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Sparse Learning of Kernel Transfer Operators

Boya Hou

Abstract—Transfer operators such as the Koopman and the
Perron-Frobenius operators provide valuable insights into the
properties of nonlinear dynamical systems. Recent work has
shown that non-parametric approximations of these operators
can be constructed over reproducing kernel Hilbert space
(RKHS) with data. These kernel transfer operators can then be
written as functions of covariance and cross-covariance operators
associated with the data generated by the dynamical system. In
this paper, we study sparse kernel learning methods for kernel
transfer operators. Specifically, we study sample complexity
guarantees for coherency-based sparsification and demonstrate
its efficacy over an example dynamical system.

I. INTRODUCTION

Transfer operators such as the Koopman and the Perron-
Frobenius operators have emerged as powerful tools to ana-
lyze global behavior of nonlinear dynamical systems. These
operators essentially /ift the nonlinear dynamical system de-
scription over a finite-dimensional state space to a linear
infinite-dimensional description that captures the action of
the system dynamics on suitable spaces of functions. This
approach allows us to carry over mature intuitions from
linear systems theory to the study of nonlinear systems. The
spectra of these operators are rich in information; they can be
used to decompose modes of a dynamical system, propagate
uncertainties and analyze global stability of the dynamics
among other application uses.

Computational techniques have been widely studied to
obtain finite-dimensional approximations of these infinite-
dimensional operators from data. One can study the ap-
proximate spectra by studying the actions of these operators
on parameterized function spaces, e.g., using the so-called
extended dynamic mode decomposition in [1]. Even neural
networks have been utilized to parameterize these function
spaces, e.g., see [2]. Another line of research has sought
to study the interactions of these operators with reproducing
kernel Hilbert spaces (RKHS) of functions. See [3] for the use
of kernel methods to approximate Koopman operators from
data. Non-parametric methods in data science have a long
history (e.g., see [4]) and offer powerful tools that, through
transfer operators, can now be utilized to analyze nonlinear
dynamical systems.

The recent work in [5] reveals deep connections between the
transfer operators and the widely studied covariance and cross-
covariance operators on RKHS. See [6] for a reference. As a
result, sample complexities for data-driven approximations of

B. Hou and S. Bose are with the Department of Electrical and Computer
Engineering at the University of Illinois at Urbana-Champaign, Urbana, IL
61801. U. Vaidya is with the Department of Mechanical Engineering in
Clemson University, Clemson, SC 29634. This work was partially supported
by the NSF-EPCN-2031570 grant.

978-1-6654-5828-3/21/$31.00 ©2021 IEEE 130

Subhonmesh Bose

Umesh Vaidya

these transfer operators follow from well-known convergence
properties of covariance/cross-covariance operators in [7], [8].

Studying the actions of operators in RKHS can prove
computationally burdensome with large volumes of data. This
downside of learning over RKHS has given rise to a rich
literature on sparsification that seeks to “throw away” those
data points that do not add enough extra information to
those obtained from the other data points, as in [9]-[11].
Sparsification in kernel methods is crucial for scalability. In
this paper, we study the impact of sparsification in learning
of kernel transfer operators. Specifically, we consider sparse
kernel learning that utilizes the notion of coherency to control
the growth of data points. We provide sample complexity guar-
antees for such sparsification for learning of kernel transfer
operators and numerically illustrate its impact on the spectra
of an example dynamical system.

II. RKHS PRELIMINARIES

We begin by formally defining a reproducing kernel Hilbert
space (RKHS). See [6] for an introduction. Let X be a compact
subset of an Euclidean space and x : X x X — R be a
continuous, symmetric, positive semi-definite kernel. Define
‘H as the RKHS associated with the kernel x—the completion
of the span of {¢(x) := k(x,-) : x € X}, equipped with the
inner product (-,-), satisfying (¢(z), #(y)) = k(z,y). Here,
¢ is called the feature map for kernel . The inner product
satisfies the reproducing property, given by

<¢(:L‘),f> :f(l'), VeeX, feH. (D

Probability measures over X can be embedded within an
RKHS. For a probability space (X, 3, P), with Borel o-algebra
Y., the kernel mean embedding of P in H is

pp i=E[r(X,)] for X ~P. )

Assume throughout that s is measurable. If the kernel is
finite, i.e., E[x(X, X)] < oo, then up € H, according to [6,
Lemma 3.1]. Thus, the probability measure PP is identified as
an element in the RKHS.

