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A B S T R A C T   

The computational burden of running a semi-distributed hydrological model numerous times, such as for opti
mization applications, can be exorbitant. This study provides a surrogate model to estimate streamflow, nutrient, 
and sediment export under spatially distributed management decisions. Specifically, we surrogate the Soil and 
Water Assessment Tool (SWAT) using a modified response matrix (RM) approach. A traditional RM approach 
applied to SWAT assumes hydrological responses are approximated by linear functions of management decisions, 
and falls short in accounting for in-stream and reservoir processes. Here, we explain and illustrate three key 
modifications that address interaction effects between co-located conservation practices and in-stream and 
reservoir processes affecting nutrient and sediment loads. The modified RM approach provides excellent esti
mation (Nash-Sutcliffe Efficiency, NSE >0.95) for streamflow and nutrient export throughout the stream network 
and provides very good estimation (NSE >0.85) for sediment export at most, though not all, points in the stream 
network.   

1. Introduction 

Many process-based hydrological watershed modeling tools have 
been developed to evaluate the effectiveness of agricultural conserva
tion practices, such as the Soil and Water Assessment Tool (SWAT), 
Water Quality Analysis Simulation Program (WASP), and Storm Water 
Management Model (SWMM) (Babbar-Sebens et al., 2015; Daniel et al., 
2011; Sinshaw et al., 2019). These models simulate a multitude of 
processes, such as runoff, infiltration, channel and reservoir routing, 
sedimentation, and nutrient dynamics. Due to their complexity, water
shed models can be computationally expensive; for example, it can take 
several minutes to hours to simulate hydrology and nutrient loads with 
models such as SWAT and MODFLOW (Arnold et al., 2012; Peterson 
et al., 2016; Zhang et al., 2009). This computational load becomes 
cumbersome when the model must be run thousands of times, such as 
when searching for optimal management decisions. The need for 
reduced computational burden multiplies further when the watershed 
model is just one among multiple integrated models within the opti
mization framework. In an integrated modeling framework, individual 
process-based models also typically cannot communicate directly, given 

their independent development. 
Surrogate models, which capture statistical relationships between 

inputs and outputs, can ease the burdens of computation and integra
tion, though at some cost of model fidelity (Razavi et al., 2012). Various 
methods, such as artificial neural networks (ANN), support vector ma
chines (SVM), and response matrices (RM), have been used to surrogate 
process-based models (Cai et al., 2015; Housh et al., 2014; Li et al., 
2021b; Zhang et al., 2009), each with its own limitations. For example, 
most applications of ANN and SVM for surrogating watershed models 
have only considered a small number of inputs and outputs. Zhang et al. 
(2009) used ANN and SVM to surrogate a SWAT model for parameter
ization, mapping combinations of 16 parameters to model effectiveness 
at predicting total basin runoff. Cai et al. (2015) used SVM to surrogate a 
SWAT model to optimize decision-making under climate uncertainty, 
mapping four management decisions to four measures of basin-scale 
drought impact. Training an SVM or ANN to surrogate spatially 
distributed decision-making (e.g., 50 conservation practices per sub
watershed * 40 subwatersheds = 2000 decision variables) and spatially 
distributed and temporally refined outputs (e.g., 120 months * 40 sub
watersheds = 4800 monthly outputs) would require an exorbitant 
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number of simulations. 
The traditional RM method is a suitable surrogate method for 

generating a large set of spatially distributed and dynamic hydrological 
responses under spatially distributed agricultural management de
cisions. RM methods approximate hydrological responses as a linear 
function of a (potentially large) set of distributed management decisions 
and have been used to surrogate hydrological models, such as ground
water models (Gorelick, 1983; Maddock, 1972; Yoon et al., 2021), in
tegrated surface water and groundwater model (Seo et al., 2018), and 
watershed models (Gorelick et al., 2019; Housh et al., 2014, 2015; 
Shafiee-Jood et al., 2018). Although those studies do not explicitly name 
their approaches as “response matrix”; however, their approaches hold 
the core idea of response matrix, assuming that hydrological responses 
are approximated by linear functions of management decisions. The 
linear nature of the RM method enables the use of linear programming 
for optimization applications, saving considerable computational re
sources. For example, Housh et al. (2014) applied an RM approximation 
within a mixed-integer linear programming model for biofuel develop
ment considering more than 10,000 decision variables. Even in opti
mization applications that do not use linear programming, RM 
approximations have been adopted for large spatial problems because 
assumed independence between spatially distributed decisions (a con
dition of linearity) provides a path to estimate overall outcomes with 
substantially fewer simulations. For example, Gorelick et al. (2019) and 
Gramig et al. (2013) coupled a genetic algorithm with RM approxima
tions that map management decisions to watershed sediment or nutrient 
loss. However, watershed modeling applications of the traditional RM 
method have not explored potentially co-located conservation practices 
and have sparingly addressed the impacts of in-stream source-model 
processes. In a rare example of treating in-stream processes within an 
RM framework, Femeena et al. (2018) loosely coupled SWAT landscape 
outputs with an exponential decay model for in-stream nutrient pro
cesses. The authors suggest that more efforts should be invested when 
loosely coupling SWAT results to better consider in-stream processes. 
Co-located practices and in-stream processes introduce nonlinearities 
and interactions between decisions, and thus they may reduce the 
effectiveness of RM-based approaches. For studies concerning diverse 
conservation practices or watershed export responses, the traditional 
RM method based on linear approximation must be validated or modi
fied (Femeena et al., 2018). 

