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Abstract—Energy consumption and system latency in memris-
tive crossbar arrays become increasingly significant, especially
for the ultra-high density memristor based DNN accelerator. A
solution is presented in this paper for improving energy efficiency,
meanwhile heightening the performance of the DNN accelerator.
Specifically, a pulse truncation (PT) method is proposed to reduce
number of pulses and not change the original pulse width in
every weight update. The DNN accelerator with the PT method
is implemented and evaluated based on the fabricated memristor
with the active layer - Silver (Ag) and Silicon (Si) and its tested
current-pulse characteristics. Different DNN algorithms with
various architectures are employed. The experimental results
indicate that the PT method cannot only effectively avoid uneven
pulse distributions, but also save the writing energy of crossbar
array by 8.29%-26.87% and reduce the writing latency by
30%-48%. Finally, considering non-ideal features of memristors,
it concludes that even with the significant nonlinearity, many
variations, failure rates, and aging effect, the PT method is still
much effective.

Index Terms—DNN accelerator, memristor, energy, latency,
accuracy

I. INTRODUCTION

Memristor is a emerging device with a simple three-layer
structure that can achieve analog operations to exploit multi-
level conductance states by external incentive [2]. Therefore,
memristors are suitable for the hardware design [3] to enable a
Deep Learning Neural Networks (DNNs) [4]. However, same
with the CMOS (Complementary metal–oxide–semiconductor)
circuit [1], [5], [6], [32]–[34], the high-performance function-
ality of memristor-based DNN accelerator translates into high
energy density and reduced reliability. What is more, according
to the main mechanism of the change of resistance [7], the
writing process of a memristor consumes much more energy
than the reading process, thereby becoming dominant in the
total energy consumption during the training process [8]–[10].
In order to investigate the energy consumption for memristor
arrays in the DNN accelerator, the physical modeling of
memristor cells, and the energy effects induced by the self-
heating effect have been investigated [9]–[14]. With some
practical guides given for optimization of energy consumption
Sun et al. [11] and Wang et al. [12], [14] propose improved
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cross array structures. In [13] a software-based writing re-
arrangement algorithm is proposed to implement the parity
rearrangement coding scheme to alleviate the influence of
energy consumption and utilize it at the hardware level for
different applications.

In this paper, we deal with the energy efficiency problem
of memristor-based DNN accelerators by a pulse truncation
(PT) method, that compresses the number of pulses without
computation overhead to give a feasible solution in practice.
Specifically, this paper makes the following contributions: 1)
The PT method makes the DNN accelerator more energy-
efficient and faster. 2) The PT method compresses the number
of pulses for each update step. Hence, in each writing of
weight updating, the PT method avoids intensive pulses. 3)
By applying the PT method, the writing latency decided by
the maximum number of pulses is significantly reduced. 4)
The nonlinearities, variations, failures, and aging effect of
the memristor are considered in experiments to evaluate the
proposed PT method.

II. BACKGROUND

The memristor can enable DNN accelerator through the
efficient vector-matrix multiplications. The conductance of a
memristor with multi-level [15], [17], is increased when it
is stimulated by a positive pulse. This increasing process is
named as long-term potentiation (LTP) [30], [32]. Conversely,
the long-term depression (LTD) is to decrease the conductance
by a negative pulse [30], [32].

