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The computational burden of running a semi-distributed hydrological model numerous times, such as for opti-
mization applications, can be exorbitant. This study provides a surrogate model to estimate streamflow, nutrient,
and sediment export under spatially distributed management decisions. Specifically, we surrogate the Soil and
Water Assessment Tool (SWAT) using a modified response matrix (RM) approach. A traditional RM approach
applied to SWAT assumes hydrological responses are approximated by linear functions of management decisions,
and falls short in accounting for in-stream and reservoir processes. Here, we explain and illustrate three key
modifications that address interaction effects between co-located conservation practices and in-stream and
reservoir processes affecting nutrient and sediment loads. The modified RM approach provides excellent esti-
mation (Nash-Sutcliffe Efficiency, NSE >0.95) for streamflow and nutrient export throughout the stream network
and provides very good estimation (NSE >0.85) for sediment export at most, though not all, points in the stream

network.

1. Introduction

Many process-based hydrological watershed modeling tools have
been developed to evaluate the effectiveness of agricultural conserva-
tion practices, such as the Soil and Water Assessment Tool (SWAT),
Water Quality Analysis Simulation Program (WASP), and Storm Water
Management Model (SWMM) (Babbar-Sebens et al., 2015; Daniel et al.,
2011; Sinshaw et al., 2019). These models simulate a multitude of
processes, such as runoff, infiltration, channel and reservoir routing,
sedimentation, and nutrient dynamics. Due to their complexity, water-
shed models can be computationally expensive; for example, it can take
several minutes to hours to simulate hydrology and nutrient loads with
models such as SWAT and MODFLOW (Arnold et al., 2012; Peterson
et al., 2016; Zhang et al., 2009). This computational load becomes
cumbersome when the model must be run thousands of times, such as
when searching for optimal management decisions. The need for
reduced computational burden multiplies further when the watershed
model is just one among multiple integrated models within the opti-
mization framework. In an integrated modeling framework, individual
process-based models also typically cannot communicate directly, given

their independent development.

Surrogate models, which capture statistical relationships between
inputs and outputs, can ease the burdens of computation and integra-
tion, though at some cost of model fidelity (Razavi et al., 2012). Various
methods, such as artificial neural networks (ANN), support vector ma-
chines (SVM), and response matrices (RM), have been used to surrogate
process-based models (Cai et al., 2015; Housh et al., 2014; Li et al.,
2021b; Zhang et al., 2009), each with its own limitations. For example,
most applications of ANN and SVM for surrogating watershed models
have only considered a small number of inputs and outputs. Zhang et al.
(2009) used ANN and SVM to surrogate a SWAT model for parameter-
ization, mapping combinations of 16 parameters to model effectiveness
at predicting total basin runoff. Cai et al. (2015) used SVM to surrogate a
SWAT model to optimize decision-making under climate uncertainty,
mapping four management decisions to four measures of basin-scale
drought impact. Training an SVM or ANN to surrogate spatially
distributed decision-making (e.g., 50 conservation practices per sub-
watershed * 40 subwatersheds = 2000 decision variables) and spatially
distributed and temporally refined outputs (e.g., 120 months * 40 sub-
watersheds = 4800 monthly outputs) would require an exorbitant
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number of simulations.

The traditional RM method is a suitable surrogate method for
generating a large set of spatially distributed and dynamic hydrological
responses under spatially distributed agricultural management de-
cisions. RM methods approximate hydrological responses as a linear
function of a (potentially large) set of distributed management decisions
and have been used to surrogate hydrological models, such as ground-
water models (Gorelick, 1983; Maddock, 1972; Yoon et al., 2021), in-
tegrated surface water and groundwater model (Seo et al., 2018), and
watershed models (Gorelick et al., 2019; Housh et al., 2014, 2015;
Shafiee-Jood et al., 2018). Although those studies do not explicitly name
their approaches as “response matrix”; however, their approaches hold
the core idea of response matrix, assuming that hydrological responses
are approximated by linear functions of management decisions. The
linear nature of the RM method enables the use of linear programming
for optimization applications, saving considerable computational re-
sources. For example, Housh et al. (2014) applied an RM approximation
within a mixed-integer linear programming model for biofuel develop-
ment considering more than 10,000 decision variables. Even in opti-
mization applications that do not use linear programming, RM
approximations have been adopted for large spatial problems because
assumed independence between spatially distributed decisions (a con-
dition of linearity) provides a path to estimate overall outcomes with
substantially fewer simulations. For example, Gorelick et al. (2019) and
Gramig et al. (2013) coupled a genetic algorithm with RM approxima-
tions that map management decisions to watershed sediment or nutrient
loss. However, watershed modeling applications of the traditional RM
method have not explored potentially co-located conservation practices
and have sparingly addressed the impacts of in-stream source-model
processes. In a rare example of treating in-stream processes within an
RM framework, Femeena et al. (2018) loosely coupled SWAT landscape
outputs with an exponential decay model for in-stream nutrient pro-
cesses. The authors suggest that more efforts should be invested when
loosely coupling SWAT results to better consider in-stream processes.
Co-located practices and in-stream processes introduce nonlinearities
and interactions between decisions, and thus they may reduce the
effectiveness of RM-based approaches. For studies concerning diverse
conservation practices or watershed export responses, the traditional
RM method based on linear approximation must be validated or modi-
fied (Femeena et al., 2018).

