2021 IEEE Symposium Series on Computational Intelligence (SSCI) | 978-1-7281-9048-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/55CI50451.2021.9660093

Incremental and Semi-Supervised Learning of
16S-rRNA Genes For Taxonomic Classification

Emrecan Ozdogan Norman C. Sabin Jr.
Electrical and Computer Eng. Electrical and Computer Eng.
Rowan University Rowan University
Glassboro, NJ, USA Glassboro, NJ, USA

ozdoga67 @rowan.edu sabinn49 @students.rowan.edu

Mali Halac Thomas Coard

Electrical and Computer Eng. Electrical and Computer Eng. Argonne National Labs

Drexel University
Philadelphia, PA, USA
mh3636 @drexel.edu

Drexel University
Philadelphia, PA, USA
tgc37 @drexel.edu

Gail Rosen
Electrical and Computer Eng.
Drexel University
Philadelphia, PA, USA
glr26 @drexel.edu
ORCID ID: 0000-0003-1763-5750

Abstract—Genome sequencing generates large volumes of data
and hence requires increasingly higher computational resources.
The growing data problem is even more acute in metagenomics
applications, where data from an environmental sample include
many organisms instead of just one for the common single
organism sequencing. Traditional taxonomic classification and
clustering approaches and platforms — while designed to be
computationally efficient — are not capable of incrementally
updating a previously trained system when new data arrive,
which then requires complete re-training with the augmented
(old plus new) data. Such complete retraining is inefficient and
leads to poor utilization of computational resources. An ability to
update a classification system with only new data offers a much
lower run-time as new data are presented, and does not require
the approach to be re-trained on the entire previous dataset. In
this paper, we propose Incremental VSEARCH (I-VSEARCH)
and its semi-supervised version for taxonomic classification, as
well as a threshold independent VSEARCH (TI-VSEARCH) as
wrappers around VSEARCH, a well-established (unsupervised)
clustering algorithm for metagenomics. We show — on a 16S
rRNA gene dataset — that I-VSEARCH, running incrementally
only on the new batches of data that become available over time,
does not lose any accuracy over VSEARCH that runs on the full
data, while providing attractive computational benefits.

Index Terms—Incremental clustering, taxonomic classification,
VSEARCH, 16S rRNA genes

This work is supported by National Science Foundation grant #1936782.

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

Thomas Gracie II1 Steven Portley
Electrical and Computer Eng. Electrical and Computer Eng.
Rowan University Rowan University
Glassboro, NJ, USA Glassboro, NJ, USA
tom.gracie.iii@gmail.com portleys4 @gmail.com

William Trimble Bahrad Sokhansanj
Electrical and Computer Eng.
Drexel University
Philadelphia, PA, USA
bahrad @molhealtheng.com
ORCID ID: 0000-0002-5050-5926

University of Chicago
Chicago, IL, USA
wltrimbl@uchicago.edu

Robi Polikar
Electrical and Computer Eng.
Rowan University
Glassboro, NJ, USA
polikar@rowan.edu
ORCID ID: 0000-0002-2739-4228

I. INTRODUCTION

Genetic sequencing involves reading and recording of the
base units of biological materials such as DNA, RNA, and
proteins. It is often used to identify and gain information
regarding the organisms being sequenced. The most common
methods of sequencing involve growing a single organism in
a mono-culture before extracting genetic materials [1]. This
process introduces limitations to both the types of organisms
that can be sequenced and the information that can be derived
from the sequencing.

Metagenomics is a field based on methods that involve
the genetic sequencing of environmental samples, which typi-
cally have large numbers of different organisms within them.
Metagenomics provide greater information related to the in-
teraction between organisms and their environment. Metage-
nomics has many practical applications, such as agriculture
and the study of gut microbiomes. Some crop responses to
disease, for example, could only be understood when the
present microorganisms are considered together, rather than
in isolation [1]. The same principles can be applied to the
bacteria communities living in the human gut, where complex
cross-species interactions can only be understood in the wider
context of the microbial environment.

