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ABSTRACT

In this paper, we present mmMesh, the first real-time 3D human

mesh estimation system using commercial portable millimeter-

wave devices. mmMesh is built upon a novel deep learning frame-

work that can dynamically locate the moving subject and capture

his/her body shape and pose by analyzing the 3D point cloud gener-

ated from themmWave signals that bounce off the human body. The

proposed deep learning framework addresses a series of challenges.

First, it encodes a 3D human body model, which enables mmMesh

to estimate complex and realistic-looking 3D human meshes from

sparse point clouds. Second, it can accurately align the 3D points

with their corresponding body segments despite the influence of

ambient points as well as the error-prone nature and the multi-path

effect of the RF signals. Third, the proposed model can infer miss-

ing body parts from the information of the previous frames. Our

evaluation results on a commercial mmWave sensing testbed show

that our mmMesh system can accurately localize the vertices on

the human mesh with an average error of 2.47 cm. The superior

experimental results demonstrate the effectiveness of our proposed

human mesh construction system.
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Figure 1: Our mmMesh system
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1 INTRODUCTION

Recently, researchers have put significant efforts towards building

intelligent wireless sensing systems, which aim to perceive and

understand human activities by leveraging pervasive wireless sig-

nals. Thus far, the most remarkable achievement in this effort is

the construction of human skeletons from the signals reflected off

the human body [16, 34, 35, 47, 49]. Having the skeletal represen-

tations, a follow-up question arises: Is the information contained

in the RF signal rich enough to further reconstruct the shape of

the human body from which we can tell not only the height but

also the somatotype, weight, and even the gender of the monitored

subject?

A recent pioneer study [48] offers a preliminary answer to the

above question. In that work, the authors successfully construct the

human mesh by utilizing RF signals. It is revealed that RF signals

contain sufficient information for the estimation of not only the

pose but also the shape of human body. By overcoming the technical

challenges faced by traditional camera-based human perception

solutions, such as occlusion, poor lighting, clothing, as well as

privacy issues, wireless human sensing technique demonstrates

the potential to enable a new generation of applications capable

of supporting more sophisticated interactions between humans

and their physical surroundings. Despite the inspiring findings

presented in [48], the application scope of their system is limited by

both hardware (i.e., a carefully assembled and synchronized bulky

T-shaped antenna array [2]) and model (i.e., the model only works

when there is a power distribution heatmap in 3D space which
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is hard to obtain; and this design prohibits itself from real-time

implementation).

To tackle this problem, we propose to make use of the point cloud

generated from commercial portable millimeter-wave devices, and

construct dynamic 3D human mesh in real-time. Such system could

facilitate a wide spectrum of real-world applications. For example,

the proposed system can enable more realistic augmented reality

(AR) and virtual reality (VR) applications by capturing players’ real-

time body shape and pose. It can also be used by law enforcement

officers to assess the activity, somatotype, height, weight and gender

of the criminal suspect without exposing themselves by leveraging

the ability of RF signals to traverse walls.

However, to unleash the power of the information carried by

mmWave signals, we have to address the following challenges. First,

due to the limited numbers of antennas on the commercial mmWave

radar, the generated point cloud in each frame is too sparse to

accurately estimate such a complex 3D human mesh. Each frame

only contains hundreds of points, among which only dozens of

points are correlated to the human body. It is technically impossible

to directly estimate the locations of thousands of human mesh

vertices from such a sparse point cloud. Second, how to correctly

associate each 3D point in the point cloud with the corresponding

body segment is also very challenging. Since the points from the

ambient can be mistakenly regarded as the points from the subject,

and the obtained point locations can be inaccurate due to both

the error-prone nature and the multi-path effect of the RF signals.

Third, in some frames, the points related to a specific body segment

may be absent due to the specularity [47] of the RF signal reflection.

How to correctly infer these missing body segments remains a

challenge.

To address the above challenges, we propose a deep learning

framework, namedmmMesh, to construct the dynamic 3D human

mesh from the mmWave signals. First, mmMesh encodes a 3D hu-

man body model, which allows us to use only 86 parameters to

represent a whole human mesh. The incorporation of such a human

body model makes it possible to use dozens of points to infer a

complex human mesh. Second, the proposed mmMesh model can

dynamically locate the moving subject and focus on the points

near the subject other than the points from the ambient objects.

Additionally, though the information in each single point can be in-

accurate, mmMesh is capable of capturing the spatial relationships

among the 3D points and aligning them with their corresponding

body segments. What’s more, our model can discriminatively treat

the points and automatically assign larger weights to the points car-

rying information of higher quality. Third, the proposed mmMesh

model employs a recurrent neural network to infer the missing

body parts from the information of the previous frames.

In order to evaluate the proposed mmMesh framework, we im-

plement a prototype of our mmMesh system using COTS millimeter

wave devices. The evaluation results show that our mmMesh sys-

tem can accurately localize the vertices on the human mesh with an

average error of 2.47 cm. The superior experimental results demon-

strate the effectiveness of our proposed human mesh construction

system. Figure 1 illustrates our proposed mmMesh system1.

1Project Website: https://havocfixer.github.io/mmMesh/

2 PRELIMINARY

mmWave Radar based Point Cloud Generation: In this paper,

we need to calculate the point cloud and the related properties

(range, velocity, and energy) of the points from the mmWave sig-

nals to feed into the designed mmMesh model. The first step is to

measure the distances between mmWave radar and the objects. As

we know, mmWave radar transmits FMCW (Frequency Modulated

Continuous Wave) based chirp signals, which can be character-

ized by a start frequency 𝑓𝑐 , bandwidth 𝐵, and duration 𝑇𝑐 [29].