The overall goal of this study is to provide insights from our expe
rience that converts a distributed hydrological model (SWAT) to a RM- 
based surrogate model and demonstrate how to surrogate SWAT in a 
reasonable way that addresses the interaction effects between co-located 
conservation practices and in-stream and reservoir processes affecting 
nutrient and sediment loads. The specific study objectives are to provide 
a revised RM method, compare it with traditional RM, and discuss the 
application and limitations of the revised RM. For the present context, 
the key assumption of the RM surrogate model is that, given a known 
weather scenario, watershed hydrological responses may be reasonably 
represented by linear functions of agricultural management decisions. 
The validity of and modifications required for satisfying this assumption 
are the cornerstones of the discussion in this paper. In the sections to 
follow, we first provide relevant background regarding SWAT and the 
traditional response matrix method (Section 2). In Section 3, we explore 
the consequences of co-located conservation practices (Section 3.1) and 
in-stream and reservoir processing (Sections 3.2 and 3.3) for the validity 
of the traditional RM method and, accordingly, illustrate modified RM 
approaches. We also discuss how these findings and adjustments are 
shaped by our specific research questions and hydrological model (i.e., 
SWAT), so as to increase the transferability of the process and findings. 

2. Background 

2.1. Modeling a testbed watershed in SWAT 

SWAT is a semi-distributed hydrologic model designed to evaluate 
and predict the impacts of agricultural management practices on water, 
sediments, and pollutants (Arnold et al., 2012). SWAT discretizes the 
watershed into user-defined subwatersheds and, within each sub
watershed, into hydrologic response units (HRUs) which share a com
mon land use, soil type, and slope. For each HRU, the model 
independently (1) implements management practices, (2) applies 
external weather forcing (uniform within subwatersheds), and (3) sim
ulates surface and sub-surface hydrology, plant growth, nutrient trans
formations, and nutrient and sediment transport. In SWAT2012, HRU 
water, nutrient, and sediment yields are aggregated at the subwatershed 
level and routed directly to the subwatershed-level stream reach (within 
each subwatershed the stream network is consolidated to a single reach). 
Note that, for SWAT+, the latest version of SWAT model currently 
available, HRU yields are aggregated at the landscape unit (LSU) level 
and routed through floodplains into “channels” before entering the 
subwatershed-level stream reach. Finally, SWAT simulates flow, 
nutrient, and sediment routing as well as simplified water quality 
transformations for every stream reach. 

Here we use a SWAT2012 model set for the Upper Sangamon River 
Watershed (USRW), located in central Illinois, USA. The USRW is pre
dominantly operated for corn and soybean rotation (80% of the total 
3680 km2 watershed area) and is extensively tile-drained (USDA NASS, 
2019). The Lake Decatur dam, in the downstream half of the watershed 
(see Fig. 1), supplies municipal and industrial water to the city of Dec
atur and nearby bioethanol producers (Fitzpatrick et al., 1987). Sedi
ment deposition in Lake Decatur reduces active storage, impairs water 
quality, and requires costly dredging to remediate. Residential and 
bioethanol facility wastewaters are treated by the Sanitary District of 
Decatur (SDD) and discharged downstream of Lake Decatur. Notably, 
phosphorus (P) discharge from SDD constitutes over 70 percent of P 
loads at the watershed outlet (680 Mg P/year SDD discharge versus 940 
Mg P/year total watershed export), in part due to significant trapping of 
upstream P loads in the Lake Decatur reservoir. 

The SWAT model used in this study is calibrated for flow, crop yield, 
sediments, nitrate, and total phosphorus (TP) at multiple sites during the 
period from 2003 to 2012. The daily flow is calibrated at four sites: 
Fisher, Monticello, Decatur and the watershed outlet. Flow calibration 
shows satisfactory model performance (Moriasi et al., 2007) at all sites 
with Nash-Sutcliffe efficiencies (NSE) ≥ 0.65 and percent bias within 
±10%. The model then follows the calibration of annual crop yield for 
both corn and soy in Macon County with a reasonable model perfor
mance. Furthermore, the model shows satisfactory performance after 
the calibration of monthly sediments, nitrate and TP at Monticello, 
Decatur, and Wyckles Bridge (downstream of SDD) with NSE ranging 
from 0.63 to 0.83 and bias mostly within ±10%. Lastly, the model pa
rameters are readjusted with a global run for flow, crop yield, sediments, 
nitrate, and TP at all the calibration sites. The model performs reason
ably well at these sites in the validation period (2013–2018). 

2.2. Application of the traditional response matrix method 

Due to the nature in which SWAT discretizes and simulates water
shed processes (described above), there is no interaction between HRUs 
until runoff mixes within the stream reach. Thus, the “pre-stream” 
portion of SWAT (i.e., the land-surface model processes which proceed 
routing into and through the stream network) is inherently compatible 
with the independence criterion of a linear model (e.g., a response 
matrix), if the decision variables are modeled at the HRU level. To 
reduce computational load in optimization applications, a user might 
desire to aggregate decisions to the subwatershed level – that is, to 
decide the percent of each subwatershed on which each conservation 
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practice is applied rather than which practices are applied on each HRU 
(Housh et al., 2014). Our study follows Housh et al. (2014) in this 
regard. 

The traditional response matrix approach, formally presented below 
following (Housh et al., 2014), takes advantage of HRU independence in 
SWAT to approximate land surface yields as the product of agricultural 
practice land area fractions and their siloed impacts (that is, their im
pacts when adopted in isolation, without other conservation practices). 
Housh et al. (2014) applied linear production functions to determine the 
total nitrate and runoff contribution from subwatersheds, which follows 
the same method of the response matrix, that is, approximating hydro
logical responses using linear functions of management decisions. The 
primary shortcomings of this traditional approach, expanded upon in 
Section 3, are that it (1) does not clearly describe how to account for 
interaction effects between co-located conservation practices, and (2) 
does not account for interaction effects and other sources of nonlinearity 
originating within the stream network. 