The overall goal of this study is to provide insights from our expe-
rience that converts a distributed hydrological model (SWAT) to a RM-
based surrogate model and demonstrate how to surrogate SWAT in a
reasonable way that addresses the interaction effects between co-located
conservation practices and in-stream and reservoir processes affecting
nutrient and sediment loads. The specific study objectives are to provide
a revised RM method, compare it with traditional RM, and discuss the
application and limitations of the revised RM. For the present context,
the key assumption of the RM surrogate model is that, given a known
weather scenario, watershed hydrological responses may be reasonably
represented by linear functions of agricultural management decisions.
The validity of and modifications required for satisfying this assumption
are the cornerstones of the discussion in this paper. In the sections to
follow, we first provide relevant background regarding SWAT and the
traditional response matrix method (Section 2). In Section 3, we explore
the consequences of co-located conservation practices (Section 3.1) and
in-stream and reservoir processing (Sections 3.2 and 3.3) for the validity
of the traditional RM method and, accordingly, illustrate modified RM
approaches. We also discuss how these findings and adjustments are
shaped by our specific research questions and hydrological model (i.e.,
SWAT), so as to increase the transferability of the process and findings.
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2. Background
2.1. Modeling a testbed watershed in SWAT

SWAT is a semi-distributed hydrologic model designed to evaluate
and predict the impacts of agricultural management practices on water,
sediments, and pollutants (Arnold et al., 2012). SWAT discretizes the
watershed into user-defined subwatersheds and, within each sub-
watershed, into hydrologic response units (HRUs) which share a com-
mon land use, soil type, and slope. For each HRU, the model
independently (1) implements management practices, (2) applies
external weather forcing (uniform within subwatersheds), and (3) sim-
ulates surface and sub-surface hydrology, plant growth, nutrient trans-
formations, and nutrient and sediment transport. In SWAT2012, HRU
water, nutrient, and sediment yields are aggregated at the subwatershed
level and routed directly to the subwatershed-level stream reach (within
each subwatershed the stream network is consolidated to a single reach).
Note that, for SWAT+, the latest version of SWAT model currently
available, HRU yields are aggregated at the landscape unit (LSU) level
and routed through floodplains into “channels” before entering the
subwatershed-level stream reach. Finally, SWAT simulates flow,
nutrient, and sediment routing as well as simplified water quality
transformations for every stream reach.

Here we use a SWAT2012 model set for the Upper Sangamon River
Watershed (USRW), located in central Illinois, USA. The USRW is pre-
dominantly operated for corn and soybean rotation (80% of the total
3680 km? watershed area) and is extensively tile-drained (USDA NASS,
2019). The Lake Decatur dam, in the downstream half of the watershed
(see Fig. 1), supplies municipal and industrial water to the city of Dec-
atur and nearby bioethanol producers (Fitzpatrick et al., 1987). Sedi-
ment deposition in Lake Decatur reduces active storage, impairs water
quality, and requires costly dredging to remediate. Residential and
bioethanol facility wastewaters are treated by the Sanitary District of
Decatur (SDD) and discharged downstream of Lake Decatur. Notably,
phosphorus (P) discharge from SDD constitutes over 70 percent of P
loads at the watershed outlet (680 Mg P/year SDD discharge versus 940
Mg P/year total watershed export), in part due to significant trapping of
upstream P loads in the Lake Decatur reservoir.

The SWAT model used in this study is calibrated for flow, crop yield,
sediments, nitrate, and total phosphorus (TP) at multiple sites during the
period from 2003 to 2012. The daily flow is calibrated at four sites:
Fisher, Monticello, Decatur and the watershed outlet. Flow calibration
shows satisfactory model performance (Moriasi et al., 2007) at all sites
with Nash-Sutcliffe efficiencies (NSE) > 0.65 and percent bias within
+10%. The model then follows the calibration of annual crop yield for
both corn and soy in Macon County with a reasonable model perfor-
mance. Furthermore, the model shows satisfactory performance after
the calibration of monthly sediments, nitrate and TP at Monticello,
Decatur, and Wyckles Bridge (downstream of SDD) with NSE ranging
from 0.63 to 0.83 and bias mostly within +10%. Lastly, the model pa-
rameters are readjusted with a global run for flow, crop yield, sediments,
nitrate, and TP at all the calibration sites. The model performs reason-
ably well at these sites in the validation period (2013-2018).

2.2. Application of the traditional response matrix method

Due to the nature in which SWAT discretizes and simulates water-
shed processes (described above), there is no interaction between HRUs
until runoff mixes within the stream reach. Thus, the “pre-stream”
portion of SWAT (i.e., the land-surface model processes which proceed
routing into and through the stream network) is inherently compatible
with the independence criterion of a linear model (e.g., a response
matrix), if the decision variables are modeled at the HRU level. To
reduce computational load in optimization applications, a user might
desire to aggregate decisions to the subwatershed level - that is, to
decide the percent of each subwatershed on which each conservation
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Fig. 1. Map of the Upper Sangamon River Watershed (USRW) with 45 subwatersheds.

practice is applied rather than which practices are applied on each HRU
(Housh et al., 2014). Our study follows Housh et al. (2014) in this
regard.

The traditional response matrix approach, formally presented below
following (Housh et al., 2014), takes advantage of HRU independence in
SWAT to approximate land surface yields as the product of agricultural
practice land area fractions and their siloed impacts (that is, their im-
pacts when adopted in isolation, without other conservation practices).
Housh et al. (2014) applied linear production functions to determine the
total nitrate and runoff contribution from subwatersheds, which follows
the same method of the response matrix, that is, approximating hydro-
logical responses using linear functions of management decisions. The
primary shortcomings of this traditional approach, expanded upon in
Section 3, are that it (1) does not clearly describe how to account for
interaction effects between co-located conservation practices, and (2)
does not account for interaction effects and other sources of nonlinearity
originating within the stream network.