The IF (Intermediate Frequency) signals are obtained by mixing

the transmitted signals and received signals. Then, FFT operation

(Range-FFT) can be performed on IF signal to separate different

frequency components and thus get the distance between each

object and the radar denoted as 𝑅 =

𝑐 𝑓 𝑇𝑐
2𝐵 , where 𝑐 is the speed

of light and 𝑓 is the frequency of IF signal. The second step is

to calculate the velocities of the objects. Another FFT operation

(Doppler FFT) is conducted to measure the phase changes of IF

signal. Then the velocity can be calculated by 𝑣 =
𝜆𝜔
4𝜋𝑇𝑐

, where 𝜆

is the wavelength of the chirp signal and 𝜔 is the measured phase

change between two chirps with interval of 𝑇𝑐 . The last step is to

calculate the coordinates of the points. In order to generate the

coordinates (𝑥,𝑦, 𝑧) of the object 𝑂 , angle estimation is also re-

quired after calculating the distance and velocity of the object. The

angle of elevation 𝜑 and azimuth 𝜃 of the object can be calculated

as: 𝜑 = sin−1 (𝜔𝑧

𝜋 ) and 𝜃 = sin−1 ( 𝜔𝑥

cos(𝜑)𝜋 ), where 𝜔𝑧 is the phase
difference between azimuth antenna and corresponding elevation

antenna after Doppler-FFT, and 𝜔𝑥 is the phase difference between

consecutive receiving azimuth antennas after Doppler-FFT. Based

on above results of 𝑅, 𝜑 and 𝜃 , the position of the object 𝑂 (i.e.,

(𝑥,𝑦, 𝑧)) can be calculated as 𝑥 = 𝑅 cos(𝜑) sin(𝜃 ), 𝑧 = 𝑅 sin(𝜑) and
𝑦 =

√
𝑅2 − 𝑥2 − 𝑧2.

PointNet: In our proposed deep learning model, we adopt Point-

Net [27] as our backbone network to extract point features from

the point cloud. PointNet [27] is a pioneer work to tackle the point

cloud data using deep learning method. In PointNet, multi-layer

perceptrons (MLP) is leveraged to extract high-level representations

from point cloud features. And max-pooling operation is applied to

aggregate the representations of all the points in the point cloud.

SMPL (Parametric HumanModel): To get realistic human mesh

output, in our model design, we encode a 3D human body model

as one of our model components. Skinned Multi-Person Linear

model (SMPL) [24] is a widely used parametric human model that

estimates 3D human mesh by factoring human body into shape

and pose parameters. Shape parameters ®𝛽 ∈ R10 can be utilized to

control how individuals vary in height, weight, body proportions,

etc. Pose parameters ®𝜃 ∈ R72 is used for the 3D surface deforms

with articulation, which can be represented by 1 global 3D rotation

vector of the human mesh and relative 3D rotation of 23 joints. The

output of SMPL is a triangulated mesh with 6890 vertices, which is

obtained by shaping the template body vertices conditioned on ®𝛽
and ®𝜃 , then articulating the bones according to the joint rotations
®𝜃 via forward kinematics, and finally deforming the surface with

linear blend skinning. The key advantage of SMPL model is that it

can output the locations of 6890 human mesh vertices by taking 10

shape parameters and 72 pose parameter as input.
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Figure 2: System Overview

3 SYSTEM OVERVIEW

In this paper, we consider a real-life scenario where the human sub-

ject is monitored by a mobile phone equipped with mmWave radar

whose signals are reflected back from the human body and ambient

objects. Our proposed mmMesh system in the paper aims to recon-

struct the dynamic human mesh in real-time by taking the reflected

mmWave signals as input. Figure 2 shows an overview of our pro-

posed mmMesh system, which contains three major components:

data collection, data preprocessing, and mesh construction.

Data Collection. This component aims to collect mmWave sig-

nals that can be used to reconstruct the subject’s mesh. In this

process, the commercial mmWave radar emits FMCW signals from

its transmitting antennas and captures the reflected signals using its

receiving antennas. Then the radar hardware can mix the received

signals with the transmitted signal to obtain the IF (Intermediate

Frequency) signals, which are the outputs of the mmWave radar.

Note that a real-time data collection system is achieved by our

UDP protocol based program to enable the dynamic human mesh

construction. In addition to the collection of mmWave data, we also

use the VICON motion capture system [1] to obtain high precision

dynamic pose information of the subject, which is utilized to gen-

erate the ground truth human mesh that can be used to train the

proposed deep learning model in our system.

Data Preprocessing. This component is designed to remove

the noisy signals reflected from the static ambient objects, and then

generate the 3D point cloud so that they can be fed to the proposed

deep learning models. Specifically, we first calculate the heatmap

using both range-FFT and doppler-FFT and cancel the signal energy

from the static objects. Then we calculate the AoA (Angle of Arrival)

of the signals in both azimuth plane and elevation plane. Based

on the range information and the angle information, the locations

of the 3D points can be easily estimated. The points’ coordinates

combined with other point features (e.g., point velocity) will be fed

to our proposed deep learning model.

Mesh Construction. The goal of this component is to construct

the dynamic human mesh from the point cloud generated by the

data preprocessing component. In this component, we propose a

novel deep learning model that can estimate 3D human mesh by

simultaneously encoding the global and local structures of the 3D

point cloud in spatial dimension as well as the structural trans-

formation of the points in temporal dimension. The details of the

proposed mmMesh model will be described in section 4. A real-time

mesh rendering tool is also implemented in the developed system.

4 METHODOLOGY

In this paper, our goal is to construct dynamic 3D human mesh

using sparse 3D point cloud data collected by the mmWave device.

Our proposedmmMeshmodel should be able to tackle the following

three challenges to achieve this goal.

The first challenge is the sparsity caused by the low resolution of

the commercial mmWave radar device. In RF-Avatar [48], which is

the only work using RF signals to estimate human mesh, there are 4

transmitting antennas and 16 receiving antennas assembled on a T-

shape holder [2]. However, the commercial mmWave radar has only

3 transmitting antennas and 4 receiving antennas [13], which results

in only a resolution of 15◦ for azimuth plane and a resolution of 60◦

for elevation plane. Due to the low resolution of the device, each

frame of the collected data only contains hundreds of points, among

which only dozens of points are correlated to the human body. As

a consequence, we have to estimate the locations of thousands of

vertices on the human mesh based on the information provided by

only dozens of points, which is technically impossible. To address

this challenge, we incorporate the Skinned Multi-Person Linear

(SMPL) model [24] into our model as an additional constraint. SMPL

is a generative 3D human body model which parameterizes the

human mesh using a low-dimensional shape vector (to characterize

the height, weight, and body proportions of human body), a pose

vector (to characterize the deformation of the human mesh under

motion), a global translation vector, and a binary gender parameter.

