com/QuarkofDorothy/Analysis-of-HPS-Public-Use-Microdata-via-Unit-Level-Models-for-Informative-Sampling.git
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2. Methodology
2.1. Design-Based Estimation

Design-based approaches to estimation are interested in quantitative characteristics of
a finite population. Inference is made based on the characteristics of repeated sampling
from a population. Each unit in the population, U = {1, . . . , N}, has a probability of sample
selection, πi. We denote wi as the unit sample weight, typically assumed to be the inverse
probability of selection. In the case of the HPS, these weights are adjusted as described in
Section 1.1. The sample of size n is then denoted as S = {1, . . . , n}. Then, using complex
survey methods for the sample data, we can derive an estimate for a given population
quantity [24].

The HPS uses the Horvitz–Thompson estimator [25] for various population totals,

t̂HT =
n

∑
i=1

wiyi,

where yi is the response of interest for unit i in the sample. The standard error (SE) around
this estimate is constructed using successive difference replicate weights [26]. In this case,
80 replicate weights were created and the variance is empirically estimated by comparing
replicate estimates, tk, using the replicate weights, with the original estimate t̂HT ,

Var(t̂HT) =
4

80

80

∑
k=1

(tk − t̂HT)
2;

see U.S. Census Bureau [23] for additional discussion. Although design-based estimates
tend to work well for full-population estimates, they often have substantial standard errors
when constructed for small domains with limited sample sizes.

2.2. Model-Based Estimation

Model-based estimates can be used with relatively small samples and with non-
probability samples, in contrast to design-based estimates. In addition, model-based
estimators may incorporate auxiliary information as well as various dependence structures
in order to improve the precision of estimates. When conducting modeling with unit-level
survey data, it is critical to incorporate the sample design in some capacity; otherwise,
substantial biases may be present [11]. Unit-level models treat individual survey respon-
dents as the response data. Predictions are made at the individual level and then can
be aggregated up to any level to construct desired estimates for the pruposes of small
area estimation.

One common approach to account for the survey design within a unit-level model is
to use a pseudo-likelihood (PL), introduced by [13,14], by weighting each unit’s likelihood
contribution using the reported survey weight wi,

n

∏
i=1

f (yi | θ)wi , (1)

where θ is a vector of model parameters. More recently, Savitsky and Toth [27] show that the PL
may also be used for general Bayesian models, thus generating a pseudo-posterior distribution

π̂(θ|y, w̃) ∝

{
n

∏
i=1

f (yi|θ)w̃i

}
π(θ).

In the Bayesian setting, it is important to scale the weights to sum to the sample size,
w̃i = n wi

∑n
j=1 wj

, in order to prevent contraction of the PL and achieve appropriate variance

estimates. Our proposed model-based estimators are based on this idea of a Bayesian
pseudo-likelihood. The pseudo-likelihood (1) assumes a conditional independence given θ.
Thus, we choose to specify a latent dependence structure through Bayesian hierarchical
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modeling. Although the HPS specifically does not include a cluster sampling component,
in cases where cluster sampling is present, it may be desirable to include a cluster level
random effect in the model.

2.3. Bernoulli Pseudo-Likelihood Models

Our first proposed model uses a Bernoulli pseudo-likelihood with fixed effects for
auxiliary covariate information, as well as i.i.d. area level random effects. This non-spatial
Binomial Pseudo-likelihood model (NSB) is written as follows:

y | β, η ∝
n

∏
i=1

Bernoulli(yi|pi)
w̃i

logit(pi) = x′iβ + ψ′i η, i = 1, . . . , n

β ∼ Np(0p, Ip×pσ2
β)

η|σ2
η ∼ Nr(0r, Ir×rσ2

η)

ση ∼ Cauchy+(0, κ),

(2)

where xi is a p-vector of covariates and ψi is an incidence vector of length r, indicating in
which area unit i resides. That is, ψi is a vector of all zeroes, except for the jth element
which contains a one when unit i resides in area j. Note that this is a special case of the
model used by [19]. In principle, the areas defined by ψi do not need to be at the same
scale at which estimates are made. That is, the unit-level model may be fit using random
effects for any (or multiple) geographic indicator contained within the sample data, a
set of synthetic populations may be constructed, and these synthetic populations may
then be aggregated to any geographic scale for which estimates are desired. However, for
the examples considered here, both the random effects and the estimates will be at the
state level.

