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Design and Evaluation of an Invariant Extended
Kalman Filter for Trunk Motion Estimation with
Sensor Misalignment
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Abstract—Understanding human motion is of critical impor-
tance for health monitoring and control of assistive robots, yet
many human kinematic variables cannot be directly or accu-
rately measured by wearable sensors. In recent years, invariant
extended Kalman filtering (INEKF) has shown a great potential
in nonlinear state estimation, but its applications to human
poses new challenges, including imperfect placement of wearable
sensors and inaccurate measurement models. To address these
challenges, this paper proposes an augmented InEKF design
which considers the misalignment of the inertial sensor at the
trunk as part of the states and preserves the group affine property
for the process model. Personalized lower-extremity forward
kinematic models are built and employed as the measurement
model for the augmented InEKF. Observability analysis for the
new InEKF design is presented. The filter is evaluated with three
subjects in squatting, rolling-foot walking, and ladder-climbing
motions. Experimental results validate the superior performance
of the proposed InEKF over the state-of-the-art INEKF. Improved
accuracy and faster convergence in estimating the velocity and
orientation of human, in all three motions, are achieved despite
the significant initial estimation errors and the uncertainties
associated with the forward kinematic measurement model.

Index Terms—Extended Kalman filtering, human motion esti-
mation, nonlinear state estimation, forward kinematics, observ-
ability analysis

I. INTRODUCTION

Wearable robots have gained growing interests over the past
decades as they demonstrated great potentials in facilitating
neurorehabiltiation, assisting in daily activities, and reduc-
ing work-related injuries [1]-[3]. Wearable robots have been
designed with different actuation mechanisms (e.g., cable-
driven and pneumatic-driven) and materials (e.g., carbon fibers
and fabrics), and they have been applied to various human
joints. Since wearable robots physically interact with humans,
it is critical to develop control systems that can understand
the human’s intent and physical states to adaptively exert an
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appropriate amount of assistance. To this end, various human-
centered controller designs have been applied in wearable
robots, including adaptive impedance control [4], phase-based
control [5], reinforcement learning [6], to name a few.

All the aforementioned robot controllers rely on wearable
sensors and estimation algorithms to understand human’s
intent and physical states. Many existing controllers (e.g.,
finite-state machines) for wearable robots rely on classification
of human motion into finite number of states, such as gait
phases [7] and activity types [8]. However, this method will
limit the humans to pre-defined activities and it can suffer
from misclassification if the user behaves differently from the
training data. On the other side of the spectrum, continuous
human states, such as positions and orientations, present a
promising direction for controller design since they contain
more information about the user for fine adjustment of the
robot assistance. A challenge for using continuous human
states is that many of them cannot be directly measured, or the
sensor measurement is too noisy to be used for robot control.
This is particularly important for lower-extremity wearable
robots, where the center of mass is critical for ensuring
postural stability but is not directly measurable [9].

Various approaches have been proposed for the estimation
of continuous human movement state. Earlier methods produce
accurate, real-time estimation of stance-foot locations during
human walking, by fusing the zero toe velocity during stance
phase and the reading of inertial measurement units (IMUs)
attached to a subject’s shoes [10]. To monitor the movement of
the body (e.g., pelvis) during walking and stair climbing, the
stance leg’s kinematics can be used to compute the movement
under the assumptions that the stance feet is stationary and that
the contact detection is sufficiently accurate [11]. This method
is computationally efficient for real-time estimation, and its
accuracy has been improved by explicitly handling the joint
angle reading noise through Kalman filtering [12]. To further
enhance the error convergence, extended Kalman filtering
(EKF) has been introduced to fuse the forward kinematics of a
subject’s segments with the data returned by an IMU attached
to the body during bicycle riding [13]. Still, the standard EKF
methodology relies on system linearization whose accuracy
depends on the estimation error, and thus its performance
under large initial errors may not be satisfactory. To this end,
the invariant EKF (InEKF) [14] has been created to ensure
accurate, efficient estimation under large errors, by exploiting
the accurate linearization of systems that meet the group affine
condition and invariant observation form.
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Although the existing InEKF methods have achieved rapid
convergence and accurate estimates of legged robots under
large estimation errors [15]-[17], InEKF design for human
movement state estimation poses complex challenges. One
challenge is the inaccurate or unknown sensor placement rel-
ative to the subject’s segments during subject movement. The
relative inertial sensor placement is assumed to be accurately
known in the existing fusion of inertial odometry and limb
kinematics of legged robots [15]-[17]. Yet, this assumption
may not be realistic for human movement estimation because
it may require frequent calibration during relatively dynamic
movement (e.g., squatting, walking, and ladder climbing) due
to shift of sensors on the skin or garment. There is a rich
body of work in fault detection, but most of them focus on
detecting faults in the system rather than obtaining accurate
state estimation with such faults [18]. Thus, an appropriate
filter design should address the sensor placement imperfection.
Its performance also needs to be examined during various
types of common daily mobility tasks so that accurate, real-
time state estimates could be used to inform the control of
wearable devices for different human movement activities.