SMPL can act as a strong constraint which allows us to use only

86 parameters to represent the whole 3D human mesh instead of

directly estimating the location of each of the thousands of vertices.

In addition, SMPL model can encode the anatomic prior knowledge

of human body. For example, the length of one’s arm span is roughly

equal to one’s height, and the human body and limbs tend to have

a symmetric structure. These anatomic prior knowledge can help

us produce a realistic human mesh.

Secondly, in real world, it is difficult to align 3D points precisely

with their corresponding body parts due to: 1) the ambient points,

which are generated from the RF signals reflected by the surround-

ings and can be mistakenly aligned with the body segments of the

subject; 2) the error-prone natural of the RF signals; 3) the multi-

path effect of the RF signals. Thus, it is challenging to correctly align

the points in the point cloud and accurately construct the human

mesh. To address this challenge, we first alleviate the influence of

the ambient points. Specifically, in our model design, we filter the

ambient points and consider only the points close to the subjects.

Then, instead of directly learning the information from each single

noisy point which may be affected by the error-prone nature of the

RF signals, we propose to learn the local structure of the point cloud,

i.e., the spatial relations between each 3D point and its neighboring

points. For example, given a single point, it might be difficult to

tell which part of human body the point belongs to. However, a 3D

point on the subject’s arm should be close to the other points on the

arm or connected body segments, but far away from the points on

the feet. Obviously, the spatial relation of the 3D points can provide

us some knowledge about the shape and pose of the body segments,
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point [15]. Suppose 𝐿(𝑥) denotes a linear mapping function that

can map a vector into a scalar in attention operation. Then, we can

get the aggregated global presentation 𝑓 𝑡 of all points in current

frame as follows:

𝑓 𝑡 =
∑

𝑖∈𝑁 𝑡

𝐿(𝑐𝑡𝑖 ;𝜃 𝑓 ) · 𝑐𝑡𝑖 , (1)

where 𝑁 𝑡 is the number of points in current frame and 𝜃 𝑓 is the

parameter in the linear mapping function 𝐿. A key point here is that

the attention function should be invariant to point permutation so

that it can be applied to point clouds. The authors in [43] proved

that a function 𝑓 (𝑋 ) is invariant to the permutation of instances

in 𝑋 , iff it can be decomposed in the form of 𝜌 (∑𝑥 ∈𝑋 𝜙 (𝑥)), for
suitable transformations 𝜙 and 𝜌 . Thus, our attention operation is

invariant to point permutation, and it can be used to aggregate 3D

point cloud features.

As aforementioned, some parts of the human body may not have

correlated 3D points in a specific frame due to the specularity of the

RF signal. We address this problem by leveraging the information

of the previous frames to infer the missing parts. Specifically, we

feed the representation vector 𝑓 𝑡 to the multi-layer LSTM and fuse

it with previous global representations. Then we can get the final

global representation of 𝑔𝑡 = LSTM(𝑔𝑡−1, 𝑓 𝑡 ;𝜃𝑔), where 𝑔𝑡−1 is

the global representation of the previous frame and 𝜃𝑔 is a set of

parameters to be learned in LSTM.

4.3 Anchor Point Module

We can get a rough estimation of the shape and pose of the subject

by the Global Module. To make the estimated mesh more accurate,

we need to learn the local structures of the point cloud to acquire

fine-grained information. Traditionally, to learn the local structures

of point cloud, the sampling method is first used to sample some

points from the point cloud as grouping center. Then the points

in the point cloud are grouped into several subsets. Finally, the

representation of each subset is extracted and taken as the local

structure representation [28].

However, the above method can only be applied to static objects

and is not suitable to our scenario. The sampling strategy in the

above method always samples points from the whole point cloud

without distinguishing whether they are on the human body or not.

There may be significant number of sampled points that are located

far away from the human subject and thus contribute nothing but

noise to the mesh construction. Moreover, The set of sample points

are dynamically changing frame by frame and thus may lead to

inconsistency across continuous frames.

To address this challenge, we propose to dynamically choose

some łvirtual locationsž near the subject as anchor points and use

them to group the 3D points. In our design, each anchor point can

group a subset of points that are related to a part of human body.

For example, the anchor points near the ground can group more

points reflected from the calves of the human body, and the anchor

points on the left of the subject may be more related to points on

the left arm of the subject. Specifically, after deriving the global

representation 𝑔𝑡 from the Global Module, we use an Anchor Point

Generator (APG) to generate the desired anchor points by taking

𝑔𝑡 as input. In our design, the APG contains two phases: template

generation and template displacement, as shown in Figure 4. In

Figure 4: Anchor Point Generator (APG)

template generation phase, we first predefine an anchor point tem-

plate at the origin as 𝑧, which is a 3D cubic lattice composed of 𝑁𝑧
anchor points (red points in Figure 4) whose locations are fixed

with respect to the anchor point template. In addition, we assume

that the convex hull of the designed anchor point template is large

enough to cover the subject. In template displacement phase, we

first use a fully connected neural network (i.e., 𝐹𝐶) to predict the

displacement and then move the predefined anchor point template

to the desired location. Here we use 𝛿𝑡 to denote the displacement

of the template at time 𝑡 , where 𝛿𝑡 = 𝐹𝐶 (𝑔𝑡 ;𝜃𝛿 ) is a coordinate

vector with length 3. Then the anchor point template generated

by APG at time 𝑡 is located at 𝑧𝑡 = 𝑧 + 𝛿𝑡 . Similar to the dynamic

bounding box in object tracking task, the anchor point template can

be dynamically generated at the locations of the moving subject

frame by frame. This template can cover the 3D points of the human

subject as many as possible, and meanwhile it is far from the points

generated by the ambient objects.