Due to the heterogeneous nature of metagenomic sam-
ples, classification algorithms are often used to predict the
taxonomy of newly sequenced genetic material. Because of

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

the large volumes of data often produced in metagenomic
sampling, however, the computational costs of training these
algorithms can be extensive. The computational cost can be
particularly — and unnecessarily — high when algorithms must
be entirely retrained from scratch with all data accumulated
thus far just to incorporate new data, even if such new data
come from only a small number of organisms and resulting
in just a minuscule percentage of the previously generated
dataset. Incremental learning, which allows an algorithm to
adapt to the new information by training only on the new
data, can be useful in this context. In this proof-of-concept
effort, we introduce I-VSEARCH, an incrementalized version
of VSEARCH, a popular open source metagenomics tool for
alignment and clustering of nucleotide sequence data, such as
the 16S rRNA genes.

II. BACKGROUND
A. Genomic Clustering Algorithms

We start with CD-Hit, a fast comparison and clustering
algorithm for nucleotide and protein sequences. CD-Hit is a
greedy algorithm that starts by comparing the longest sequence
to an initially empty, but increasingly sorted collection of seeds
that represent the centroid of a cluster. If the query sequence
is similar enough (with respect to overlapping number of nu-
cleotides) to a seed by common word count, then the sequence
is placed within the cluster that the seed is representing, other-
wise it becomes the seed for a new cluster [2]. USEARCH is a
tool similar to CD-Hit that provides advantages such as higher
speeds and less memory usage. It is able to do this by first
sorting based upon similar word count, rather than length, and
terminating early knowing that the chance for a match rapidly
drops as you continue [3]. VSEARCH, the algorithm used in
this paper, is a freely available and open-source version of
USEARCH. VSEARCH is very similar to USEARCH, except
that it “performs optimal global sequence alignment of the
query against potential target sequences, using full dynamic
programming instead of the seed-and-extend heuristic used by
USEARCH?” [4], and contains other metagenomic tools such
as chimera detection and dereplication'.

There are other platforms, particularly well-suited for
metagenomics applications, such as MG-RAST? [5] and DI-
AMOND? [6], both of which use a similar clustering and
alignment procedures as VSEARCH, though they are primar-
ily intended for protein sequences. While in this proof-of-
concept work, we focus on 16S rRNA nucleotide data using
VSEARCH, both MG-RAST and DIAMOND can also benefit
from the concepts introduced here, as neither is capable of
processing data incrementally.

B. VSEARCH Clustering

VSEARCH primarily consists of two steps, a pre-processing
step that includes sorting and alignment, followed by a clus-
tering step.

'VSEARCH can be downloaded from https:/github.com/torognes/vsearch
2MG-RAST is available at https://www.mg-rast.org/
3DIAMOND can be downloaded at https://github.com/bbuchfink/diamond

In the pre-processing (sorting and alignment) step, all
sequences are first sorted from longest to shortest based on
sequence length. Then, sequences are aligned to evaluate their
similarities, using the Needleman-Wunsch global alignment
algorithm. Needleman-Wunsch method equalizes lengths of
the sequences by carefully placing gaps to help align similar
sections of different sequences. In the clustering step, once all
sequences are sorted and aligned, VSEARCH compares each
sequence to the representative sequence, or the seed, of each
cluster and computes a similarity score. VSEARCH starts with
an initially empty list of clusters, and creates new clusters as
needed. The algorithm’s primary free parameter is its similarity
threshold, used to determine when a new cluster is to be
created. For each query sequence, if it finds a cluster whose
seed is similar enough to exceed the similarity threshold, then
the query sequence is added to that cluster. If such a cluster
does not exist, then the query sequence becomes the seed of
a new cluster and is added to the list of clusters. In other
words, the first sequence, by definition the longest in length
after sorting, is considered the seed of the first cluster. The next
sequence is compared to this seed. If the similarity score of
the second sequence and the seed is higher than the similarity
threshold, it joins the first cluster, otherwise, it becomes the
seed of its own new cluster. The next sequence is compared to
the existing cluster seeds, and the process is repeated until all
sequences have been clustered. Pseudo-code for this process
is given in Algorithm 1. A toy example is illustrated in Fig.1.
It is important to note that only the sequences themselves are
used for clustering, and the labels for those sequences — even
if they are available — are not used. This process is therefore
completely unsupervised; the sequence ID, taxonomic ranks
or any other label that may be available are not used by
VSEARCH. It is also important to note that sequences are not
compared to all cluster seeds. As soon as a query sequence
finds a cluster seed that is within the similarity threshold, the
searching stops and the query sequence joins that cluster -
such an approach considerably enhances the run-time speed
of VSEARCH over other clustering algorithms at the cost of
a possible small drop in accuracy.