The steps for implementing the traditional RM method are as follows.
Step 1, for each conservation practice under consideration, run a SWAT
model for the watershed where the practice is adopted on all agricultural
HRUs. Step 2, construct response matrices: for each conservation prac-
tice, hydrologic variable (e.g., nutrients, streamflow), and month,
construct a single response matrix where elements along the diagonal
are the SWAT landscape yields for each subwatershed (Y, ). Step 3,
construct decision vectors for each conservation practice (F,,) where the
elements are the area fractions that are allocated to that particular
practice at a subwatershed level. Step 4, calculate the agricultural land
area (A) for each subwatershed (or depending on the modeled practice,
perhaps the total or urban area, where appropriate). Step 5, construct a
connectivity matrix (W) describing the upstream-downstream relation-
ships of all subwatersheds, with off-diagonal elements w;j;.; equal to
one if subwatershed j is upstream of subwatershed i and zero otherwise
(wi; = 1Vi). Step 6, apply Equation (1) to estimate landscape yield
during month t across all subwatersheds. Step 7, apply Equation (2) to
estimate in-stream loads at the outlet of each subwatershed by summing
its own yield and all upstream yields. Because SWAT models are typi-
cally calibrated and analyzed at the monthly scale, we present the RM

method as a surrogate for monthly SWAT outputs, following Housh et al.
(2014). For a model considering M possible conservation practices in N
subwatersheds, the subwatershed landscape yield during month t (¢,p,ni,
s € RN) is calculated as the sum-of-products of each practice’s area al-
locations and response matrices:

9= diag(Yn,), diag(A)-F, VteT

meM

@

where the function diag( -) converts the vector argument (with elements
Y; or A;) into a diagonal matrix (with elements X; = Y; or A;); Y,n, € RY
are response vectors of SWAT subwatershed yield outputs for conser-
vation practice m during month t; A € RY is a vector containing the total
agricultural area of each subwatershed; and F,, € R are decision vec-
tors indicating the fraction of subwatershed areas allocated to conser-
vation practice m. Under the traditional formulation, the in-stream loads
at the outlet of each subwatershed (Q, P, Ni, S € RV) are the sum of all
upstream landscape yields:

Q,=Wygq, VteT 2)
where W € RV is a connectivity matrix with off-diagonal elements
w;jjizj equal to one if subwatershed j is upstream of subwatershed i and
zero otherwise (w;; = 1 Vi). Equations (1) and (2) are presented for the
case of estimating flow (Q), but are applied likewise for any modeled
output variable, e.g. phosphorus (P), nitrogen (Ni), or sediment (S).
This application of the RM method estimates the impact of partial
practice adoption in a subwatershed according to the aggregate impact of
complete adoption across the whole subwatershed. In SWAT, the im-
pacts might be distinct to slopes and soil types (i.e. HRUs) within the
subwatershed. Therefore, the subwatershed-level RM estimates most
accurately represent a hypothetical SWAT scenario where equal parts of
each HRU within a subwatershed adopt a practice. For example, the RM
model decision to apply cover crops on 20% of agricultural land in a
subwatershed corresponds to the SWAT implementation of cover crops
on 20% of the land in each agricultural HRU in the subwatershed. In
actual SWAT use, practices are assigned at the HRU level and for entire
HRUs. This dissonance cannot be resolved for RM models framed at the
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subwatershed-level, since the framework does not contain requisite HRU
information. The trade-off for this dissonance at the subwatershed level
is the aforementioned benefit of reduced decision variables when opti-
mizing. For applications where soil- and slope-specific decisions are
more desirable than reduced decision variables, all methods discussed
herein may be applied by allowing N to be the number of HRUs and
using HRU-level SWAT outputs. Moreover, all results and discussion of
modifications to the RM method presented below remain applicable,
none are specific to the subwatershed-level application.

Fig. 2 demonstrates the output-specific effectiveness and limitations
of the traditional RM method for approximating streamflow, nitrate,
total phosphorus, and sediment at the monthly scale at the outlet of the
USRW. As shown in Fig. 2a and b, the traditional RM method effectively
reproduces SWAT streamflow and nitrate outputs. However, Fig. 2¢ and
d illustrate that the traditional RM method does not effectively repro-
duce SWAT phosphorus or sediment outputs. The sediment Nash-
Sutcliffe Efficiency (NSE) indicates that the traditional RM surrogates
SWAT far worse than simply the long-term mean (NSE <« 0), and the
percent bias (P-bias) indicates that sediment is vastly overestimated.
While the phosphorus NSE and P-bias indicate the traditional RM may
be an effective surrogate in general, the RM estimates systematically
overestimate P load during periods of low flow, which in some settings
are the most critical periods for nutrient management. In Section 3, we
demonstrate how interactions between co-located conservation prac-
tices and nonlinearities within the stream network contribute to tradi-
tional RM shortcomings and how we modify the RM approach to better
approximate SWAT phosphorus and sediment outputs.

3. Modifying the response matrix approach

In this section, we illustrate the primary shortcomings of the tradi-
tional RM approach and propose three modifications to the RM
approach to better approximate SWAT-simulated phosphorus and sedi-
ment export. While we provide brief comment on approximating flow
and nitrogen, we focus the discussion on phosphorus and sediment
because these variables are not adequately approximated by the tradi-
tional RM approach.

3.1. Modification 1: Dealing with interaction effects between co-located
conservation practices

When multiple conservation measures are applied at the same
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location, the total impact is not likely to equal the sum of its parts,
though the impacts are typically complementary (Boreux et al., 2013;
Chaubey et al., 2010; Illinois Environmental Protection Agency et al.,
2015). For instance, implementing conservation tillage may affect the
nutrient reductions achieved from reducing fertilizer applications (Jar-
vie et al., 2017). To the extent that these interaction effects are captured
in SWAT, the traditional RM approach — where impacts of siloed prac-
tices are simply added — would not accurately capture the total impact of
co-located conservation practices.