The steps for implementing the traditional RM method are as follows. 
Step 1, for each conservation practice under consideration, run a SWAT 
model for the watershed where the practice is adopted on all agricultural 
HRUs. Step 2, construct response matrices: for each conservation prac
tice, hydrologic variable (e.g., nutrients, streamflow), and month, 
construct a single response matrix where elements along the diagonal 
are the SWAT landscape yields for each subwatershed (Ym,t). Step 3, 
construct decision vectors for each conservation practice (Fm) where the 
elements are the area fractions that are allocated to that particular 
practice at a subwatershed level. Step 4, calculate the agricultural land 
area (A) for each subwatershed (or depending on the modeled practice, 
perhaps the total or urban area, where appropriate). Step 5, construct a 
connectivity matrix (W) describing the upstream-downstream relation
ships of all subwatersheds, with off-diagonal elements wi,j|i∕=j equal to 
one if subwatershed j is upstream of subwatershed i and zero otherwise 
(wi,i = 1 ∀i). Step 6, apply Equation (1) to estimate landscape yield 
during month t across all subwatersheds. Step 7, apply Equation (2) to 
estimate in-stream loads at the outlet of each subwatershed by summing 
its own yield and all upstream yields. Because SWAT models are typi
cally calibrated and analyzed at the monthly scale, we present the RM 

method as a surrogate for monthly SWAT outputs, following Housh et al. 
(2014). For a model considering M possible conservation practices in N 
subwatersheds, the subwatershed landscape yield during month t (q,p,ni,
s ∈ RN) is calculated as the sum-of-products of each practice’s area al
locations and response matrices: 

qt =
∑

m∈M
diag

(
Ym,t

)

Q⋅diag(A)⋅Fm ∀t ∈ T (1)  

where the function diag( ⋅) converts the vector argument (with elements 
Yi or Ai) into a diagonal matrix (with elements Xii = Yi or Ai); Ym,t ∈ RN 

are response vectors of SWAT subwatershed yield outputs for conser
vation practice m during month t; A ∈ RN is a vector containing the total 
agricultural area of each subwatershed; and Fm ∈ RN are decision vec
tors indicating the fraction of subwatershed areas allocated to conser
vation practice m. Under the traditional formulation, the in-stream loads 
at the outlet of each subwatershed (Q,P,Ni, S ∈ RN) are the sum of all 
upstream landscape yields: 

Qt =W⋅qt ∀t ∈ T (2)  

where W ∈ RN×N is a connectivity matrix with off-diagonal elements 
wi,j|i∕=j equal to one if subwatershed j is upstream of subwatershed i and 
zero otherwise (wi,i = 1 ∀i). Equations (1) and (2) are presented for the 
case of estimating flow (Q), but are applied likewise for any modeled 
output variable, e.g. phosphorus (P), nitrogen (Ni), or sediment (S). 

This application of the RM method estimates the impact of partial 
practice adoption in a subwatershed according to the aggregate impact of 
complete adoption across the whole subwatershed. In SWAT, the im
pacts might be distinct to slopes and soil types (i.e. HRUs) within the 
subwatershed. Therefore, the subwatershed-level RM estimates most 
accurately represent a hypothetical SWAT scenario where equal parts of 
each HRU within a subwatershed adopt a practice. For example, the RM 
model decision to apply cover crops on 20% of agricultural land in a 
subwatershed corresponds to the SWAT implementation of cover crops 
on 20% of the land in each agricultural HRU in the subwatershed. In 
actual SWAT use, practices are assigned at the HRU level and for entire 
HRUs. This dissonance cannot be resolved for RM models framed at the 

Fig. 1. Map of the Upper Sangamon River Watershed (USRW) with 45 subwatersheds.  
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subwatershed-level, since the framework does not contain requisite HRU 
information. The trade-off for this dissonance at the subwatershed level 
is the aforementioned benefit of reduced decision variables when opti
mizing. For applications where soil- and slope-specific decisions are 
more desirable than reduced decision variables, all methods discussed 
herein may be applied by allowing N to be the number of HRUs and 
using HRU-level SWAT outputs. Moreover, all results and discussion of 
modifications to the RM method presented below remain applicable, 
none are specific to the subwatershed-level application. 

Fig. 2 demonstrates the output-specific effectiveness and limitations 
of the traditional RM method for approximating streamflow, nitrate, 
total phosphorus, and sediment at the monthly scale at the outlet of the 
USRW. As shown in Fig. 2a and b, the traditional RM method effectively 
reproduces SWAT streamflow and nitrate outputs. However, Fig. 2c and 
d illustrate that the traditional RM method does not effectively repro
duce SWAT phosphorus or sediment outputs. The sediment Nash- 
Sutcliffe Efficiency (NSE) indicates that the traditional RM surrogates 
SWAT far worse than simply the long-term mean (NSE ≪ 0), and the 
percent bias (P-bias) indicates that sediment is vastly overestimated. 
While the phosphorus NSE and P-bias indicate the traditional RM may 
be an effective surrogate in general, the RM estimates systematically 
overestimate P load during periods of low flow, which in some settings 
are the most critical periods for nutrient management. In Section 3, we 
demonstrate how interactions between co-located conservation prac
tices and nonlinearities within the stream network contribute to tradi
tional RM shortcomings and how we modify the RM approach to better 
approximate SWAT phosphorus and sediment outputs. 

3. Modifying the response matrix approach 

In this section, we illustrate the primary shortcomings of the tradi
tional RM approach and propose three modifications to the RM 
approach to better approximate SWAT-simulated phosphorus and sedi
ment export. While we provide brief comment on approximating flow 
and nitrogen, we focus the discussion on phosphorus and sediment 
because these variables are not adequately approximated by the tradi
tional RM approach. 

3.1. Modification 1: Dealing with interaction effects between co-located 
conservation practices 

When multiple conservation measures are applied at the same 

location, the total impact is not likely to equal the sum of its parts, 
though the impacts are typically complementary (Boreux et al., 2013; 
Chaubey et al., 2010; Illinois Environmental Protection Agency et al., 
2015). For instance, implementing conservation tillage may affect the 
nutrient reductions achieved from reducing fertilizer applications (Jar
vie et al., 2017). To the extent that these interaction effects are captured 
in SWAT, the traditional RM approach – where impacts of siloed prac
tices are simply added – would not accurately capture the total impact of 
co-located conservation practices. 

Therefore, we test a modified the RM approach where each unique 
combination of conservation practices is simulated to generate unique 
response matrices for each combination – rather than just simulating 
and generating response matrices for the siloed, individual practices. 
Likewise, the land allocation decision vector of the RM model is refor
mulated to contain fractions allocated to each possible conservation 
practice combination. Under this modification, according to the syntax of 
Equation (1), M now represents the set of all possible combinations of 
conservation practices. 

