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in Memristor-Based Edge AI System
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Abstract—As a novel nonvolatile device, the memris-
tor has already delivered many of its promises including
low computation complexity and high energy efficiency for
the edge artificial intelligence (AI) system in Internet of
Things (IoT) applications. However, the intrinsic variability
of switching behavior of memristors has been a major
obstacle to their implementation. In this study, first, with
the Al/TiO2/TiO2−x/Al stack structure, memristive crossbar
chips are fabricated and tested, and then, we present a
model that experimentally demonstrates and quantifies the
natural stochasticity of cycle-to-cycle variations. Finally,
we propose level scaling and pulse regulating methods to
mitigate the adverse impact of cycle-to-cycle variations. The
relationship of the level of conductance and cycle-to-cycle
variation is studied, and the experiment results show an
optimal number of the levels to mitigate the impact of cycle-
to-cycle variations in the system. Additionally, the system
compresses the number of pulses when the conductance is
updated by the pulse stimulus to reduce cycle-to-cycle vari-
ations, resulting in the great energy and latency reduction.
This work paves the way for the adoption of memristors for
more efficient applications for the era of the edge computing
in IoT.

Index Terms—Artificial intelligence (AI), cycle-to-cycle
variation, edge computing, Internet of Things (IoT), level
scaling, memristor, neural network, pulse regulating (PR).

I. INTRODUCTION

THE Internet of Things (IoT) system is a network of
devices, sensors, and other items of various functionali-

ties that interact and exchange data electronically [1]. Recent
years have witnessed significant progress in edge devices and
wireless sensor networks, creating unprecedented opportuni-
ties to deploy deep learning and artificial intelligence (AI)
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technologies in IoT, while significantly adding calculation
burdens in edges [2]. However, edges consisting of mobile
devices and embedded systems usually have limited resources
and power, especially when theyare used for real-time appli-
cations, and such resource and power deficiency will result in
recognition and inference accuracy loss in a learning system
and even malfunctions in IoT [1]–[7].
The conventional CMOS technology plateaus the process
scaling [7], [8], which cannot provide satisfied solutions
for the emerging edge computing with designated learn-
ing systems [6]. Memristors are theoretically postulated
by Chua [9] and later are physically fabricated by the
Hewlett-Packard in 2008 [10]. The memristor-based crossbar
arrays with storage and computing capability show great
potential in the neural-network and machine learning appli-
cations [10]–[15]. They are characterized with low com-
putational complexity [16], low power consumption [17],
fast switching speed [18], high endurance [19], excellent
scalability [20], and CMOS compatibility [21], which are
especially appropriate for edge computing in IoT. However,
because of the inherent material property of memristors,
the intrinsic variation in switching conductance is a major
challenge for some applications [22]. For example, cycle-to-
cycle variation is the deviation between target conductance
and updated conductance when the same updating signal in
different updating cycles is applied in a memristor, even
when the initial conductance is the same [23]. The memristor-
based crossbar arrays suffer from the serious cycle-to-cycle
variation especially when theyare used in the real-time edge
AI system, where the conductance of memristor needs to be
updated innumerable times during the training and inference
process [24]–[28].
Therefore, in this study, we proposed two methods to
mitigate the adverse impact of cycle-to-cycle variations in edge
AI systems. Specifically, the following contributions are made
in this article.

1) Memristive crossbar chips with the Al/TiO2/TiO2−x/Al
stack structure are fabricated and thoroughly tested
based on our in-house technology.

2) We build a mathematical model based on the testing
data, which experimentally demonstrates and quantifies
the natural stochasticity of cycle-to-cycle variations.
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3) A level scaling method is proposed to optimize the level
number of conductance in memristors to mitigate cycle-
to-cycle variations.

4) A pulse regulating (PR) method is proposed in this
article. It compresses the number of update pulses to
one when the memristors get a conductance update. The
target of the proposed technique is to alleviate and com-
pensate inference accuracy degradation resulting from
the cycle-to-cycle variation.

5) Based on NeuroSim, a platform is built up to verify the
effectiveness of our proposed level scaling and PR meth-
ods regarding the accuracy improvement and reductions
of energy consumption, system latency, and chip areas.