This paper introduces an InEKF design to address sensor
misalignment, which is a very common problem in human
and robot locomotion, so that sensor placement offset can be
estimated and corrected to ensure accurate state estimation.
The intended application is to use lower-extremity joint angles
and forward kinematic models to augment the trunk velocity
and orientation estimation by correcting misalignment of trunk
sensors during the stance phase. A preliminary version of
this work was presented in [19]. The present paper reports
the following new, substantial contributions. (i) A forward
kinematic model is developed in this work and used as the
measurement model for the InEKF. The new measurement
model is less accurate but much more practical since it relies
on joint angles, compared to the 3-D vectors used in [19].
(ii) An observability analysis is presented for the new InEKF
design and validated using experimental results with large
initial errors. (iii) Two new activities, namely ladder climbing
and rolling-foot walking, are evaluated in human testing along
with squat motion in [19]. The new results extend the InEKF
to more dynamic locomotion tasks with new challenges in the
measurement model introduced by contact-foot switching. (iv)
The proposed filter is evaluated with three participants in three
tasks, and results are compared with the existing InEKF to
draw insights on how to extend InEKF to human locomotion
estimation.

The paper is structured as follows. Section II introduces the
state representation and the process and measurement models
of the proposed InEKF. Section III presents the propagation
and update steps of the filter along with the observability
analysis. Section IV reports and discusses the experiment
validation results. Section V provides the conclusion remarks.

II. SYSTEM MODELING
A. Preliminaries

A matrix Lie group G is a subset of n x n invertible ma-
trices possessing the following properties: VX € G, X! € G;
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Fig. 1. Coordinate frames and estimation variables used in the proposed filter
design. They are illustrated on the real human subject (left) and the subject’s
lower extremity skeleton in the motion capture software (right). R and p
represent the orientation and position of the IMU (body) in the world frame,
and dM represents the vector from the measurement frame to the foot frame,
expressed in the measurement frame. Ap and AR represent the position and
orientation offset of the IMU frame with respect to the measurement frame,
expressed in the measurement frame.

vX1,X; € G, X X; € G; and I € G with I the identity element.
The associated Lie algebra g with a dimension of dim g is the
tangent space defined at E, and is a set of n X n square matrices.
Any vector { € R%™9 can be mapped onto the Lie algebra
through the linear operator (.)" : R%™8 — g The exponential
map, exp : RIS — G, is defined as: exp(&) £ expm(&"),
where expm is the usual matrix exponential. The inverse
operator of (-)" is denoted as (-)" : g — RYM8, The adjoint
matrix Adx at X for any vector { € RY™9 is defined as
Adx¢ = (X¢"X 1)V, which is the linear mapping from the
local tangent space (defined at X) to the Lie algebra. A more
detailed introduction to matrix Lie groups is given in [20].

B. Sensors considered

The sensors considered in the proposed filter design include:
a) an inertial measurement unit (IMU) attached to the subject’s
body (e.g., lower back near the pelvis), which measures the
linear acceleration a € R3 and angular velocity @ € SO(3)
of the IMU/body with respect to the IMU frame, and b)
a motion capture system (e.g., IMU sensors or markers for
motion capture cameras) that measures the lower-extremity
joint angles of the subject.

The particular issue this study focuses on addressing is the
placement inaccuracy of the IMU that measures the subject’s
body movement. As reviewed in Sec. I, to achieve accurate
state estimation during mobility tasks (e.g., walking and ladder
climbing) despite sensor noises, an effective technique is to
fuse the data returned by IMU and the subject’s limb kinemat-
ics obtained based on motion capture data. For effective sensor
fusion, the IMU should be static relative to a reference segment
along the limb kinematics chain, and the relative pose needs
to be accurately known [15]. Yet, the exact relative sensor
placement is usually unknown without calibration.

To explicitly treat the sensor placement offset, the proposed
filter design involves the body/IMU frame, which is fixed
to the IMU, and the measurement frame, which is fixed to
the reference segment of the kinematic chains sensed by the
motion capture system (see Fig. 1). As the filter aims to
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estimate subject movement in the environment, the world
frame is considered. Also, the foot frame, which is rigidly
attached to the stance foot, is used because the foot defines
the far end of the kinematics chains of interest.