III. PROCEDURE

We have developed three different modifications to the
original VSEARCH algorithm to address three common prob-
lems, namely, allowing the algorithm to learn incrementally,
allowing the algorithm to learn labels in a semi-supervised
manner, and allowing the algorithm to perform even when the
optimal similarity threshold is unknown. These algorithms are
described below.

A. I-VSEARCH: Incremental VSEARCH

Looking at the VSEARCH algorithm processes in detail,
we noticed that — while the algorithm itself is not capable of,
nor was intended for incremental learning — its underlying
clustering algorithm can be easily extended to incremental
processing with suitable modifications. This conclusion is
based on a fundamental observation of VSEARCH: when

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 VSEARCH algorithm

Inputs: D: dataset consists of sequences {Sy, . .
¢: Threshold value

'7SJ}7j e J;

1: C, X <« Initialize empty cluster set and cluster seed set.

2: Dsort D (Sort sequences from longest to shortest)

3: for each sequence j € D do

4. for each cluster i € C do

5: similarity = f(S;,&;) (Calculate similarity be-

tween sequence and cluster seed)

6: if stmilarity > ¢ then

7: Sequence S; joins C;
break

8: else

9: Sequence S; creates a new cluster Cpeqp

10: Xnew < S; (Sequence becomes the seed of the
cluster)
break

11: end if

12 end for

13: end for

Output: C, cluster set, X, set of cluster seeds

Cluster 1

@

Cluster Representatives (“Seeds”)

Cluster 2

Fig. 1. VSEARCH clustering is entirely unsupervised. Here, larger circles
represent clusters, each having at least a seed — indicated in capital letters as
(A), (B) and (E) — and possibly other sequences — indicated in lower case
letters as (c), (d), (f), (g), and (h).

a query sequence searches for a cluster to join, it is only
compared to the seeds of each cluster; the other sequences
that have previously joined that cluster are never used, pro-
cessed or seen by the algorithm, a deliberate design decision
that provides significant computational savings. However, this
observation also means that future runs of VSEARCH only
need to use the seeds of the clusters to be able to pick up
where the previous run left off, so long as some additional
bookkeeping is maintained. Giving VSEARCH the capability
to learn incrementally primarily requires storing, restructuring
and then reordering of its previously determined cluster seeds.
We refer to our modified algorithm that has this incremental
learning capability as Incremental VSEARCH, or simply as
I-VSEARCH.

Given a set of batches of data that we wish to cluster
incrementally using I-VSEARCH, we process batches one by
one. First, the current batch is sorted from longest to shortest,
and sequences are clustered using standard VSEARCH. Then,
after each batch, the seeds of clusters are saved to transfer
current state of knowledge to the next step. These seed
sequences from the previous batch are added to the beginning
of the sorted next batch before processing. Since VSEARCH
processes each sequence sequentially, it can be guaranteed that
the seeds from the prior batch will be retained as seeds in the
next run of incremental I-VSEARCH. The algorithm can then
continue clustering from where it left off, as new data come
in, without needing to process the entire old data.