III. METHODOLOGY

A. Pulse truncation (PT) method

In the memristor-based DNN accelerator, the weight change
that is calculated by algorithms is translated into number
of pulses to update the conductance of a memristor. At the
beginning of the training, a drastic change in conductance
consumes large energy in corresponding memristors. Also,
only the corresponding memristors will update in the training.
Inevitably, this will lead to uneven pulse distributions in
an entire crossbar array. Additionally, the maximum number
of pulses decides the writing latency in the update stage
in one iteration. In order to save energy, reduce writing
latency, and organize the timing, a universal PT method in the
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memristor-based DNN accelerator is proposed in this paper.
The traditional system originally has writing pulses whose
widths are appropriate and identical. The number of pulses
in each update process is directly converted from algorithms.
The proposed PT method, instead of using the pulses that
are directly converted from algorithms in each iteration, only
applies 1 pulse and keeps the original width of writing pulses
[32]. As shown in Fig. 1, the multiplexers get the values of
weight change that are calculated by arithmetic logic units
(ALU) as control signals. Then multiplexers select reference
voltage to transmit signals to pulse generators for generating
1 writing pulse when control signals are enabled. The enabled
signal means the corresponding memristor needs to be updated
no matter how large the weight change is. Therefore, the PT
method compresses the number of the pulses to one at each
updating process so that the update time in different iterations
is the same. Note that, with the PT method, the learning
slows down a little bit at the beginning of the training. This
is because more truncation happen at the beginning of the
training and the PT method compresses the number of pulses
to 1. But, the weight update still keeps in the direction of
the algorithm convergence [16], [17]. What’s more, according
to the given feature of stochastic gradient descent (SGD)
algorithms, the accurate and large update without the PT
method at the beginning of the training will make the learning
jump over minimum [17]. Therefore, the PT method seems to
slow down the learning for every weight update, but in fact it
has an advantage for decreasing the overall system latency by
effectively producing a smoother convergence of the training
and reducing the entire training latency that is discussed in
Section IV-B.

Fig. 1. Circuit design of the PT method.

B. Evaluation and working flow

In order to verify the proposed PT method, the fabricated
memristor with Silver (Ag) and Silicon (Si) structure and
tested current-pulse characteristics are utilized. As shown in
Fig. 2, the curves indicates that the memristor is programmed
by consecutive 100 identical positive pulses followed by con-
secutive 100 identical negative pulses [22]. The conductance
is measured at 1 V just after each programmed pulse and
the read current is plotted. Also, NeuroSim platform [17] is

Fig. 2. Memristors response to pulse stimulates.

performed to emulate recognition scenario with the Modified
National Institute of Standards and Technology (MNIST)
handwritten database [18] and CIFAR-10 database. In this
platform, each training runs up to 125 epochs. Due to the
online learning mechanism [18], the DNN accelerator can
learn the feature from input data at each epoch. The hardware
working flow of the PT method for one epoch is shown in
Fig. 3. 1) Before the training, all weights are initialized to
randomly distribute the conductance of untrained memristors.
2) The DNN accelerator randomly selects one image from
the database to do forward propagation and back propagation,
and then gets weight change information (∆weight). 3) The
PT method is applied to truncate the number of pulses to
1. 4) The DNN accelerator generates 1 updating pulse for
weight updating. 5) The DNN accelerator uses 1 pulse to
update the conductance of the memristor. 6) The 2-5 steps are
repeated until the DNN accelerator trains 8,000 images and it
runs the test process. Finally, the above procedures except for
the step 1 will repeat 125 times that is 125 epochs including
1,000,000 training times. Note that, the PT method only adds
multiplexers into the original DNN accelerator, as shown in
Fig. 1.

IV. RESULTS AND DISCUSSIONS

In order to verify the proposed PT method to reduce the
energy, decrease latency, and heighten the reliability of a DNN
accelerator in a hardware implementation, a comprehensive
experiments has been performed. Five different algorithms
including SGD, Momentum, Adaptive Gradient (AdaGrad),
Root Mean Square Prop (RMSProp), and Adaptive Moment
Estimation (Adam) [16] are used in experiments, where the
pulse number of the PT method is truncated to 1.

A. Energy consumption
As for the DNN accelerator, the energy consumption is

mainly dynamic energy (i.e., the current flow through mem-
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Fig. 3. Working flow of system with the PT method in one epoch.

ristors). The energy consumption on the selected memristor at
the weight increase/decrease process is calculated as [18]

Ecell = U2
WNTp/R

UW and R are the write voltage for weight increase/decrease
and the resistance of a memristor. N and Tp are the number of
applied write pulses and the pulse width. Besides memristors,
the dynamic energy consumption on the metal wire is also
calculated and included. Then, the total energy consumption
for a memristor-based DNN accelerator can be estimated as
the sum of the energy consumption of memristor arrays and
sub-circuit modules.