C. State representation

To estimate body movement in the world, one state variable
of interest to this study is the subject’s body position, denoted
as Wp"8 e R3. Here, the superscript on the left-hand side
represents the coordinate frame in which the variable is ex-
pressed, with W, B, M, and F denoting the world, body/IMU,
measurement, and foot frames. The superscript WB on the
right-hand side indicates the position vector points from the
origin of the world frame to that of the body/IMU frame. The
state variables also include the body velocity, W v"8 € R3,
which is the time derivative of WpWB, as well as the body
orientation WR® € SO(3), which is the orientation of the
body/IMU frame with respect to the world frame. In addition,
to explicitly treat the IMU placement offset (i.e., the relative
position and orientation of the IMU/body frame with respect to
the measurement frame), they are also chosen as state variables
and denoted as Mp¥2 ¢ R? and ¥R® € SO(3). For notational
brevity, the rest of the paper uses p, v, R, Ap, and AR to
respectively denote Wp"B, WyWB WREB MpMB and MRE,

We express the state variables on the matrix Lie group G
as prescribed by the methodology of InEKF [14]:

R v p 033 03;
0,5 1 0 013 03
X= 0173 0 1 01"3 03’] €aG. (1)
0;; 03; 0s; AR Ap
01,3 0 0 01_’3 1

Here, the matrix Lie group G is a combination of double direct
spatial isometries SE,(3) [14] and a special Euclidean group
SE(3), and 0,,, represents an n x m zero matrix. It can be
proved that G is a valid matrix Lie group.

D. Process model

This subsection introduces the proposed process model in
Euclidean space as well as on the matrix Lie group G.

1) IMU motion dynamics: Given its accuracy and simplic-
ity [15], the IMU motion dynamics is used to build a process
model with the noisy IMU readings a and @ serving as its
input. Corrupted by white Gaussian zero-mean noise w, € R3
and wg € SO(3), these readings are given by: & =a+w,
and @ = ® + wy. Note that for simplicity, the biases in
the raw data returned by the accelerometer and gyroscope
are not considered here. Then, the IMU motion dynamics
can be expressed as: %R =R(® — wgp)x, %p =v, and
%V =R(a—w,)+g, where (.)x is a skew-symmetric matrix
and g is the gravitational acceleration.

2) IMU placement error dynamics: Given that the IMU,
if appropriately attached, usually does not shift quickly on
the subject, we choose to model the dynamics of the IMU
placement offsets Ap and AR as slowly time-varying, which
is given by: %Ap =Wy, and %AR = AR(WaR) x, Where wy, €
R3 and wag € SO(3) are white Gaussian noise with zero mean.

3) Process model on G: At time ¢, these process models
can be compactly expressed on the matrix Lie group G as:

R/(@;)x R, +g v, 033 03
d 03 0 0 03 05
EXI =| 013 0 0 0,3 03,
033 03 031 0335 03
01,3 0 0 01,3 0
(Way ) Wq 03 033 03, )

0,3 0 0 03 03

-X/| 03 0 0 013 03

033 033 033 (Wag,)x Wap

0; 0 0 03 0

éfu, (Xt) - Xth/\7

where the vector w; is defined in the IMU/body frame as w; £
vec(Wey,, We,, 03,1, War,, Wap, ), and the vector u; is the input to
the process model defined as u, £ vec(@,,4,).

Proposition 1 (Group affine system) The deterministic por-
tion of the process model in (2) is group affine; that is, the
deterministic dynamics f;, (.) meets the following group affine
condition for right-invariant cases [14]:

Ju (X1 X2) = fu, (X1)Xo + X1 £, (X2) = Xi fi, X2, (3)
Proof. By the definition of f,, in (2), we obtain

Rl(d))x Ria+g vy 034
U, X)) = ’ ,
fu(X1) { 06,3 O0s; 01 04
R1R2(a))>< R1R2§+g R1V2+V1 034:|
" (X1Xp) = 4| and
ft( 1 2) |: 06,3 06,1 06,1 0674 an
(@)« a+g 03 034}
I = ; ;
Ju (1) [ O3  0s1 051 04

for any X1,X5, € G. Here R; and v; (i = 1,2) denote elements
of the state X;. It can be seen that these matrices satisfy the
condition in (3).

E. Measurement model

1) Forward kinematics based measurement: During mobil-
ity tasks (e.g., squatting, walking, and stair climbing), when
the stance foot has a static, secured contact with the ground,
the pose of the measurement frame can be obtained through the
leg kinematic chain that connects the foot and measurement
frames. Note that the joint angles along the kinematic chain are
measured by the motion capture system. The kinematic chain
is built based on the Vicon lower-body Plug-in-Gait model
[21], in which 3D joint angles (hip, knee, and ankle), along
with subject lower-body segment length measurements, were
used to obtain the desired 3D vector.

Let @, € R¥ be the joint angles of the stance leg with k the
number of joint angles. Then the measured joint angle &, can
be expressed as @; = @; + wq, with wg, € R the zero-mean
white Gaussian noise.