II. RELATEDWORK

In previous works, researchers proposed some solutions
including three aspects to mitigate the impact of the cycle-
to-cycle variation from memristors.
In software-based and algorithm perspective, a conversion

algorithm is invented to map arbitrary matrix values appro-
priately to memristor conductance to reduce computational
errors in [31]; algorithms of the mutual decision between
conductance of memristor and Boolean functions are used
to tolerate a maximum variation in [32]; a novel off-device
neural-network training method is proposed to improve the
performance of the neural network in [33]. However, because
variations usually come from memristor devices, hardware of
the edge AI system, the software-based methods are usually
resources-consuming.
In circuit perspective, the smart programming scheme (read

the conductance before writing it) and dummy column tech-
nologies to eliminate theOFF-state current are utilized to
improve immunity to cycle-to-cycle variations in [29], [30],
and [34]. The experimental result shows that the accuracy
is improved to 95% from 70%. In addition, a variation-
aware training scheme is used to enhance training robustness
in [35]. However, sophisticated circuits are needed in the above
technologies to ensure the quality of conductance switching
and either drastically increase the area of circuit and power
consumption or bring additional circuit latency.
In device perspective, instead of using a single memris-
tor, the multiple cells technology using several memristors
connected in parallel is applied to improve the variation
tolerance [36], [37]. But the multiple cells produce area
overhead in the system. In addition, the different materials,
such as TiOxas a buffer layer [38] and CeO2/Ti/CeO2tri-
layered as an active layer [39], are proposed and investigated
to improve the resistance of ratio between high-resistance state
and low-resistance state, enhance the endurance of switching,
and reduce the variation of the threshold voltage.
Therefore, developing a cycle-to-cycle variation model on
memristor is urgent for mitigating the impact, so that it is
accessible to apply the great potential and advantages of the
memristor in edge AI and IoT applications. Different from
the previous approaches, we propose two methods that can
mitigate the impact of cycle-to-cycle variations of memristors
based on the proposed model.

Fig. 1. Memristive crossbar arrays and edge computing schematic.(a)
Optical image of a wafer with memristive crossbar arrays.(b)Close-up
of chip image showing crossbar arrays.(c)Microscope image showing
one memristor device.(d)Cross-sectional schematic of the TiO2/TiO2−x
memristor structure.

Fig. 2. Testing platform. Kaysight B1500a semiconductor parameter
analyzer is used to test memristor crossbar array. The wafer was set on
the Micromanipulator probe station and the pads were contacted by gold
probe tips.

III. MEMRISTIVECROSSBARARRAY AND
RELATEDBACKGROUND

A. Memristive Crossbar Array

We fabricate and test the memristive crossbar chips in our
laboratory. The optical image and geometry of a TiO2/TiO2−x
based memristive crossbar arrays used in this work is schemat-
ically shown inFig. 1(a). The array is composed of 20×
20 memristors, as shown inFig. 1(b). Physically, a memristor
is a 40µm×40µm two-terminal device formed by two
aluminous electrodes sandwiching a thin active layer, that
is, TiO2/TiO2−xmaterial, to achieve stable tunable multilevel
behavior with a nonlinear current–voltage (I–V)relationship,
as illustrated inFig. 1(c).Fig. 1(d)shows that the memristor
has an Al/TiO2/TiO2−x/Al stack in cross section.
I–V characteristics from positive and negative voltage

sweeping are carried out using a Kaysight B1500a semicon-
ductor parameter analyzer in the voltage-sweep and voltage-
pulse modes. The wafer is set on the Micromanipulator probe
station, and the pads are contacted by probe tips, as shown
inFig. 2.
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Fig. 3. I–Vcharacteristics from positive and negative voltage sweeping
switching (−3to3V)inthememristor.

Fig. 4. I–Vcharacteristics from consecutive positive voltage pulses
sweeps showing a continuous increase in conductance. The width of
pulses is 1 ms and the step of voltage is 1.5 mV.

Fig. 5. Consecutive negative voltage pulses sweeps showing a contin-
uous decrease in conductance. The width of pulses is 1 ms and the step
of voltage is 1.5 mV.

This TiO2/TiO2−x memristor displays obvious multilevel
behavior, asFig. 3shows the current–voltage response of
the memristor when the full range voltage sweeps during
different cycles. For further investigating this multilevel prop-
erty, the positive and negative voltage sweeping are separately
applied in the same memristor with ten cycles, as shown in
Figs. 4and5. The conductance of the memristor is changed
when the voltage achieves the threshold voltage, which is
caused by conducting filament formation across the elec-
trodes [40], [41].