What is more, in the DNN accelerator, the total energy
consumption includes reading and writing energy consump-
tion. The reading energy is determined by the size of the
crossbar array and the number of total iterations. According
to a given crossbar array in our experiments including 41,000
memristors, the reading energy keeps the same - 0.42 nJ
for each iteration. Also, the reading energy is usually much
smaller than writing energy. It has two reasons: 1) the number
of pulses used for the reading is less than the writing; and
2) voltage of reading pulse is much lower than the voltage of
writing pulse [8]. Thus, as the result shown in Table I, the
DNN accelerator consumes less writing energy with the PT
method than that without the PT method. The writing energy
reduction is from 8.29% to 26.87%. Furthermore, RMSProp
realizes maximum energy saving as 26.87%.

TABLE I
WRITING ENERGY OF DIFFERENT ALGORITHMS

Algorithm Without PT (mJ) With PT (mJ) Energy Saved (%)
SGD 6.20 5.35 13.71

Momentum 6.29 5.28 16.06
AdaGrad 3.86 3.55 8.29
RMSProp 17.12 12.52 26.87

Adam 11.75 9.39 20.08

Table II shows inference accuracies of five algorithms. Be-
cause the systems are evaluated based on real device involved

platform, all accuracies range from 91% to 95%, which are
typical accuracies reported in [18], [19], [22]. Four of five
algorithms realize the increased accuracy. Only the AdaGrad
algorithm induces accuracy drop, but it is just 1.07%, which
can be tolerant. Those results prove that the proposed method
can effectively reduce energy consumption during the training
process in the DNN accelerator without much accuracy loss.

TABLE II
INFERENCE ACCURACY OF DIFFERENT ALGORITHMS (%)

Algorithm Without PT With PT Fluctuation
SGD 91.94 92.82 +0.96

Momentum 93.13 93.65 +0.56
AdaGrad 93.29 92.29 -1.07
RMSProp 93.63 94.48 +0.91

Adam 94.22 94.73 +0.54

TABLE III
INFERENCE ACCURACY OF DIFFERENT ALGORITHMS FOR 1ST IMAGE AND

1ST EPOCH (%)

Algorithm 1st image 1st epoch
without/with PT without/with PT

SGD 14.83/14.75 70.40/71.78
Momentum 14.83/14.75 76.89/72.44

AdaGrad 12.90/14.74 70.08/84.02
RMSProp 11.28/14.74 79.80/82.95

Adam 12.48/14.76 83.41/83.41

Fig. 4. Inference accuracy with epoch numbers.

Fig. 5. Comparsion for writing latency.

B. Latency of writing process

As for the training stage, the latency of the memristor-
based DNN accelerator includes reading and writing latency.
For a given DNN structure, every iteration has stable reading
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TABLE IV
WRITING ENERGY AND INFERENCE ACCURACY WITH NONLINEARITY

NLa Writing energy Writing energy Energy saved Inference accuracy Inference accuracy
(LTP/LTD) without PT (mJ) with PT (mJ) (%) without PT (%) with PT (%)

0 / 0 3.86 3.55 7.98 93.29 92.29
1 / -1 4.65 4.03 13.28 92.19 91.96
2 / -2 4.62 4.20 9.11 89.08 88.29
3 / -3 4.75 4.05 14.72 84.63 86.73

aNL represents the value of nonlinearity.

latency since the process of matrix-vector multiplication is
performed using a parallel reading strategy. However, the
system writes its weights row by row. Writing latency at each
row is determined by the maximum number of writing pulses.
For example, assumed the writing latency is 5 pulses without
the PT method for the selected row, but it is only 1 pulse
with the PT method, reducing the latency of pulses by 80%.
In some extreme cases, suppose the 1 pulse change 1 unit of
conductance for a memristor, and the maximum conductance
is 200, theoretically, the maximum number of the needed
writing pulses without the PT method is 200. However, with
the PT method, the maximum number of writing pulses is
still 1, reducing the latency of pulses up to 99.5%. The total
normalized writing latency after 125 epochs without/with the
PT method is shown in Fig. 5. They are decreased by 30%-
48% for five algorithms, respectively. Thus, the PT method
effectively reduces writing latency. Additionally, because of
the PT method, every iteration has the same number of writing
pules, the timing regularity of the system and the reliability
of the system is significantly improved.