Let MdMF denote the 3-D position vector pointing from the
measurement to the foot frame expressed in the measurement
frame. For brevity, we denote it as d?’[ . Let the function hr be
the forward kinematics representing d; that is, d¥ = hrp(a;).
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Given that d¥ = (AR,)R (d, —p,) — Ap;, we have d, —p, =
R,ART (Ap; +hr(@,)). Taking the first derivative with respect
to time ¢ on both sides of this equation, we obtain:

d .
E(dt —Pp1) = RtARzT(WApr +J(a) (0 +wg,))

+ (Rt(a)t +Wco1)xAR;T + Rt(ARt(WAR,)x)T) (hF(at) +Apz),

“4)

where J(a) = ahg éa) is the forward kinematic Jacobian and
W, is the joint velocity measurement noise.

Note that d; = 0 due to the stationary contact point. Also,
p: = v; holds. Thus, the measurement model in (4) can be
compactly rewritten as:

y=h(X;)+n,, )

where y = —J(&,)d;, h(X,) = (AR,)R!v, — (Ap,)x AR, ®; —
(hp(G;)) <« AR, @;, and n; = (Ap; +hp (G, ) x AR, (Wag, +We,) +
Wap, —J(€;)Wg,. For simplicity, n, is treated as white, Gaus-
sian, zero-mean noise in this study.

2) 3-D vector based measurement model: To compare the
filtering performance under different kinematics measurements
formed based on data returned by motion capture systems, we
introduce a simplified measurement obtained based on the 3-
D position vector between the measurement and foot frame.
Both forward kinematics based and 3-D position vector based
measurements return the relative position and velocity between
the measurement and foot frames. Note that the 3-D position
vector based measurement will have higher accuracy than the
forward kinematics measurements.

Let vM denotes the 3-D velocity vector pointing from the
measurement to the foot frame expressed in the measurement
frame, which is the time derivative of dﬁ"’ . Then the measured
3-D velocity vector ¥/ is expressed as V' = vM +wou,
with W the noise associated with the 3-D velocity vector
measurement.

Given that d¥ = (AR,)R/ (d; —p,) — Ap;, we have d, —p, =
R,AR? (Ap; +dM)). Taking the time derivative on both sides
of this equation, we obtain:

d
a (d; —p:) = R,AR/ (Wap, + (VM +won))

+ (R (@) xAR] + R, (AR (Wag,) )" ) (d + Apy).

Assume the contact foot velocity is zero due to the station-
ary contact point. Then the measurement model (6) becomes:

y=h(X,)+n, )

where y = —¥M, h(X;) = ARR!v, — (Ap,) < AR, @, —
(dM) AR, @, +n;, and the vector m; is the lumped measure-
ment noise term.

Remark 1: The two measurement models in (5) and (7) do not
satisfy the right-invariant observation form (i.e., y = X~ 'b for
some known vector b) as defined in the theory of InEKF [14].
This is because with the state defined in (1) and our measure-
ments in (5) and (7), a vector b that is known and satisfies
y = X~ 'b does not exist. Then, by the theory of invariant
filtering (Proposition 2 in [14]), the error dynamics during the
measurement update is not independent of state trajectories.
The effects of this property on filter performance are discussed
in Sec. IV-D.

(6)

III. INEKF DESIGN
A. State propagation
The design of the proposed InEKF relies on the right-

invariant error 1), between the true and estimated values:

n, =X, X' eG, (8)

where (.) denotes the estimated value of the variable (.). Based
on this definition and the process model (2), one can obtain:

d

Ent :fm(nz)_ntfm (Id)+AdX,Wt/\ éz?m("t)""wt/\' (€))

Remark 2: The deterministic portion of the error dynamics in
(9) is independent of the state trajectories because the process
model in (2) is group affine, as predicted by the theory of
InEKF [14]. This property is drastically different from the
standard EKF whose error dynamics depends on the state
trajectories. Furthermore, since the process model is group
affine, by the theory of invariant filtering (Theorem 2 in [14]),
the corresponding dynamics of the log of the invariant error
1, is exactly linear in the deterministic case, whose expression
is derived next.