With a slight abuse of notation, if P(X,Y") denotes a joint
distribution over X x X, then IP can be embedded in the tensor
product space ‘H ® H, per [12], as

Cxy =Exy[¢p(X) @ ¢(Y)] = upyy - 3)
H ® H is equipped with the kernel kg, defined by
Rg <(l’1,y1),($2,y2)> = ’{(xlaxQ) H(yl,y2) (4)

for 1,9, y1,y2 in X. Its joint feature map is

o (zi,yi) = ¢ (2:) @ b (yi) = k(i) K (yi,') - (5)
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The above relation also provides an interpretation for the
tensor product in (3). The feature map ¢ satisfies

In (3), we identify C'xy as an element in the tensor product
space. It can also be viewed as a Hilbert-Schmidt (HS) linear
operator C'xy : ‘H — H that satisfies

Exy[f(X)g(Y)] = (Cxvg, f),

Cxy is commonly known as the (uncentered) cross-
covariance operator. For details on HS operators, see [6,
Chapter 2.3]. Similarly, one can also define the (uncentered)
covariance operator as

Cxx = Ex[p(X) ® ¢(X)], 3

that can be viewed as the embedding of the marginal distri-
bution P(X) in H ® H. In our setting, E[x(X, X)] < oo
ensures that Cxx and Cxy are bounded. The former is also
self-adjoint (see [13, Theorem 1]).

For a given kernel x, we call H a separable Hilbert space if
it admits a countable basis. With « being a continuous kernel
over compact X, H can indeed be shown to be separable,
according to [14, Lemma 4.33].

(o (@isyi) o (24, 95)) = (T3, 25) K

Vigen. (D)

III. DEFINING KERNEL TRANSFER OPERATORS USING
THE CONDITIONAL MEAN EMBEDDING OPERATOR

Consider a discrete-time stochastic dynamical system on
state-space X, described by the transition kernel p as

P{zi11 € Alzy =2} = /Ap(ylx)d% )

for A C X, where x; denotes the state at time ¢. If f is a
probability density over X, then the Perron—Frobenius operator
‘P propagates f through the system dynamics as

(Ph) () = / p(yl)f (x)d.

If f is an observable (scalar-valued map) over X, then the
Koopman operator /C acts on f as

(Kf) () = / p(yl) f(w)dy.

These transfer operators are infinite-dimensional but linear.
The stochastic nonlinear propagation of a finite-dimensional
state, described by the transition kernel p can be studied via the
linear propagation of functions by these infinite-dimensional
operators. The spectra of the Perron—Frobenius (P-F) and the
Koopman operator can be utilized to characterize basins of
attraction, perform model reduction, propagate uncertainties
and analyze global stability of the dynamics among other
application uses. We study these operators where they interact
with an RKHS. Specifically, we relate these operators to the
conditional mean embedding operator, defined in [15].
Consider the joint distribution P(X,Y") over X x X, where
X is sampled according to a reference distribution and Y is
sampled from a one-step propagation of X through the system

(10)

(1)

dynamics in (9) according to the transition kernel p. Then, the
mean embedding of the conditional distribution P(Y|x) into
‘H is given by

py e = Bye[¢(Y)|X = 2]

for z € X. The conditional mean embedding operator Uy | x :
H — H, according to [15], is a linear operator that satisfies

Py |z = Uy x d(x).

