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Abstract
This paper is concerned with the quantization setting where the encoder and the decoder
have misaligned objectives. We first motivate the problem via a toy example which demon-
strates the intricacies of the strategic quantization problem, specifically shows that iterative
optimization of the decoder and the encoder mappings may not converge to a local optimum.
As a remedy, we propose a dynamic programming based optimal optimization method, in-
spired by the early works in the quantization theory. We then extend our approach to
variable-rate (entropy-coded) quantization. We finally present numerical results obtained
via the proposed algorithms.

Introduction

Consider the following quantization problem: An encoder observes a realization of
source X ∈ X generated from a probability distribution PX and maps it into a
message in a discrete set Z ∈ Z, via a quantizer Q : X → Z subject to a cardinality
constraint |Z| ≤ M . The decoder generates an action (reconstruction) Y ∈ Y based
on the message Z it receives. The objectives of the encoder and the decoder are to
minimize DE ! E{ηe(X, Y )} and DD ! E{ηd(X, Y )} respectively, where distortion
functions are misaligned, i.e., ηe $= ηd. The encoder designs Q ex-ante i.e., before
seeing the realization of X, based only on the statistics and the objectives. The
distortion functions ηe and ηd, the shared prior PX , and the quantizer Q are common
knowledge. Then, what is Q at the equilibrium?

This problem, which we call strategic quantization, is the main subject of this pa-
per. This game setting, without any quantization constraints, i.e., if M is arbitrarily
large, is known as the Bayesian Persuasion [1].

Two most relevant studies to this work are by Dughmi and Xu [2] and by Aybas
and Turkel [3]. In [2] authors address the algorithmic (complexity) aspect of the
problem and show that it is NP-hard in general. In [3], authors present an exhaustive
search based algorithm along with several complementary theoretical results.

Here, we consider the strategic quantization problem described above, via the lens
of quantization theory. We first demonstrate, via a toy example, that the standard
method of optimization by iteratively enforcing necessary conditions of optimality,
known as the Lloyd-Max-I method[4], may not yield a locally optimal strategic quan-
tizer. Inspired by the early work in quantization theory [5, 6], we then develop
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dynamic programming based algorithms that yield the globally optimal solutions of
this problem.

We note, in passing, that the quantizers arise as equilibrium strategies in a related
but distinctly different information transmission game: the cheap talk [7]. In this
setting, the encoder determines its mapping after it sees the realization, i.e., the
objective of the encoder is to minimize a functional of the form ηe(X, Y ) rather than
E{ηe(X, Y )}. This difference stems from the lack of the commitment assumption in
the cheap talk setting.

Preliminaries
Notation

In this paper, random variables are denoted by capital letters, their sample values are
denoted by the respective lower case letters, and their alphabets are denoted by the
respective calligraphic letters. This alphabet may be finite, countably infinite, or a
continuum, like an interval [a, b] ⊂ R. The expectation operator is denoted by E{·}.
The uniform distribution over an interval [a, b] and the scalar Gaussian with mean µ,
variance σ2 are denoted by U [a, b] and N(µ, σ2).

Strategic Quantization Problem

We present the problem formulation in its most general form here however, we focus
on the discrete distributions while designing the algorithm in the next section. The
encoder and the decoder have continuous distortion functions ηe(x, y) and ηd(x, y)
respectively that depend on the source realization x ∈ X and action taken by the
decoder y ∈ Y , where X is a compact metric space and Y is compact. The set of Borel
probabilities over X , a compact metric space in weak∗ topology, is denoted by ∆(X ).
The agents share a prior belief about X, PX ∈ ∆(X ) which is common knowledge.
A strategic (fixed-rate) quantizer is a measurable mapping Q : X → Z where Z
denotes the compact metric space of messages that satisfies and |Z| ≤M for a given
quantization resolution M ∈ Z+. Any quantizer induces a distribution τ over the
messages given PX . A variable rate constraint is in the form of −

∫
log τd(τ) ≤ H0

instead of the fixed rate constraint |Z| ≤M .
The timing of the game is as follows. First, the encoder designs a quantizer

Q, based on the common knowledge, and announces to the decoder. Then, nature
randomly selects a realization x from X according to the common prior µ0. The
encoder generates a message z ∈ Z through the announced quantizer and transmits
to the decoder noiselessly. The decoder, upon observing z ∈ Z, takes an action r ∈
R. The solution concept sought after here is the encoder-preferred perfect Bayesian
equilibrium.