Let §, be the logarithmic error defined through m, =
exp(,). and denote £, as &, = vee(Lx,. £y Ly Camyr Sapy) €
R4ME [y order to linearize this error dynamics, we use the
first-order approximation N, =exp(§,) ~I+§ ,/\, which allows
us to obtain the Jacobian A, of deterministic dynamics as [14]:

gu(exp(§,)) = (AL,)" +hot(E ) = (AL)",  (10)

and the Jacobian A; will also define the linear dynamics of
the log of the right invariant error as follows:

d

EC[:Atgt'i_Wt' (11)

To compute A, we plug in the approximated right-invariant
error into (10) as:

gu (exp(£,)) ~ gu (La + ;)

055 (g)x8r &, 034 031
03 0 0 014 (g)x
=013 0 0 04|=1]6, 1|,
033 031 037 034 03
0;3 0 0 014 03,
(12)
which yields:

033 033 033 033 033

(8)x 033 033 033 033
Ar=10335 Iz3 033 033 033

0335 033 033 033 033

035 033 033 033 033

As a result, the state estimates can be propagated using (2) and
covariance matrix can be updated using the Riccati equation
associated with (11):

d _
X, el
dt dt
where Q; is the process noise covariance defined as Q,

Cov(W;) = Adg, Cov(w;)Adx .

d

P, = AP, +PtAtT +Qy,

= fu (X), (13)

L
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B. Measurement update

The nonlinear measurement model (5) does not follow the
right-invariant form, so we use a first-order approximation to
find the innovation as:

H,{, +h.ot(g,) = h(X,) —h(X)).

Since M, =~ XX ' ~1+ Ct/\, we can derive the following
relationships between the true and estimated states with §,:

_ -7
= RtT %RIT(I"’_(CRI)X)7 ARtT %ARI (I+(CARr)><)

(14)

C. Observability analysis

With new states and measurement model introduced, we
need to analyze the observability of the whole system. Here
we only include the linear observability analysis, and leave
the nonlinear observability analysis for future work. Similar to
[22], we analyze the observability around the operating point
(i.e., the latest estimate that the system is linearized about).

The discrete filter is expressed as: Xj 1 = ®; X and y;, =
H; X, where At =1t —t is the duration of the propagation
step with ; the timing of the k" update. ®; is the discrete-time

- -— state transition matrix, which can be computed as:
v~ (I- (CR,)X)(VI‘ - Cv,)7 Ap; =~ (I—- (CAR,)X)<API - CAp,)' P

Now H; can be computed by differentiating (14) after dropping
the nonlinear terms:

Hl‘ :[03,3a ﬂtﬁlTa 03,37 h47 (ﬁtwt)x];
hy = — (ARR[¥,) — (AR, @) (Ap,) «
+ (sz)x (AR, ®;) « + (hr(0t))x (AR, @) .

For 3-D position based measurement model, the element hy
of the matrix H; is slightly different from (15). The hr(@;))
needs to be replaced as dM:

5)

Hr :[03.37 ertT7 03,3; h47 (ﬁtmt)XL
hy =— (AR R/ ¥,)« — (AR, @) (Ap, ) «
+ (rpt)X(ﬁtmt)x + (dﬁw)x(ﬁz‘or)x-

Now we can express the update equation for our InEKF
based on the InNEKF methodology [14]:

(16)

X" = exp(K, (y: — h(X:)))X;,

~ (17)
P = 1-KH,)P, 1-KH,)T +K,NK”,

where X, and P;" are the updated values. Here, the Kalman
gain K; and measurement noise covariance N; are de-
fined as: K, = PH'S;!, S, = HP,H/ +N,, and N, =
RAR’ Cov(n,)AR,R’.

Algorithm 1 Proposed InEKF design

Initialize X € G and P=P7 >0
for iteration=1,2,... do
if foot contact is detected then

Propagation step:
%XI = fu, (Xt) > %Pt =AP; +PtA[T + Qt
Measurement update step:
K, =PH'S !,
S, =H/P, H +N,,
N, = R,AR! Cov(n,)AR,R”
if using forward kinematics based measurement then

y=-J (dt)dt

else if using 3-D vector based measurement then
y=-v

end if

X, = exp(Ki(y: —h(X;))X;
P, = (I-KH)P, (I-KH,)” + K,NK’
end if
end for

Iz 035 033 0335 033
(g)x At I3 0335 033 033
@ =exp,, (ArAr) = | (g)x A2 LAt I3 033 033
033 0s5 0335 Iz 033
033 033 033 033 I3
(18)

Then the observability matrix O can be computed as:

T _
H- 033 ARk Rk 033004 (ARk @) x
- kq>+ o1,1 o012 033014 015
PO e 2 et . ) A .
= WP P | T

041 042 033044 045

where (.); denotes the updated estimated state at time ., (.),
is the estimated state at time #; after the propagation step. Here
the terms 0; 1, 0;2, 0;4, and 0;5 (i € NT) are defined as:

T

01 :i(ARI?+iRk+1 (g> X At) 5

_T

oin =AR R ;

k+i
_ _r _ _ _
0ia =— (AR R VL) — (AR 0k 4i) < (A )

+ (Ap,;_i) X (AR]:+[a)k+i) x T (FK(ak+i)> X (AR;_H(D;{H) X5

0;5 :(AR]:+ia)k+] ) %

To analyze the observability for each variable of interest,
we need to see if the corresponding column vectors in O are
linearly independent. From the observability matrix O, it can
be seen that the position of the IMU in the world frame is
completely non-observable. The yaw angle of the IMU is also
non-observable as the third column of the matrix g is always
zero. These results are similar to what was reported in [15].
The observability of Ap and AR depends on the rotational
movement. For example, if the human is completely stationary
(@,v=0), both Ap and AR are completely unobservable, as all
corresponding columns in O are zero. If @ = 0,v # 0, then Ap
is completely non-observable, while it can be shown at least
one of the components of AR is observable. In general, if the
direction of @ is constant, then Ap will be non-observable in
at least one direction.