As shown in Figure 3, based on the locations of the anchor points,

we next group the 3D points from the Base Module into several

subsets. One challenge here is that how some dynamic body seg-

ments (e.g., a swinging hand) can be captured by the anchor points

with relatively fixed locations (with respect to the human body),

since the points on these dynamic body segments can appear in

the neighborhoods of different anchor points in different frames.

In our model, though the anchor point template has fixed shape,

the associations between the anchor points and the 3D points (on

different body segments) are dynamic. And the dynamic associ-

ations are automatically learned during the point grouping and

aggregation. Specifically, for each anchor point, we take the near-

est 𝑁𝑠 3D points into a group. Suppose 𝑧𝑡
𝑘
denotes the location of

the 𝑘-th anchor point at time 𝑡 and the indexes of its nearest 𝑁𝑠
points are represented as 𝑁𝑆𝑃 (𝑧𝑡

𝑘
). We use𝐶𝑂𝑂𝑅(𝑥𝑡𝑖 ) to represent

the coordinate vector (i.e., a vector composed of 𝑥 , 𝑦, 𝑧 coordinate

values) of point 𝑥𝑡𝑖 in the Base Module. Then, for each point 𝑥𝑡𝑖
where 𝑖 ∈ 𝑁𝑆𝑃 (𝑧𝑡

𝑘
), we can derive its high-level representation as

ℎ𝑡𝑖 = MLP( [𝑧𝑡
𝑘
;𝐶𝑂𝑂𝑅(𝑟𝑡𝑖 )−𝑧𝑡𝑘 ; 𝑟

𝑡
𝑖 ];𝜃ℎ), where 𝜃ℎ denote the param-

eters of the MLP. Note that here we also encode the anchor point

location (i.e., 𝑧𝑡
𝑘
) and the spatial relationship (i.e., 𝐶𝑂𝑂𝑅(𝑟𝑡𝑖 ) − 𝑧𝑡𝑘 )

between the anchor point and its grouped points into the input of

MLP. Similar to Eq. (1), the aggregation process based on the 𝑘-th
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anchor point can be denoted as:

𝑠𝑡
𝑘
=

∑

𝑖∈𝑁𝑆𝑃 (𝑧𝑡
𝑘
)
𝐿(ℎ𝑡𝑖 ;𝜃𝑠 ) · ℎ𝑡𝑖 , (2)

where 𝜃𝑠 denote the parameters of the linear mapping function 𝐿.

Next, we need to further aggregate the information in the anchor

point representations. Since we carefully design the spatial relation-

ship among the anchor points and arrange them as a 3D lattice in

the cube, we can regard all the anchor point representation vectors

as a 4D tensor 𝑠𝑡 . Then we can aggregate the vectors of all the an-

chor points into one vector using 3D CNN as 𝑑𝑡 = 3𝐷𝐶𝑁𝑁 (𝑠𝑡 ;𝜃𝑑 ),
where 𝜃𝑑 denote the parametes in 3D CNN. Finally, similar to Sec-

tion 4.2, information in the previous frames is fused with 𝑑𝑡 using

multi-layer LSTM as 𝑎𝑡 = LSTM(𝑎𝑡−1, 𝑑𝑡 ;𝜃𝑎), where 𝜃𝑎 denote the

parameters of LSTM.

4.4 SMPL Module

In this module, we first concatenate the global representation vector

from the Global Module and the local representation vector from

the Anchor Point Module, and then map them into pose, shape,

translation and gender representation vectors. Finally we feed the

vectors into SMPL model to output the skeleton and meshe of the

subject.

Specifically, a multi-layer fully connected neural network is used

to get the representations as following:

[𝑃𝑡 ;𝐵𝑡 ;𝑇 𝑡 ;𝐺𝑡 ] = 𝐹𝐶 ( [𝑔𝑡 ;𝑎𝑡 ];𝜃𝑝 ),
where 𝑃𝑡 is the pose vector, 𝐵𝑡 the shape vector,𝑇 𝑡 is the translation

vector, and 𝐺𝑡 is the gender vector. Note that in original SMPL

paper, the length of the pose vector is 72 and it is composed of 24

rotation vectors. However, according to [50], 3D rotation vector is

not a continuous rotation representation to neural network. Thus,

following [50], we use 6D representation to represent the rotation.

And the length of the pose vector 𝑃𝑡 in our model is 144 = 24 × 6.

Then the vertex vector 𝑉 𝑡 and skeleton vector 𝑆𝑡 can be obtained

by feeding the 𝑃𝑡 , 𝐵𝑡 and 𝐺𝑡 into the SMPL model as following:

[𝑉 𝑡 ; 𝑆𝑡 ] = SMPL(𝑃𝑡 , 𝐵𝑡 ;𝐺𝑡 ) +𝑇 𝑡 .
Note that the mesh models for male and female are different. Our

SMPL Module can automatically select the corresponding mesh

model based on gender vector 𝐺𝑡 . Since SMPL model only takes

the 3D rotation vectors as input, we implement a function inside

the SMPL model to transform the 6D rotation representations to

the 3D rotation vectors. In addition, the parameters of SMPL model

are trained in [24] and keep freezing in our model.

4.5 Model Loss

The model loss is the summation of 5 components as following:

𝐿𝑜𝑠𝑠 =
∑

𝐾 ∈{𝑉 ,𝑆,𝐵,𝛿 }
𝛼𝐾 ∗

𝑇∑

𝑡

∥𝐾𝑡 − GT (𝐾𝑡 )∥𝐿1

+𝛼𝐺 ∗
𝑇∑

𝑡

𝐻 (𝐺𝑡 ,GT (𝐺𝑡 )) .