C. Nonlinearity and variation of memristors

If memristor is an ideal device, the conductance of a
memristor will update proportionally to the number of input
pulses. However, in reality, such a change is nonlinear [19].
In our experiments, LTP and LTD are labeled from +3 to -3
[19], [20] for nonlinearity metrics, which indicates the curve
deviates from the ideal device LTP=LTD=0. The + and -
signs are merely to label LTP and LTD, respectively. Taking
the SGD algorithm as an example, the total writing energy
without/with the PT method is listed in Table IV. The inference
accuracies nearly keep same. But, writing energy without the
PT method is higher than that with the PT method. Energy
reductions are up to 14.72%. Thus, even with the nonlinear
property of memristors, the PT method still effectively reduces
writing energy.

What is more, variations for ON/OFF ratio, minimum and
maximum conductance, cycle-to-cycle, and device-to-device
always exist in the memristor-based DNN accelerator. To
further verify the PT method, AdaGrad algorithm is taken as
an example and investigated with these variations following
standard/Gaussian distribution N (µ, σ). For Variations 1 and
2 in Table V, ON/OFF ratios are configured as 17 and 15. σ
of the minimum conductance, maximum conductance, device-
to-device (subjects to N (NL, σ) distribution), and cycle-to-
cycle variation are set to 5.0%, 5.0%, 0.5, 1.0%, and 15.0%,

15.0%, 1.4, 2.5%, respectively [20]. Table V lists results of
experiments under different circumstances. From Table V, it
concludes that the PT method is still efficient to reduce energy
consumption and writing latency in the DNN accelerator, even
with many variations.

TABLE V
ENERGY, ACCURACY, AND LATENCY WITH VARIATIONS

Variation 1 Variation 2
without/with PT without/with PT

Writing Energy (mJ) 3.9 / 3.5 3.8 / 3.2
Inference accuracy (%) 91.9 / 90.6 86.1 / 82.4

Writing Latency (normalized) 1 / 0.7 1 / 0.6

TABLE VI
INFERENCE ACCURACY AND STANDARD DEVIATION WITH DIFFERENT

FAILURE RATES

Meana Standard deviationa

Failure Rate Without PT With PT Without PT With PT
5% 91.7% 92.0% 0.0050 0.0039

10% 91.0% 91.4% 0.0058 0.0044
15% 88.5% 89.6% 0.0071 0.0047

aMean and Standard deviation in 500 random cases.

D. Failure and aging effect

Typically, the failure rate <10% is required in manufacture
[24]. In order to evaluate the DNN accelerator with the
influence of failure, 5%-15% of the fault in the crossbar array
are considered, as shown in Fig. 6 [25]. Fault memristors are
placed at random positions in the crossbar array. The fault
ratio of the stuck at 0 and 1 is 1:5.2 [24]. Taking the SGD
algorithm as an example, Table VI lists the accuracy with
the failure. From results of the mean and standard deviation
that are obtained from 500 random cases of each failure rate,
the DNN accelerator with the TP method still has accuracy
improvement as compared with that without the TP method.

Aging effect also exists in memristor array. After a given
times of programming, the tunability of conductance in a
memristor deviates from the expected state, which is named
aging effect, and it limits the lifetime of the DNN accelerator
[26]. The conductance is assumed to drift towards different
final states, or randomly drift, based on different various drift
rates, which are equivalent to conductance drifts different
amounts over 10 years, respectively [27]. Taking the SGD
algorithm as an example, the accuracies with the aging effect
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is shown in Fig. 7. The parameters regarding precision (P),
recall (R), and F1 score are listed in Table VII.