(12)

(13)
Then, we have

py = Ey[o(Y)]

@ B By x [6(Y)|X]]

© Ex [py|x]
© Ex Uy xp(X)]

@ Uy x Ex [p(X)]
=Uy|xx-

(14)

In the above derivation, (a) follows from the law of total
expectation. Lines (b) and (c) are consequences of (12) and
(13), respectively. Line (d) follows from the linearity Uy |x.
The above relation motivates the definition of the embedded
P-F operator, per [5], as P := Uy|x that propagates the
embedded distribution of states through the system dynamics.
Under the assumption that E[f(Y)|X] € H for all f € H, it

follows from [15, Theorem 4] that
P =Uy|x = CyxCxk- (15)

To identify the Koopman operator in terms of the condi-
tional mean embedding operator, note that

fE[ (V)X = 1] 6
D (fopvie)
D Uy x b ()

for all f € H. Lines (a)-(d) follow respectively, from the
reproducing property of «, (11), (12), and (13). Thus, we
identify the kernel Koopman operator /C as the adjoint of
Uy x =P, given by

K :=Cy5Cxy. (17)

The above definitions of P and K rely on C'xx being an
invertible map. For technical reasons, Klus et al. in [5] consider
their regularized versions, defined as

P.:=Cyx (Cxx +el),
K.:=(Cxx +el)™*

(18)

Cxy (19)

for € > 0, where I is the identity operator. In the sequel, we
study data-driven sparse kernel approximation of the kernel
Koopman operator K. Guarantees for approximations of P
can be similarly derived.
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A. Approximating the Kernel Koopman Operator with Data

Given m data points M := {(z1,v1),-.., (Tm,Ym)} sam-
pled i.i.d. from P(X,Y’), one can compute empirical estimates
of Cxx and Cxy, respectively as

~ 1 & 1 &
CXX:Ez(b(xi)@(b(xi):aZ@(xiami)a

X ’lel X Z;l (20)
5XY:E;Qs(xi)@(b(yi):E;@(xivyi)'

Approximation of transfer operators in RKHS was analyzed
in [5]. Their work showed that, with regularization parame-
ter &, the empirical estimator constructed using m samples
converges in operator norm at a rate O, (m~'/2¢71).! In
this work, we propose sparse learning of kernel Koopman
operator that only utilizes a subset of the data, in effect making
the empirical estimation memory-efficient. We show that the
generated sparse estimator converges to a neighborhood of
the true kernel Koopman operator. Moreover, the extent of
approximation can be controlled via a tunable parameter.
Specifically, this parameter allows one to trade-off between
sparsity (data-efficiency) and accuracy of approximation.

IV. SPARSE LEARNING OF KERNEL KOOPMAN OPERATOR

When the total number of data points m grows large,
computation of the empirical kernel Koopman operators be-
comes increasingly difficult. The challenge arises from the
fact that each data-point (z,y) adds a new kernel function
centered around the new data point in the computation of
the empirical operators. Such difficulties in kernel learning
are well-documented, e.g., see [11], [16]-[19]. To circumvent
this difficulty, we propose to prune M to construct a sparse
dictionary D and then represent the empirical kernel transfer
operators using the data in D.

We employ and analyze dictionary sparsification based on
the notion of coherency (see [10]). The key idea is to retain
only those points (x,y) in the dictionary that are not “too
similar”, where similarity is measured via the kernel kg. For
a given dataset M, we construct D by identifying a subset of
M that satisfies

o (@i ) )

\/n@,((xi,yi), (i) o Ca300). (213 )

for each ¢,j such that (x;,v;),(z;,y;) are in D. One can
construct such a D as follows. Compute the Gram matrix
using all elements in M with kg as the kernel. If (zs,ys)
and (x,y;) are such that they violate (21) with indices s < ¢,
retain (x4,ys) in D, but discard (z,y;) from D and remove
the row/column associated with (z;, y;) from the Gram matrix.
Repeat this operation until all elements in the Gram matrix
satisfies (21). Let Z be the indices among 1,...,m for which

<7

— )

21

IWe believe the dependence on & should be e ~2 rather than e~ 1.

(z4,y;) are in D. Then, the sparse estimator of Cxy (Cxx)

18:

Cxy = > i (@i,i) s Cxx = > Bie(wi,zi). (22)
i€T i€l
where « (and similarly, ) is defined as
1 « ’
o = argmin - Z(p (yi,zi) — Z@icp (yi,zi)|| » (23)
@ i=1 i€l H

The vector @ admits the explicit representation o = G~ 1g.
Here, G € RIPIXIPl s the Gram matrix associated with
elements in D, given by

iy = (@10 (2103 24)
for each i and j in Z and g € Rl is defined as
1
9l = —> e ((x vi), (a5, y;-)) (25)

i=1

for each j in Z. Using the sparse covariance operator C'y x and
cross-covariance operator C'yy, we define the sparse kernel
Koopman estimator as

~

K. = (Cxx +el) Oy (26)

We now bound the approximation error of this sparse kernel
Koopman estimate in our main result.