IV. EXPERIMENTAL RESULTS
A. Experimental setup and protocol

Experiments were performed in a motion capture laboratory
at Arizona State University (ASU) with 3 participants (two
males and one female, 27 +3 years old, 174+ 17cm, 77 +
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Fig. 2. The left figure shows the experimental setup used to collect the
ground truth of the estimated state variables and the sensor data needed by
the proposed filter. The right figure shows time-lapse figures of the three
motion types. The arrows in the subplots indicate the direction of the pelvis
movement (in subplot (a)) and swing foot movement (subplots (b) and (c)).
TABLE I
NOISE CHARACTERISTICS

Measurement type Noise SD .N?lse SD
(proposed InNEKF) | (existing InEKF)
Linear acceleration 0.2 m/s? 0.2 m/s?
Angular velocity 0.05 rad/s 0.05 rad/s
Kinematics measurement 0.5 m/s 0.1 m
Placement offset (Ap, AR) (0.05 m, 0.05 rad) NA
Contact velocity NA 0.05 m/s

17kg). The study was approved by institutional review board
at ASU (STUDY00011266) and University of Massachusetts
Lowell (20-057-YAN-XPD).

Sensor setup. Twelve IR motion capture cameras (Vicon,
Oxford, UK) and sixteen reflective markers were used to build
a lower-limb model for each subject via Vicon Nexus 2.8.
Using this model, 3-D joint angles (hip, knee, and ankle)
and pelvic position and orientation were estimated. Four extra
markers were attached to a plate that rigidly houses the IMU,
which is used to build a rigid body model in Nexus to acquire
the ground-truth pose of the IMU/body frame (as shown in
the left figure of Fig. 2). The IMU (BNOO08S, New York,
NY) was placed on the back of the subject close to the
pelvis (the placement of the IMU with regard to the pelvic
center is shown in Fig. 1). The accelerometer and gyroscope
data were recorded using a data acquisition board (Arduino
UNO, Boston, MA). The data were later synchronised with
the motion captured data using a trigger signal from the
Vicon system. The experiments were done on an instrumented
dual-belt treadmill equipped with force plates (Bertec Corp.,
Columbus, OH) that record ground contact forces.
Movement types. Each participant was asked to perform three
types of motion: squatting, ladder climbing, and rolling-foot
walking (see the right figure of Fig. 2). Two trials were
performed for each motion type, each for 1.5 minute.

B. Data Processing

Filters compared. The proposed filter is compared with a
state-of-the-art INEKF [15]. The existing INEKF was originally
designed for a Cassie series bipedal robot. In the existing filter,
the IMU and measurement frames are well aligned. The state
variables of the existing filter are the IMU orientation, velocity,
and position and the contact foot position, all expressed in

the world frame. The kinematic measurements of the existing
filter are the contact foot positions with respect to the mea-
surement frame expressed in the measurement frame. Unlike
the proposed filter, the measurement model of the existing
filter has an invariant observation form, which, in combination
with the exponential form of the measurement update, renders
the deterministic error update equation to be independent of
state trajectories [14]. Also, the kinematic measurements of
the existing filter have smaller noises since the Cassie series
bipedal robot uses highly accurate leg encoders to formulate
the forward kinematics chain. With a human subject, however,
the IMU and measurement frames are not aligned, and the
kinematics measurements have relatively large noises.
Covariance settings. The noise characteristics for both filters
are shown in Table I. The noise standard deviations of the
linear acceleration and angular velocity are obtained from the
IMU specifications provided by the manufacturer. To reach the
better performance of both filters, these two noise standard
deviations are slightly tuned around the nominal values. Note
that covariance tuning is also reported in other InEKF designs
[23]. It should also be noted that since the two filters use
different measurement models (d is used as the measurement
in [15]), different noise covariance values are used for the
two filters. Moreover, the proposed filter considers the noise
of the IMU angular velocity in the kinematics measurement
noise term, while the same covariances are used for the
common parameters of the two filters (linear acceleration and
angular velocity). During the tuning process it was observed
that the performance of the proposed filter does not vary
significantly within a relatively wide range of parameters (e.g.,
the covariances matrices). Yet, the estimation performance
degrades when the covariances are far from the optimal values.
The placement offset noises are only used in the proposed
filter. Given that the placement offsets are relatively constant,
the noise standard deviations of the placement offsets are set as
small values. The contact velocity noise is only accounted for
in the existing filter, which is induced by contact foot slippage.
Initial estimation errors. To demonstrate the accuracy and
convergence rate of both filters under large estimation er-
rors, a relatively wide range of initial estimation errors of
the IMU/body velocity and orientation are used. They are
respectively chosen to be uniformly within [—1,1] m/s and
[—20,20] degrees across 50 trials.