(3)

Here we use𝑉 , 𝑆 , 𝐵,𝐺 to denote the vertex matrix, skeleton matrix,

shape matrix, and gender matrix obtained in the SMPL module

from the first frame to the 𝑇 -th frame. 𝛿 is the displacement matrix

obtained using APG in the Anchor Points Module. We use GT (𝐾)
to denote the corresponding ground truth of the generated matrix𝐾

and 𝛼𝐾 denote the hyper-parameters. 𝐻 is the hinge loss. Normally,

cross entropy will be used to classify the gender of the subject.

However, the cross entropy loss can be very large, which may affect

other losses. To address this problem, we use hinge loss on the

gender vectors. Note that even though the vertex loss is the joint

result of pose, shape, displacement, and gender of the subject, we

still add the skeleton loss, shape loss, displacement loss, and the

gender loss to guide the fast convergence of the designed deep

model and to avoid the model falling into the local minimum.

5 EXPERIMENTS

5.1 Testbeds

5.1.1 VICON System. In this paper, we use the VICON motion

capture system [1] to generate ground truth 3D human pose for

model training. The VICON system is shown in Figure 5(c), and it

consists of 21 VICON Vantage cameras which emit and receive in-

frared light. During the pose data collection, 27 high precision pearl

markers are placed on each subject to represent the joint points of

the subject. Figure 5(a) shows the positions of these markers on

the subject. Since these markers are covered with highly reflective

materials, the infrared light reflected from the marker surface can

be easily captured by the the VICON Vantage camera. The errors

cause by the location of each marker is less than 2𝑚𝑚 [25]. The

sampling rate of the system is 10 frames per second.

5.1.2 mmWave Testbed. The millimeter-wave radar we used in this

paper is TI AWR1843BOOST, which is a commercial and portable

(8.3𝑐𝑚 × 6.4𝑐𝑚, 30𝑔) mmWave device produced by TI [13]. We also

utilize TI DCA1000EVM to enable real-time data capture and stream-

ing from mmWave radar, as shown in Figure 5(b). The mmWave

device contains 3 transmitting antennas and 4 receiving antennas.

The 3 transmitting antennas emit FMCW wave chirps in turns. The

emitted RF singal will be reflected by the human body and the

surroundings, then received by the 4 receiving antennas. For each

FMCW chirp, the frequency of RF will increase from 77 GHz to 80.9

GHz. The mmWave device is set to send 10 frames per second. Here

each frame is composed of 128 chirps, and each chirp is composed

of 256 sampling points. Based on our device setting, the maximum

sensing range of the mmWave device is about 11 m, the range res-

olution is about 4.3 cm, the maximum sensing velocity is about

4.5 m/s, and the velocity resolution is about 7.1 cm/s. To enable

a real-time system, a UDP-based program is developed to collect

packets from the device and parse the packets into the mmWave

data frame. In the experiment, we place the mmWave testbed on

a table (the height is about 92 cm), and the distance between the

mmWave testbed and the activity area is about 1.5 m.

5.2 Data Collection and Preprocessing

5.2.1 Data Collection. In the experiment, 20 volunteers (includ-

ing 13 males and 7 females) are asked to perform 8 daily activities

within the activity area. The 8 activities include: (1) torso rotations;

(2) clockwise walking; (3) counter-clockwise walking; (4) arm swing

(the subject can randomly swing his/her arms horizontally or up-

ward or downward); (5) walking back and forth; (6) walking back
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Figure 5: Testbeds and the basic scenario of mesh construction

and forth with arm swing; (7) walking in the place; (8) lunges (the

subject keeps performing lunge pose alternatively use his/her left

and right leg). For each activity, the subject keeps performing it for

5 minutes (i.e., 3000 frames per activity per subject).

5.2.2 Ground Truth Mesh Construction. In our experiment, we

use SMPL model to generate the ground truth human mesh to

train our proposed deep learning model. Specifically, we take the

pose information, shape information, translation information, and

gender information of the subjects as the input of SMPL model.

The pose information and translation information can be ob-

tained from the VICON system as described in Section 5.1.1. Note

that the pose representations obtained from the VICON system are

the absolute positions of the joints. As shown in Figure5(a), the

location of each joint is obtained by averaging the locations of the

two markers that are nearest to the joint (the two markers are in

the front and the back of the human body, respectively). Since the

pose representations are the rotation vectors of the joints, we then

calculate the rotations on the joints using the absolute positions

obtained from the VICON system. It is notable that the joints from

VICON system and the input pose vectors of SMPL model are not

one-to-one mapping, the SMPL model has more pose vectors than

the joints from VICON system. Since the missing joints have little

effect on the designed daily activities, we simply set those rotation

vectors with constant values.

For the shape information, we use the approach in [5] to obtain

the ground truth shape vector for each subject in a canonical pose.

To best match the human mesh model with the ground truth height

of the subject, we also manually adjust the shape vector values.

5.2.3 Point Cloud Generation. After obtaining the frames of the

mmWave data, we first calculate the Range-FFT and Doppler-FFT.

Then a static clutter removal algorithm is used to remove the static

background noise. The algorithm subtracts the average value of

the Doppler-FFT heatmaps from all receiving antennas, which is

helpful to reduce the energy reflected from static ambient objects.

Traditionally, CA-CFAR [8] algorithm is usually applied on the

Doppler-FFT heatmap to select prominent pixels as potential 3D

points using fixed threshold. However, in our work, we directly

use the Doppler-FFT heatmap pixels with the highest values as the

potential 3D points. The main reason is that the heatmap energy

differs from frame to frame. Using the fixed threshold will result in

the number of selected points varying largely in different frames.

For example, if we use the fixed threshold, one frame may have

a hundred of selected points while another frame may have only

several or even zero selected points. This effect will be severe when

the testing environment changes. Especially when we conduct

experiment in occlude scenarios as described in Section 5.5.4, the

energy distribution changes largely when the signal from the device

is occluded by objects. Though we can manually set the threshold

for each environment, we choose to select 128 heatmap pixels with

the highest values for each frame to generate consistent numbers of

point clouds among different frames and various environments. The

noisy points generated by the multi-path effect is also alleviated

in this step, since the signal that has been reflected several times

tends to have lower energy value than the directly reflected signal.

