
Incremental and Semi-Supervised Learning of

16S-rRNA Genes For Taxonomic Classification

Emrecan Ozdogan

Electrical and Computer Eng.

Rowan University

Glassboro, NJ, USA

ozdoga67@rowan.edu

Norman C. Sabin Jr.

Electrical and Computer Eng.

Rowan University

Glassboro, NJ, USA

sabinn49@students.rowan.edu

Thomas Gracie III

Electrical and Computer Eng.

Rowan University

Glassboro, NJ, USA

tom.gracie.iii@gmail.com

Steven Portley

Electrical and Computer Eng.

Rowan University

Glassboro, NJ, USA

portleys4@gmail.com

Mali Halac

Electrical and Computer Eng.

Drexel University

Philadelphia, PA, USA

mh3636@drexel.edu

Thomas Coard

Electrical and Computer Eng.

Drexel University

Philadelphia, PA, USA

tgc37@drexel.edu

William Trimble

Argonne National Labs

University of Chicago

Chicago, IL, USA

wltrimbl@uchicago.edu

Bahrad Sokhansanj

Electrical and Computer Eng.

Drexel University

Philadelphia, PA, USA

bahrad@molhealtheng.com

ORCID ID: 0000-0002-5050-5926

Gail Rosen

Electrical and Computer Eng.

Drexel University

Philadelphia, PA, USA

glr26@drexel.edu

ORCID ID: 0000-0003-1763-5750

Robi Polikar

Electrical and Computer Eng.

Rowan University

Glassboro, NJ, USA

polikar@rowan.edu

ORCID ID: 0000-0002-2739-4228

Abstract—Genome sequencing generates large volumes of data
and hence requires increasingly higher computational resources.
The growing data problem is even more acute in metagenomics
applications, where data from an environmental sample include
many organisms instead of just one for the common single
organism sequencing. Traditional taxonomic classification and
clustering approaches and platforms – while designed to be
computationally efficient – are not capable of incrementally
updating a previously trained system when new data arrive,
which then requires complete re-training with the augmented
(old plus new) data. Such complete retraining is inefficient and
leads to poor utilization of computational resources. An ability to
update a classification system with only new data offers a much
lower run-time as new data are presented, and does not require
the approach to be re-trained on the entire previous dataset. In
this paper, we propose Incremental VSEARCH (I-VSEARCH)
and its semi-supervised version for taxonomic classification, as
well as a threshold independent VSEARCH (TI-VSEARCH) as
wrappers around VSEARCH, a well-established (unsupervised)
clustering algorithm for metagenomics. We show – on a 16S
rRNA gene dataset – that I-VSEARCH, running incrementally
only on the new batches of data that become available over time,
does not lose any accuracy over VSEARCH that runs on the full
data, while providing attractive computational benefits.

Index Terms—Incremental clustering, taxonomic classification,
VSEARCH, 16S rRNA genes

This work is supported by National Science Foundation grant #1936782.

I. INTRODUCTION

Genetic sequencing involves reading and recording of the

base units of biological materials such as DNA, RNA, and

proteins. It is often used to identify and gain information

regarding the organisms being sequenced. The most common

methods of sequencing involve growing a single organism in

a mono-culture before extracting genetic materials [1]. This

process introduces limitations to both the types of organisms

that can be sequenced and the information that can be derived

from the sequencing.

Metagenomics is a field based on methods that involve

the genetic sequencing of environmental samples, which typi-

cally have large numbers of different organisms within them.

Metagenomics provide greater information related to the in-

teraction between organisms and their environment. Metage-

nomics has many practical applications, such as agriculture

and the study of gut microbiomes. Some crop responses to

disease, for example, could only be understood when the

present microorganisms are considered together, rather than

in isolation [1]. The same principles can be applied to the

bacteria communities living in the human gut, where complex

cross-species interactions can only be understood in the wider

context of the microbial environment.

Due to the heterogeneous nature of metagenomic sam-

ples, classification algorithms are often used to predict the

taxonomy of newly sequenced genetic material. Because of

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 S
ym

po
siu

m
 S

er
ie

s o
n

Co
m

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (S
SC

I)
|

97
8-

1-
72

81
-9

04
8-

8/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SS

CI
50

45
1.