Therefore, we test a modified the RM approach where each unique
combination of conservation practices is simulated to generate unique
response matrices for each combination - rather than just simulating
and generating response matrices for the siloed, individual practices.
Likewise, the land allocation decision vector of the RM model is refor-
mulated to contain fractions allocated to each possible conservation
practice combination. Under this modification, according to the syntax of
Equation (1), M now represents the set of all possible combinations of
conservation practices.

Here, we illustrate the interaction effects between conservation
practices by comparing traditional response matrix model estimates and
SWAT-simulated landscape yield for a case of co-located practices. The
baseline management practices for the USRW are two-year corn-soybean
rotations, conventional tillage, 207 kg/ha diammonium phosphate
application preceding corn years, no cover crops, and no vegetative filter
strips. We compare estimates for the case of co-located filter strips, cover
crops, and fertilizer reduction throughout the entire watershed. For this
case, the traditional RMs are derived from SWAT-simulated impacts of
siloed filter strips, siloed cover crops, and siloed fertilizer reduction (see
scenarios 1-3 in Table 1). On the other hand, the modified RMs would be
derived directly from the SWAT-simulated impact of all three practices
implemented together (scenario 4 in Table 1); that is, for the reasons

Table 1
Conservation practice scenarios simulated with SWAT to generate response
matrices.
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Fig. 2. Simulation results of in-stream loads of nutrient and sediment and streamflow at the outlet of Upper Sangamon River Watershed (USRW) using the traditional
response matrix method compared to the direct use of SWAT: (a) nitrate; (b) streamflow; (c) phosphorus; (d) sediment.



S. Li et al

discussed in Section 2.2, the modified RM estimate exactly matches the
landscape yield (i.e. “pre-stream”) simulated in SWAT.

Fig. 3 shows the estimated annual sediment and phosphorus re-
ductions at the USRW outlet if the described, co-located conservation
practices had been applied during the years 2003-2018. If there were no
interaction effects among conservation practices, the traditional RM
approach would provide the same estimate as the SWAT simulation.
Instead, Fig. 3a and c indicate that, on average, the siloed, traditional
RM approach overestimates the SWAT-simulated sediment and phos-
phorus yield reductions by 19.75 percent and 16.6 percent, respectively.
Fig. 3b and d further reveal that the overestimation is greatest in years
with high water yield (and thus also high sediment and phosphorus
yield). The combined impact of filter strips, cover crops, and fertilizer
reductions is thus demonstrably less than the sum of their siloed impacts
according to SWAT simulations, and this emergent SWAT outcome is
captured by the modified RM approach but not the traditional approach.
Per Fig. 2a, interaction effects do not seem meaningful for nitrogen,
perhaps implying that interaction effects in SWAT are primarily medi-
ated by sediment loss, to which phosphorus is more tightly coupled than
nitrogen.

3.2. Modification 2: Dealing with impacts of in-stream and reservoir
processes for flow and nutrient

If flow and nutrient processes in each SWAT stream reach or water
body (e.g. reservoir) behave as a linear system, then the traditional
response matrix method can be modified by incorporating linear in-
stream and water body processing effects within the channel network
connectivity matrix (see Section 2.2). The degree to which a linear
approximation holds for these processes dictates the potential effec-
tiveness of any RM-based method.

3.2.1. SWAT in-stream and reservoir processes for flow and nutrients

3.2.1.1. Streamflow. For streamflow, SWAT’s in-stream and water body
(e.g. reservoir) simulation routines include routing, seepage, and evap-
oration. SWAT simulates seepage and evaporation losses as the product
of a seepage or evaporation rate coefficient (kq, [mm/hr]), the exposed
area (i.e. wetted stream area or surface area, A, [mz]), and the residence
time in the reach or water body (AT, [hr]). That is, they share the
general form:

AQ =ko-A-AT ©))

where Q is the volume of water in the reach. Since both residence time
and wetted perimeter/surface area are (nonlinear) functions of inflow
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themselves, seepage and evaporation are each the product of rate con-
stants and potentially nonlinear functions of flow:

AQ =kg-A-AT = ko £1(Q)/2(Q) 4
The effectiveness of a modified RM method for flow thus depends
upon the accuracy of a linear approximation such as:

>0= (ko i(Q)-£(0) ~ ko0 .

where ﬁQ,i [-] is the aggregate fraction of flow lost due to seepage (i = 1)
and evaporation (i = 2) at typical conditions. For the scale of the present
application, AQ is a vector of water lost [m®] from each reach, applied
for each month of analysis. In addition, an RM-based approach is not
able to account for changes in stream or reservoir storage between time
steps; while assuming zero storage change is likely reasonable for
annual-scale estimates, the assumption is plausibly problematic for
monthly-scale estimates. For the USRW though, accurate estimation by
the traditional RM approach (see Fig. 2) implies that monthly storage

change is negligible and that ZQ is a zero vector, i.e. seepage and
evaporation are also negligible.

