Automating Testing of Visual Observed Concurrency

Andrew Wortas
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
ajwortas@live.unc.edu

Prasun Dewan
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
dewan@cs.unc.edu

Bowen Gu
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
gubowen2@live.unc.edu

Abstract—. Existing techniques for automating the testing of
sequential programming assignments are fundamentally at odds
with concurrent programming as they are oblivious to the
algorithm used to implement the assignments. We have developed
a framework that addresses this limitation for those object-based
concurrent assignments whose user-interface (a) is implemented
using the observer pattern and (b) makes apparent whether
concurrency requirements are met. It has two components. The
first component reduces the number of steps a human grader
needs to take to interact with and score the user-interfaces of the
submitted programs. The second component completely
automates assessment by observing the events sent by the student-
implemented observable objects. Both components are used to
score the final submission and log interaction. The second
component is also used to provide feedback during assignment
implementation. Our experience shows that the framework is used
extensively by students, leads to more partial credit, reduces
grading time, and gives statistics about incremental student
progress.

Keywords—software testing, concurrency, education, producer-
consumer, observer, simulations, synchronization, event database

I. INTRODUCTION

Program assessment is the problem of generating feedback
for programs expected to meet the requirements of some
assignment given in a formal or informal learning environment.
In both environments, it can help trainees calibrate their
performance, receive feedback, and converge to a final solution.
In formal learning environments, it also scores the final solution.
Therefore, it is attractive to explore automation of program
evaluation to not only reduce instructor grading burden but to
also create a collaborating “agent” for students and gather
statistics about incremental student progress. Program
evaluation is particularly important for concurrent programs, as
they are notoriously difficult to write [1-3] and substantial
instructor effort is required to evaluate the performance and
correctness of these programs and identify potential problems.

This work was funded in part by NSF awards OAC 1829752 and 1924059.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Zhizhou Liu
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
yiwk321@cs.unc.edu

Samuel George
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
sdgeorge@cs.unc.edu

Hao Wang
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599
harrywh@live.unc.edu

Evaluation of student programs can be partially automated
by grading management systems and completely automated by
grading automation systems. Grading management systems
require a human evaluator to inspect different components of
each submission. They automate the effort required to (a)
navigate among submissions of an assignment provided by
different students, and (b) score a submission associated with a
rubric. Grading automation systems automatically score the
submissions.

Contemporary examples of these two kinds of systems are
designed to evaluate the sequential but not concurrent aspects of
assignments. The intuitive reason is that the use of concurrent
abstractions affects the algorithm implemented by the program,
and current assessment systems are oblivious to the algorithms
used by the evaluated programs.

We have developed a new testing-based framework that
makes assumptions about the domain to provide both a grading
management and automation system for evaluating the
concurrency requirements of assignments implemented in Java.
We assume that the user-interface of a concurrent program (a) is
implemented using the observer pattern and (b) makes apparent
whether the concurrency requirements are met. We have used
this framework in an undergraduate course on object-based and
concurrent programming, offered in the summer of 2021, and
recorded and analyzed various aspects of its use. We refer to this
course as our target course.

The rest of the paper is organized as follows. Section II
surveys previous work in this area. Section III describes the
domain on which we focus using illustrative problems. Section
IV and V describe and illustrate the components of our
framework. Section VI gives our experience using various
components of the framework. Section VII gives conclusions
and directions for future work.

A recording of the conference talk on this paper is available
here.

https://youtu.be/50u10hhgbZk

II. RELATED WORK

A. Gradescope Grading Management

Assignment evaluation is more than solution checking — it
consists also of efficiently navigating among solutions (ideally
with one click), remembering the requirements for an
assignment, assigning scores based on which requirements are
met, and possibly reassigning the scores based on new
information. A grading management system automates these
tasks without automating any solution checking. Gradescope has
popularized the idea of a web-based implementation of such a
system [4]. An instructor interactively associates components of
a fixed-size (in terms of pages) assignment pdf with rubric
templates - tables mapping requirements to scores - which are
instantiated for each submission. Human graders can display
each component with the associated rubric instance and simply
click on the requirement to identify that it has been met. The
tedious and error-prone task of (re)assigning and totaling scores
in a rubric instance and displaying it to the students is automated.

Gradescope has recently added the ability to inspect a
variable-sized collection of source code and other scrollable and
collapsible files, and associate this collection with a single
rubric. Through these capabilities it provides support for general
assignments, making few assumptions about their nature.