20
21

.9
66

00
93

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

the large volumes of data often produced in metagenomic

sampling, however, the computational costs of training these

algorithms can be extensive. The computational cost can be

particularly – and unnecessarily – high when algorithms must

be entirely retrained from scratch with all data accumulated

thus far just to incorporate new data, even if such new data

come from only a small number of organisms and resulting

in just a minuscule percentage of the previously generated

dataset. Incremental learning, which allows an algorithm to

adapt to the new information by training only on the new

data, can be useful in this context. In this proof-of-concept

effort, we introduce I-VSEARCH, an incrementalized version

of VSEARCH, a popular open source metagenomics tool for

alignment and clustering of nucleotide sequence data, such as

the 16S rRNA genes.

II. BACKGROUND

A. Genomic Clustering Algorithms

We start with CD-Hit, a fast comparison and clustering

algorithm for nucleotide and protein sequences. CD-Hit is a

greedy algorithm that starts by comparing the longest sequence

to an initially empty, but increasingly sorted collection of seeds

that represent the centroid of a cluster. If the query sequence

is similar enough (with respect to overlapping number of nu-

cleotides) to a seed by common word count, then the sequence

is placed within the cluster that the seed is representing, other-

wise it becomes the seed for a new cluster [2]. USEARCH is a

tool similar to CD-Hit that provides advantages such as higher

speeds and less memory usage. It is able to do this by first

sorting based upon similar word count, rather than length, and

terminating early knowing that the chance for a match rapidly

drops as you continue [3]. VSEARCH, the algorithm used in

this paper, is a freely available and open-source version of

USEARCH. VSEARCH is very similar to USEARCH, except

that it “performs optimal global sequence alignment of the

query against potential target sequences, using full dynamic

programming instead of the seed-and-extend heuristic used by

USEARCH” [4], and contains other metagenomic tools such

as chimera detection and dereplication1.

There are other platforms, particularly well-suited for

metagenomics applications, such as MG-RAST2 [5] and DI-

AMOND3 [6], both of which use a similar clustering and

alignment procedures as VSEARCH, though they are primar-

ily intended for protein sequences. While in this proof-of-

concept work, we focus on 16S rRNA nucleotide data using

VSEARCH, both MG-RAST and DIAMOND can also benefit

from the concepts introduced here, as neither is capable of

processing data incrementally.

B. VSEARCH Clustering

VSEARCH primarily consists of two steps, a pre-processing

step that includes sorting and alignment, followed by a clus-

tering step.

1VSEARCH can be downloaded from https://github.com/torognes/vsearch
2MG-RAST is available at https://www.mg-rast.org/
3DIAMOND can be downloaded at https://github.com/bbuchfink/diamond

In the pre-processing (sorting and alignment) step, all

sequences are first sorted from longest to shortest based on

sequence length. Then, sequences are aligned to evaluate their

similarities, using the Needleman-Wunsch global alignment

algorithm. Needleman-Wunsch method equalizes lengths of

the sequences by carefully placing gaps to help align similar

sections of different sequences. In the clustering step, once all

sequences are sorted and aligned, VSEARCH compares each

sequence to the representative sequence, or the seed, of each

cluster and computes a similarity score. VSEARCH starts with

an initially empty list of clusters, and creates new clusters as

needed. The algorithm’s primary free parameter is its similarity

threshold, used to determine when a new cluster is to be

created. For each query sequence, if it finds a cluster whose

seed is similar enough to exceed the similarity threshold, then

the query sequence is added to that cluster. If such a cluster

does not exist, then the query sequence becomes the seed of

a new cluster and is added to the list of clusters. In other

words, the first sequence, by definition the longest in length

after sorting, is considered the seed of the first cluster. The next

sequence is compared to this seed. If the similarity score of

the second sequence and the seed is higher than the similarity

threshold, it joins the first cluster, otherwise, it becomes the

seed of its own new cluster. The next sequence is compared to

the existing cluster seeds, and the process is repeated until all

sequences have been clustered. Pseudo-code for this process

is given in Algorithm 1. A toy example is illustrated in Fig.1.

It is important to note that only the sequences themselves are

used for clustering, and the labels for those sequences – even

if they are available – are not used. This process is therefore

completely unsupervised; the sequence ID, taxonomic ranks

or any other label that may be available are not used by

VSEARCH. It is also important to note that sequences are not

compared to all cluster seeds. As soon as a query sequence

finds a cluster seed that is within the similarity threshold, the

searching stops and the query sequence joins that cluster -

such an approach considerably enhances the run-time speed

of VSEARCH over other clustering algorithms at the cost of

a possible small drop in accuracy.