Fig. 6. Hardware implementation of the vector-matrix-multiplication
using memristor crossbar.Vi,Gij, andIjrepresent the input signal in
theith row, the conductance of the memristor in thejth column and the
ith row, and the output current that represents the dot product result of
VandG, respectively.

Memristive crossbar arrays carry out the vector-matrix mul-
tiplication, as shown inFig. 6. Every row of the crossbar
array gets input voltage pulses that are the vector. Each
conductance of the device in every cross point composes
the matrix. Every column of the crossbar array transmits an
output current that is the sum of multiplication by the input
signal and conductance in each cross point. To update the
conductance of a memristor that has multilevel conductance
from the minimum to the maximum, a positive pulse signal
is applied to increase the conductance, which is called long-
term potentiation (LTP) [42]. Conversely, long-term depres-
sion (LTD) is the process of decreasing the conductance by
supplying a negative pulse signal until the conductance gets
to the minimum [42]. Multilevel memristors effectively utilize
such multivalue conductance to learn the features of data and
realize an edge AI system [11], [12], [28].

B. Level of Conductance

In practice, the width of the pulse signal that is used to
update the weight cannot be infinitely narrow and limits the
accuracy of the conductance updating. Different widths of the
pulses change the different amount of the conductance. There-
fore, the widths of different pulses that are used for weight
update decide the number of the levels, as shown inFig. 7.
The number of these levels can be expressed qualitatively as
follows:

(Gmax−Gmin)/Wpulse =number of levels (1)

whereGmax andGmin are the maximum conductance and
the minimum conductance andWpulse is the width of the
updating pulse. Note that although a higher number of the
levels give more precise conductance in the weight update of
the memristor, the influence of cycle-to-cycle variation will
increase, which is shown in the next section.

C. Cycle-to-Cycle Variation

Since the switching mechanism of the memristor conduc-
tance is prompted by the applied voltage, a memristor switches
its conductance level from one to another when pulse is larger
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Fig. 7.Level of conductance with different widths of the updating pulses.

Fig. 8. Cycle-to-cycle variation of memristive device. Experimental data
of conductance values measured by pulses during 200 potentiation and
200 depression pulses. Cycle-to-cycle variation is the deviation between
target conductance and realistic updated conductance by pulses.

than a threshold voltage for at least the minimum required
time [43]. Simultaneously, cycle-to-cycle variation results in
different updated conductance when the same updating signal
in different updating cycles is applied in a memristor, even
when the initial conductance is the same, as shown inFig. 8.
For instance, for some given updating pulses, a memristor
starting at conductance A and target conductance is B may
end up between C and D, as shown in the inset ofFig. 8.
Memristors exhibit cycle-to-cycle variations because of the
shape of the conductive filament, the oxygen vacancy distri-
bution at and around the filament, and the changing location
of the active filament between one cycle to the next. These
three mechanisms originate from the coexistence of multiple
subfilaments and that the active,current-carrying filament may
change from cycle to cycle [23]. Thus, cycle-to-cycle variation
is a type of inherent randomness associated with the random-
ness in internal atomic configurations [26], [44], [45]. One
of the major obstacles for the implementation of redox-based
multilevel memristive memory or logic technology is the large
cycle-to-cycle variation [23].

IV. MODULE OFCYCLE-TO-CYCLE
VARIATION ANDMETHODS

A. Module of Cycle-to-Cycle Variation

Fig. 9shows the LTP and LTD process with different pulse
widths that are obtained with testing platform, as shown in
Fig. 2. We can use the same method in [29] to fit these

Fig. 9. LTP and LTD process with different pulse widths from
520 to 2000µs. The black curves are f tted by exponential formula.

Fig. 10. Residual analysis of f tted Gaussian distribution data after
normalization of the deviation fromFig. 9in different pulse widths.

LTP and LTD experimental data with exponential formulas,
as shown in the fitting curves ofFig. 9. Because the fitted
curve and stochastic behavior of the cycle-to-cycle variation
can be approximated with a Gaussian distribution [45], [46],
residual analysis is performed by Gaussian distribution fitting
after normalization, as illustrated inFig. 10.
Because stochastic behavior of the cycle-to-cycle variation

can be approximated as Gaussian distribution [44], [45], the
value of cycle-to-cycle variation corresponding to one pulse
can be defined as

ψ=N(0,δ) (2)

whereψis a cycle-to-cycle variation that is generated for one
pulse update process,N(0,δ)is the Gaussian noise, andδis
the standard deviation. The value of cycle-to-cycle variation
corresponding to two pulses can be calculated as

ψ1+2=N1(0,δ1)+N2(0,δ2). (3)

Because different cycle-to-cycle variations obey Gaussian
distributions and that are independent and identically distrib-
uted corresponding to different one pulse,δ1=δ2=δ,(3)
can be converted as [47]

ψ1+2=N(0,δ1+δ2)=N(0,2δ)=N(0,δ)
∗sqrt2. (4)
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Fig. 11. Extraction of the coefficien between 0 to 1 from the standard
deviation of the Gaussian distribution fi ting fromFig. 10for different pulse
widths.