Here, we illustrate the interaction effects between conservation 
practices by comparing traditional response matrix model estimates and 
SWAT-simulated landscape yield for a case of co-located practices. The 
baseline management practices for the USRW are two-year corn-soybean 
rotations, conventional tillage, 207 kg/ha diammonium phosphate 
application preceding corn years, no cover crops, and no vegetative filter 
strips. We compare estimates for the case of co-located filter strips, cover 
crops, and fertilizer reduction throughout the entire watershed. For this 
case, the traditional RMs are derived from SWAT-simulated impacts of 
siloed filter strips, siloed cover crops, and siloed fertilizer reduction (see 
scenarios 1–3 in Table 1). On the other hand, the modified RMs would be 
derived directly from the SWAT-simulated impact of all three practices 
implemented together (scenario 4 in Table 1); that is, for the reasons 

Fig. 2. Simulation results of in-stream loads of nutrient and sediment and streamflow at the outlet of Upper Sangamon River Watershed (USRW) using the traditional 
response matrix method compared to the direct use of SWAT: (a) nitrate; (b) streamflow; (c) phosphorus; (d) sediment. 

Table 1 
Conservation practice scenarios simulated with SWAT to generate response 
matrices.  

Scenario Cover crop Fertilizer reduction percentage Filter strips 

Baseline  0  
1  0 x 
2 x 0  
3  30  
4 x 30 x  
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discussed in Section 2.2, the modified RM estimate exactly matches the 
landscape yield (i.e. “pre-stream”) simulated in SWAT. 

Fig. 3 shows the estimated annual sediment and phosphorus re
ductions at the USRW outlet if the described, co-located conservation 
practices had been applied during the years 2003–2018. If there were no 
interaction effects among conservation practices, the traditional RM 
approach would provide the same estimate as the SWAT simulation. 
Instead, Fig. 3a and c indicate that, on average, the siloed, traditional 
RM approach overestimates the SWAT-simulated sediment and phos
phorus yield reductions by 19.75 percent and 16.6 percent, respectively. 
Fig. 3b and d further reveal that the overestimation is greatest in years 
with high water yield (and thus also high sediment and phosphorus 
yield). The combined impact of filter strips, cover crops, and fertilizer 
reductions is thus demonstrably less than the sum of their siloed impacts 
according to SWAT simulations, and this emergent SWAT outcome is 
captured by the modified RM approach but not the traditional approach. 
Per Fig. 2a, interaction effects do not seem meaningful for nitrogen, 
perhaps implying that interaction effects in SWAT are primarily medi
ated by sediment loss, to which phosphorus is more tightly coupled than 
nitrogen. 

3.2. Modification 2: Dealing with impacts of in-stream and reservoir 
processes for flow and nutrient 

If flow and nutrient processes in each SWAT stream reach or water 
body (e.g. reservoir) behave as a linear system, then the traditional 
response matrix method can be modified by incorporating linear in- 
stream and water body processing effects within the channel network 
connectivity matrix (see Section 2.2). The degree to which a linear 
approximation holds for these processes dictates the potential effec
tiveness of any RM-based method. 

3.2.1. SWAT in-stream and reservoir processes for flow and nutrients 

3.2.1.1. Streamflow. For streamflow, SWAT’s in-stream and water body 
(e.g. reservoir) simulation routines include routing, seepage, and evap
oration. SWAT simulates seepage and evaporation losses as the product 
of a seepage or evaporation rate coefficient (kQ, [mm/hr]), the exposed 
area (i.e. wetted stream area or surface area, A, [m2]), and the residence 
time in the reach or water body (ΔT, [hr]). That is, they share the 
general form: 

ΔQ= kQ⋅A⋅ΔT (3)  

where Q is the volume of water in the reach. Since both residence time 
and wetted perimeter/surface area are (nonlinear) functions of inflow 

themselves, seepage and evaporation are each the product of rate con
stants and potentially nonlinear functions of flow: 

ΔQ= kQ⋅A⋅ΔT = kQ⋅f1(Q)⋅f2(Q) (4) 

The effectiveness of a modified RM method for flow thus depends 
upon the accuracy of a linear approximation such as: 
∑

Q=
∑

i

(
kQ,i ⋅ f1,i(Q) ⋅ f2(Q)

)
≈ k̂Q⋅Q (5)  

where k̂Q,i [-] is the aggregate fraction of flow lost due to seepage (i = 1) 
and evaporation (i = 2) at typical conditions. For the scale of the present 
application, ΔQ is a vector of water lost [m3] from each reach, applied 
for each month of analysis. In addition, an RM-based approach is not 
able to account for changes in stream or reservoir storage between time 
steps; while assuming zero storage change is likely reasonable for 
annual-scale estimates, the assumption is plausibly problematic for 
monthly-scale estimates. For the USRW though, accurate estimation by 
the traditional RM approach (see Fig. 2) implies that monthly storage 
change is negligible and that k̂Q is a zero vector, i.e. seepage and 
evaporation are also negligible. 

3.2.1.2. Phosphorus. On the other hand, while somewhat similarly 
formulated in SWAT, phosphorus is not adequately estimated by the 
traditional RM approach. For stream reaches, SWAT simulates phos
phorus settling, mineralization, exchange with algae, and release from 
benthos. These processes are formulated either as a (1) first-order re
action (i.e. ΔP = kPP, where P is the mass of phosphorus in the reach 
and kP is the rate coefficient) or (2) zeroth-order reaction with depen
dence on flow depth or algae concentration (i.e. ΔP = kP⋅f(depth) or Δ 
P = kP⋅f(algae)). Similar to flow though, the amount of phosphorus 
transformed or exchanged during transport also depends on the resi
dence time within the reach; therefore, these processes take the gener
alized forms: 

ΔP= kP,P⋅ΔT⋅P (6a)  

or ΔP= kP,Q ⋅ f3(depth, algae)⋅ΔT (6b)  

where kP,P [hr−1] and kP,Q [units vary] are the rates of phosphorus lost 
within the stream for a given process. Note that in SWAT phosphorus and 
sediment transport are completely de-coupled once they have reached 
the stream network. While (in reality and in SWAT) sediment lost from 
the landscape exercises greatly influences phosphorus lost from the 
landscape, sediment deposition and erosion have no effect on phos
phorus transport in SWAT (though the two are indeed coupled in 

Fig. 3. Comparison of landscape loss reductions from co-located conservation practices, according to traditional RM estimate versus SWAT simulations. (a) Average 
annual reduction in sediment yield; (b) Annual reduction in sediment yield; (c) average annual reduction in phosphorus yield; (d) annual reduction in phosphorus 
yield; (e) annual water yield. 
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reality). Since we aim to surrogate SWAT, and only indirectly to estimate 
real-world loads, we do not include sediment as a predictor for in-stream 
phosphorus processing. 