III. PROCEDURE

We have developed three different modifications to the

original VSEARCH algorithm to address three common prob-

lems, namely, allowing the algorithm to learn incrementally,

allowing the algorithm to learn labels in a semi-supervised

manner, and allowing the algorithm to perform even when the

optimal similarity threshold is unknown. These algorithms are

described below.

A. I-VSEARCH: Incremental VSEARCH

Looking at the VSEARCH algorithm processes in detail,

we noticed that – while the algorithm itself is not capable of,

nor was intended for incremental learning – its underlying

clustering algorithm can be easily extended to incremental

processing with suitable modifications. This conclusion is

based on a fundamental observation of VSEARCH: when

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 VSEARCH algorithm

Inputs: D: dataset consists of sequences {S1, . . . ,SJ}, j ∈ J ;

φ: Threshold value

1: C,X ← Initialize empty cluster set and cluster seed set.

2: Dsort←−− D (Sort sequences from longest to shortest)

3: for each sequence j ∈ D do

4: for each cluster i ∈ C do

5: similarity = f(Sj ,Xi) (Calculate similarity be-

tween sequence and cluster seed)

6: if similarity > φ then

7: Sequence Sj joins Ci
break

8: else

9: Sequence Sj creates a new cluster Cnew
10: Xnew ← Sj (Sequence becomes the seed of the

cluster)

break

11: end if

12: end for

13: end for

Output: C, cluster set, X , set of cluster seeds

Fig. 1. VSEARCH clustering is entirely unsupervised. Here, larger circles
represent clusters, each having at least a seed – indicated in capital letters as
(A), (B) and (E) – and possibly other sequences – indicated in lower case
letters as (c), (d), (f), (g), and (h).

a query sequence searches for a cluster to join, it is only

compared to the seeds of each cluster; the other sequences

that have previously joined that cluster are never used, pro-

cessed or seen by the algorithm, a deliberate design decision

that provides significant computational savings. However, this

observation also means that future runs of VSEARCH only

need to use the seeds of the clusters to be able to pick up

where the previous run left off, so long as some additional

bookkeeping is maintained. Giving VSEARCH the capability

to learn incrementally primarily requires storing, restructuring

and then reordering of its previously determined cluster seeds.

We refer to our modified algorithm that has this incremental

learning capability as Incremental VSEARCH, or simply as

I-VSEARCH.

Given a set of batches of data that we wish to cluster

incrementally using I-VSEARCH, we process batches one by

one. First, the current batch is sorted from longest to shortest,

and sequences are clustered using standard VSEARCH. Then,

after each batch, the seeds of clusters are saved to transfer

current state of knowledge to the next step. These seed

sequences from the previous batch are added to the beginning

of the sorted next batch before processing. Since VSEARCH

processes each sequence sequentially, it can be guaranteed that

the seeds from the prior batch will be retained as seeds in the

next run of incremental I-VSEARCH. The algorithm can then

continue clustering from where it left off, as new data come

in, without needing to process the entire old data.

Algorithm 2 Incremental VSEARCH algorithm

Inputs: B = B1, . . . ,BK : set of batches. Every batch Bk

consists of sequences {Sk1, . . . ,SkJ}, k ∈ K, j ∈ J ;

Xold: Previous cluster seeds(sorted); φ: Similarity thresh-

old

1: for each batch k ∈ K do

2: C,X ← Initialize empty cluster set and cluster seed set.

3: Bksort←−− Bk (Sort sequences from longest to shortest)

4: if ∼ isempty(Xold) then

5: Bk ← [Xold;Bk] (If cluster seeds from previous batch

exist prepend them to the new batch)

6: end if

7: for each sequence j ∈ Bk do

8: for each cluster i ∈ C do

9: similarity = min
i∈I

f(Skj ,Xi) (Calculate similarity

between sequence and cluster seed)

10: if similarity > φ then

11: Sequence Skj joins Ci
break

12: else

13: Sequence Skj creates a new cluster Cnew
14: Xnew ← Skj (Sequence becomes the seed of

the cluster)

break

15: end if

16: end for

17: end for

18: Xold ← X
19: end for

Output: C, cluster set, X , set of cluster seeds

In terms of computational savings, the ability to run

VSEARCH incrementally eliminates the need to run the algo-

rithm repeatedly on the same data, and provides considerable

savings over time. To illustrate, let us assume that running the

algorithm on a dataset of N sequences takes T seconds (where

we use time as a proxy to actual number of operations), and

later we receive a new dataset that also includes N sequences.