Therefore, we model the total cycle-to-cycle variation that
is generated for one memristor at one update process withn
pulses and it can be calculated as

total=N(0,δ)
∗sqrtn (5)

δ=α∗(Gmax−Gmin) (6)

whereαis the coefficient that is the percentage of difference
of the maximum conductance and the minimum conductance,
Gmaxis the maximum conductance, andGminis the minimum
conductance.
After Gaussian distribution fitting, we get a distribution of
αvalues with different pulse widths, such that the average
is 0.03577, as shown inFig. 11. The lines are linear fitting
forαvalues of LTP and LTD. Both slopes are negative.
Therefore, it can be concluded that increasing the pulsewidth
does not increase the cycle-to-cycle variation when using the
same number of pulses to tune the conductance.

B. Level Scaling Method

A number of the levels are set in the circuit parameter
configuration step according to the workflow ofFig. 12(a),
which means that there is a certain number of the levels
that conductance of memristor can be obtained between the
maximum and minimum conductance. The number of the
levels will map to the width of the pulse that is generated from
the pulse generator in hardware implementation. The higher
number of the levels corresponding to the narrower pulses.
Theoretically, the system can achieve higher precision of
weight for the desired value of conductance. Simultaneously,
however, a higher number of the levels introduce larger cycle-
to-cycle variation when the system updates the conductance of
memristors. This is because the pulse generator produces more
pulses to tune the conductance when the algorithm calculates
the same weight than that system has a lower number of
the levels. Therefore, the level scaling method is applying to
appropriately reduce the number of the levels. In this work, the
number of the levels is a parameter and is set from 10 to 200
and the step is 10.

C. PR Method

For the conventional method to update the conductance of
a memristor, according to the value of weight change that
is calculated by the algorithm, the control circuit will gen-
erate corresponding signals to control the pulse generator for
producing positive/negative pulses and tuning the conductance
of the memristor. For the PR method, one multiplexer is
used to compress the number of pulses for the weight and
generate only one updating pulse whenever a conductance
of a memristor needs to be tuned according to the hardware
implementation diagram in path 2 (golden block) ofFig. 12(b).
The PR method only applies one pulse and keeps the original
width of writing pulses in eachweight update. The decoder
gets a signal from an arithmetic logic unit (ALU) for selecting
one row to update. At the same time, the registers get the
values of weight that are calculated by an ALU. Then,
these values are transmitted to multiplexers as control signals.
Multiplexers select one writing pulse that comes from a pulse
generator as an output when control signals are enabled. The
enabled signal means that the corresponding memristor needs
to be updated and that the corresponding weight value is
greater than or equals to weight change by one pulse. In this
way, the PR method directly affects every weight update and
minimizes the number of pulses and then avoids the impact
of the cycle-to-cycle variation as much as possible.