Algorithm 2 Incremental VSEARCH algorithm
Inputs: B = Bi,...,Bg: set of batches. Every batch By
consists of sequences {Sk1,...,Sks}, k€ K,j € J;
Xoiq: Previous cluster seeds(sorted); ¢: Similarity thresh-
old
for each batch k € K do
C, X < Initialize empty cluster set and cluster seed set.
Bkm B (Sort sequences from longest to shortest)
if ~ isempty(X,;4s) then
By < [Xo1a; Bi] (If cluster seeds from previous batch
exist prepend them to the new batch)
6: end if
7. for each sequence j € B, do
8
9

EANE - e

for each cluster i € C do
similarity = r_niJIn f(Skj, X;) (Calculate similarity
[4S]
between sequence and cluster seed)

10: if similarity > ¢ then
11: Sequence Sy; joins C;
break
12: else
13: Sequence Sy; creates a new cluster Cpeq
14: Xnew Skj (Sequence becomes the seed of
the cluster)
break
15: end if
16: end for
17: end for
18: Xorg +— X
19: end for

Qutput: C, cluster set, X, set of cluster seeds

In terms of computational savings, the ability to run
VSEARCH incrementally eliminates the need to run the algo-
rithm repeatedly on the same data, and provides considerable
savings over time. To illustrate, let us assume that running the
algorithm on a dataset of N sequences takes 7" seconds (where
we use time as a proxy to actual number of operations), and
later we receive a new dataset that also includes /N sequences.
Even if the complexity of the alignment / clustering algorithm
were linear, i.e., O(N), total run time using single batch
processing would be 37" (1" for the first run, 27" for the second
run with the newly expanded dataset). Using the incremental

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

approach, however, the total run time is only 27, i.e., only T’
seconds per dataset. If this scenario continued for K times, the
single-batch version would take K(KTH)T seconds, whereas
the incremental version would only take KT seconds. For
K = 100 batches, the difference is 50507 vs. 1007°, which
is illustrated in Fig.2 comparing the time consumption of
VSEARCH and I-VSEARCH to cluster the same amount
of increasing bathes of data. VSEARCH is typically around
O(N*'2) [7] rather than our assumption above to be O(N),
resulting in more dramatic savings in real world settings.

6000

—VSEARCH
— —I-VSEARCH
£5000
£
= 4000
c
=)
X 3000
o
2
T 2000
>
£
3 1000

0

0 20 40 60 80 100

Number of Batches (K)

Fig. 2. The cumulative run time of I-VSEARCH is linear, while that of
traditional VSEARCH is exponential. 7" is the nominal time for the algorithm
to run once on a dataset of size N sequences.

B. Semi-supervised I-VSEARCH

As indicated above, VSEARCH is a completely unsuper-
vised clustering algorithm. However, the sequences in refer-
ence databases always have labels, while most new experimen-
tal metagenomic sequences come without labels. In fact, some
of the new (unlabeled) sequences may be from previously
unknown organisms, for which no taxonomic label yet exists.
This setting calls for semi-supervised learning, where there is
small amount of labeled data and large amounts of unlabeled
data. There is also the additional complexity of some data be-
longing to new classes that are not yet determined, established
or named. To accommodate this very real-life scenario, we
took advantage of the availability of small amount of labeled
data, and we added a “semi-supervised learning” capability to
I-VSEARCH, as described below, in addition to incremental
learning capability.

Given that some of the sequences have labels that are known
to be correct (as they come from reference datasets), we can
use those labels to help label other sequences that fall into the
same cluster using majority voting. We then have the following
scenarios to consider: in any given cluster (i) there is only one
labeled sequence or all labeled sequences are of the same label
— in this case, all unlabeled sequences are labeled as the known
label; (ii) there are multiple labeled sequences with different
labels — in this case, unlabeled sequences are labeled with
the most common label i.e., using majority vote; (iii) there
are no labeled sequences, in which case the sequences are
given a temporary label ID, which is replaced with a true label
if or when a known label for that cluster becomes available
in a reference database. Fig. 3 illustrates the majority vote

labeling process, with clusters 2, 3, and 4 representing the
three scenarios listed above, whereas cluster 1 shows a cluster
of single sequence.