Even if the complexity of the alignment / clustering algorithm

were linear, i.e., O(N), total run time using single batch

processing would be 3T (T for the first run, 2T for the second

run with the newly expanded dataset). Using the incremental

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

approach, however, the total run time is only 2T , i.e., only T

seconds per dataset. If this scenario continued for K times, the

single-batch version would take
K(K+1)

2 T seconds, whereas

the incremental version would only take KT seconds. For

K = 100 batches, the difference is 5050T vs. 100T , which

is illustrated in Fig.2 comparing the time consumption of

VSEARCH and I-VSEARCH to cluster the same amount

of increasing bathes of data. VSEARCH is typically around

O(N1.2) [7] rather than our assumption above to be O(N),
resulting in more dramatic savings in real world settings.

Fig. 2. The cumulative run time of I-VSEARCH is linear, while that of
traditional VSEARCH is exponential. T is the nominal time for the algorithm
to run once on a dataset of size N sequences.

B. Semi-supervised I-VSEARCH

As indicated above, VSEARCH is a completely unsuper-

vised clustering algorithm. However, the sequences in refer-

ence databases always have labels, while most new experimen-

tal metagenomic sequences come without labels. In fact, some

of the new (unlabeled) sequences may be from previously

unknown organisms, for which no taxonomic label yet exists.

This setting calls for semi-supervised learning, where there is

small amount of labeled data and large amounts of unlabeled

data. There is also the additional complexity of some data be-

longing to new classes that are not yet determined, established

or named. To accommodate this very real-life scenario, we

took advantage of the availability of small amount of labeled

data, and we added a “semi-supervised learning” capability to

I-VSEARCH, as described below, in addition to incremental

learning capability.

Given that some of the sequences have labels that are known

to be correct (as they come from reference datasets), we can

use those labels to help label other sequences that fall into the

same cluster using majority voting. We then have the following

scenarios to consider: in any given cluster (i) there is only one

labeled sequence or all labeled sequences are of the same label

– in this case, all unlabeled sequences are labeled as the known

label; (ii) there are multiple labeled sequences with different

labels – in this case, unlabeled sequences are labeled with

the most common label i.e., using majority vote; (iii) there

are no labeled sequences, in which case the sequences are

given a temporary label ID, which is replaced with a true label

if or when a known label for that cluster becomes available

in a reference database. Fig. 3 illustrates the majority vote

labeling process, with clusters 2, 3, and 4 representing the

three scenarios listed above, whereas cluster 1 shows a cluster

of single sequence.

Fig. 3. (a) Clusters generated by VSEARCH, with unlabeled data; (b) Labels
provided by semi-supervised version of I-VSEARCH: if there are sequences
with different known labels in a cluster, a simple majority vote can be used
to label the unlabeled sequences with the most common label in the cluster.
It does not matter whether any of the labeled sequences is a seed sequence.
Seeds are represented with capitalized letters, sequences with labels are named
in bold and unlabeled sequences are represented with a “?”.

C. TI-VSEARCH: Threshold Independent VSEARCH

Choosing the value of a free parameter is often a tricky pro-

cess, one that requires care, as choosing the value incorrectly

can lead to poor performance. For VSEARCH the primary

free parameter is the similarity threshold. Fig. 4 illustrates

the risks of using such a single, global similarity threshold.

Here, sample sequences from Species 1 are represented in

blue, sample sequences from Species 2 are shown in green,

and samples of Species 3 are shown in red. If the similarity

threshold is chosen too high (too sensitive), the algorithm

provides a good fit to the tight Species 1 and Species 2 clusters,

however the larger cluster of Species 3 is broken up into

multiple clusters, possibly causing the algorithm to mislabel

the subsets of Species 3. On the other hand, if the threshold

is chosen too low (not sensitive enough), Species 3 sequences

are properly clustered, however, sequences in Species 1 are

clustered into the same cluster as Species 2, again resulting in

inaccurate clustering and subsequently inaccurate labeling.

Fig. 4. (a) When the global threshold is too sensitive, a large single cluster is
broken up. (b) If the threshold is not sensitive enough, noisy data or unrelated
data may be incorrectly clustered.