Fig. 6. 5% Fault memristors in crossbar array.

Fig. 7. Inference accuracy with different drift ratios

TABLE VII
PARAMETERS REGARDING PRECISION (P), RECALL (R), AND F1

Without PT With PT
Class P R F1 P R F1

0 0.742 0.956 0.836 0.812 0.945 0.874
1 0.628 0.990 0.768 0.753 0.990 0.856
2 0.727 0.806 0.765 0.740 0.850 0.791
3 0.805 0.784 0.794 0.781 0.665 0.719
4 0.630 0.764 0.690 0.811 0.797 0.804
5 0.840 0.577 0.684 0.789 0.609 0.687
6 0.770 0.863 0.814 0.923 0.864 0.893
7 0.890 0.714 0.792 0.832 0.791 0.811
8 0.887 0.507 0.645 0.843 0.633 0.723
9 0.810 0.449 0.578 0.757 0.798 0.777

Avg. 0.773 0.741 0.737 0.804 0.794 0.793
a0.4 conductance drift ratios.

In addition, the endurance of a memristor is one limitation
for high frequency writing in a DNN accelerator [28], [29].
The PT method extremely saves the number of writing pulses,
as shown in Fig. 5.

Therefore, the proposed PT method is still effective with
failure and aging circumstances and benefits the cycling en-
durance performance of a memristor.

E. PT method with different architectures and database
The PT method for different architectures and database is

also considered. Taking SGD algorithm as an example, Fig. 8

shows different hidden layers of DNNs. As expected, the infer-
ence accuracy with the PT method is higher than that without
the PT method. However, the leakage power is increased
when enlarging hidden layer. The leakage power with the PT
method is a little higher (<10%) than that without the PT
method because multiplexors are added. Furthermore, VGG-8
architecture and CIFAR-10 database is also used to verify the
PT method as listed in Table VIII. The accuracy difference
without/with the PT method is as small as 0.8%. Therefore,
the PT method does not much hurt inference accuracy [23].
However, as expected, the PT method respectively reduces
latency up to 46.00% and energy consumption up to 16.67%
(Latency is normalized to that without the PT method).

TABLE VIII
ENERGY, ACCURACY, AND LATENCY WITH VGG-8 AND CIFAR-10

Accuracy Latency Energy
With TP method 90.30% 0.54 0.25J

Without TP method 91.10% 1.00 0.30J
Difference 0.80% 46.00% 16.67%

Fig. 8. Inference accuracy and leakage power with different hidden layers.

F. Comparison with the-state-of-art

The proposed PT method is a efficient method for the high
performance and low energy online learning hardware design.
As listed in Table IX, as compared with the state-of-art, the
PT method does not need additional materials and algorithms
to save energy.

TABLE IX
COMPARISON WITH THE STATE-OF-ART

Items [9] [11] [12] [13] [21] This work
Ia × × ×

√
×

√

Ib
√ √ √

×
√ √

aWithout new material or structure.bWithout extra algorithm.
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CONCLUSION

In this paper, the PT method is proposed to improve energy
efficiency and timing regularity of the memristor-based DNN
accelerator, and it is verified using the fabricated device and
NeuroSim platform (Device and NeromSim are detailed in
Section III-B). Different with the traditional algorithm-based
technology, the PT method combines hardware and algorithm
implementation to optimize the pulse distributions and energy
consumption in the system, avoiding additional complex pe-
ripheral circuits. Specifically, it significantly reduce number
of pulses, but not change the original pulse width in every
weight update. DNN accelerator with different architectures
and algorithms under nonlinearities, variations, failures, and
aging effect have been evaluated. It concludes: 1) The PT
method realizes low energy consumption. 2) Since the pulse
number for each weight update is truncated to 1, the PT
method effectively reduces writing latency. 3) The PT method
also improves timing regularity. Furthermore, the PT method is
a general and adaptive method for any memristor-based DNN
accelerator.
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