Then, we calculate the 3D coordinates of the points based on the

the selected pixels. Finally, we take the x-y-z coordinates, the range

value, the velocity value, and the Doppler-FFT value of the point

as the input feature vector of each 3D point to feed to the deep

learning model.

5.3 Model Setting and Model Training

In this section, we describe the setting of the deep learning model.

In Base Module, we use 3 layers of shared MLPs and the sizes of the

layers are 8, 16, and 24, respectively. In Global Module, we also use

3 layers of shared MLPs and the sizes of the layers are 32, 48, and

64, respectively. The LSTM in Global Module has 3 layers and the

size of each layer is 64. In Anchor Points Module, we use 81 anchor

points which construct a 3 × 3 × 9 3D cubic lattice. The distance

between a pair of neighboring anchor points is set to 0.3 m. The
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number of grouped points around each anchor point is set to 8. The

size of the shared MLPs in Anchor Points Module is the same as

that in Global Module. We use 3 layers of 3D CNN to aggregate

the featueres of anchor points into a vector with size 64. Similarly,

there are 3 layers of LSTM in Anchor Point Module whose sizes are

all set to 64. The FC has 2 layers in SMPL Module, which maps the

concatenated vectors into a parameter vector with size 158.

During model training, we use the first 2400 frames (i.e., 80% of

the data) of all subjects’ activities for training, and the remaining

600 frames (i.e., 20% of the data) for testing. The learning rate is set

to 0.001. The batch size is 32. The sequence length for training is

64. The number of training batches is 500 K. The weights assigned

to different losses in Eq. (3) are set to 𝛼𝑉 = 0.001, 𝛼𝐵 = 0.1, and

𝛼𝑆 = 𝛼𝛿 = 𝛼𝐺 = 1.0. Note that the ground truth gender is used

to select the mesh model in the SMPL Module during the training.

However, during testing, we only use the predicted gender to select

the mesh model. We use PyTorch to implement our deep learning

model, and TITAN V is used to train the model.

5.4 Baselines and Metrics

5.4.1 Baselines. Since there is no existing model to reconstruct

dynamic human mesh from point clouds, we design the baselines

by removing or replacing the modules in the architecture of the

proposed model as following:

B+G+S (Baseline A). In this baseline, the Anchor Point Module

is removed. We inherit the Base Module, the Global Module, and

the SMPL Module from the proposed mmMesh model without any

change.

B+G-Max+S (Baseline B). This model shares the same structure

with Baseline A except that the attention-based grouping is replaced

with max-pooling operation in Global Module.

B+G+FPS-ATTN+S (Baseline C). In this baseline, besides inher-

iting the Base Module, Global Module, and SMPL Module from

the proposed mmMesh model as in Baseline A, we use FPS-based

sampling [28] and aggregate the features of grouped points using

attention mechanism.

B+G+FPS-Max+S (Baseline D). This model is very similar to Base-

line C except that we replace attention-based aggregation method

with the max-pooling operation. For this baseline, the model design

to learn the local structure is the same as that of PointNet++ [28]

which utilizes the FPS-based sampling and max-pooling operation

based aggregation method.

5.4.2 Metrics. We use the the following metrics to evaluate the

performance of our proposed framework:

Average Vertex Error (V) [6, 48]. We compute the average vertex

error by averaging the Euclidean distance between the vertices lo-

cated on the predicted human mesh and the corresponding vertices

on the ground truth mesh for all the subjects and activities. This

metric can evaluate the overall performances of the location error,

pose error, shape error, and gender error.

Average Joint Localization Error (S) [16, 48]. This metric is de-

fined as the average Euclidean distance between the joint locations

of the predicted human mesh and the ground truths for all the

subjects and activities.

Average JointRotationError (Q). Besides the joint position, joint

rotation is also critical when generating the pose. This metric is

reported as an additional metric to evaluate the accuracy of the

constructed pose. It is defined as the average differences between

predicted joint rotations and the ground truth rotations. As de-

scribed in Section 5.2.3, some joint rotations in SMPL model are

set to constant values. There is no need to take these joints into

consideration. Thus, when calculating the average joint rotation

error, we only consider the rotations of shoulder joints, elbow joints,

hip joints, and the knee joints from both sides of the subject.

Mesh Localization Error (T). We also use mesh localization error

to assess the precision of subject localization. This metric is defined

as the average Euclidean distance between the root joint location

of the predicted human mesh skeleton and the ground truths for

all the subjects and activities.

Gender Prediction Accuracy (G). We also calculate the accuracy

of the predicted gender to evaluate if the proposed model can dis-

tinguish gender of the subject.

5.5 Experiment Results

5.5.1 Qualitative Results for Basic Scenario. We first qualitatively

evaluate the proposed framework in the basic scenario that is shown

in Figure 5(c). The setting of the training phase for the basic sce-

nario is described in Section 5.3. The qualitative results are shown

in Figure 6, in which rows (a)-(c) show 3 male subjects conduct-

ing activities 8, 5, and 4, respectively. Rows (d)-(f) show 3 female

subjects conducting activities 1, 6, and 7, respectively. As we can

see, the six subjects in this figure have different shapes. The first

picture in each row shows the video frame when the subject con-

ducting the activity. The second picture and the third picture show

the corresponding ground truth human mesh generated by the VI-

CON system and the predicted human mesh based on our proposed

mmMesh model, respectively. The results show that our generated

meshes look realistic. From this figure, we can see the shapes of

the generated human meshes are very similar to the corresponding

subjects in the video frames. In addition, our model can predict the

correct gender of each subject, which demonstrates that our model

is able to correctly sense the gender information of the subjects and

generate the human meshes with reasonable shapes, even if the

subjects in our experiment have different heights and shapes. The

results in this figure also show that our proposed mmMesh model

can accurately estimate the human poses. This demonstrates that

our model is able to capture the subtle body structure information

from the local structure of the point cloud.