To address this problem, we developed a threshold indepen-

dent semi-supervised version of our VSEARCH, referred to

as TI-VSEARCH. TI-VSEARCH is a hierarchical algorithm,

starting clustering with a less sensitive threshold. After the

first pass of a given dataset, TI-VSEARCH looks for impure

clusters, those whose content include labeled sequences from

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

more than one label (i.e., not all labeled sequences in the

cluster are of the same label). TI-VSEARCH then re-clusters

all of the data within each such impure cluster at a more

sensitive threshold and considers each of the new clusters as

sub-clusters. This process forms a tree of clusters and sub-

clusters, and is repeated until all clusters within the tree are

completely pure. Fig. 5 shows a condensed example of such

a tree, which is the result of larger natural clusters being

properly fit with a less sensitive threshold while naturally

smaller clusters that have been continually sub-divided.

Fig. 5. TI-VSEARCH starts at a low threshold, and continues clustering at
higher thresholds until the cluster is pure or it runs out of a list of thresholds.

Fig. 6 shows the flow-chart of the TI-VSEARCH algorithm.

Sequences are added to the tree at its root node and propagated

down the tree. When a new batch of sequences is added to

any of the nodes, standard VSEARCH is run on the new batch

of sequences and any sub-clusters of previously labeled data

that already exist. All of the new data that joins one of the

previous sub-clusters become a new batch of sequences for

that sub-cluster, and the process repeats. If a sequence does

not join any of the previous sub-clusters, it becomes a seed

for a new sub-cluster.

Fig. 6. Flow diagram of the TI-VSEARCH algorithm.

Once new sequences join a sub-cluster, the sub-cluster is

purified. If a cluster contains labeled data from only one class,

then the cluster is considered pure. The cluster accurately

represents only that label, and no other action is required. If

there is more than one label in a cluster, then the cluster needs

to be subdivided further so that it can be purified. This is done

by repeating the above process while increasing the threshold.

Clusters that do not have any labeled data cannot be purified.

For prediction of query sequences, data are added to the tree

in the same way as labeled data, as described above. In this

case, when the sequence reaches a leaf of the tree, the label

of that cluster becomes the predicted label. If the cluster has

no labeled data, then typically the label of the parent cluster

is used, or it can be left unlabeled and the user is informed

that the algorithm cannot make a prediction.

The free parameters for TI-VSEARCH include taxonomic

depth and a list of thresholds that the user wishes to be

evaluated. The threshold list we use in our experiment is the

same as typical list of thresholds commonly used [75, 80, 85,

90, 93, 95, 97, 99]. Generally, higher thresholds require more

computation time because more sub-clusters are created, which

creates more nodes. A larger threshold list typically increases

the run time, but not for all nodes, since clustering for a node

may stop when purity is reached.

IV. RESULTS AND DISCUSSION

A. The RDP Dataset of 16S rRNA Genes

In this proof of concept study, we used the Training Dataset

No.14 from the Ribosomal Database Project (RDP) [8]. This

dataset consists of 10,679 16S rRNA sequences of Bacteria

and Archaea. These sequences are, on average, 1500 base-

pairs long, ± several hundred base-pairs. The dataset contains

labels of sequences from the Domain to Genus levels, exclud-

ing Kingdom (6 levels of depth). Due to its very slow evolution

rate, 16S rRNA gene is suitable for determining phylogenetic

relations of species and clustering [9]. 16S rRNA genes are

popular biomarkers used by many studies because they are

highly conserved, and a natural starting point to incrementalize

(due to the millions of sequences from different organisms and

thousands of studies that use them).

As a reference database, all sequences in this dataset are in

fact labeled. Since VSEARCH is an unsupervised clustering

algorithm, the labels are not used in the standard algorithm.

In order to evaluate the semi-supervised nature of the I-

VSEARCH and TI-VSEARCH algorithms, we have kept the

labels of the 25% of the sequences, which then constituted

the training dataset. The labels for the remaining 75% of the

sequences were kept hidden from the algorithms, and these

labels were then used as a test dataset to compute classification

accuracies.

B. VSEARCH and I-VSEARCH

Our first experiment was to verify that there is little or no

loss of accuracy with the incremental version of VSEARCH.