Cluster 1 Cluster 1

m‘

Cluster 2

Cluster 4 Cluster 4
B b

(b)

Fig. 3. (a) Clusters generated by VSEARCH, with unlabeled data; (b) Labels
provided by semi-supervised version of I-VSEARCH: if there are sequences
with different known labels in a cluster, a simple majority vote can be used
to label the unlabeled sequences with the most common label in the cluster.
It does not matter whether any of the labeled sequences is a seed sequence.
Seeds are represented with capitalized letters, sequences with labels are named
in bold and unlabeled sequences are represented with a “?”.

C. TI-VSEARCH: Threshold Independent VSEARCH

Choosing the value of a free parameter is often a tricky pro-
cess, one that requires care, as choosing the value incorrectly
can lead to poor performance. For VSEARCH the primary
free parameter is the similarity threshold. Fig. 4 illustrates
the risks of using such a single, global similarity threshold.
Here, sample sequences from Species 1 are represented in
blue, sample sequences from Species 2 are shown in green,
and samples of Species 3 are shown in red. If the similarity
threshold is chosen too high (too sensitive), the algorithm
provides a good fit to the tight Species 1 and Species 2 clusters,
however the larger cluster of Species 3 is broken up into
multiple clusters, possibly causing the algorithm to mislabel
the subsets of Species 3. On the other hand, if the threshold
is chosen too low (not sensitive enough), Species 3 sequences
are properly clustered, however, sequences in Species 1 are
clustered into the same cluster as Species 2, again resulting in
inaccurate clustering and subsequently inaccurate labeling.

e O

Fig. 4. (a) When the global threshold is too sensitive, a large single cluster is
broken up. (b) If the threshold is not sensitive enough, noisy data or unrelated
data may be incorrectly clustered.

To address this problem, we developed a threshold indepen-
dent semi-supervised version of our VSEARCH, referred to
as TI-VSEARCH. TI-VSEARCH is a hierarchical algorithm,
starting clustering with a less sensitive threshold. After the
first pass of a given dataset, TI-VSEARCH looks for impure
clusters, those whose content include labeled sequences from

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

more than one label (i.e., not all labeled sequences in the
cluster are of the same label). TI-VSEARCH then re-clusters
all of the data within each such impure cluster at a more
sensitive threshold and considers each of the new clusters as
sub-clusters. This process forms a tree of clusters and sub-
clusters, and is repeated until all clusters within the tree are
completely pure. Fig. 5 shows a condensed example of such
a tree, which is the result of larger natural clusters being
properly fit with a less sensitive threshold while naturally
smaller clusters that have been continually sub-divided.

75% Q Congmglbnclcr q?
o

85% Congregibacter

Fig. 5. TI-VSEARCH starts at a low threshold, and continues clustering at
higher thresholds until the cluster is pure or it runs out of a list of thresholds.

Fig. 6 shows the flow-chart of the TI-VSEARCH algorithm.
Sequences are added to the tree at its root node and propagated
down the tree. When a new batch of sequences is added to
any of the nodes, standard VSEARCH is run on the new batch
of sequences and any sub-clusters of previously labeled data
that already exist. All of the new data that joins one of the
previous sub-clusters become a new batch of sequences for
that sub-cluster, and the process repeats. If a sequence does
not join any of the previous sub-clusters, it becomes a seed
for a new sub-cluster.

Add new batch to root
node

Run VSEARCH using seeds of subclusters (if exists)
and old labeled data (if exists)

/ Forall clisters / No, increase threshold index

Is cluster pure?

Does cluster have any labeled sequence?

es
No

Return most common Return most common
label of parent label of cluster

Fig. 6. Flow diagram of the TI-VSEARCH algorithm.