This problem, without any constraints on the message space |M| ≤ K is the
well-known Bayesian Persuasion problem in the Economics literature [1]. In this
constrained form, this problem is analyzed for discrete scalar sources in [3]. We make
the following regularity assumption throughout this paper.

Assumption: Equilibrium quantizer consists of intervals (convex code-cells).
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This assumption is critical to the dynamic programming derivations presented
in this paper. This is part of the regularity conditions in nonstrategic quantization
literature (the other condition, which we do not assume here, states that the i-th
reconstruction lies within the i-th interval). It is well understood that in most settings
of engineering interest the optimal nonstrategic quantizer is regular, for example, for
distortion measures of the form η(x, y) = ρ(|x − y|) where ρ is a nondecreasing
convex function, for fixed rate and any source distribution, and for variable rate and
any continuous sources, see e.g., [8]. However, due to the mismatch of distortion
measures, the optimal strategic quantizer may not satisfy our assumption here. This
“monotonicity" condition is studied in the recent Economics literature [9, 10] where
conditions on distortion measures for monotonicity of the equilibrium mappings are
characterized for the unconstrained Bayesian Persuasion setting where quantizers
arise as optimal solutions without any exogenous constraint. We note that here
we have the quantization in the problem formulation which imposes an exogenous
constraint on the message set.

A Toy Example

Consider X ∼ U [−1, 1], M = 3, with ηe(x, y) = (x3−y)2 and ηd(x, y) = (x−y)2. The
boundaries are parametrized as [−1, r1), [r1, r2), and [r2, 1] for some r1, r2 ∈ [−1, 1]
that satisfy r2 ≥ r1. Then, the decoder reconstructions (actions) are:

y1 =

∫ r1
−1

1
2ada∫ r1

−1
1
2da

=
1 + r1

2
, y2 =

∫ r2
r1

1
2ada∫ r2

r1
1
2da

=
r2 + r1

2
, y3 =

∫ 1

r2
1
2ada∫ 1

r2
1
2da

=
r2 + 1

2
. (1)

The cost function is then

J(r1, r2) =

∫ r1

−1
(u3 − 1 + r1

2
)2du+

∫ r2

r1

(u3 − r2 + r1
2

)2du+

∫ 1

r2

(u3 − 1 + r2
2

)2du (2)

Applying the KKT optimality conditions ∂J
∂r1

= ∂J
∂r2

= 0 yields, after straightforward
algebra, that the only non-degenerate solution is r1 = −0.7403 and r2 = 0.7403. We
note that iteratively enforcing optimality conditions for the encoder and the decoder
(as in Lloyd-Max algorithm) results in r1 ↑ 0 and r2 ↓ 0 since each iteration pushes
the boundaries towards origin. Hence, straightforward enforcement of optimality
conditions does not yield a locally optimal solution, since any perturbation of r1 =
r2 = 0 would be preferred by the encoder to r1 = r2 = 0.

Dynamic Programming Based Algorithms

Although we have formulated the problem in its most general form above, we next
focus on discrete sources to develop algorithms. We note however that while the
algorithms presented here are designed for discrete sources, they can be applied to
continuous sources by first discretizing the source distribution at a suitable resolution.