To do so, we divided the entire RDP dataset into five ap-

proximately equal partitions, each representing a batch of

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

data, with sequences in no particular order, that later become

available to the algorithm. Recall that 25% of this data have

labels available to be used in the semi-supervised stage of the

algorithm. We then ran VSEARCH on the entire (full dataset)

data in a single batch, as it is normally run. We have then run

I-VSEARCH with the 5 batches, sequentially feeding each

batch to I-VSEARCH in-order to obtain the final clusters.

We provided no access to the data from prior batches as I-

VSEARCH ran, except for the seeds as described above. We

have varied the similarity threshold from 75 to 97 %, and

tracked the labeling accuracy against the known labels (the

remaining 75% of the data) at each of genus, family, order,

class and phylum taxonomic levels. The results are shown in

Fig. 7 for each taxonomic level, comparing the classification

accuracy of the standard VSEARCH against the incremental

I-VSEARCH. We observe from this figure that there is no

loss of accuracy when we run I-VSEARCH incrementally,

as compared to VSEARCH, which had the luxury of having

access to the entire dataset at once.

Fig. 7. Classification accuracy comparison between VSEARCH and I-
VSEARCH, where majority voting is used to assign labels to unlabeled
sequences. Straight lines show VSEARCH performance, whereas dashed lines
represent the incremental I-VSEARCH for each taxonomic level.

We also show in Table I the highest accuracies of both

methods and the similarity thresholds at which these highest

accuracies were observed.

TABLE I
HIGHEST ACCURACIES OF VSEARCH AND I-VSEARCH FOR DIFFERENT

TAXONOMIC LEVELS AND CORRESPONDING SIMILARITY THRESHOLDS IN

PARENTHESES.

Phylum Class Order Family Genus

I-VSEARCH 0.9732 (79) 0.9547 (84) 0.9063 (89) 0.8364 (92) 0.6432 (95)

VSEARCH 0.9719 (81) 0.9561 (85) 0.9090 (89) 0.8405 (92) 0.6375 (95)

The primary advantage of I-VSEARCH is, of course, the

ability to process data incrementally and sequentially, but

also to provide significant computational savings in doing

so. To obtain a quantitative measure on computational sav-

ings, we have also compared the two algorithms from a

run-time perspective. Since VSEARCH cannot natively run

incrementally, we wanted to compare how much of a run-time

gain I-VSEARCH provides running incrementally compared to

running VSEARCH on the union of all data available at any

given time – the only option available to VSEARCH when

new data become available. To do so, we ran VSEARCH

on the cumulative old+new data, each time a new dataset

arrived. On the other hand, Incremental VSEARCH was run

only on the new dataset with only cluster seeds from previous

run transferred with each new batch. Fig. 8 shows average

percentage time saved using I-VSEARCH over rerunning

VSEARCH at each of the similarity thresholds and taxonomic

levels – on the last (fifth) batch of the experiment. Time saved

in Fig. 8 is calculated as

T imeSaved =
tV SEARCH − tIV SEARCH

tV SEARCH

∗ 100

We observe that – regardless of the taxonomic level, I-

VSEARCH provides considerable computational savings, par-

ticularly at lower similarity thresholds due to number of

clusters being significantly fewer. As similarity threshold

increases, so does the number of clusters generated and

computational cost to make decisions. Recall that Fig. 8 shows

time savings at only one step (specifically, at the last of the

five batches). We note that increasing the number of batches

will only favor I-VSEARCH (as shown in Fig. 2), so in a real

world setting of continuously arriving datasets, the run-time

saving will accumulate and hence increase over time.

Fig. 8. Percentage time saved when I-VSEARCH used instead of VSEARCH
at different thresholds and taxonomic levels.

C. TI-VSEARCH

Fig. 9 compares the classification accuracies of threshold

independent VSEARCH (in blue), regular VSEARCH (in yel-

low) and I-VSEARCH (in purple) across different taxonomic

levels. It is important to note that the IV-SEARCH and V-

SEARCH results shown in Fig. 9 for each taxonomic level are

picked from their peak performances across all values of sim-

ilarity thresholds (from Table I), whereas the TI-VSEARCH

does not use any similarity threshold. We observe in Fig. 9 that

all performances of TI-VSEARCH are essentially identical

to those of V-SEARCH and IV-SEARCH. This observation

means that the peak performances of VSEARCH and IV-

SEARCH, tuned to the exact optimal threshold, is matched

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

by the performance of TI-VSEARCH, an algorithm that does

not depend or use such a threshold. In other words, TI-

VSEARCH effectively picks the optimal threshold (in fact,

series of thresholds) for the user.