To interactively run programs submitted to Gradescope,
instructors must use an ssh interface, which provides no grading
management and does not directly support creation of graphical
user-interfaces. Thus, the system provides no special support for
manually testing visualized concurrency. Our grading
management system addresses this limitation.

B. Problem-Independent and Specification-based Testing

Testing of industrial-strength parallel programs has received
much attention because of the difficulty of coding them correctly
and efficiently. A comprehensive review of this research [3, 5-
8] is provided in [1]. It can be divided into (a) techniques for
testing that programs meet problem-specific declarative formal
specifications [7, 9], and (b) problem-independent tools that
help identify race conditions, deadlocks, and other problem-
independent issues in multi-threaded programs [10-13]. Meeting
problem-specific constraints implicitly ensures problem-
independent issues (preventing these constraints from being
met) do not occur. What is missing in this work are testing
frameworks that evaluate problem-specific constraints without
requiring formal declarative specifications of the behavior of
programs. It is because of these limitations that we believe they
have not been used, to the best of our knowledge, in educational
environments

C. JUnit

JUnit is a popular Java-based framework for writing tests for
student programs. Instructor or students write test methods and
delineate them from tested methods through special annotations.
JUnit provides an API to automatically find and execute a
sequence of test methods sequentially. Some programming
environments such as Eclipse provide a special user interface for
triggering the execution of such a sequence and displaying the
results and execution times. JUnit tests a single implementation
of the tested code. Some educational systems such as Web-CAT

[14, 15], ASSYST [16] and Gradescope automatically execute
the same JUnit test code on each submission of an assignment.

JUnit is designed to provide functional testing of programs
in which the relationships between input and output parameters
are tested. Concurrency has to do with the algorithm used by the
methods — the same functionality can be implemented by a
sequential and parallel program. For example, a method can add
a sequence of numbers either sequentially or in parallel —
functional testing cannot tell the difference. Our concurrency
extensions overcome this limitation by providing special support
to JUnit tests to determine the nature of the algorithm used.

D. Concurrency Testing in the Classroom

We know of two uses of automatic tests for assessing
concurrent student programs. In an invited talk in Edu-HPC-18,
Lumsdaine [17] mentioned the implementation and use of
automated tests for a concurrency course he taught at UW-
Seattle, but also indicated that they were difficult to write and
had errors, leading to student frustration. He did not describe the
nature of these tests.

Sarkar’s group [18] reported the use of Web-CAT to write
and execute tests for a concurrency-based CS course at Rice
University that uses a variant of Java developed at Rice —
Habanero Java. To evaluate concurrency aspects, they looked at
the speedup resulting from running their tests with an increasing
number of cores. In addition, they developed a web UI for
displaying the performances of different student submissions. In
a later paper [19], the group reported that they abandoned Web-
CAT for several reasons. They also reported problems using
alternate tools such as Marmoset [20]. Therefore, they
developed a web-based tool specific to their course and
Habanero Java to handle the entire assessment process. Their
custom grader was used extensively by students. A later project
used it to assess assignments in an online version of their course
[21].

Speedup is insufficient to assess concurrent problems in
which threads do dissimilar tasks (such as producing and
consuming information in a pipeline) or when increasing the
number of cores allocated to a program is not possible (because
a language such as Java does not provide a way to do so or
because a student’s computer does not have enough cores), or
when possible, does not lead to perceptible performance
improvement. Our work is targeted at a subset of these
problems. If the program provides an entry point to do so, a test
can change the number of threads, as illustrated in our dining
philosopher implementations, and observe the variation in
performance that results.

III. VISUAL OBSERVABLE CONCURRENCY

A fundamental assumption in our work is that the user-
interface of the tested concurrent assignment provides
information to evaluate its concurrency constraints. For
example, an add program can print partial sums and the names
of the threads that compute them to demonstrate its concurrent
execution. In [22, 23], we describe a class of problems in which
the user interface does not require special modifications to
provide such information. These problems implement
simulations of concurrent actions in the real world. The
Olympics provide several such examples. Consider the

simulation of a relay race. It would use atomicity primitives to
ensure that competitors do not share the same track. It would use
coordination primitives to block and unblock (a) a single thread
to simulate baton passing, and (b) multiple threads to simulate
racers waiting for a whistle. Synchronized swimming would
require continuous coordination. Correct and incorrect
implementations of these simulations can be identified by
running them one or more times using carefully chosen input.