The rows (g)-(l) in Figure 6 show the consecutive frames that

one subject is conducting clockwise walking (activity 2) within the

activity area. The first, second, and third columns show the video

frames, ground truth meshes, and the human meshes generated by

our model, respectively. To better show the activity process, we

pick every other frame in the video (i.e., the time gap between each

pair of consecutive frames is 0.2𝑠). We can see that the constructed

mesh in consecutive frames looks not only very similar to the

ground truth meshes, but also very smooth. This is achieved by

taking advantage of LSTM layers in our model, which encodes the

temporal information in the network. This result proves that our

model can generate smooth dynamic human meshes.

5.5.2 Quantitative Results for Basic Scenario. In this section, we

quantitatively evaluate the performance of our proposed model
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Figure 6: The examples of the constructed human mesh in the basic scenario.

Table 1: Results for Basic Scenario.

Model V(cm) S(cm) Q(°) T(cm) G(%)

Baseline A 3.75 3.43 4.57 2.42 99.5

Baseline B 3.88 3.58 4.74 2.54 99.0

Baseline C 3.43 3.10 4.26 2.16 99.2

Baseline D 3.63 3.29 4.42 2.32 97.2

mmMesh 2.47 2.18 3.80 1.27 99.8

based on the metrics described in section 5.4.2. The results are

shown in Table 1. As can be seen, for all five metrics utilized in

this paper, our proposed mmMesh model achieves the best results.

This demonstrates that our model is able to generate more accurate

poses, shapes, genders and translations of the subjects than all the

baselines.

To study the difference between the attention-based aggrega-

tion method and the max-pooling-based aggregation method, we

compare the performance of baselines A and B as well as that of

baseline C and D. Baseline A and baseline B share the same structure

except that baseline A uses attention mechanism while baseline

B uses max-pooling operation. Similarly, Baseline C and baseline

D share the same structure except that baseline C uses attention

mechanism while baseline D uses max-pooling operation. As we

can see in the Table 1, although the gender accuracy of baselines A

and C is slightly worse than that of baselines B and D, respectively,

baselines B and D perform better than baselines A and C on other

metrics. This means the overall performance of the proposed model

is improved by replacing max-pooling operation with attention

mechanism. This is because the point clouds in our scenario are

very sparse. Using max-pooling operation may cause the model

insensitive to subtle structures of the point cloud and impair the

model performances. As a substitution, the attention mechanism is

able to distinctively sum up the point representations and aggregate

them with little information loss.

Next, we study the importance of learning local structures of

point cloud to the construction of human mesh. In baselines A

and B, there are no design to learn local structures of point cloud.

But in baselines C and D, we use FPS-based sampling to learn the

local structures. In addition, our proposed mmMesh model use

anchor point based method to learn local structures. From Table 1

we can see that the models (i.e., baselines C and D and our proposed

model) with the design to learn local structures perform better than

those (i.e., baselines A and B) without learning local structures,

even baseline A uses attention mechanism and baseline C use max-

pooling operation. This is mainly because we can capture more

detailed information about the human body structure by learning

local structures of point cloud.

The results in Table 1 also show that our proposed model out-

performs baseline C and the performance on metrics V, S and T are

all improved by about 1 cm. This is because our model uses anchor

point based sampling method while baseline C uses FPS-based sam-

pling. The anchor point sampling method can dynamically sample

the points near the subject and avoid including the noisy points

from the ambience.

We also evaluate the performance of our model with different

training rates of the data. Specifically, we vary the training rate

from 50% to 80%, and the results are shown in Table 2.It can be seen

that the performance of our model only has a small drop when the

training rate is reduced from 80% to 50%, which demonstrates the

robustness of our model.

5.5.3 Performance Evaluation for Occluded Scenario. To investigate

the effect of occlusion on the performance of our proposedmmMesh
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Table 2: Results for Different Training Rates

Training Rate V(cm) S(cm) Q(°) T(cm) G(%)

50% 2.89 2.54 4.40 1.47 99.1

60% 2.76 2.42 4.18 1.41 99.5

70% 2.65 2.34 4.00 1.39 99.5

80% 2.47 2.18 3.80 1.27 99.8

Figure 7: The examples of the constructed human mesh in

occluded scenarios and cross-environment scenarios. (The

mmWave radar is marked inside the red box)

framework, we place barriers of different material between the

subject and the mmWave radar. As shown in Figure 7, the first

column of rows (a), (b), and (c) show three occluded scenarios,

where we use a foam box, a cloth screen, and a bamboo panel as

the barriers, respectively. For each scenario, the VICON system is

adopted to collect the ground-truth poses. In this experiment, we

ask 5 subjects to perform the 8 activities for 2 minutes. In Figure 7,

the second, third, and fourth columns show the video frame, the

corresponding ground truth human mesh, and the human mesh

constructed by our model, respectively. Note that in these three

occluded scenarios, we directly use the trained mmMesh model

from the basic scenario during the inference. As we can see, our

model can still generate high quality human mesh with accurate

pose and shape, even the transmitted signal is completely occluded

by different barriers.

Table 3: Results for different occluded scenario.

Occluded Scenario V(cm) S(cm) Q(°) T(cm) G(%)

Foam Box 5.93 5.54 8.35 3.88 96.8

Cloth Screen 6.33 5.87 8.88 3.88 96.8

Bamboo Panel 6.45 6.06 8.67 4.57 87.4

Table 4: Results for the room with different settings.

Room Settings V(cm) S(cm) Q(°) T(cm) G(%)

Dark scenario 5.47 5.14 7.91 3.13 97.3

Furnished 5.95 5.53 8.27 3.93 94.4

We also quantitatively study the performances of our model in

the occluded scenarios. Table 3 reports the results using the five

metrics that are described in Section 5.4.2. By comparing the results

for basic scenario in Table 1, we can see that the occlusion degrades

the performance of our proposed model. However, the human mesh

with high quality can still be constructed. There are mainly two

reasons for the increase of the errors. One reason is that the signal

phase is changed when the signal penetrates the barriers, which

can affect the location accuracy of the points. Since the material

of bamboo has the most compact structure, we can see that the

bamboo panel has the largest effect on the model performance

and the foam has the smallest effect. The other reason is that the

systematic error may be introduced during the re-calibration of the

VICON system and re-adjusting of markers. Note that the data in

the basic scenario and that in the occluded scenario are collected

on different dates. The VICON system need to be re-calibrated each

time we use it. Since the coordinated system are labelled using the

calibration wand manually, some errors may be introduced in this

step. What’s more, during the data collection, we need to re-adjust

the locations of the markers attached on the suit manually, this step

can also introduce some errors.