Let X be a discrete source taking values from X = {x1, . . . , xK}, x1 < x2 < ... <
xK , with a probability mass function pX(xk) = pk, k = 1, . . . , k. To simpify notation,
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we define an augmented set O = {x1, . . . , xK , xK+1}, where xK+1 = xK + ε for some
ε > 0. The set X is divided into non-overlapping subsets as vm = {xi|rm−1 ≤ xi < rm}
for m = 1, 2, . . . ,M where rm ∈ O and ∪m=M

m=1 vm = X . The quantizer output is
denoted by {ym}:

ym = Q(x) ∀x ∈ [rm−1, rm) m = 1 . . .M. (3)

To enable the computations in the proposed algorithm, we take Y (as defined in the
previous section, the reconstruction space) as the discretized real line at a suitable
resolution (in practice this depends on the distortion functions ηe and ηd). The
equilibrium decision levels (chosen by the encoder), the optimal representation levels
(chosen by the decoder), the encoder and decoder distortions are denoted by r∗m,
y∗m, D∗

e , and D∗
d respectively. Similarly, we define v∗m = {xi|r∗m−1 ≤ xi < r∗m} for

m = 1, 2, . . . ,M . We set r∗0 = x1, and r∗M = xK+1. Finally, we define the set S as
follows:

S ! {(α, β) : α, β ∈ O, x1 ≤ α < β ≤ xK+1}.

Fixed Rate

The encoder chooses {rm} for m = 1, . . . ,M that minimize

De(r0, r1, . . . , rM) = E{ηe(X, Y )} =
M∑

m=1

∑

k:xk∈vm

ηe(xk, ym)pk, (4)

where ym are chosen by the decoder to minimize Dd = E{ηd(X, Y )} as

ym = argmin
t∈Y

∑

k:xk∈vm

ηd(xk, t)pk. (5)

We next define

Dm(α, β) ! min
r1,r2,...,rm−1∈O

α=r0<r1<...<rm−1<rm=β

m∑

i=1

∑

k:xk∈vm

ηe(xk, yi)pk, (6)

where yi is determined via (5). Note that Dm can be written in terms of D1:

Dm(α, β) = min
r1,r2,...,rm−1∈O

α=r0<r1<...<rm−1<rm=β

m∑

i=1

D1(ri−1, ri). (7)

The key observation here is that Dm can be written as a function of D1 and Dm−1
since the equilibrium m level quantizer can be decomposed as m−1 level equilibrium
(optimal for the encoder) quantizer followed by a one level quantizer. This backward
induction reasoning yields the following Bellman equations:

Dm(r0,α) = min
t∈O

r0<t<α

(Dm−1(r0, t) +D1(t,α)) (8)
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rm−1(r0,α) = argmin
t∈O

r0<t<α

[Dm−1(r0, t) +D1(t,α)]. (9)

for m = 2, . . . ,M . The algorithm proceeds in two passes, a forward and a backward
pass. During the forward pass, for each element of S in the form of (r∗0,α),α ∈
O, r∗0 < α ≤ r∗M , the set of xi ∈ [r∗0,α) is quantized for m = 1, 2, . . . ,M levels, and
the (m − 1)th decision level is given by (9), for each m. During the backward pass,
r∗M−1 is found by applying (9) on the interval [r∗0, r∗M):

r∗M−1 = rM−1(r
∗
0, r

∗
M). (10)

This process is repeated iteratively for [r∗0, r∗m),m = M, . . . , 2 to get the decision levels
{r∗m} as

r∗m−1 = rm−1(r
∗
0, r

∗
m). (11)

The optimal representative levels, {y∗m} are found using (5).
We present the steps above in Algorithm 1, where we define g(·) as the indexing

function, i.e., g(xk) = k, ∀xk ∈ O and three auxiliary variables as follows:

ξ([α, β), γ) !
g(β)−1∑

k=g(α)

ηe(xk, γ)pk, ζ(α, β) ! argmin
t∈Y

g(β)−1∑

k=g(α)

ηd(xk, t)pk. (12)

φt(α,m) ! Dm−1(r0, t) +D1(t,α). (13)

Variable Rate

Let p(α, β) be the probability that x lies in the interval [α, β),

p(α, β) =
g(β)−1∑

k=g(α)

pk. (14)