The NSB model captures spatial dependence for units within the same area through
the use of random effects. However, it is often the case that there is dependence between
units in neighboring counties that is not captured via this model. Thus, we extend the NSB
model to introduce spatially correlated random effects (denoted SB),

y | β, η ∝
n

∏
i=1

Bernoulli(yi|pi)
w̃i

logit(pi) = x′iβ + ψ′i η+ ψ′i θ, i = 1, . . . , n

β ∼ Np(0p, Ip×pσ2
β)

η|σ2
η ∼ Nr(0r, Ir×rσ2

η)

θ|σ2
θ ∼ Nr

(
0r, σ2

θ (D−W)−1
)

ση ∼ Cauchy+(0, κ)

σθ ∼ Cauchy+(0, κ).

(3)

The SB model includes an additional random effect, θ. The prior distribution placed
on θ is known as an intrinsic conditional autoregressive (ICAR) prior and induces spatial
correlation between the random effects [28]. Here, the r × r matrix W is an adjacency
matrix where element [Wj,k] is equal to one if areas j and k share a border, and equal to
zero otherwise. By default, an area cannot share a border with itself, making the diagonal
elements equal to zero. The r× r matrix D is a diagonal matrix with diagonal entries equal
to the corresponding row sums of W .
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2.4. Multinomial Pseudo-Likelihood Models

In addition to Binomial or Bernoulli survey data, we are also interested in Multinomial
or categorical data. We extend the NSB model to the multiclass categorical setting (NSM),

y | β, η ∝
n

∏
i=1

Categorical(yi|pi)
w̃i

pik =
exp(µik)

∑K
k=1 exp(µik)

µik = x′iβk + ψ′i ηk, i = 1, . . . , n

βk ∼ Np(0p, Ip×pσ2
β), k = 1, . . . , K− 1

ηk|σ2
η ∼ Nr(0r, Ir×rσ2

η), k = 1, . . . , K− 1

ση ∼ Cauchy+(0, κ).

(4)

The response, yi, may take any one of K categories. Similar to the NSB model, the
NSM model includes both fixed effects and i.i.d. random effects, with separate parameters
for each category. The parameters for the last category, K, are set to zero for identifiability.
Finally, the softmax function is used rather than the logistic function to map the linear
predictors to the length K vector of category probabilities, pi.

As in the Bernoulli case, we develop a variant of this model that uses an additional
spatial random effect with an ICAR prior distribution. This model is denoted as SM,

y | β, η ∝
n

∏
i=1

Categorical(yi|pi)
w̃i

pik =
exp(µik)

∑K
k=1 exp(µik)

µik = x′iβk + ψ′i ηk + ψ′i θk, i = 1, . . . , n

βk ∼ Np(0p, Ip×pσ2
β), k = 1, . . . , K− 1

ηk|σ2
η ∼ Nr(0r, Ir×rσ2

η), k = 1, . . . , K− 1

θk|σ2
θ ∼ Nr

(
0r, σ2

θ (D−W)−1
)

, k = 1, . . . , K− 1

ση ∼ Cauchy+(0, κ)

σθ ∼ Cauchy+(0, κ).

(5)

3. Empirical Simulation Study

To evaluate our proposed methodology, we conducted an empirical simulation study
to compare design-based and model-based estimators. Rather than generate completely
synthetic data to construct our population, we treated the existing HPS data as our popu-
lation. We then took informative sub-samples from this population and constructed our
estimates using the sub-sampled data. This approach has the advantage of maintaining
many characteristics of the original survey dataset that may not necessarily be present
in completely synthetic data. Separate simulations were conducted for binomial and
multinomial responses.