Once new sequences join a sub-cluster, the sub-cluster is
purified. If a cluster contains labeled data from only one class,
then the cluster is considered pure. The cluster accurately
represents only that label, and no other action is required. If
there is more than one label in a cluster, then the cluster needs
to be subdivided further so that it can be purified. This is done
by repeating the above process while increasing the threshold.
Clusters that do not have any labeled data cannot be purified.

For prediction of query sequences, data are added to the tree
in the same way as labeled data, as described above. In this
case, when the sequence reaches a leaf of the tree, the label
of that cluster becomes the predicted label. If the cluster has
no labeled data, then typically the label of the parent cluster
is used, or it can be left unlabeled and the user is informed
that the algorithm cannot make a prediction.

The free parameters for TI-VSEARCH include taxonomic
depth and a list of thresholds that the user wishes to be
evaluated. The threshold list we use in our experiment is the
same as typical list of thresholds commonly used [75, 80, 85,
90, 93, 95, 97, 99]. Generally, higher thresholds require more
computation time because more sub-clusters are created, which
creates more nodes. A larger threshold list typically increases
the run time, but not for all nodes, since clustering for a node
may stop when purity is reached.

IV. RESULTS AND DISCUSSION
A. The RDP Dataset of 16S rRNA Genes

In this proof of concept study, we used the Training Dataset
No.14 from the Ribosomal Database Project (RDP) [8]. This
dataset consists of 10,679 16S rRNA sequences of Bacteria
and Archaea. These sequences are, on average, 1500 base-
pairs long, & several hundred base-pairs. The dataset contains
labels of sequences from the Domain to Genus levels, exclud-
ing Kingdom (6 levels of depth). Due to its very slow evolution
rate, 16S rRNA gene is suitable for determining phylogenetic
relations of species and clustering [9]. 16S rRNA genes are
popular biomarkers used by many studies because they are
highly conserved, and a natural starting point to incrementalize
(due to the millions of sequences from different organisms and
thousands of studies that use them).

As a reference database, all sequences in this dataset are in
fact labeled. Since VSEARCH is an unsupervised clustering
algorithm, the labels are not used in the standard algorithm.
In order to evaluate the semi-supervised nature of the I-
VSEARCH and TI-VSEARCH algorithms, we have kept the
labels of the 25% of the sequences, which then constituted
the training dataset. The labels for the remaining 75% of the
sequences were kept hidden from the algorithms, and these
labels were then used as a fest dataset to compute classification
accuracies.

B. VSEARCH and I-VSEARCH

Our first experiment was to verify that there is little or no
loss of accuracy with the incremental version of VSEARCH.
To do so, we divided the entire RDP dataset into five ap-
proximately equal partitions, each representing a batch of

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

data, with sequences in no particular order, that later become
available to the algorithm. Recall that 25% of this data have
labels available to be used in the semi-supervised stage of the
algorithm. We then ran VSEARCH on the entire (full dataset)
data in a single batch, as it is normally run. We have then run
I-VSEARCH with the 5 batches, sequentially feeding each
batch to I-VSEARCH in-order to obtain the final clusters.
We provided no access to the data from prior batches as I-
VSEARCH ran, except for the seeds as described above. We
have varied the similarity threshold from 75 to 97 %, and
tracked the labeling accuracy against the known labels (the
remaining 75% of the data) at each of genus, family, order,
class and phylum taxonomic levels. The results are shown in
Fig. 7 for each taxonomic level, comparing the classification
accuracy of the standard VSEARCH against the incremental
I-VSEARCH. We observe from this figure that there is no
loss of accuracy when we run I-VSEARCH incrementally,
as compared to VSEARCH, which had the luxury of having
access to the entire dataset at once.

1

o
)

Accuracy
o e
k- [«>)

0.2 Phylum ==Family
=—Class Genus
0 | | | —Order
75 80 85 90 95 100
Similarity Threshold
Fig. 7. Classification accuracy comparison between VSEARCH and I-

VSEARCH, where majority voting is used to assign labels to unlabeled
sequences. Straight lines show VSEARCH performance, whereas dashed lines
represent the incremental I-VSEARCH for each taxonomic level.