5.5.4 Performance Evaluation for Cross-environment Mesh Con-

struction. Another challenge when using our mesh reconstruction

system in real world is that how to make it adapt to different envi-

ronments. As aforementioned, mmWave signals can be reflected

by the objects in the ambient environment. Different objects in

different environments may cause different ways of transmitting

of the signals.

In order to investigate the effect of environment changing on

the performance of our system, we first conduct experiment in

the room with the VICON system as illustrated in rows (d) and (e)

of Figure 7. Row (d) shows a dark scenario, in which the vision-

based methods usually have poor performance. Row (e) shows a

furnished scenario, in which the furniture (e.g., tables and chairs) is

randomly placed around the activity area. The quantitative results

for the two scenarios are reported in Table 4. In this experiment,

we still directly use the model trained in the basic scenario without

additional training. The ground truth poses are collected using the

VICON system.
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Figure 10: The examples of the constructed human mesh in consecutive video frames

sensing, mmWave is also utilized on industrial vibration measure-

ment tasks [14] and car imaging tasks [10]. However, the proposed

methods are only suitable to sense stationary objects. Since the

subject in human sensing is always dynamic, those methods can

not be directly applied to human sensing tasks.

HumanPoseEstimation fromWireless Signals: In recent years,

many wireless sensing systems have been developed to estimate

human pose [2, 16, 34, 35, 47, 49]. Among them, [34, 35, 47] focus on

2D pose estimation. RF-Pose [49] can estimate 3Dmulti-person pose.

However, the method requires specially designed testbed with an

carefully assembled and synchronized antenna array. Most recently,

Jiang et al.[16] propose WiPose to construct 3D human skeletons

from WiFi signals. However, WiPose requires that the locations of

the subjects should be fixed. In the above human pose estimation

works, none of them can achieve real time estimations. In addition,

all the wireless devices used in these works are discommodious to

move. In our paper, the proposed mmMesh system can not only

generate the human mesh as an enrichment of the human pose, but

also be implemented in a real-time manner. It is worth mentioning

that in our system design, we choose the commercial and portable

mmWave device instead of the common WiFi device. The main

reason is that the common WiFi devices do not use FMCW signal

which enables accurate measurements (e.g., ToF) of RF signals, and

thus cannot achieve as good performance as mmWave radars.

3D Human Mesh Construction:With the proliferation of deep

learning, recent works explore various deep learning models to

directly reconstruct 3D human mesh from images [6, 17, 20, 26,

33, 42, 51], videos [4, 11, 18, 33, 40, 45], point cloud [12, 15, 36, 37],

and wireless signals [48]. Despite the great success achieved by

image/video based approaches, the performance of these methods

can be severely impaired by bad illumination, occlusion and blurry.

Most importantly, privacy issues occur when cameras are deployed

to monitor the human subjects. In contrast, our mmWave based

approach can not only avoid the privacy issue but also be immune

to the poor lighting and occlusion conditions. Since our proposed

method reconstruct 3D human mesh from point cloud collected

with mmWave radar, here we mainly introduce the previous works

that utilize point cloud or wireless signals for human mesh recon-

struction.

Point Cloud based: Recently, with the rapid development of 3D

point cloud acquisition technologies, 3D human mesh construction

from point cloud have been attracting more and more attention

[7, 15, 36, 37]. As pioneering models for point cloud feature learn-

ing, PointNet [27] and PointNet++ [28] are widely used as the basic

block to develop other methods for 3D human mesh reconstruction.

And the parametric human body model (e.g., SMPL [24]) is also

used in [15, 36, 37] for point cloud based human mesh reconstruc-

tion. However, these solutions only focus on the clean 3D point

cloud without noise points from the ambience. And the point cloud

contains thousands of point from the whole human body. Thus,

these solutions cannot be directly applied in our scenario.

Wireless Signal based: As far as we know, there is only one work

that have explored 3D human mesh reconstruction using wireless

signal. RF-Avatar [48] first obtains a 4D RF tensor from its FMCW

radios, and this 4D RF tensor is composed of many 3D energy dis-

tribution tensors arranged along the time dimension. Then, the

proposal network, self-attention mechanism, and adversarial train-

ing are applied on the 4D RF tensor to output the 3D human mesh

sequence. Our designed system is different from RF-Avatar. First,

RF-Avatar is based on a specialized testbed which is a carefully

assembled and synchronized USRP-based bulky antenna array [2],

and this limits its real-world deployments. In contrast, our proposed

system can accurately estimate the human mesh by using only a

commercial mmWave device that can be directly purchased online

at a low cost. Second, the model design in [48] can only be applied

to the devices based on which the energy map of the 3D space can

be obtained. However, our proposed model can be deployed on any

devices that can generate 3D point clouds (e.g., Kinect, LiDAR, and

depth camera), which enables a wide spectrum of real-world appli-

cations. Third, our system is able to directly estimate the dynamic

human mesh in a real-time manner while [48] can only perform

the evaluation offline due to its model design.

7 CONCLUSIONS

In this paper, we study how to use mmWave signals to construct

dynamic human mesh in real-time. Specifically, we propose a deep

learning framework, named mmMesh, which can construct human

mesh using the point cloud generated from mmWave signals. This

framework encodes a 3D human body model to tackle the sparsity

of the point cloud. It also incorporates an anchor point module to

handle the misalignment of the point cloud with the human body

segments and leverages the information from the previous frames

to address missing body parts problem. In addition, we implement

a prototype of our mmMesh system using COTS millimeter wave

devices. The evaluation results show that our mmMesh system can

accurately localize the vertices on the human mesh.
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