3.2.1.2. Phosphorus. On the other hand, while somewhat similarly
formulated in SWAT, phosphorus is not adequately estimated by the
traditional RM approach. For stream reaches, SWAT simulates phos-
phorus settling, mineralization, exchange with algae, and release from
benthos. These processes are formulated either as a (1) first-order re-
action (i.e. AP = kpP, where P is the mass of phosphorus in the reach
and kp is the rate coefficient) or (2) zeroth-order reaction with depen-
dence on flow depth or algae concentration (i.e. AP = kp-f(depth) or A
P = kp-f(algae)). Similar to flow though, the amount of phosphorus
transformed or exchanged during transport also depends on the resi-
dence time within the reach; therefore, these processes take the gener-
alized forms:

AP =kpp-AT-P (6a)

or AP =kp - f;(depth, algae)-AT (6b)
where kpp [hr 1] and kpq [units vary] are the rates of phosphorus lost
within the stream for a given process. Note that in SWAT phosphorus and
sediment transport are completely de-coupled once they have reached
the stream network. While (in reality and in SWAT) sediment lost from
the landscape exercises greatly influences phosphorus lost from the
landscape, sediment deposition and erosion have no effect on phos-

phorus transport in SWAT (though the two are indeed coupled in
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Fig. 3. Comparison of landscape loss reductions from co-located conservation practices, according to traditional RM estimate versus SWAT simulations. (a) Average
annual reduction in sediment yield; (b) Annual reduction in sediment yield; (c) average annual reduction in phosphorus yield; (d) annual reduction in phosphorus

yield; (e) annual water yield.
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reality). Since we aim to surrogate SWAT, and only indirectly to estimate
real-world loads, we do not include sediment as a predictor for in-stream
phosphorus processing.

Therefore, we test a linear regression with one phosphorus-
dependent term and one flow-dependent term. We expect that (1) the
phosphorus-dependent term should increase in magnitude as incoming
phosphorus load increases, due to the first-order reaction basis, and (2)
the flow-dependent term should increase in magnitude as incoming flow
decreases, due to the inverse relationship between flow and residence
time. Therefore, a linear approximation around which to build the
modified RM formulation might be:

AP~ kpp-P+ %,,,éQW (72)

0,,=W-q,, (7b)

Qe = »_diag(Yn,),-diag(A)-F,, Vt€T (7c)
meM e

where Ep,p [-] is the phosphorus-yield-dependent fraction of phosphorus
lost due to settling at typical conditions; ﬁpyé [mg P/L] is the aggregate

water-yield-dependent (i.e. flow-dependent) fraction of phosphorus lost
due to algal uptake (j = 1), algal decomposition (j = 2), and benthic
uptake (j = 3) at typical conditions; Q;,, € RN are vectors analogous to
cumulative residence time at each subwatershed outlet during month t;
iy € RN are vectors analogous to residence time in each subwatershed
in month t; and (Y,,,J)é € RY are response vectors for the inverse of water

yield in each subwatershed for conservation practice m during month t.
While this formulation for g;,, does not precisely represent the mean
residence time (i.e. g;,, does not equal ¢g~1), it preserves a linear rela-
tionship between the decision variables F,, and the estimated output P.

For water bodies, SWAT2012 simulates settling only, with no
nutrient transformations. As with in-stream settling, settling in water
bodies is formulated as a first-order reaction with respect to the body’s
nutrient concentration and depends on the residence time in the reser-
voir. Distinctly, the settling rate in water bodies scales linearly with the
water body area, and the residence time can exceed the model time step
— therefore settling depends geometrically upon residence time

AT

aP= (1= (1~ kee)¥) AP ®

where kpr [1 /hr/rnz] is the reservoir trapping rate per unit area; At [hr]
is the model time step.

Therefore, with regard to reservoir trapping, the effectiveness of a
modified RM method depends upon the accuracy of the linear approx-
imation:

AP~ kpp-P 9

where kpgr [-] is the fraction of phosphorus trapped by the reservoir at
typical conditions. Notably, because the residence time in water bodies
is much greater in magnitude and variance than in streams, the simu-
lated reservoir trapping may also be much larger in magnitude and span.
Therefore, it is not immediately clear whether this approximation at
typical conditions will hold well.

Equations (6)-(10) are generalized forms provided and discussed as
the background and justifications for the modifications we make in the
following section. In Section 3.2.2, we evaluate the validity of the
phosphorus in-stream approximation (Equation (7)) and phosphorus
reservoir trapping approximation (formulation provided in section
3.2.1) in concert. For watersheds where nitrogen is not adequately
estimated by the traditional RM approach, the same formulation and
validation process may be applied as that for phosphorus.
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3.2.2. Incorporation of effects of point sources, reservoirs, and in-stream
processes in phosphorus estimation

Here we present phosphorus response matrix modifications that
adjust for 1) point-source discharges, 2) reservoir trapping, and 3) in-
stream processes. The modifications are embedded within the frame-
work of Equations (1) and (2) by adding additional sources contributing
to subwatershed yield (p), scaling the phosphorus-yield response vectors
((Yms)p), adding dependence on the inverse water-yield response vectors
((Ym-t)é)» and selectively scaling elements of the connectivity matrix

(W). Fig. 4 illustrates a simple conceptual watershed with the features
considered by the modified response matrix approach for phosphorus.
Greater attention is given to reservoir trapping and in-stream processes
since adding point-source impacts is straightforward: point-source loads
are simply added to the subwatershed yield (Equation (1)) where the
point sources are located:

pi= Z(diag(Ym.t)Q.diag(A) -F,,,) + Pt ps=Pinps T Prps VLET (10)

meM

where p, ,,, € RV is the total non-point source yield from each sub-
watershed in month t and p, ,,, € RN is the total point source yield from
each subwatershed in month t. The inclusion of point-sources is trivial
methodologically to the point that we include it in Fig. 2 when
comparing traditional RM to SWAT simulations.