The Household Pulse Survey public-use microdata [2] served as the population from
which we drew sub-samples. Public-use microdata from the HPS constituted 51 populations
(50 states plus the District of Columbia), although we eliminated Alaska and Hawaii from
our analysis. The sample weights were constructed to ensure an informative sample with
a sample size equal to 1/15 of the population for both the binomial and multinomial
responses. In all cases, model covariates included race, age, and sex. Race contained five
categories: Hispanic, non-Hispanic white, non-Hispanic black, Asian, and two or more
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races. Age was divided into five brackets: 18 to 24, 25 to 39, 40 to 54, 55 to 64; and 65 or
older. Sex was binary, i.e., male or female.

Sub-samples were constructed using aprobability proportional to size sampling via the
Midzuno method [29]. The Horvitz Thompson estimator was calculated using the sampling
package in R [30]. All models were fit via Hamiltonian Monte Carlo using Stan [31].

The response variable of interest in the binomial case was “expected job loss”, a bino-
mial variable, which asked the respondent whether they expected to lose their job within
three months. The sample selection probability was then calculated to be the natural log of
the original HPS weight plus 2 if the observed respondent did not expect to lose their jobs.
Again, w̃i denotes the inverse of the selection probability after scaling to sum to the sample
size, and vague priors of σβ = 10 and κ = 5 are assumed. Two MCMC chains were used as
Stan’s default [31], with 2000 iterations each, and the first 250 were discarded as a burn-in.
Convergence was assessed through visual inspection of the trace plots of the sample chains
along with evaluation of the split R̂ [32]. All parameters had a R̂ < 1.1; thus, no lack of
convergence was detected. After model fitting, pis were calculated for the purposes of
postratification, as explained in further detail in Section 3.1.

For the multinomial simulation, we used the response “financial living arrangement”
which includes four categories: mortgage, own, rent, rent but cannot pay. The selection
probabilities were constructed as the standardized log of the original HPS weight plus 0.5,
1, 1.5, or 2 depending on their response (mortgage, own, rent, rent but cannot pay, respec-
tively). The probabilities were then shifted to eliminate negative selection probabilities.

3.1. Poststratification

To create area-level tabulations from our unit-level model we used a poststratification
approach. Following [33], we divided the population into m categories, or postratification
cells, which are assumed to be independent and identically distributed. Poststratification
cells consist of cross-classifications of our categorical predictor variables. Since we had
5 categories for age, 2 for sex, and 5 for race, as well as 49 geographic areas, there were
2450 postratification cells in total. From there, we could generate proportion estimates for
every postratification cell. Within each cell, we generated from the posterior predictive
distribution for each member of the population. This produced a synthetic population for
each MCMC iteration. Our area-level estimates could then be constructed by appropriately
aggregating these synthetic populations. Thus, for each MCMC iteration, we produced
an estimate of the area-level population proportion. Collectively, these may be viewed
as a posterior distribution of our estimates, and the posterior mean may serve as a point
estimate. Similarly, the posterior standard deviation may be used as a measure of standard
error, or credible intervals may be constructed.

3.2. Simulation Results

To compare the model- and design-based estimates, we considered the empirical mean
square error (MSE) and squared bias of our estimates. Additionally, for the model-based
estimates, we constructed 95% credible intervals and compared coverage rates. We repeated
the sampling and estimation process 100 times. Each sample yielded three different types
of estimators for the population proportions: Horvitz–Thompson, model-based non-spatial,
and model-based spatial. We calculated the empirical MSE, squared bias, and credible
interval coverage rate through comparison of these estimates to the known true population
quantities. The data came from Week 1 of the HPS public-use micro-data. Those who did
not answer the respective survey questions were excluded from the simulation.