V. EVALUATION ANDRESULTS

A. Platform

In order to evaluate the level scaling method and PR
method, the multilayer perceptron platform (MLP plat-
form) is used to emulate the learning classification scenario
with Modified National Institute of Standards and Technol-
ogy (MNIST) handwritten dataset [29]. We adopt the artifi-
cial neural network (ANN) hardware platform, NeuroSim+
[29], [48], to perform handwriting inference, as shown in
Fig. 12(b)and(c), which is for the fully connected networks
structure.
The crossbar array architecture with memristors had been
proposed for on-chip implementation of weighted sum and
weight update in the training process of learning algo-
rithms [49]. This platform contains three layers with 400 neu-
rons for an input layer, 100 neurons for a hidden layer, and
ten neurons for an output layer, as shown inFig. 12(c).The
perceptron neural network is simulated and based on mem-
ristive crossbar arrays, which includes a special subset of the
memristor to tune the conductance by voltage pulse stimulus.
The desired weight update for each layer is calculated in
software [50] and then applied to the crossbar by the system,
as illustrated inFig. 12(b)as the hardware implementation
block diagram. For the level scaling method, each evalua-
tion trains 125 epochs, and every epoch randomly selects
8000 images from 60 000 training images. For the PR method,
each evaluation trains 200 epochs, and every epoch randomly
selects 500 images from 60 000 training images. A different set
of 10 000 images are included in the testing dataset. Note that
the networks will continually learn the feature of an input data
after the last epoch since this platform is an online learning
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Fig. 12. (a)Workfl w of the MLP platform. Optimized number of the level value and measured cycle-to-cycle variation are set at the circuit parameters
configu ation step.mequals 8000 for the path 1 and equals 500 for the path 2.(b)Hardware implementation of the MLP platform.(c)Three-layer
fully connected structure of neural network. Input layer, hidden layer, andoutput layer are composed by different neurons. PR represents the pulse
regulating method.

network [48]. In this platform, the parameters of memristors
come from the measurement results of our fabricated devices.
In summary, this MLP platform is a stand-alone functional
platform that is able to evaluate the inference accuracy and
device-level performance during the learning process.

B. Results of Level Scaling Method

To study the relationship between the number of the levels
and cycle-to-cycle variation, the different numbers of the
level for the LTP and LTD are set. The ideal circumstances
(α = 0) with the number of the levels from 10 to
200 and step 10 are set with five algorithms, as shown
inFig. 13(a)–(e). When the cycle-to-cycle variation is not
involved, with the increasingnumber of the level, the accuracy
goes up to the high area (bright area) from the low area (dark
area), where the highest accuracy appears at the number of
the levels=200 at LTP and LTD (upper right corner). It can
be concluded that increasing the number of the levels does
increase the inference accuracy. In bright areas of the figures,
the inference accuracies are around 90% in the lower left
corner and higher than 93% in the upper right corner.
As a comparison, realistic cases that are with the cycle-to-

cycle variation (α=0.03577) are set to obtain optimization
with five algorithms, as shown inFig. 13(f)–(j). When the
cycle-to-cycle variation is involved, the values of accuracies
are lower than that without cycle-to-cycle variation. More-
over, the bright areas where accuracies are higher than 88%
are smaller than the ideal case. Note that, in the top right
corner, the accuracies do not go up to the highest with the
increasing number of the levels. Even though the boundaries

for separating bright and dark areas with different algorithms
are different, the boundaries demonstrate regions and locations
of the highest inference accuracies. Those number of the
levels (LTP/LTD) are 50/40 for the stochastic gradient descent
algorithm (SGD), 60/50 for the Momentum, 60/50 for the
AdaGrad, 50/50 for the RMSProp, and 50/40 for the Adam.
Therefore, the best performanceof the given memristors-based
edge AI system under the related cycle-to-cycle variation does
not occur at the number of the levels=200 for LTP and LTD,
as shown inFig. 13(f)–(j). Level scaling method optimizes
the number of the levels, so that the system achieves higher
inference accuracy by mitigating the cycle-to-cycle variation.

C. Results of PR Method

During the training process of ANN, the weight change that
is calculated by the algorithm is converted to positive/negative
pulses that isnin (5) to update the conductance of the mem-
ristor. According to parameter,n, in (5), drastically change
in conductance by positive or negative pulses for LTP or LTD
process causes more cycle-to-cycle variations in corresponding
memristors. Thus, the PR method is to truncate the number
of updating pulse to the one (n=1) at each LTP or LTD
process, as shown in path 2 ofFig. 12(b)for the hardware
implementation and in path 2 ofFig. 12(a)for the processing
flowchart. The conventional system originally has writing
pulses whose widths are appropriate to tune the conductance
of a memristor. Simultaneously, each writing pulse is identical
during different update processes. The proposed PR method,
instead of updating the weight by the number of the pulses that
are directly converted from the weight change in each iteration,
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Fig. 13. (a)–(e)Inference accuracy without cycle-to-cycle variation (α=0) with different LTP and LTD numbers of the levels (from 10 to 200,
step is 10) in fi e algorithms.(f)–(j)Inference accuracy with different LTP and LTD numbers of the level values (from 10 to 200, step is 10) in fi e
algorithms under measured cycle-to-cycle variation (α=0.03577).