We evaluate the linear approximation for reservoir trapping (Equa-
tion (9)) in the USRW baseline scenario by conducting a linear regres-
sion for phosphorus effluent according to phosphorus influent. Including
an intercept term to allow for some minimum trapped load, the
regression performs very well (R-squared > 0.95, see Fig. 5):

P = (1—kppy) X P" —kpgo VIET 1)
where P and P? are the simulated phosphorus loads into and out of

the reservoir at time t and EP‘RJ and EP_R_Z are linear regression co-
efficients. The accuracy of the linear regression indicates that a linear
filter, compatible with the response matrix approach, may reasonably
approximate the trapping effect. Because the trapping efficiency (i.e.
EP‘RJ) is time-invariant, it may be incorporated directly within the (also
time-invariant) stream connectivity matrix. For all phosphorus stream
connectivity matrix elements (w;;), such thati € D andj € U, where D is
the set of stream reaches downstream from the reservoir and U is the set
of reaches upstream of the reservoir, we set w;; equal to one minus the

swl sw 2 sw3

3) In-stream process
throughout stream

| -

swi SwW 6
: ..
1) Pomt\ Sy -
source -
2) Reservoir Nonpoint
) Reservoi
trapping source
sw7 sw 8 sw9

MR

Nonpointy \
source

Overall

Nonpoint '\ '\
outlet

source

Fig. 4. A graphical example of a simplified watershed with 9 subwatersheds
considering: 1) point source discharge, 2) reservoir trapping, and 3) in-stream
process. sw: subwatershed.
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Fig. 5. Linear filtering of reservoir on monthly phosphorus (P) load.

trapping efficiency (rather than 1, as had been before):

(1—kpg)) ifi€DandjeU
(Wi.j),, = 1 otherwise, if jis upstream of i (12)
0 otherwise

Meanwhile, the minimum trapped load (i.e. EP7R,1) is subtracted
directly from the yield of the downstream subwatershed, as if a “point
sink”:

Pt = Prups + Pt ps — Pt res vieT 13)

where the minimum trapped load, p, ,., € R", is equal to EP.R,Z for the
subwatershed immediately downstream of the reservoir and zero
otherwise.

We evaluate the linear approximation for in-stream processing
(Equation (7)) in the USRW baseline scenario by conducting linear re-
gressions (at each subwatershed outlet) for phosphorus effluent ac-
cording to upstream phosphorus yields and “inverse-flow” yields:

Pi=(Iy—kpp)-W-p,+ | Iv=kpy | -W-g,, V€T a4

where kpp € R™V and kpy € R™ are diagonal matrices whose ele-

ments are the regression coefficients estimated using SWAT simulation
data (i.e., P yield and streamflow) and indicating the fraction of phos-
phorus lost in a stream; and Iy € R™Y is an identity matrix. Recall that
W is the connectivity matrix accounting for upstream-downstream re-
lationships. The right-hand side of Equation (14) is then the P export at
each reach broken into a term dependent on upstream landscape P
loading and a term dependent on upstream cumulative residence time.

Larger values of /’Ep'p and ﬁP% indicate that the stream acts as more of a

phosphorus sink. As with the traditional RM method, we apply equations
(10)-(14) at the monthly scale. We find again that the regression per-
forms very well (R-squared > 0.95, see Fig. 6), suggesting that Equations
10 and 12-14 constitute an effective modified response matrix approach
for phosphorus.

Below, we compare SWAT simulation results for monthly in-stream
phosphorus loads at the USRW outlet with estimates from both the
modified RM formulation and a “traditional + point source” estimate.
We choose to show the “traditional + point source” estimate rather than
the traditional RM estimate because (1) the point source addition
method is trivial and (2) the point source load in the USRW is so large
that its omission obscures the value of the other modifications. First, for
SWAT simulations, we randomly select one of four conservation practice
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Fig. 6. Performance comparison of in-stream phosphorus (P) loading at outlet
between SWAT simulation and RM simulation using linear regression
(Eq. [14D).

combinations from Table 1 (filter strips only, cover crops only, fertilizer
reduction only, or all practices together) for every agricultural HRU in
the watershed. Then, for the RM estimates, we apply the resultant sub-
watershed land allocation fractions. As described in section 2.2, the RM
estimates assume that this fraction of land allocated to a conservation
practice is evenly distributed among all HRUs within the subwatershed.
Some discrepancy between the RM estimates and SWAT simulations
may be attributed to this allocation distinction and differences in how
conservation practices impact yields in different HRUs (i.e. on different
soils and slopes). We measure the surrogate accuracy of the RM ap-
proaches by Nash-Sutcliffe efficiency (NSE) and percent bias (P-bias)
between the respective RM estimated time-series and the simulated
time-series (Moriasi et al., 2007).

We find that the modified RM formulation provides more accurate
and less-biased estimates (NSE = 0.98 and P-bias = 0.9%) than the
“traditional + point source” formulation (NSE = 0.92 and P-bias =
12.8%) (Fig. 7). Furthermore, the modified RM formulation provides
drastically more representative estimates during periods of low flow. The
difference between the modified RM and “traditional + point source”
estimates is most pronounced during the 2011-2012 drought. From July

Modified RM: P-bias=1.2% NSE=0.98
Traditional RM + point source: P-bias=12.8% NSE=0.92
— —-. Traditional RM
200 4 SWAT + point source
<= ~— Modified RM
S
o
£
é 150 4
«
©
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= 1004
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o
=
&
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0
-~ 51
8 £ X108
€6
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200304 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Time (2003-2018)

Fig. 7. Performance of modified RM and traditional RM on simulating in-
stream phosphorus load at the outlet. The monthly streamflow figure is pro-
vided at the bottom to demonstrate the impact of low flow on P discrepancy
between modified RM and traditional RM.
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2011 to September 2012, SWAT simulates 541,950 kg total phosphorus
export from the watershed. The modified RM estimate is 561,562 kg
export (3.6% over-estimate) while the “traditional + point source” es-
timate is 772,064 kg export (42.5% over-estimate). This focused
improvement from the modified RM approach during low flows is to be
expected — the effects of in-stream processes and reservoir trapping are
greatest when residence time is largest. Moreover, this focused
improvement is relevant and important since streams and water bodies
receiving significant point source discharge can be most vulnerable to
harmful algal blooms during low-flow periods (Harrison et al., 2019;
Jarvie et al., 2006). The cumulative impact of improved prediction at
low flows is a relatively unbiased estimate for total export over the 16
years, rather than the 12.8% over-prediction by the “traditional + point
source” method.