We define H(α, β) and the total entropy HT (r0, . . . , rm) as follows:

H(α, β) = −p(α, β) log2(p(α, β)), HT (r0, r1, . . . , rm) =
m∑

i=1

H(ri−1, ri). (15)

For a given M , the encoder minimizes D(λ,M) over {rm}:

D(λ,M) = E{ηe(X, Y )}+λHT (r0, ..., rM) =
M∑

m=1

∑

k:xk∈vm

ηe(xk, ym)pk+λHT (r0, ..., rM),

for a given λ > 0 (that corresponds to the entropy constraint), where ym are chosen
by the decoder, similar to the fixed-rate case, as in (5). For an element (α, β) ∈ S, we
now redefine the m-level distortion, Dm(α, β,λ) for the set of xi ∈ [α, β) that gives
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Algorithm 1 Fixed-Rate Strategic Quantization
1: Input: X ,O, pX(·),M, ηe(·, ·), ηd(·, ·)
2: Output: {r∗m}, {y∗m}, D∗

e , D∗
d

3: Initialization: r∗0 = x1, r∗M = xK+1

4: S ← {(α, β) : α, β ∈ O, x1 ≤ α < β ≤ xK+1}
5: for (α, β) ∈ S do
6: y ← ζ(α, β)
7: D1(α, β)← ξ([α, β), y)
8: end for
9: for m← 2, 3, ...,M do

10: for α ∈ O\{x1} do
11: rM−1(r∗0,α)← argmin

t∈Y
(φt(α,m))

12: Dm(r∗0,α)← φrM−1(r∗0 ,α)
(α,m)

13: end for
14: end for
15: for m←M,M − 1, . . . , 2 do
16: r∗m−1 = rm−1(r∗0, r

∗
m)

17: end for
18: for m← 1, 2, . . . ,M do
19: y∗m ← ζ(r∗m−1, r

∗
m)

20: end for
21: D∗

e ←
∑M

m=1

∑
k:xk∈v∗m ηe(xk, y∗m)pk

22: D∗
d ←

∑M
m=1

∑
k:xk∈v∗m ηd(xk, y∗m)pk

the distortion due to quantizing the interval [α, β) with m representation level for the
given λ parameter as:

Dm(α, β,λ) = min
r1,r2,...,rm−1∈O

α=r0<r1<...<rm−1<rm=β

m∑

i=1

∑

k:xk∈vm

ηe(xk, yi)p(α, β) + λHT (r0, r1, ..., rm),

where yi is determined via (5). By a the same reasoning in the fixed, rate, we obtain
the following Bellman equations:

Dm(r0,α,λ) = min
t∈O

r0<t<α

(Dm−1(r0, t,λ) +D1(t,α,λ)) (16)

rm−1(r0,α,λ) = argmin
t∈O

r0<t<α

[Dm−1(r0, t,λ) +D1(t,α,λ)]. (17)

for m = 2, . . . ,M . The algorithm again proceeds in two passes. During the forward
pass, similar to the fixed-rate case, for each element of S in the form of (r∗0,α),α ∈
O, r∗0 < α ≤ r∗M , the set of xi ∈ [r∗0,α) is quantized for m = 1, 2, . . . ,M levels, and
the (m− 1)th decision level is given by (17), for each m. During the backward pass,
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Algorithm 2 Variable-Rate Strategic Quantization
1: Input: X ,O, pX(·),λ, ηe(·, ·), ηd(·, ·)
2: Output: M∗,{r∗m}, {y∗m}, HT (r∗0, ..., r

∗
M), D∗

e , D
∗
d

3: Initialization: r∗0 = x1, r∗M = xK+1, th, M = 2
4: S ← {(α, β) : α, β ∈ O, x1 ≤ α < β ≤ xK+1}
5: for (α, β) ∈ S do
6: y ← ζ(α, β)
7: D1(α, β)← ξ([α, β), y) + λH(α, β)
8: end for
9: repeat