The simulation of binomial response is summarized in Table 1. Results are averaged
across sample datasets as well as states. We can see that both model-based estimators result
in a substantial reduction in MSE compared to the direct HT estimator. Additionally, it
appears that the spatial model performs slightly better (roughly 5% lower MSE) than the
non-spatial model. Importantly, both model-based estimators yield credible interval cover-
age rates, which are quite close to the nominal 95% level, indicating accurate uncertainty
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around our estimates. Figure 1 shows the MSE by state for each of the three estimators. It
is clear that the model-based estimates reduce the MSE in nearly every case; however, the
largest reductions appear in states with a smaller population size, such as Wyoming and
South Dakota. This is to be expected, as direct estimators typically have excessive variance
when sample sizes are small. Additional boxplots of RMSE for each estimator are included
in the Appendix A.

Table 1. Binomial simulation MSE, squared bias, and 95% credible interval coverage rate. The results
are averaged across the 49 geographic areas. Simulated data are based on Week 1 of the Household
Pulse Survey.

MSE Bias2 Coverage

NSB Model 0.00092 0.00051 0.949
SB Model 0.00088 0.00042 0.957

HT Estimator 0.00428 0.00005 –

Figure 1. Map of MSE by state for each estimator. Data are based on the binomial simulation using
Week 1 of the Household Pulse Survey. The response variable used is the expected loss of job and/or
income in the next week.

The results of the multinomial simulation are summarized in Tables 2 and 3. Table 2
shows the results averaged across samples, states, and categories, whereas Table 3 shows
separate summaries for each category. In general, we see that both model-based estimators
yield vastly superior estimates in terms of MSE, regardless of the response category. The
coverage rates are slightly below the nominal level, although not unreasonable. Response
category four has the lowest coverage rate, corresponding to people that rent but cannot pay.
This is generally the smallest category, and thus sample sizes are likely an issue here. Finally,
for each estimator, we plotted the MSE by state and response category in Figure 2. Again, we
see a substantial reduction in MSE for nearly every state and every category. Similar to the
binomial case, the largest reductions occur in the states with smaller populations.

Table 2. Collapsed multinomial simulation MSE, squared bias, and 95% credible interval coverage
rate. The results are averaged across 49 geographic areas and four categories. Simulated data are
based on Week 1 of the Household Pulse Survey.

MSE Bias2 Coverage

NSM Model 0.00074 0.00034 0.932
SM Model 0.00074 0.00033 0.933

HT Estimator 0.00352 0.00004 –
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Table 3. Multinomial simulation MSE, squared bias, and 95% credible interval coverage rate by
category (1–4). The results are averaged across the 49 geographic areas. Simulated data are based on
Week 1 of the Household Pulse Survey.

MSE 1 Bias2 1 Cov. 1 MSE 2 Bias2 2 Cov. 2 MSE 3 Bias2 3 Cov. 3 MSE 4 Bias2 4 Cov. 4

NSM
Model 0.00083 0.00053 0.945 0.00111 0.00032 0.979 0.00100 0.00050 0.95 0.00003 2.5 × 10 −5 0.854

SM
Model 0.00079 0.00047 0.950 0.00115 0.00036 0.972 0.00098 0.00046 0.95 0.00003 2.5 × 10 −5 0.860

HT Esti-
mator 0.00282 0.00004 – 0.00682 0.00007 – 0.00412 0.00003 – 0.00031 3.0 × 10 −6 –

Figure 2. Map of MSE by state for each estimator and category. Data are based on the multinomial
simulation using Week 1 of the Household Pulse Survey. The response variable is the housing status:
own home with mortgage, own home free and clear, rent, and rent but unable to pay.

4. Household Pulse Survey Analysis

To further illustrate our approach, we analyze the original Household Pulse Survey
data. Similar to the simulation, we analyze week one of the public-use HPS data. All priors
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used and assessment of convergence mirrored those stated in Section 3. The results of this
analysis are displayed in Figures 3–7.

Figure 3. Estimated population proportion of people who expect to lose their job by state and
estimator along with corresponding standard error for Week 1 of the Household Pulse Survey.
Estimates are plotted on the same color scale, and standard errors (SEs) are plotted on another
color scale.