Theorem 1. Suppose & is a continuous kernel defined over a
compact set X. Then, K. in (26) and K. in (19) satisfies

K2 = Ko < vim. 3 9)0(=2), @7)
with probability at least 1 — § for 6 € (0,1), where
1
blm,7:0) = —= (14 /21og(1/3))
vim (28)

(-2

The error between the sparse estimator and the regular-
ized operator is measured in operator norm, where || Al =
sup| ¢ =1 |[Af]| for an operator A. The above result indicates
that the performance depends not only on the number of
training samples m, but also on the coherence parameter 7.
Compared with [5, Theorem 3.14], the second summand in
1 arises due to sparsification. We use a technique inspired
by [20] to derive the approximation error from sparsification.
Upon decreasing 7y, we obtain a less coherent dictionary with
smaller D. Our result shows that data sparsity comes at the
expense of approximation accuracy for the kernel Koopman
operator. As m grows without bound, one can show that
|D| saturates at some point (see [10, Proposition 2]). That
is, the dictionary remains finite, even though the number of
samples grows infinitely large. Thus, for large m, we have
1) ~ /1 — ~2 that captures the price we pay for sparsification.
We cannot avoid this cost with more data.
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A. Proof Sketch of Theorem 1

We utilize an argument similar to that in [5] to obtain

N 1 ~
H’Ca - K. S*HCXY - CXYH
5 X s (29)
+ *QHCXX - CXXH Cxy |,
5 HS
where || - |lus denotes the Hilbert-Schmidt norm.

Then, we bound the errors in cross-covariance estimation
as a sum of two terms in

|G =] = |0 v+ [ O — |

Sampling error Sparsification error

(30)

We tackle the two terms separately. Precisely, we use [21]
to bound the sampling error with probability 1 — § as

|Cxy —Cxv || < v/B/m (1+ V21og(1/3)), GD)

where B := sup,cx £%(z, z).
The result then follows from bounding the sparsification
error as

H@XY - éxyHHs <(1—|D|/m) VB -7%), (32

using an argument similar to that in [20].
V. COMPUTING EIGENFUNCTIONS OF SPARSE KERNEL
KOOPMAN OPERATOR

The spectra of transfer operators are rich in information:
they can be used to decompose modes of a dynamical system,
propagate uncertainties, analyze region of attraction of non-
linear dynamical systems, etc. In this section, we show that
eigenfunctions of the sparse kernel Koopman operator can be
constructed using only Gram matrices over sparse data. To that
end, define

Ox = [p(x1). - d(za)], Py = (31) - d(ya)l,

where d = |D[. Recall from (26) that the regular-
ized sparse kernel Koopman estimator is given by K. =

~ -1 <
(Cx x+el ) Cxy, defined using the sparse covariance and
the cross-covariance operators, that in turn can be written as

aXY :(I)XAa‘I)ny, éXX Z(I)XAQ(I))T(,
A, = diag (o), Apg = diag(8),
per (22) and (23). Define the Gram matrices

HS

where the third equality follows from the identity

(I+PQ)*P=PI+QP) " (35)
Consider the finite dimensional matrix
(AsGxx +el) " Ay Gyx == TGyx (36)

T

From [5, Proposition 3.1], we get that an operator of the form
K. = ®xY®{ has an eigenvalue A\ with the corresponding
eigenfunction

pale) = ¥(z)v,

if and only if v is a right eigenvector of TGy x associated with
the same eigenvalue. Such observation enables us to construct
eigenfuntions of /. from finite dimensional Gram matrices
G XX and GY X

[U(2)]); = w(ay, ), 1€, (37)