We repeat the above evaluation process 100 times for different re-
alizations of randomized conservation practice allocations using modi-
fied RM method, and compare the results with the same randomized
allocations in SWAT to evaluate the robustness of RM performance
under randomized allocations. These realizations provide a more
comprehensive picture of the modified RM performance and illustrate
the impacts of the conservation practice allocation methods discussed
above. Fig. 8 presents the mean and range for the performance metrics
(NSE and P-bias) across the 100 realizations and every subwatershed
outlet. Overall, the modified RM method has satisfactory performance
(NSEs: 0.96 to nearly 1; P-bias: 15%-18% across all subwatersheds
except for subwatershed 8) for approximating SWAT in-stream phos-
phorus loads. Notably, the subwatersheds which perform worst are
headwater subwatersheds and consist of relatively few HRUs (for
example, subwatershed 8 has only three HRUs). The lesser performance
in these subwatersheds is likely due to the divergence between the RM
assumption and SWAT-applied method for allocating conservation
practice combinations: When there are many upstream HRUs, the up-
stream land allocated to each conservation practice combination will, in
the aggregate, consist of similar soils and slope classes despite different
precise allocations. When there are few upstream HRUs, the RM esti-
mate may not capture SWAT sensitivity to which soil type or slope class

Size range of upstream HRUs
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(i.e. which HRU) a practice is implemented on. Therefore, when
applying the modified (or traditional) RM method at the subwatershed
level, it is important to acknowledge that the method allows for tar-
geting specific subwatersheds with conservation practices but not tar-
geting specific HRUs within a subwatershed.

To evaluate the benefits of computational time saved by modified
RM approach, we recorded the computation time of simulations be-
tween original SWAT and our modified RM approach with the same
conservation practice allocations. Specifically, the computation for 100
randomized simulations in SWAT takes 2 h 20 min, while the modified
RM method takes about 4.2 min with a single processor in an Intel Core
i7-8700k 64 bit and 32 GB memory Windows PC. Thus, the computa-
tional time can be reduced by about 3500% with the modified RM
approach.

3.3. Modification 3: Dealing with impacts of in-stream and reservoir
processes for sediment

3.3.1. SWAT in-stream and reservoir processes for sediment

Sediment transport in SWAT depends upon flow conditions and
sediment supply. Here sediment “supply” refers to sediment which has
been lost from the landscape during the current model time step as well
as all sediment that was previously deposited and still remains within
the stream network. Note also, sediment entrainment (but not deposi-
tion) is not controlled by flow conditions and sediment supply simulta-
neously, but rather, one or the other is limiting for a given reach at a
specific time, according to the following logic: (1) sediment entrainment
may only occur if the stream has sufficient transport capacity (as
determined by flow conditions) for increased suspended sediment con-
centration; (2) any previously deposited sediments which have
remained within the reach are entrained first; (3) if all previously
deposited sediments are exhausted, the sediment transport capacity may
be met by channel bed and bank erosion, but only if the streamflow
generates sufficient shear stress upon the streambed/bank.

These interactions between flow and sediment supply and between
the event-scale and long-term accumulation present an obstacle for
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ascertaining a simple approximation for in-stream sediment processes.
For zones of a stream network where transport capacity consistently
exceeds sediment supply (we will refer to these as supply constrained),
reaches would be controlled by a combination of landscape sediment
loss and streambed shear stress (a function of flow). For zones of a
stream network where sediment supply consistently exceeds transport
capacity (we will refer to these as flow constrained), reaches would be
controlled by a combination of the transport capacity (a function of
flow, distinct from that for shear stress) and the sediment deposition
rate.

3.3.2. Use streamflow to estimate in-stream sediment loads for surrogate
model

Here we demonstrate the need to depart from an RM-based
approximation for sediment and offer, instead, a simple, nonlinear
approximation based on the underlying model processes in SWAT.

For flow-constrained reaches within the stream network, the most
sensible linear approximation and RM formulation for sediment export
are according to landscape water yield. That is:

S=fi(Q) = ks-Q= ks, 'Z(diag(Ym,t)Q'diag(A) ~F,,,> +ksy VIET

meM

(15)

where ESJ [mg/L] and Es_z [mg/L] are coefficients representing effects
at typical conditions. However, the transport capacity can be a highly
nonlinear function of flow; therefore, this approximation may be un-
likely to hold. For example, we select the SWAT modeling option to use
the Simplified Bagnold model (Neitsch et al., 2011) for transport ca-
pacity (one of four options), where:

CONnCyeq chme = CopVenpi " (16)
where concseqchmy is the maximum sediment concentration (ton/m? or
kg/L), Cs, and spexp are parameters defined by SWAT modeler, and vy px
is the peak channel velocity (m/s) during the time step — a nonlinear
function of inflow (see Eq. (7):2.2.3 from SWAT theory documentation,
2009). In the case where non-linearities must be incorporated, and
following the Bagnold equation, a more representative approximation
might be:

NSE=0.97
NSE=-1.69

Nonlinear approximation: P-bias=4.5%
Traditional RM: P-bias= 125.5%
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Sn= f2(Q) = 2s.Im‘Q,],‘S""” VneNVteT (17a)
or perhaps, considering the complex relationship between flow volume
(Q here) and peak flow velocity (vcnpx in the Bagnold equation), even a
polynomial approximation is suitable:

Su=fi(Q) ~ ks + ks2-Q, +ks3-Q2 VneNVieT (17b)
where Es‘zm, Es,e,q,, ESJ, ﬁsg, and /’ESA’g are parameters for the sediment-
flow relationship at typical conditions. However, this nonlinear
approximation is not compatible with a response matrix formulation and
would possibly require the modeler to adjust their use of the surrogate —
for instance, changing the solution method used for optimization.