We also show in Table I the highest accuracies of both
methods and the similarity thresholds at which these highest
accuracies were observed.

TABLE I
HIGHEST ACCURACIES OF VSEARCH AND [-VSEARCH FOR DIFFERENT
TAXONOMIC LEVELS AND CORRESPONDING SIMILARITY THRESHOLDS IN
PARENTHESES.

Phylum Class Order Family Genus

I-VSEARCH |0.9732 (79)|0.9547 (84)|0.9063 (89)|0.8364 (92)]0.6432 (95)

VSEARCH [0.9719 (81)(0.9561 (85)|0.9090 (89)|0.8405 (92)|0.6375 (95)

The primary advantage of I-VSEARCH is, of course, the
ability to process data incrementally and sequentially, but
also to provide significant computational savings in doing
so. To obtain a quantitative measure on computational sav-
ings, we have also compared the two algorithms from a
run-time perspective. Since VSEARCH cannot natively run
incrementally, we wanted to compare how much of a run-time

gain [-VSEARCH provides running incrementally compared to
running VSEARCH on the union of all data available at any
given time — the only option available to VSEARCH when
new data become available. To do so, we ran VSEARCH
on the cumulative old+new data, each time a new dataset
arrived. On the other hand, Incremental VSEARCH was run
only on the new dataset with only cluster seeds from previous
run transferred with each new batch. Fig. 8 shows average
percentage time saved using I-VSEARCH over rerunning
VSEARCH at each of the similarity thresholds and taxonomic
levels — on the last (fifth) batch of the experiment. Time saved
in Fig. 8 is calculated as

tvSEARCH — tIVSEARCH
tvsEArRCH

TimeSaved = x 100

We observe that — regardless of the taxonomic level, I-
VSEARCH provides considerable computational savings, par-
ticularly at lower similarity thresholds due to number of
clusters being significantly fewer. As similarity threshold
increases, so does the number of clusters generated and
computational cost to make decisions. Recall that Fig. 8 shows
time savings at only one step (specifically, at the last of the
five batches). We note that increasing the number of batches
will only favor I-VSEARCH (as shown in Fig. 2), so in a real
world setting of continuously arriving datasets, the run-time
saving will accumulate and hence increase over time.

80

Time Saved (%)
N w B (&2 (2] ~
o o o o o o
I I I

=y
o

80 85 90 95
Similarity Threshold

~
&)

100

Fig. 8. Percentage time saved when I-VSEARCH used instead of VSEARCH
at different thresholds and taxonomic levels.

C. TI-VSEARCH

Fig. 9 compares the classification accuracies of threshold
independent VSEARCH (in blue), regular VSEARCH (in yel-
low) and I-VSEARCH (in purple) across different taxonomic
levels. It is important to note that the IV-SEARCH and V-
SEARCH results shown in Fig. 9 for each taxonomic level are
picked from their peak performances across all values of sim-
ilarity thresholds (from Table I), whereas the TI-VSEARCH
does not use any similarity threshold. We observe in Fig. 9 that
all performances of TI-VSEARCH are essentially identical
to those of V-SEARCH and IV-SEARCH. This observation
means that the peak performances of VSEARCH and IV-
SEARCH, tuned to the exact optimal threshold, is matched

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

by the performance of TI-VSEARCH, an algorithm that does
not depend or use such a threshold. In other words, TI-
VSEARCH effectively picks the optimal threshold (in fact,
series of thresholds) for the user.

1'\,

o
©

Accuracy
© o
~ oo

0.6 —Threshold Independent VSEARCH

VSEARCH
5 —I|-VSEARCH
Phylum Class Order Family Genus

Fig. 9. Performances of threshold independent VSEARCH compared to that
of VSEARCH and I-VSEARCH at different taxonomic levels when sequences
in unlabeled clusters receive their labels from a parent cluster.