Therefore, we test a linear regression with one phosphorus- 
dependent term and one flow-dependent term. We expect that (1) the 
phosphorus-dependent term should increase in magnitude as incoming 
phosphorus load increases, due to the first-order reaction basis, and (2) 
the flow-dependent term should increase in magnitude as incoming flow 
decreases, due to the inverse relationship between flow and residence 
time. Therefore, a linear approximation around which to build the 
modified RM formulation might be: 

ΔP≈ k̂P,P⋅P + k̂P,1Q
⋅Qinv (7a)  

Qinv =W⋅qinv (7b)  

qinvt =
∑

m∈M
diag

(
Ym,t

)
1
Q
⋅diag(A)⋅Fm ∀t ∈ T (7c)  

where k̂P,P [-] is the phosphorus-yield-dependent fraction of phosphorus 
lost due to settling at typical conditions; k̂P,1Q 

[mg P/L] is the aggregate 
water-yield-dependent (i.e. flow-dependent) fraction of phosphorus lost 
due to algal uptake (j = 1), algal decomposition (j = 2), and benthic 
uptake (j = 3) at typical conditions; Qinv ∈ RN are vectors analogous to 
cumulative residence time at each subwatershed outlet during month t; 
qinv ∈ RN are vectors analogous to residence time in each subwatershed 
in month t; and (Ym,t)1

Q
∈ RN are response vectors for the inverse of water 

yield in each subwatershed for conservation practice m during month t. 
While this formulation for qinv does not precisely represent the mean 
residence time (i.e. qinv does not equal q−1), it preserves a linear rela
tionship between the decision variables Fm and the estimated output P. 

For water bodies, SWAT2012 simulates settling only, with no 
nutrient transformations. As with in-stream settling, settling in water 
bodies is formulated as a first-order reaction with respect to the body’s 
nutrient concentration and depends on the residence time in the reser
voir. Distinctly, the settling rate in water bodies scales linearly with the 
water body area, and the residence time can exceed the model time step 
– therefore settling depends geometrically upon residence time 

ΔP=
(

1−
(
1 − kP,R

)ΔT
Δt
)

⋅A⋅P (8)  

where kP,R [1/hr/m2] is the reservoir trapping rate per unit area; Δt [hr] 
is the model time step. 

Therefore, with regard to reservoir trapping, the effectiveness of a 
modified RM method depends upon the accuracy of the linear approx
imation: 

ΔP≈ k̂P,R⋅P (9)  

where kP,R [-] is the fraction of phosphorus trapped by the reservoir at 
typical conditions. Notably, because the residence time in water bodies 
is much greater in magnitude and variance than in streams, the simu
lated reservoir trapping may also be much larger in magnitude and span. 
Therefore, it is not immediately clear whether this approximation at 
typical conditions will hold well. 

Equations (6)–(10) are generalized forms provided and discussed as 
the background and justifications for the modifications we make in the 
following section. In Section 3.2.2, we evaluate the validity of the 
phosphorus in-stream approximation (Equation (7)) and phosphorus 
reservoir trapping approximation (formulation provided in section 
3.2.1) in concert. For watersheds where nitrogen is not adequately 
estimated by the traditional RM approach, the same formulation and 
validation process may be applied as that for phosphorus. 

3.2.2. Incorporation of effects of point sources, reservoirs, and in-stream 
processes in phosphorus estimation 

Here we present phosphorus response matrix modifications that 
adjust for 1) point-source discharges, 2) reservoir trapping, and 3) in- 
stream processes. The modifications are embedded within the frame
work of Equations (1) and (2) by adding additional sources contributing 
to subwatershed yield (p), scaling the phosphorus-yield response vectors 
((Ym,t)P), adding dependence on the inverse water-yield response vectors 
((Ym,t)1

Q
), and selectively scaling elements of the connectivity matrix 

(W). Fig. 4 illustrates a simple conceptual watershed with the features 
considered by the modified response matrix approach for phosphorus. 
Greater attention is given to reservoir trapping and in-stream processes 
since adding point-source impacts is straightforward: point-source loads 
are simply added to the subwatershed yield (Equation (1)) where the 
point sources are located: 

pt =
∑

m∈M

(
diag

(
Ym,t

)

Q ⋅ diag(A) ⋅ Fm

)
+ pt, ps = pt,nps + pt, ps ∀t ∈ T (10)  

where pt, nps ∈ RN is the total non-point source yield from each sub
watershed in month t and pt, ps ∈ RN is the total point source yield from 
each subwatershed in month t. The inclusion of point-sources is trivial 
methodologically to the point that we include it in Fig. 2 when 
comparing traditional RM to SWAT simulations. 