Fig. 14. PR method for mitigating cycle-to-cycle variation.(a)–(e)Inference accuracy with/without the PR method in 5 algorithms. 50 and 200 are
the number of the levels in different evaluations.χ2υis thereduced Chi-Sqr values with analyzing data. PR represents the pulse regulating method.
Each curve includes 100 epochs and each epoch includes 500 images.

only applies one pulse and keeps the original width of writing
pulses, as shown in golden block (path 2) ofFig. 12(b).Tover-
ify the effectiveness of the proposed PR method, we adopt the
ANN hardware platform, NeuroSim+[29], [48], to perform

the PR method. The PR is suitable for all five algorithms that
the accuracies are higher than that without the PR method,
as shown inFig. 14(a)–(e). Note that, for evaluating the effect
of the PR method, 200 epochs with 500 images for each
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TABLE I
ENERGY ANDLATENCYEVALUATIONWITH ANDWITHOUT THEPULSEREGULATINGMETHOD

epoch are set. The negative impact of the PR method is
reducing the learning speed, which only exists at the several
beginning learning epochs and is reflected by the red curves
below the blue curves inFig. 14(a)–(e). Although the learning
speed is reduced by the PR method at the several beginning
learning epochs, all inference accuracies of five algorithms
have significant improvement with the PR method after the
whole training process. In addition, the PR method effectively
produces a smoother convergence of the training process,
which reduces the excessive fluctuation of the inference accu-
racy. The regressions are carried out by the exponential model
to fit the experimental data without and with the PR method.
The reduced Chi-Sqr values that are represented asχ2υwith
the PR method are smaller (closer to 1) than that without the
PR method, as shown inFig. 14(a)–(e), which demonstrates
that the fluctuation of the inference accuracy is reduced by the
PR method.
Furthermore, because the updating pulses are regulated to

one in each iteration, the number of updating pulses has
been significantly saved for 100 epochs, taking RMSProp as
an example, which effectively saves the energy consumption
up to 16.104% and reduces the latency up to 27.854%,
as shown inTable I. Every iteration has the designated reading
latency since the process of a vector-matrix multiplication is
executed using a parallel reading strategy. However, the system
updates its weight row by row, which indicates that a parallel
writing strategy cannot be implemented for all rows at the
same time; otherwise, the system will have unacceptable area
overhead [51]. Each row’s writing latency is determined by
the maximum number of writing pulses as a critical path.
Thereby, the main latency for crossbar arrays is writing latency
that strongly depends on the maximum update pulses of
each row. With the PR method, the maximum number of
the writing pulses decreases to one, which reduces the total
latency of the system. In the system without the PR method,
each row needs registers and counter to record and control
the updating process since the time of updating process in
the different training iterations is probably different [48]–[50].
In the system with the PR method, those two components
(registers and counter) are not needed because the selected
row only uses one pulse to update the conductance of the
memristor. Instead, one multiplexer is added to the system.
Therefore, the PR method optimizes the inference accuracy,

improves energy efficiency, and reduces system latency and
area.

VI. DISCUSSION

For a given memristive crossbar array, the distribution of
cycle-to-cycle variation can be modeled by (2). At the same
time, according toFig. 7, a lower number of the levels mean
larger conductance change between two consecutive pulses,
and the system uses wider and fewer updating pulses for the
same weight change that is calculated through any machine
learning algorithm. According to experiment results and (5),
the wider pulse does not increase the cycle-to-cycle variation
and fewer updating pulses correspond to a smallern,which
reduces the cycle-to-cycle variation. Therefore, level scaling
is an effective method to mitigate the impact of cycle-to-cycle
variation. Note that an extremely low number of levels will
influence the accuracy of the conductance, which means some
desired values of conductance cannot be achieved, as shown in
Fig. 7, so reducing the precision of the system. This influence
is also reflected by the low inference accuracy, as shown in the
low (dark) number of the levels area ofFig. 13. Thereby, for
multilevel memristive crossbar arrays that are used in machine
learning systems, the highest inference accuracy of the system
occurs when the memristor uses an optimized number of levels
rather than the highest number of levels.
In further comparison ofFig. 13(a)–(e)andFig. 13(f)–(j),
some accuracies with cycle-to-cycle variations and with certain
LTP/LTD levels are higher than that without cycle-to-cycle
variation (ideal circumstance), as shown inFig. 15(a)–(e).
The black squares represent the negative values, which mean
that the inference accuracy withcycle-to-cycle variation is
higher than that without the cycle-to-cycle variation. This is
because only integer number of pulses are generated in circuit.
As for the mechanism of the updating process, the amount of
conductance that is increased or decreased will be calculated
by the algorithm, and then, the accurate number of pulses is
gotten accordingly. However, inthe circuit level (hardware),
only the integer number of pulses are available to update the
conductance. Hence, the truncation function for an integer
number of pulses is employed for hardware implementation.
The updated weight gets the deviation by an integer number
of pulses, but when the cycle-to-cycle variation is involved in
every weight update, in some cases, they make the updated