Filter performance indicators. To evaluate the filter per-
formance, we choose to use three common indicators [14],
[15], [17]: (a) computation time (for assessing the filter’s
capability in real-time implementation); (b) convergence rate
(for evaluating how rapidly the estimation error reaches the
steady state); and (c) estimation accuracy (for testing the
accuracy during transient and steady-state periods).

C. Results

To illustrate the accuracy of the forward kinematics based
measurement (5), Fig. 3 compares it with its reference obtained
from the motion capture system. As noted in Sec. III-B, the
measurement associated with a given leg is fed into the update
step of the filter only when the leg is in contact with the ground
(highlighted by yellow shaded areas in Fig. 3) .
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Fig. 3. Relative position (left) and velocity (right) of the right toe in
the measurement/pelvis frame during one of the rolling-foot walking trials,
obtained by using joint angle readings and forward kinematics (blue, solid
line) and by using the marker positions of the toe and measurement plate
returned by motion capture system (red, dashed line). The yellow shaded
areas indicate the periods during which the right foot contacts the ground.

TABLE II
AVERAGE RMSE VALUES FOR THE THREE PARTICIPANTS AND MOTIONS.
V AND O REFER TO THE BODY/IMU VELOCITY AND ORIENTATION.

Time | Motion ) FK _ 3-D vector
. Variable | Proposed| Existing| Proposed| Existing
period type
InEKF | InEKF | InEKF | InEKF
Initial Stand V (m/s) 0.062 0.226 0.063 0.210
O (deg) 4.484 6.616 4737 6.643
Squat V (m/s) 0.067 0.147 0.041 0.152
q O (deg) 4.745 4.909 4.832 4.727
Steady | Roll.- V (m/s) 0.237 0.467 0.103 0.442
state foot O (deg) 2.909 2.984 2.685 2.838
Ladder | V (m/s) 0.072 0.135 0.047 0.14
climb. | O (deg) 3.13 3.11 3.12 3.199

Table II displays the average root mean square error
(RMSE) values of different motions and different kinematics
measurements for all three subjects. During the initial period,
subjects are standing still, and the estimation algorithms just
start. During the steady-state motion period, subjects are
doing continuous movements with different motion types.
The average RMSE values of the variable “V” are obtained
from the estimated IMU velocity of all three axes for all
subjects with the same motion type, while the average RMSE
values of the variable “O” are obtained from the estimated
IMU orientation of roll and pitch angles for all subjects with
the same motion type. The “FK” portion shows the RMSE
values of the estimation results with the forward kinematics
measurements in (5), and the “3-D vector” part indicates the
RMSE values of the estimation results under the 3-D vector
kinematics measurements in (7).

Figure 4 shows the comparison of the IMU velocity and

orientation estimation results of one subject with forward
kinematics measurement under different motions and filters
but the same sensor data set. The grey shaded and white
backgrounds indicate the initial period and steady-state motion
period, respectively.
Computational time. MATLAB R2020b was used to process
the experimental data sets with both filters. The average
computational time for one filter loop of the proposed filter is
about 0.6 ms, and the average computational time for one filter
loop of the existing filter is about 3 ms. Both are sufficiently
fast for typical human movement monitoring.

Convergence rate. By investigating the initial period of
the estimation results figure (Fig. 4) and the RMSEs table
(Table 1II), it is obvious that the proposed filter converges faster
than the existing filter, driving the estimation error close to the
ground truth within 0.6 s.

Estimation accuracy. The results during the steady-state
periods in both Fig. 4 and Table II indicate that under both
filters the estimated roll and pitch angles of the IMU converge
to a small neighborhood around their ground truth. Yet, the
yaw angle of the IMU is not observable under both filters.
Also, the overall accuracy of the IMU velocity estimation
under the proposed filter is better than the existing filter.