In [22, 23], we describe several such simulations,
implemented both as worked examples and student assignments.
For example, one worked example involves two pilots,
represented by two different threads, taking a shuttle along two
different planned paths. In the correct implementation, the later
pilot waits for the previous pilot to complete the planned task,
while in the incorrect one, this atomicity constraint is violated,
leading to the shuttle oscillating between the two planned paths.

A more well-known example is provided by the user-
interface of our textual simulation of a variation of the classic
Dining Philosopher problem, shown in Fig. 1. This simulation
involves a user-specified number of philosophers using
chopsticks placed between them - one chopstick between each

Please enter the number of philosophers/chopsticks
Hit return to quit or input time to eat the next course:
288

Hit return to gquit or input time to eat the next course:
Philosopher @.Fed:false->false

Philosopher 1.Fed:false->false

Chopstick @.Used:false->true

Chopstick l.Used:false->true

Philosopher @.WithLeftChopstick:false-»true
Philosopher 1.WithLeftChopstick:false-»true
Chopstick @.Used:true-:false

Philosopher @.WithLeftChopstick:true->false
Chopstick @.Used:false->true

Philesopher 1.WithRightChopstick:false->true
Chopstick 1.Used:true->false

Philesopher 1.WithLeftChopstick:true->false
Chopstick @.Used:true-:false

Philosopher 1.WithRightChopstick:true->false
Philosopher 1.Fed:false->true

Chopstick @.Used:false-s>true

Philosopher @.WithLeftChopstick:false->true
Chopstick 1.Used:false->true

Philesopher @.wWithRightChopstick:false->true
Chopstick @.Used:true->false

Philosopher @.WithLeftChopstick:true->false
Chopstick 1.Used:true-:false

Philosopher @.WithRightChopstick:true->false
Philosopher @.Fed:false-strue

Fig. 1. Similation of Polling Multi-Course Dining Philosophers
Visualizing Concurrency and Coordination

pair - to eat multiple courses. They think for different times
before trying to pick the chopsticks, but once they have
successfully picked both chopsticks, they take a fixed amount of
time (input by the user) to eat the course, and then return the
chopsticks to their resting places.

The user-interface shows transitions to the properties of the
objects simulating the philosopher and chopsticks. A chopstick
object has one Boolean property, Used, which indicates whether
it has been picked up by one of the two adjacent philosophers or
not. A philosopher object has three properties, Fed, indicating
whether the philosopher has finished the current course or not,
and WithLeftChopstick and WithRightChopstick, indicating

whether the philosopher has successfully picked the left and
right chopstick, respectively.

In this implementation, the actions of each philosopher are
executed by a separate thread. Two courses, taking the same
time, lead to different sequences of events, with the two
philosophers picking chopsticks and finishing eating in different
orders, which is an indication that the solution is indeed multi-
threaded. Running the program multiple times provides further,
but not, of course, conclusive, evidence of the concurrency.

In the implementation illustrated, if an attempt to pick a
chopstick fails because it is in use, the philosopher thread that
executes the action does not wait in a queue. Instead, it releases
the other chopstick, if it has it, waits for some time, and then
tries again, repeating these steps until success is achieved. Thus,
this is a polling solution to the problem that does not lead to
deadlocks. This is indicated by the actions of Philosopher 0, who
released the first chopstick picked because the other chopstick
was in use, and then picked the two chopsticks later when they
were both available at the same time.

The main thread repeatedly prompts the user for the next
course time. This thread does not coordinate with the
philosopher threads to determine if they have successfully set
the Fed properties of their respective Philosopher objects to true.
This thread essentially represents a Butler serving food. The lack
of coordination is exhibited also in the user-interface, as the
prompt for the second course is given immediately after the time
for the first course has been input rather than after the two
philosophers have been successfully fed the current course. A
graphical user-interface of the kind supported by our
assignments would make these inferences more evident.

What is inferred by close human inspection of the user-
interface should also be evident to test code if it is given the same
information. In this example, the user-interface is textual, so the
output of the application could be provided to this code.
However, this approach requires the test code to parse the text,
and more important, does not work for graphical simulations. In
our target course, all assignments were graphical, and together
simulated a variation of the bridge scene from the movie Monty
Python and the Holy Grail. In one extension to this scene, the
avatars representing the Knights marched to a beat set by the
clapping of a guard (Fig. 2), which corresponds to our previous
example of synchronized swimming. Whether the coordination
among the threads animating the Knights and the guard was
correct was evident from the user-interface. However, there was
no textual representation of the actions to be given to tests.