Authorized licensed use limited to: UNIV OF SOUTH ALABAMA. Downloaded on March 29,2022 at 15:35:42 UTC from IEEE Xplore.  Restrictions apply. 



1760 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 69, NO. 4, APRIL 2022

Fig. 15. (a)–(e)Difference of accuracy between ideal case (α=0) and that with cycle-to-cycle variation (α=0.03577) with the truncation
function. (Truncation function convertsΔweight to the integer number of pulses.) The black squares represent the negative values.(f)–(j)Difference
of accuracy between ideal case (α=0) and that with cycle-to-cycle variation (α=0.03577) without the truncation function.

Fig. 16. Number of the levels with the highest accuracy under different
cycle-to-cycle variations.

weight to achieve closer to theaccurate weight that algorithm
requires and then the system gets even higher inference accu-
racy. In order to highlight the influence of this factor, the trun-
cation function is disabled in the control group simulation, and
we get the difference of accuracy between ideal case and that
with cycle-to-cycle variation, as shown inFig. 15(f)–(j).Note
that, all differences of inference accuracies are positive, which
means the accuracy in ideal case is higher than that with cycle-
to-cycle variations. Therefore, the cycle-to-cycle variations,
sometimes, enable an integer number of pulses to achieve more
accurate weight that algorithm requires, and then, the system
results in even higher inference accuracy than the system with
the truncation function without cycle-to-cycle variation. That
is why some accuracies with cycle-to-cycle variation and with
certain LTP/LTD levels inFig. 13(a)–(e)are higher than that
without cycle-to-cycle variation inFig. 13(f)–(j).

With our device, the value of αis 0.03577. Thus, the
∼50 levels are the best choice because the value with each
level step is ((1− (−1)/50)= 0.04, which is close to
0.03577. As shown inFig. 16, the number of the levels with
the highest accuracy decreases through the increasing of the
variations. In fact, the reason for this correspondence is that
an excessively large number of levels will cause the value
of the variation to exceed the conductance value of a single
level. Simultaneously, a too small level number will cause the
weight value to lose too much precision and reduce the final
inference accuracy.
According to the mechanism of the cycle-to-cycle variation,
the PR method efficiently reduces the cycle-to-cycle variation
by compressing the number of update pulse to one withn
parameter in (5). For every updating, the cycle-to-cycle vari-
ation is limited with one pulse’s impact, which minimizes the
cycle-to-cycle variation for the system. Note that the inference
accuracies have significant improvement with the PR method,
as shown inFig. 14(a)–(e). The reasons are two aspects:
1) the PR method minimizes the cycle-to-cycle variation and
2) each update step uses at most one pulse to tune conductance.
One pulse to tune conductance means that smaller steps are
achieved in the direction of convergence, while a big step will
make the learning jump over minimum point of weight [52].
What’s more, energy consumption and system latency are
correspondingly reduced when the PR method is adopted in
the system by compressing the number of update pulse to one.

VII. CONCLUSION

In order to mitigate the impact of cycle-to-cycle variations
in Memristor-based edge AI system, we fabricate TiO2/TiO2−x
memristors and derive a closed model. We propose the
level scaling and the PR methods that are simple, feasible,
and universal methods to effectively mitigate the impact of
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cycle-to-cycle variations. We prove that because of cycle-
to-cycle variations, the inference accuracy in the maximum
number of the levels is not optimal for the real device. For dif-
ferent materials-based multilevel memristors, the level scaling
method can be used to optimize the memristor-based edge AI
system by selecting appropriately the number of the levels.
Similarly, the PR method mitigates the impact of cycle-to-
cycle variation by compressing the number of updating pulses
to one as well as improves energy efficiency up to 16.104%
and reduces system latency up to 27.854%. Furthermore, both
methods can be implemented at the edge computing, which
paves the way for the adoption of memristors for more efficient
applications for the era of the IoT.
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