D. Discussion

This subsection discusses the performance of the proposed
InEKF with respect to the existing InEKF.
Forward kinematics vs. 3-D vector measurement. Incorpo-
rating forward kinematics measurement (i.e., (5)) introduces
considerable uncertainties to the filtering system for human
motion estimation (as depicted in Fig. 3). The uncertainties
in the forward kinematics measurement could be induced by
various sources, such as imperfect marker placement, shift of
markers on skin or garment, inaccurate parameters (e.g., body
segment lengths) and structure of human kinematics chain.
These factors lead to the less accurate estimation of both
body velocity and orientation compared to directly using the
3-D vector measurement, for the proposed InEKF, as shown
in Table II. Yet, the proposed filter with forward kinematics
measurement has a better overall performance compared with
the existing filter. This highlights the importance of modeling
the sensor placement offset in ensuring effective filtering under
relatively less accurate forward kinematics measurement.
Convergence rate. As discussed in Sec. IV-B, the process
and measurement covariance matrices were well tuned for both
filters. While the higher convergence rate can be a result of the
explicit treatment of sensor placement offset in the proposed
filter, additional human studies are needed to confirm that
covariance matrices used in the two filters match the actual
sensor characteristics and ensure a fair comparison.
Steady-state estimation. From the average RMSE results in
Table II, we can see that the proposed filter reaches a higher
steady-state accuracy in the velocity estimation compared
with the existing filter while they achieve similar accuracy in
orientation estimation, given properly tuned noise covariance
(and kinematics parameters for the forward kinematics based
measurement model). During the tuning process it was ob-
served that both filters had better performance with relatively
small angular velocity noise covariance. This indicates that
orientation estimation was relied more on the process model
for the steady-state period during which the large initial errors
have already been corrected using the measurement model.
Therefore, both the proposed and existing InEKFs show an
almost similar performance in orientation estimation during
the steady-state period. Nonetheless, velocity estimation is
relatively more dependent on the measurements. Therefore,
the proposed filter has a superior performance in steady-
state velocity estimation as it benefits from more accurate
measurement updates thanks to its offset treatment.
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Fig. 4. Estimation results of the velocity and orientation of the subject 2’s body/IMU frame during (a) squatting motion, (b) ladder climbing, and (c) rolling-
foot walking under the proposed and existing filters. The same sensor data set is used, including the raw data returned by the IMU at the trunk and the leg
joint angle data provided by the motion caption system. The solid lines are the state estimates corresponding to different initial errors. The red, dashed lines
are the ground truth. The gray and white backgrounds indicate the periods of initial and steady-state movement, respectively. The x-, y-, and z-directions are

the lateral, forward and vertical directions, respectively.

Different motion estimation. From Table. II, it is evident
that RMSE of the velocity estimations in rolling-foot walking
is higher compared to the other two motion types. Walking
is a more dynamic task compared to the other two, making
the estimation more challenging. The static-foot assumption is
more likely to be violated [24] during foot-rolling. Specifically,
in rolling-foot walking, we observed relatively high errors in
the y-direction of forward kinematic measurement. When large
errors are introduced in the measurement, it can also impact
the offset estimation, weakening the advantage of the proposed
InEKF with respect to the existing one. Since the existing filter
does not consider the placement offsets, its velocity estimates
have large final errors as shown in Fig. 4.

Limitations. One notable limitation of this work is the mod-
eling of the IMU offset dynamics. It is assumed that the IMU
offset has a slowly time-varying dynamics, which can be valid
under some activities such as slow walking and stair climbing.
However, under more aggressive movements such as running,
the IMU might have large and sudden shifts relative to the
body, which will violate this assumption. Other limitations
include the practical difficulty in obtaining accurate joint
angles for the forward kinematic model, and the validity of
the assumption of the static foot-ground contact point (which
was discussed through our results).

V. CONCLUSION

This paper introduced a right-invariant extended Kalman
filter that explicitly considered the offsets between the IMU
frame and the measurement frame. The proposed filter design
is an “imperfect” invariant extended Kalman filter since the
process model satisfied the group affine property but the
measurement model does not have the right-invariant obser-
vation form. As demonstrated by experimental results among
different subjects and motion types, the proposed filter has a
low computational cost, and with properly tuned parameters

(e.g., noise covariance and leg kinematics), it improves the
convergence rate and estimation accuracy of the IMU velocity
estimation compared with the existing filter. This is largely
because the IMU offset is treated as a noise source in the
original filter while the proposed filter explicitly models and
estimates it. The observability analysis shows that the IMU
positions and the rotation about the gravity vector were not
observable whereas the IMU velocities and the rotations about
the other two axes were observable. The observability analysis
matched with the experimental results.

In the future work, a more accurate forward kinematics
model (e.g., obtained based on online estimation of limb
lengths and other kinematics parameters) and explicitly treat-
ing IMU biases are needed to improve the filter performance.
Also, it is time consuming to tune the process and measure-
ment covariances for different subjects and motion types. A
data-driven learning algorithm may be useful for solving this
issue. Finally, the forward kinematics measurement in this
study assumes a fixed contact point on the foot, which may
not be valid for movements involving a nonstationary contact
point (e.g., during rolling-foot walking) and thus needs to be
relaxed for a more realistic forward kinematics model.
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