Fig. 9. Performances of threshold independent VSEARCH compared to that
of VSEARCH and I-VSEARCH at different taxonomic levels when sequences
in unlabeled clusters receive their labels from a parent cluster.

Finally, we also note that in Fig. 9, a sequence that is placed

in a cluster with no label receives the label from its parent

node. We could choose to leave those sequences unlabeled,

and simply warn the user that those sequences are not given

a label. Those sequences would simply not be included in

the final accuracy computation, which would likely increase

the performance. Here, we choose to be more conservative

and report the accuracy of the algorithm as obtained by the

process described in Section 3.C.

V. CONCLUSIONS AND DISCUSSION

We have introduced three different modifications to the

popular VSEARCH algorithm that is commonly used for

metagenomic data clustering. These modifications results in

i) IV-SEARCH, an incremental version of VSEARCH that

can process different batches of data as they arrive without

using previously seen data, ii) a semi-supervised version of

IV-SEARCH that can actually label data using small amount

of labeled data in training, and iii) Threshold-Independent

VSEARCH that relieves the user from the tricky process of

choosing the optimal value of the similarity threshold.

I-VSEARCH showed essentially identical classification ac-

curacy as the traditional VSEARCH – despite processing the

data incrementally and without having the luxury of seeing all

accumulated data – while saving considerable computational

time across all taxonomic levels and all values of similarity

thresholds (with additional savings at lower similarity thresh-

olds). TI-VSEARCH is just as accurate as VSEARCH / I-

VSEARCH, and its built-in threshold optimization makes it

more practical to use over other versions. While I-VSEARCH

is fastest for the examination of a few threshold and taxonomic

level combinations, TI-VSEARCH is more suitable for large

optimization problems.

In this effort, we showed a common sequence clustering

algorithm can be incrementalized with no loss and consider-

able computational savings. Since this has been a proof-of-

concept study, we evaluated our approach on one particular

algorithm (VSEARCH), evaluated on one particular nucleotide

16S rRNA gene dataset. Our future work will include expand-

ing this analysis to other algorithms, platforms, and datasets,

including protein datasets. We will also investigate alternative

adaptations to TI-VSEARCH and use different levels of purity.

By allowing users to set the purity as a free parameter,

computation time could be further reduced by allowing a small

amount of impurity inside of clusters.

REFERENCES

[1] J. Handelsman, “Metagenomics: application of genomics to uncultured
microorganisms,” Microbiol. Mol. Biol. Rev., vol. 68, pp. 669–685, Dec
2004.

[2] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences,” Bioinformatics,
vol. 22, no. 13, pp. 1658–1659, 2006.

[3] R. C. Edgar, ”Search and clustering orders of magnitude faster than
BLAST,” Bioinformatics, Vol. 26, no. 19, pp. 2460–2461, 2010

[4] T. Rognes, T. Flouri, B. Nichols, C. Quince, and F. Mah, “Vsearch: a
versatile open source tool for metagenomics,” PeerJ, vol. 4, p. e2584,
Oct. 2016.

[5] F. Meyer, D. Paarmann, M. D’Souza, et al. ”The metagenomics RAST
server – a public resource for the automatic phylogenetic and functional
analysis of metagenomes,” BMC Bioinformatics vol. 9, no. 386, 2009.

[6] B. Buchfink, C. Xie & D. H. Huson, ”Fast and Sensitive Protein
Alignment using DIAMOND,” Nature Methods, vol. 12, pp. 59-60,
2015.

[7] A. Rubio-Largo, L. Vanneschi, M. Castelli, and M. A. Vega-Rodrı́guez.
”Reducing alignment time complexity of ultra-large sets of sequences,”
Journal of Computational Biology, vol. 24, no. 11, pp. 1144-1154, 2017.

[8] J.R. Cole, Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C.
T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. ”Ribosomal
Database Project: data and tools for high throughput rRNA analysis,”
Nucleic Acids Research, vol. 42, No: D1(Database issue), pp. D633-
D642, 2014.

[9] C. R. Woese and G. E. Fox, ”Phylogenetic structure of the prokaryotic
domain: the primary kingdoms.” Proceedings of the National Academy
of Sciences, vol. 74, pp. 5088-5090, Nov 1977.

Authorized licensed use limited to: Rowan University Libraries. Downloaded on August 29,2022 at 05:33:32 UTC from IEEE Xplore. Restrictions apply.