Figure 4. Estimated population proportion of people who have a home mortgage by state (excluding
Alaska and Hawaii) and D.C. for each estimator along with corresponding standard error in Week 1
of the Household Pulse Survey. Estimates are plotted on the same color scale, and SEs are plotted on
another color scale.
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Figure 5. Estimated population proportion of people who own their home free and clear by state
and estimator along with corresponding standard error in Week 1 of the Household Pulse Survey.
Estimates are plotted on the same color scale, and SEs are plotted on another color scale.

Figure 6. Estimated population proportion of people who pay rent by state and estimator along with
corresponding standard error in Week 1 of the Household Pulse Survey. Estimates are plotted on the
same color scale, and SEs are plotted on another color scale.

Specifically, Figure 3 shows the population proportion estimates, as well as standard
errors, for the binary response “expected job loss”. Meanwhile, Figures 4–7 show the esti-
mated population proportions and standard errors for the categorical response “financial
living arrangement” with four categories: mortgage, own, rent, rent but cannot pay. As
seen in Figures 3–7, the spatial pattern produced by the model-based estimator is generally
consistent with the direct-estimates for all the cases considered, however the model-based
estimates exhibit much less variability, especially in states with a low population. Fur-
thermore, the model-based approach can achieve lower standard errors for both binomial
and multinomial responses when compared to the published standard errors of the HPS
direct-estimates. Although both model-based estimates are quite similar, in some cases,
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it does appear that the spatial model is able to leverage dependence structure to achieve
slightly reduced standard errors. These results seem to be consistent with our empirical
simulations, in which the model-based estimates exhibited a lower MSE.

Figure 7. Estimated population proportion of people who rent but cannot pay by state and estimator
along with corresponding standard error in Week 1 of the Household Pulse Survey. Estimates are
plotted on the same color scale, and SEs are plotted on another color scale.

These results indicate that states that heavily rely on tourism, such as Nevada, Cal-
ifornia, and Florida, are disproportionately affected by potential job loss due to COVID.
Simultaneously, southern states such as Louisiana, Mississippi, and Alabama appear to
have the highest rates of people that rent but cannot pay. Estimates such as these could aid
in the dispersion of critical resources related to job loss and renter help.

5. Discussion

In this work, we show that model-based estimation often produces superior estimates,
in terms of precision, compared to design-based techniques for the HPS. That is, we are able
to see reductions in MSE and standard errors for both binomial and multinomial responses.
Furthermore, we illustrate that this class of unit-level models for non-Gaussian survey data
may be easily fit using Hamiltonian Monte Carlo via Stan, rather than relying on custom
sampling software.

Contemporary barriers of sampling, where response rates are low and vary among
subgroups, require statisticians to innovate novel model-based approaches that leverage
various sources of dependence. For example, we compare non-spatial models with spatially
correlated random effects. In this case, there were only very slight advantages to the spatial
model structure; however, we would expect much more pronounced gains in efficiency for
estimates at a finer spatial resolution (i.e., county or Census tracts, rather than state).

Further model refinements are possible and will be the subject of future research. For
example, in Phase 1, it would be possible to leverage temporal dependence in the follow-up
interview to further improve the precision of the tabulated estimates. Additionally, model-
based estimates that improve the weights constitute another area of potential research.
Given the importance of the HPS, and other similar surveys (e.g., RANDS), we expect
further opportunities for methodological advancements in unit-level models for survey
data from informative samples.
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Appendix A

Figure A1. Boxplot of the 49 state RMSEs for the 3 methods: HT Binomial, Non-Spatial Binomial, and
Spatial Binomial. Data are based on the binomial simulation using Week 1 of the Household Pulse
Survey. The response variable is expected job loss.
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Figure A2. Boxplots of the 49 state RMSEs for the 3 methods: HT Multinomial, Non-Spatial Multi-
nomial, and Spatial Multinomial. Data are based on the multinomial simulation using Week 1 of
the Household Pulse Survey. The response variable is housing status: own home with mortgage
(Tenure = 1), own home free and clear (Tenure = 2), rent (Tenure = 3), and rent but unable to pay
(Tenure = 4).
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