We evaluate the linear approximation for reservoir trapping (Equa
tion (9)) in the USRW baseline scenario by conducting a linear regres
sion for phosphorus effluent according to phosphorus influent. Including 
an intercept term to allow for some minimum trapped load, the 
regression performs very well (R-squared > 0.95, see Fig. 5): 

Pout
t, res=

(
1− k̂P,R,1

)
×Pin

t,res − k̂P,R,2 ∀t ∈ T (11)  

where Pin
t,res and Pout

t,res are the simulated phosphorus loads into and out of 

the reservoir at time t and k̂P,R,1 and k̂P,R,2 are linear regression co
efficients. The accuracy of the linear regression indicates that a linear 
filter, compatible with the response matrix approach, may reasonably 
approximate the trapping effect. Because the trapping efficiency (i.e. 
k̂P,R,1) is time-invariant, it may be incorporated directly within the (also 
time-invariant) stream connectivity matrix. For all phosphorus stream 
connectivity matrix elements (wi,j)P such that i ∈ D and j ∈ U, where D is 
the set of stream reaches downstream from the reservoir and U is the set 
of reaches upstream of the reservoir, we set wi,j equal to one minus the 

Fig. 4. A graphical example of a simplified watershed with 9 subwatersheds 
considering: 1) point source discharge, 2) reservoir trapping, and 3) in-stream 
process. sw: subwatershed. 
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trapping efficiency (rather than 1, as had been before): 

(
wi,j

)

P =

⎧
⎨

⎩

(
1 − k̂P,R,1

)
if i ∈ D and j ∈ U

1 otherwise, if j is upstream of i
0 otherwise

(12) 

Meanwhile, the minimum trapped load (i.e. k̂P,R,1) is subtracted 
directly from the yield of the downstream subwatershed, as if a “point 
sink”: 

pt = pt,nps + pt, ps − pt, res ∀t ∈ T (13)  

where the minimum trapped load, pt, res ∈ RN, is equal to k̂P,R,2 for the 
subwatershed immediately downstream of the reservoir and zero 
otherwise. 

We evaluate the linear approximation for in-stream processing 
(Equation (7)) in the USRW baseline scenario by conducting linear re
gressions (at each subwatershed outlet) for phosphorus effluent ac
cording to upstream phosphorus yields and “inverse-flow” yields: 

Pt =
(
IN − k̂P,P

)
⋅ W ⋅ pt +

⎛

⎜
⎝IN − k̂P,1Q

⎞

⎟
⎠ ⋅ W ⋅ qinvt ∀t ∈ T (14)  

where k̂P,P ∈ RNxN and k̂P,1Q
∈ RNxN are diagonal matrices whose ele

ments are the regression coefficients estimated using SWAT simulation 
data (i.e., P yield and streamflow) and indicating the fraction of phos
phorus lost in a stream; and IN ∈ RNxN is an identity matrix. Recall that 
W is the connectivity matrix accounting for upstream-downstream re
lationships. The right-hand side of Equation (14) is then the P export at 
each reach broken into a term dependent on upstream landscape P 
loading and a term dependent on upstream cumulative residence time. 
Larger values of k̂P,P and k̂P,1Q 

indicate that the stream acts as more of a 
phosphorus sink. As with the traditional RM method, we apply equations 
(10)–(14) at the monthly scale. We find again that the regression per
forms very well (R-squared > 0.95, see Fig. 6), suggesting that Equations 
10 and 12-14 constitute an effective modified response matrix approach 
for phosphorus. 

Below, we compare SWAT simulation results for monthly in-stream 
phosphorus loads at the USRW outlet with estimates from both the 
modified RM formulation and a “traditional + point source” estimate. 
We choose to show the “traditional + point source” estimate rather than 
the traditional RM estimate because (1) the point source addition 
method is trivial and (2) the point source load in the USRW is so large 
that its omission obscures the value of the other modifications. First, for 
SWAT simulations, we randomly select one of four conservation practice 

combinations from Table 1 (filter strips only, cover crops only, fertilizer 
reduction only, or all practices together) for every agricultural HRU in 
the watershed. Then, for the RM estimates, we apply the resultant sub
watershed land allocation fractions. As described in section 2.2, the RM 
estimates assume that this fraction of land allocated to a conservation 
practice is evenly distributed among all HRUs within the subwatershed. 
Some discrepancy between the RM estimates and SWAT simulations 
may be attributed to this allocation distinction and differences in how 
conservation practices impact yields in different HRUs (i.e. on different 
soils and slopes). We measure the surrogate accuracy of the RM ap
proaches by Nash-Sutcliffe efficiency (NSE) and percent bias (P-bias) 
between the respective RM estimated time-series and the simulated 
time-series (Moriasi et al., 2007). 

We find that the modified RM formulation provides more accurate 
and less-biased estimates (NSE = 0.98 and P-bias = 0.9%) than the 
“traditional + point source” formulation (NSE = 0.92 and P-bias =
12.8%) (Fig. 7). Furthermore, the modified RM formulation provides 
drastically more representative estimates during periods of low flow. The 
difference between the modified RM and “traditional + point source” 
estimates is most pronounced during the 2011–2012 drought. From July 

Fig. 5. Linear filtering of reservoir on monthly phosphorus (P) load.  Fig. 6. Performance comparison of in-stream phosphorus (P) loading at outlet 
between SWAT simulation and RM simulation using linear regression 
(Eq. [14]). 

Fig. 7. Performance of modified RM and traditional RM on simulating in- 
stream phosphorus load at the outlet. The monthly streamflow figure is pro
vided at the bottom to demonstrate the impact of low flow on P discrepancy 
between modified RM and traditional RM. 
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2011 to September 2012, SWAT simulates 541,950 kg total phosphorus 
export from the watershed. The modified RM estimate is 561,562 kg 
export (3.6% over-estimate) while the “traditional + point source” es
timate is 772,064 kg export (42.5% over-estimate). This focused 
improvement from the modified RM approach during low flows is to be 
expected – the effects of in-stream processes and reservoir trapping are 
greatest when residence time is largest. Moreover, this focused 
improvement is relevant and important since streams and water bodies 
receiving significant point source discharge can be most vulnerable to 
harmful algal blooms during low-flow periods (Harrison et al., 2019; 
Jarvie et al., 2006). The cumulative impact of improved prediction at 
low flows is a relatively unbiased estimate for total export over the 16 
years, rather than the 12.8% over-prediction by the “traditional + point 
source” method. 