Finally, we also note that in Fig. 9, a sequence that is placed
in a cluster with no label receives the label from its parent
node. We could choose to leave those sequences unlabeled,
and simply warn the user that those sequences are not given
a label. Those sequences would simply not be included in
the final accuracy computation, which would likely increase
the performance. Here, we choose to be more conservative
and report the accuracy of the algorithm as obtained by the
process described in Section 3.C.

V. CONCLUSIONS AND DISCUSSION

We have introduced three different modifications to the
popular VSEARCH algorithm that is commonly used for
metagenomic data clustering. These modifications results in
1) IV-SEARCH, an incremental version of VSEARCH that
can process different batches of data as they arrive without
using previously seen data, ii) a semi-supervised version of
IV-SEARCH that can actually label data using small amount
of labeled data in training, and iii) Threshold-Independent
VSEARCH that relieves the user from the tricky process of
choosing the optimal value of the similarity threshold.

I-VSEARCH showed essentially identical classification ac-
curacy as the traditional VSEARCH - despite processing the
data incrementally and without having the luxury of seeing all
accumulated data — while saving considerable computational
time across all taxonomic levels and all values of similarity
thresholds (with additional savings at lower similarity thresh-
olds). TI-VSEARCH is just as accurate as VSEARCH / I-
VSEARCH, and its built-in threshold optimization makes it
more practical to use over other versions. While I-VSEARCH
is fastest for the examination of a few threshold and taxonomic
level combinations, TI-VSEARCH is more suitable for large
optimization problems.

In this effort, we showed a common sequence clustering
algorithm can be incrementalized with no loss and consider-
able computational savings. Since this has been a proof-of-
concept study, we evaluated our approach on one particular

algorithm (VSEARCH), evaluated on one particular nucleotide
16S rRNA gene dataset. Our future work will include expand-
ing this analysis to other algorithms, platforms, and datasets,
including protein datasets. We will also investigate alternative
adaptations to TI-VSEARCH and use different levels of purity.
By allowing users to set the purity as a free parameter,
computation time could be further reduced by allowing a small
amount of impurity inside of clusters.

REFERENCES

[1] J. Handelsman, “Metagenomics: application of genomics to uncultured
microorganisms,” Microbiol. Mol. Biol. Rev., vol. 68, pp. 669-685, Dec
2004.

[2] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinformatics,
vol. 22, no. 13, pp. 1658-1659, 2006.

[3] R. C. Edgar, ”Search and clustering orders of magnitude faster than
BLAST,” Bioinformatics, Vol. 26, no. 19, pp. 2460-2461, 2010

[4] T. Rognes, T. Flouri, B. Nichols, C. Quince, and F. Mah, “Vsearch: a
versatile open source tool for metagenomics,” PeerJ, vol. 4, p. e2584,
Oct. 2016.

[5] F. Meyer, D. Paarmann, M. D’Souza, et al. "The metagenomics RAST
server — a public resource for the automatic phylogenetic and functional
analysis of metagenomes,” BMC Bioinformatics vol. 9, no. 386, 2009.

[6] B. Buchfink, C. Xie & D. H. Huson, “Fast and Sensitive Protein
Alignment using DIAMOND,” Nature Methods, vol. 12, pp. 59-60,
2015.

[71 A. Rubio-Largo, L. Vanneschi, M. Castelli, and M. A. Vega-Rodriguez.
”Reducing alignment time complexity of ultra-large sets of sequences,”
Journal of Computational Biology, vol. 24, no. 11, pp. 1144-1154, 2017.

[8] J.R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C.
T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. ”Ribosomal
Database Project: data and tools for high throughput rRNA analysis,”
Nucleic Acids Research, vol. 42, No: D1(Database issue), pp. D633-
D642, 2014.

[9] C. R. Woese and G. E. Fox, "Phylogenetic structure of the prokaryotic
domain: the primary kingdoms.” Proceedings of the National Academy
of Sciences, vol. 74, pp. 5088-5090, Nov 1977.

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