VI. A NUMERICAL EXAMPLE

We empirically evaluate the impact of dictionary sparsifica-
tion on the spectrum of the empirical kernel Koopman operator
for an unforced Duffing oscillator. The dynamical system of
the oscillator is described by Z = —§z — 2 (6 + az2). We
choose 6 = 0.5, 8 = —1, and o = 1. Figure 1 is an illus-
tration of the dynamics of the oscillator; this system exhibits
two regions of attraction, corresponding to two equilibrium
points (—1,0) and (1,0). To compute the eigenfunction of

-5 -1 0 1 2

X

Fig. 1: Two trajectories of the Duffing oscillator that converge to two
different equilibrium points.

the sparse kernel Koopman operator, we sampled 1600 ini-
tial points z = [z, Z] that are uniformly distributed over
(2,2) € [-2,2] x [—2,2]. We then numerically integrate x
one step forward with a time interval of At = 0.25 to get
y. Hence, our dataset consists of 1600 sampled (x,y) pairs.
We use a combination of three Gaussian kernels & (z,y) =

Gxx =PxPx,Gyx = Oy Dx. 33 z—y| z—y|? z—y|?
XX X )i v v 53) %exp <_‘2|><1.14/1!2> —l—l%exp (_!xoigz) —l—%exp (_QXO.%‘EL2
Using this notation, rewrite /. as and construct four sparse dictionaries with four different
R R —1 values of 7. For each dictionary, we plot heat-maps of the
Ke = (CX x tel ) Cxy leading eigenfunction of the approximate embedded Koopman
_ T -1 T operator in Figures 2b, 2a, 2c¢ and 2d, using the procedure
o ((I)X Ap®x +d) (I)_)iAO‘(I)Y outlined in Section V. Upon decreasing ~, the dictionary
=dy (A/g(b; Py + 51) Aaq); (34) becomes more sparse (with less |D|). As shown in Figures 2b,
— Dy (AsGxx +¢ I)—l A, (I);E 2.a 2.1nd 2c, .the resulting f?igenfunctions accurate!y reveal the
distinct regions of attractions. The characterization becomes
T T less sharp with lower values of ~. In Figure 2d, we plot the
= Ox TPy, leading eigenfuntion obtained with v = 0.6. Evidently, it fails
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to accurately capture the region of attraction. In other words,
we lose useful information of the nonlinear dynamics in this
case, as we “throw away” too many points with this low a

value of ~.
2 2
0.06 0.06
1 0.05 1 0.05
0.04
0.04
0 o]
0.03 0.03
] 0.02 71 0.02
,2 N
2 -1 0 1 2 -2 -1 0 1 2
(b) |D| = 952,y = 0.963

(@) |D| = 1354,y = 0.968

0.05 0.05
1 0.04
0.04 ' l 0.03
0 '
0.03 0.02
-1
0.01
0.02
-2
-2 -1 0 1 2

(©) |D| = 760,y = 0.955 () |D| =274,y =06

Fig. 2: Plot of the leading eigenfunction of the empirical embedded
Koopman operator with coherency-based sparsification of data.

We remark that we set ¢ = 10719 x m~%2. We construct D
in an online fashion, following the procedure in [22, Section
4.3]. Suppose at time ¢ 4 1, we have collected a y-coherent
dictionary D, with index set Z; and are presented with a new
sample (241,Ye41). If (@441,9141) satisfies the coherence
condition (21), we update the dictionary by including the new
pair D1 = Dy U {(2¢41,Yt+1}- Otherwise, we dismiss the
candidate data pair. We remark that our bound in Theorem
1 applies to the online setting as it only requires that the
off-diagonal entries of the dictionary ultimately satisfy the
coherence condition in (21).

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present a sparse learning approach for
transfer operators that interact with RKHS. We analyze sample
complexity for coherence-based sparsification and illustrate its
efficacy empirically.

There are a number of interesting directions for future
research. First, we want to extend our results to the case where
samples are obtained from a continuous trajectory. In such
settings, one cannot treat the samples as being independent
and identically distributed, and requires a different analysis
such as using mixing conditions. Second, we want to explore
the use of sparse kernel learning of generators for these
operators for continuous-time dynamical systems. Third, we
aim to analyze the efficacy of our sparse learning framework
to diverse applications, such as model order reduction and
uncertainty propagation.
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