We repeat the above evaluation process 100 times for different re
alizations of randomized conservation practice allocations using modi
fied RM method, and compare the results with the same randomized 
allocations in SWAT to evaluate the robustness of RM performance 
under randomized allocations. These realizations provide a more 
comprehensive picture of the modified RM performance and illustrate 
the impacts of the conservation practice allocation methods discussed 
above. Fig. 8 presents the mean and range for the performance metrics 
(NSE and P-bias) across the 100 realizations and every subwatershed 
outlet. Overall, the modified RM method has satisfactory performance 
(NSEs: 0.96 to nearly 1; P-bias: 15%–18% across all subwatersheds 
except for subwatershed 8) for approximating SWAT in-stream phos
phorus loads. Notably, the subwatersheds which perform worst are 
headwater subwatersheds and consist of relatively few HRUs (for 
example, subwatershed 8 has only three HRUs). The lesser performance 
in these subwatersheds is likely due to the divergence between the RM 
assumption and SWAT-applied method for allocating conservation 
practice combinations: When there are many upstream HRUs, the up
stream land allocated to each conservation practice combination will, in 
the aggregate, consist of similar soils and slope classes despite different 
precise allocations. When there are few upstream HRUs, the RM esti
mate may not capture SWAT sensitivity to which soil type or slope class 

(i.e. which HRU) a practice is implemented on. Therefore, when 
applying the modified (or traditional) RM method at the subwatershed 
level, it is important to acknowledge that the method allows for tar
geting specific subwatersheds with conservation practices but not tar
geting specific HRUs within a subwatershed. 

To evaluate the benefits of computational time saved by modified 
RM approach, we recorded the computation time of simulations be
tween original SWAT and our modified RM approach with the same 
conservation practice allocations. Specifically, the computation for 100 
randomized simulations in SWAT takes 2 h 20 min, while the modified 
RM method takes about 4.2 min with a single processor in an Intel Core 
i7-8700k 64 bit and 32 GB memory Windows PC. Thus, the computa
tional time can be reduced by about 3500% with the modified RM 
approach. 

3.3. Modification 3: Dealing with impacts of in-stream and reservoir 
processes for sediment 

3.3.1. SWAT in-stream and reservoir processes for sediment 
Sediment transport in SWAT depends upon flow conditions and 

sediment supply. Here sediment “supply” refers to sediment which has 
been lost from the landscape during the current model time step as well 
as all sediment that was previously deposited and still remains within 
the stream network. Note also, sediment entrainment (but not deposi
tion) is not controlled by flow conditions and sediment supply simulta
neously, but rather, one or the other is limiting for a given reach at a 
specific time, according to the following logic: (1) sediment entrainment 
may only occur if the stream has sufficient transport capacity (as 
determined by flow conditions) for increased suspended sediment con
centration; (2) any previously deposited sediments which have 
remained within the reach are entrained first; (3) if all previously 
deposited sediments are exhausted, the sediment transport capacity may 
be met by channel bed and bank erosion, but only if the streamflow 
generates sufficient shear stress upon the streambed/bank. 

These interactions between flow and sediment supply and between 
the event-scale and long-term accumulation present an obstacle for 

Fig. 8. Performance of modified RM on simulating the in-stream total phosphorus load across all subwatersheds. Each boxplot includes 100 random land allocations 
of four distinct conservation practices. NSE (a) and percent bias (b) of all subwatersheds in a testbed watershed are presented. Flow directions in the main channel: 4- 
7-10-13-26-27-32-31-37-35-34 (outlet). HRUs = hydrologic response units. 
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ascertaining a simple approximation for in-stream sediment processes. 
For zones of a stream network where transport capacity consistently 
exceeds sediment supply (we will refer to these as supply constrained), 
reaches would be controlled by a combination of landscape sediment 
loss and streambed shear stress (a function of flow). For zones of a 
stream network where sediment supply consistently exceeds transport 
capacity (we will refer to these as flow constrained), reaches would be 
controlled by a combination of the transport capacity (a function of 
flow, distinct from that for shear stress) and the sediment deposition 
rate. 

3.3.2. Use streamflow to estimate in-stream sediment loads for surrogate 
model 

Here we demonstrate the need to depart from an RM-based 
approximation for sediment and offer, instead, a simple, nonlinear 
approximation based on the underlying model processes in SWAT. 

For flow-constrained reaches within the stream network, the most 
sensible linear approximation and RM formulation for sediment export 
are according to landscape water yield. That is: 

S= f4(Q)≈ k̂S ⋅ Q= k̂S,1 ⋅
∑

m∈M

(
diag

(
Ym,t

)

Q ⋅ diag(A) ⋅ Fm

)
+ k̂S,2 ∀t ∈ T

(15)  

where k̂S,1 [mg/L] and k̂S,2 [mg/L] are coefficients representing effects 
at typical conditions. However, the transport capacity can be a highly 
nonlinear function of flow; therefore, this approximation may be un
likely to hold. For example, we select the SWAT modeling option to use 
the Simplified Bagnold model (Neitsch et al., 2011) for transport ca
pacity (one of four options), where: 

concsed,ch,mx =Cspvch,pkspexp (16)  

where concsed,ch,mx is the maximum sediment concentration (ton/m3 or 
kg/L), Csp and spexp are parameters defined by SWAT modeler, and vch,pk 

is the peak channel velocity (m/s) during the time step – a nonlinear 
function of inflow (see Eq. (7):2.2.3 from SWAT theory documentation, 
2009). In the case where non-linearities must be incorporated, and 
following the Bagnold equation, a more representative approximation 
might be: 

Sn = f4(Q) ≈ k̂S,lin⋅Q k̂ S,exp
n ∀n ∈ N ∀t ∈ T (17a)  

or perhaps, considering the complex relationship between flow volume 
(Q here) and peak flow velocity (vch,pk in the Bagnold equation), even a 
polynomial approximation is suitable: 

Sn = f4(Q) ≈ k̂S,1 + k̂S,2⋅Qn + k̂S,3⋅Q2
n ∀n ∈ N ∀t ∈ T (17b)  

where k̂S,lin, k̂S,exp, k̂S,1, k̂S,2, and k̂S,3 are parameters for the sediment- 
flow relationship at typical conditions. However, this nonlinear 
approximation is not compatible with a response matrix formulation and 
would possibly require the modeler to adjust their use of the surrogate – 
for instance, changing the solution method used for optimization. 