10: for m← 2, 3, ...,M do
11: for α ∈ O\{x1} do
12: rm−1(r∗0,α)← argmin

t∈Y
(φt(α,m))

13: Dm(r∗0,α)← φrm−1(r∗0 ,α)
(α,m)

14: end for
15: end for
16: for m←M,M − 1, ..., 2 do
17: r∗m−1 = rm−1(r∗0, r

∗
m)

18: end for
19: for m← 1, 2, ...,M do
20: y∗m ← ζ(r∗m−1, r

∗
m)

21: end for
22: HT (r∗0, r

∗
1, ..., r

∗
M)←

∑M
m=1 H(r∗m−1, r

∗
m)

23: D(λ,M)← De(r∗0, r
∗
1, . . . , r

∗
M) + λH(r∗0, r

∗
1, ..., r

∗
M)

24: M = M + 1
25: until convergence in D(λ,M): D(λ,M)−D(λ,M−1)

D(λ,M−1) < th
26: M∗ ←M
27: D∗

e ←
∑M∗

m=1

∑
k:xk∈v∗m ηe(xk, y∗m)pk

28: D∗
d ←

∑M∗

m=1

∑
k:xk∈v∗m ηd(xk, y∗m)pk

r∗M−1 is found by applying (17) on the interval [r∗0, r∗M):

r∗M−1 = rM−1(r
∗
0, r

∗
M). (18)

which is performed for [r∗0, r
∗
m),m = M, . . . , 2 to get the decision levels {r∗m} as

r∗m−1 = rm−1(r
∗
0, r

∗
m). (19)

Then, this process is repeated for M = 2, 3 . . . values until D(λ,M) does not
decrease (assuming D(λ,M) is monotonic in M), and the corresponding M is the op-
timal number of representative levels, M∗, for the given λ. The algorithm is presented
in Algorithm 2.

We note that the Lagrangian approach assumes that the distortion-rate function
of the optimal quantizer is convex. While this assumption does not hold most non-
strategic settings (see e.g., [11] where the authors show this assumption is satisfied
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(a)X ∼ U [0, 1] (b)X ∼ N(0, 1)

Figure 1: Fixed rate quantization of a uniform and a Gaussian source, for ηe(x, y) = (x3−y)2
and ηd(x, y) = (x− y)2.

(a)X ∼ U [0, 1] (b)X ∼ N(0, 1)

Figure 2: Variable rate quantization of a uniform and a Gaussian source, for ηe(x, y) =
(x3 − y)2 and ηd(x, y) = (x− y)2.

only at integer rates for a uniform source), the difference is negligible in practice, see
e.g., [12]. Alternatively, one can start with the Lagrangian formulation of the prob-
lem which obviously makes this "duality gap" issue vanish and makes the proposed
solution optimal.

Numerical Results

We consider Gaussian, N(0, 1) and uniform U [0, 1] sources for ηe(x, y) = (x3 − y)2

and ηd(x, y) = (x − y)2. The encoder and the decoder distortions for fixed and
variable rate quantization are plotted in Figures 1 and 2 respectively. As expected,
both distortions monotonically decrease with rate, however, unlike their nonstrategic
counterparts, here they stay almost constant as rate increases in the high rate region.
This is because of the mismatch between the objectives of the encoder and the decoder:
even if there was no quantization at all, distortions would not vanish, see e.g., [13]
for more details.
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Discussion

In this paper, we have developed dynamic programming algorithms for the strategic
quantization problem inspired by the early non-strategic quantization literature which
employed dynamic programming to avoid the poor local minima issues in iterative
optimization methods such as Lloyd-Max. Here, our purpose is beyond resolving the
poor local optima issue as we have shown that the iterative solution may not even
yield a locally optimal quantizer via simple examples. Numerical results obtained via
the proposed algorithm suggest several open theoretical questions pertaining to the
behavior of the operational distortion-rate curve of the optimal strategic quantizers.
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