To reduce
parsing overhead
and
accommodate
graphical
simulations, we
make another
assumption
about the nature
of tested
programs, which
is consistent with the fact that our target course was on object-
oriented programming. We assume that all simulated objects are

Fig. 2. Holy Grail Bridge Scene:

observable [24]. An observable object allows arbitrary observers
to be registered with it, and on every write to its state, announces
the nature of the write to each registered observer by calling a
notification method in it. We will refer to the state change as a
notification or an event. This is a pattern familiar to anyone who
has been explicitly taught it or has been exposed to user-
interface toolkits, which allow, for instance, application objects
to be notified of clicks on observable buttons.

The assumptions about visualization of concurrency and
observability of state changes are the basis, respectively, for the
two components of our framework — the grading management
system and the automatic testing system.

IV. ACTIVE GRADING MANAGEMENT SYSTEM

While our grading management system was developed
independently of Gradescope, it offers similar features to
automate rubric management and navigate among student
submissions. Fig. 3 shows parts of it being used to manually
grade the concurrency features (4-7) of an assignment, which
also included non-concurrency features (1-3).

Unlike
Student History | Gradescope, our
S R system is
Open Source Sync Isrc | Asre | Specialized for
Next Document| First Document Run | Quit |

program grading
and is not web-
based. This

allows us to

[[] stop If Not Done Navigation Distance: 1/22

Feature Max Score

1 Scene Controller buttons activate and deactivi 15.0 0.0

2 Clicking and pressing buttons in display works 15.0 0.0 make it “active”
3| Impossible angle exception demonstrated 15.0 0.0 by prov1d1ng a
4| Animation shows different animators animating 15.0 0.0 Run Command
5 | Animation shows same avatar animating sequ¢ 15.0 0.0 . ’
6|4 animations wait until press of proceedAll 15.0 0.0 Wthh can be
i | ockstep animations work 15.0 0.0 invoked by a

human grader to
execute the

graded
submission and interact with it. Fig. 2 shows the result of
invoking this command from the user interface of Fig. 3. This
command is, of course, crucial to grade visualized concurrency.

Fig. 3. Interactive Submisson Exection

Sometimes the human grader needs to run the code through
the debugger, modify it, and upload it back to explain the
problem to the student. The /src command copies the code from
the student submission directory to a specified directory —
typically the src directory of a previously configured Eclipse
project — and the “src command writes the code back to the
submission directory. In both cases, previous contents of the
target directory are replaced. The system assumes the directory
structure of the Sakai Learning Management System (used in
our university), which allows the student directory to be
uploaded back to Sakai (as feedback) after downloading it.

V. PROGRAMMING OBSERVING TEST CASES

As mentioned earlier, if concurrency is visualized and all
visible state changes are observable, then it should be possible
to write test cases that automatically check consistency
constraints. We refer to such tests as observing concurrency test
cases. Below, we derive a thread architecture and event-based
generic abstractions for reducing the complexity of such test

cases and the effort required to write them. We assume JUnit test
cases, though the concepts are more general.

A. Event-Database and Upper and Lower Halves of Tests

The writer of the test code must not only address the nature
of multithreading in the application code, but also deal with
multithreading issues in the test code, because the test observer
code is expected to be called by multiple application threads. As
mentioned earlier, concurrent code is difficult to write [1-3].

Therefore, in the concurrent test cases implemented by us,
we have followed a common thread-architecture that provides
isolation between the parts of the test code executed by the
testing thread and the ones invoked by application threads. It is
based on an event database. Fig. 4 shows its nature.

— The test code

mv:ceas:iun Smg:;;zplrf:ﬁed E:EI}:C;:T:: consists of two halves,
' the upper and lower

. halves, which are

Multi-Threaded, M;lgﬁég:ggd executed by the testing
SynchronizingGode || patapase Code thread (e.g. one testing
if the dining

philosopher solution is
deadlock-free) and
application threads
(such as philosopher
threads), respectively. The lower-half consists of the code called
by application observables (such as the objects simulating the
philosophers and chopsticks) and stores information about the
notified events (such as a chopstick being picked or a
philosopher being fed) in an event database. When test-specific
synchronizing conditions are satisfied (such as all philosophers
being fed), it unblocks the upper-half code waiting for these
conditions, which then reads the information in the event
database. The event database and synchronizing code, together,
form a bridge between the two halves, and can be accessed by
both halves and the corresponding threads.