On the other hand, for supply-constrained reaches, the most sensible 
linear approximation and RM formulation likely must account for 
landscape sediment yield and water yield. That is, 

S = S + f5(Q) ≈ S + kS,Q⋅Q =
∑

m∈M

(
diag

(
Ym,t

)

S⋅diag(A)⋅Fm

)
+ k̂S,Q⋅

∑

m∈M

(
diag

(
Ym,t

)

Q⋅diag(A)⋅Fm

)
∀t ∈ T

(18)  

where k̂S,Q [mg/L] is the streambed sediment contribution per unit of 
flow at typical conditions. However, the nonlinearity of streambed 
erosion processes may make this approximation unlikely to hold as well. 

Fig. 9(a and b) compares the estimates of best-performing approxi
mations with estimates of the traditional RM approach for selected, 
illustrative subwatersheds. For flow-constrained subwatersheds such as 
shown in Figs. 9a and 10b (best approximations from Equations (15) and 
(17), respectively), the traditional RM approach significantly over
estimates the sediment loads, while the proposed modifications provide 
highly accurate estimates (R-squared > 0.9). For example, in sub
watersheds 33 and 34 (the outlet), the NSE for traditional RM sediment 
estimates are 0.08 and −1.69, respectively, but improve to 0.91 and 0.97 
under a flow-based approximation. Evidently, SWAT simulates signifi
cant sediment deposition in these zones of the stream network, effec
tively buffering the upstream landscape sediment loss signal (Jerolmack 
and Paola, 2010; Romans et al., 2016). In some cases (e.g. as shown in 
Fig. 9c) the flow-sediment relationship can also be approximately linear, 
hence the acceptable performance of the response matrix approach 

Fig. 9. Performance of nonlinear approximation and traditional RM on simulating the in-stream load of sediment: subwatershed 34 (a) (outlet) and subwatershed 33 
(b). Flow-sediment relationships approximated by linear and polynomial regressions for subwatershed 34 (c) and subwatershed 33 (d) are presented for discussion. 
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presented in Equation (15). However, in many cases (e.g. as shown in 
Fig. 9d) the flow-sediment relationship is clearly exponential or poly
nomial, and a nonlinear approximation is required in place of the RM 
approach. 

We apply the potential RM formulations presented in Equations (15) 
and (17) (a or b), and 18 and compare their performance in estimating 
sediment load at the monthly scale at all subwatershed outlets, over 100 
realizations for conservation practice allocations. We find that, of the 45 
USRW subwatersheds, 20 subwatersheds are approximated well (i.e. 
average NSE >0.85) by either the linear (Equation (15)) or nonlinear 
(Equations (17a) and (17b)) approximations aligned with the Bagnold 
equation (see Fig. 10). For those 20 subwatersheds, the linear approxi
mation method is suggested as it may be incorporated into an RM 
approach. 12 subwatersheds are only approximated well by the 
nonlinear estimates (polynomial or power functions). These results align 
with the suggestions of previous studies that, due to historical man
agement practices, sediment transport in the Upper Mississippi River 
Basin is generally flow constrained (Neal and Anders, 2015; Trimble, 
1999). 

Of the other 13 subwatersheds, 6 can be approximated acceptably (i. 
e. NSE >0.5), but not well, by one of the flow-constrained approxima
tions. The remaining 7 subwatersheds cannot be approximated accept
ably by any of the formulations offered here (i.e NSE <0.5). The poor 
performance in sediment estimation seems to go beyond the unac
counted impacts of soil type and slope class discussed in Section 3.3.2, as 
there is no clear trend in performance as upstream HRUs increase. It 
appears that some subwatersheds either frequently switch modes be
tween possible dominant controls on SWAT sediment export, not con
forming to a single approximation, or are generally less amenable to 
approximations for SWAT sediment simulations. 

4. Conclusions 

In this work, we show that (1) an accurate RM-based approach to 
SWAT approximation requires that response matrices be generated for 
all distinct combinations of conservation practices, in order to account for 
the interaction effects between individual practices; (2) a modified RM 
method, especially accounting for in-stream and reservoir processes, is 
required to correct estimates for phosphorus export; and (3) a departure 
from RM-based approximation is required for accurately estimating 
sediment, instead utilizing a nonlinear flow-based estimate for sediment 
loads. We hypothesize, based on primary process model understanding, 
that the modifications presented for phosphorus could also adequately 
correct estimates for flow and nitrogen when necessary. We also high
light that, when applied for decisions at the subwatershed scale rather 
than the HRU scale, the proposed approximations perform best at outlets 
draining large areas. The approximations detailed here provide efficient 
spatial and dynamic simulations on hydrological responses based on a 
wide range of spatial applications of agricultural conservation practices. 
Excluding sediment, the approximations maintain an RM-based 

approach, facilitating advantages such as the feasibility of linear pro
gramming methods. The approximations are especially well-suited to 
integration within a system of systems modeling framework where 
modelers wish to consider a mixture of non-point and point source 
models (Li et al., 2021a). For example, the nutrient effluents simulated 
by wastewater treatment models can be directly added via the RM 
method to accurately simulate the in-stream P load. The application here 
is centered on surrogating the SWAT model, but the process, enlightened 
by the discussion provided here, could plausibly be generalized to other 
semi-distributed hydrologic models (e.g., WASP or SWMM). The revised 
RM enables a more accurate use of a watershed hydrological model for 
finding optimal watershed management solutions via 1) classic optimi
zation, i.e. linear programming and nonlinear programming (including 
the suggested nonlinear equation describing the instream and reservoir 
sediment processes; 2) heuristic optimization such as genetic algorithm 
which uses the revised RM to replace the original simulation model. 

Data and code availability 

The data and codes used for constructing the modified RM are 
available via GitHub (https://github.com/shaobinli/modified_RM). 
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