On the other hand, for supply-constrained reaches, the most sensible
linear approximation and RM formulation likely must account for
landscape sediment yield and water yield. That is,

S=S+f0)~ S+kspQ=
Z(diag(Ym‘,)S-diag(A)-Fm> + Eg_Q-Z(diag(Ym_,) Q-diag(A)~F,,,) VieT

meM meM

18

where Es,Q [mg/L] is the streambed sediment contribution per unit of
flow at typical conditions. However, the nonlinearity of streambed
erosion processes may make this approximation unlikely to hold as well.

Fig. 9(a and b) compares the estimates of best-performing approxi-
mations with estimates of the traditional RM approach for selected,
illustrative subwatersheds. For flow-constrained subwatersheds such as
shown in Figs. 9a and 10b (best approximations from Equations (15) and
(17), respectively), the traditional RM approach significantly over-
estimates the sediment loads, while the proposed modifications provide
highly accurate estimates (R-squared > 0.9). For example, in sub-
watersheds 33 and 34 (the outlet), the NSE for traditional RM sediment
estimates are 0.08 and —1.69, respectively, but improve to 0.91 and 0.97
under a flow-based approximation. Evidently, SWAT simulates signifi-
cant sediment deposition in these zones of the stream network, effec-
tively buffering the upstream landscape sediment loss signal (Jerolmack
and Paola, 2010; Romans et al., 2016). In some cases (e.g. as shown in
Fig. 9c) the flow-sediment relationship can also be approximately linear,
hence the acceptable performance of the response matrix approach
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Fig. 9. Performance of nonlinear approximation and traditional RM on simulating the in-stream load of sediment: subwatershed 34 (a) (outlet) and subwatershed 33
(b). Flow-sediment relationships approximated by linear and polynomial regressions for subwatershed 34 (c) and subwatershed 33 (d) are presented for discussion.
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presented in Equation (15). However, in many cases (e.g. as shown in
Fig. 9d) the flow-sediment relationship is clearly exponential or poly-
nomial, and a nonlinear approximation is required in place of the RM
approach.

We apply the potential RM formulations presented in Equations (15)
and (17) (a or b), and 18 and compare their performance in estimating
sediment load at the monthly scale at all subwatershed outlets, over 100
realizations for conservation practice allocations. We find that, of the 45
USRW subwatersheds, 20 subwatersheds are approximated well (i.e.
average NSE >0.85) by either the linear (Equation (15)) or nonlinear
(Equations (17a) and (17b)) approximations aligned with the Bagnold
equation (see Fig. 10). For those 20 subwatersheds, the linear approxi-
mation method is suggested as it may be incorporated into an RM
approach. 12 subwatersheds are only approximated well by the
nonlinear estimates (polynomial or power functions). These results align
with the suggestions of previous studies that, due to historical man-
agement practices, sediment transport in the Upper Mississippi River
Basin is generally flow constrained (Neal and Anders, 2015; Trimble,
1999).

Of the other 13 subwatersheds, 6 can be approximated acceptably (i.
e. NSE >0.5), but not well, by one of the flow-constrained approxima-
tions. The remaining 7 subwatersheds cannot be approximated accept-
ably by any of the formulations offered here (i.e NSE <0.5). The poor
performance in sediment estimation seems to go beyond the unac-
counted impacts of soil type and slope class discussed in Section 3.3.2, as
there is no clear trend in performance as upstream HRUs increase. It
appears that some subwatersheds either frequently switch modes be-
tween possible dominant controls on SWAT sediment export, not con-
forming to a single approximation, or are generally less amenable to
approximations for SWAT sediment simulations.

4. Conclusions

In this work, we show that (1) an accurate RM-based approach to
SWAT approximation requires that response matrices be generated for
all distinct combinations of conservation practices, in order to account for
the interaction effects between individual practices; (2) a modified RM
method, especially accounting for in-stream and reservoir processes, is
required to correct estimates for phosphorus export; and (3) a departure
from RM-based approximation is required for accurately estimating
sediment, instead utilizing a nonlinear flow-based estimate for sediment
loads. We hypothesize, based on primary process model understanding,
that the modifications presented for phosphorus could also adequately
correct estimates for flow and nitrogen when necessary. We also high-
light that, when applied for decisions at the subwatershed scale rather
than the HRU scale, the proposed approximations perform best at outlets
draining large areas. The approximations detailed here provide efficient
spatial and dynamic simulations on hydrological responses based on a
wide range of spatial applications of agricultural conservation practices.
Excluding sediment, the approximations maintain an RM-based

10

approach, facilitating advantages such as the feasibility of linear pro-
gramming methods. The approximations are especially well-suited to
integration within a system of systems modeling framework where
modelers wish to consider a mixture of non-point and point source
models (Li et al., 2021a). For example, the nutrient effluents simulated
by wastewater treatment models can be directly added via the RM
method to accurately simulate the in-stream P load. The application here
is centered on surrogating the SWAT model, but the process, enlightened
by the discussion provided here, could plausibly be generalized to other
semi-distributed hydrologic models (e.g., WASP or SWMM). The revised
RM enables a more accurate use of a watershed hydrological model for
finding optimal watershed management solutions via 1) classic optimi-
zation, i.e. linear programming and nonlinear programming (including
the suggested nonlinear equation describing the instream and reservoir
sediment processes; 2) heuristic optimization such as genetic algorithm
which uses the revised RM to replace the original simulation model.

Data and code availability

The data and codes used for constructing the modified RM are
available via GitHub (https://github.com/shaobinli/modified RM).
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