K N Observer
Multi-Threaded Lower Half call

Fig. 4. Upper and Lower Test Halves

A test implemented using this architecture resembles a
traditional producer-consumer implementation with the test
thread executing the upper-half code being the consumer and the
application threads invoking the lower-half code being the
producers. The difference is that consumers are unblocked, not
when a buffer becomes non-empty, but when application-
specific conditions are met such as an event indicating that all
philosophers have been fed in the current round.

B. Lower-Half Event Database Management System

Once we gained experience with this thread architecture, our
next step, to reduce test complexity, and more important, effort,
was to develop a “test-independent” generic implementation of
the lower half and bridge code. Such a step would be akin to
moving from application-specific databases to “generic”
database management systems (DBMS) such as a relational
DMBS. Therefore, we refer to this abstraction as the event
database management system. The terms “test-independent” and
“generic” are in quotes as automation is provided by making
assumptions, which reduces flexibility.

As a first-step effort in this direction, our goal was to create
an event DBMS that satisfied the requirements of our
assignments and multiple versions of the dining philosopher

problem. The fact that the dining philosopher problem is a
classic is a strong indication that it is representative of a large
class of concurrency problems.

The DBMS assumes all notifications are instances of the
standard Java event, a property change. Such an event has four
components — the (a) source, which is the observable object that
was written, (b) property, which is the name of the property of
the observable that was written, (c) old value, which is the value
of the property before the announced write was made, and the
(d) new value, which is the current value of the property. The
last four fields in Fig. 5 give examples of these four components.

When property events arrive, our DBMS wraps them in
concurrent property events, and stores some of these events in
an ordered sequence, which can be reset. A concurrent event
adds three additional components to the event it wraps — the (a)
event relative time, which is the difference in times of event
announcement and DBMS reset, (b) sequence number, which
indicates how many events occurred before it since the last reset,

16:[0,Thread Philosopher 1,Philosopher 1,Fed,false,false]
17:[1,Thread Philosopher ©,Philosopher ©,Fed,false,false]
228:[2,Thread Philosopher 0,Chopstick ©,Used,false,true]
228:[3,Thread Philosopher 1,Chopstick 1,Used,false,true]
228:[4,Thread Philosopher 0,Philosopher @,WithLeftChopstick,false,true]
228:[5,Thread Philosopher 1,Philosopher 1,WithLeftChopstick,false,true]
228:[6,Thread Philosopher 0,Chopstick ©,Used,true,false]
228:[7,Thread Philosopher @,Philosopher @,WithLeftChopstick,true,false]
229:[8,Thread Philosopher 1,Chopstick ©,Used,false,true]

851:[21,Thread Philosopher ©0,Chopstick 1,Used,true,false]
851:[22,Thread Philosopher 0,Philosopher 0,WithRightChopstick,true,false]
851:[23,Thread Philosopher 0,Philosopher 0,Fed,false,true]

Fig. 5. Concurrent Property Change Objects Stored in Event DBMS

and the (c) thread that announced the event. The first three fields
in Fig. 5 give examples of these components, respectively. Thus,
the third entry in the figure corresponds to an event announced
by Thread Philosopher 0 at relative time 228, with sequence
number 2, which announces a write of the value true to property
Used of observable Chopstick 0 whose old value was false.

Application-specific processing is performed by executing
application-specific implementations of the Selector interface:
shown in Fig. 6.
Fig. 7 shows the
DBMS interface.
It is an extension
of the standard
Java interface,
PropertyChangeListener, so that it can listen to property

public interface Selector<SelectedType> {
boolean selects(SelectedType anObject);

}

Fig. 6. Selector Interface

public interface ConcurrentPropertyChangeSupport
extends PropertyChangeListener {
ConcurrentPropertyChange getlLastReceivedPropertyChange();
void resetConcurrentEvents();
void addIgnoreSelector(
Selector<ConcurrentPropertyChangeSupport> aSelector);
void addWaitSelector(
Selector<ConcurrentPropertyChangeSupport> aSelector);
void selectorBasedWait (long aTimeOut);
ConcurrentPropertyChange[] getConcurrentPropertyChanges();
Thread[] getNotifyingNewThreads();
Thread[] getNotifyingThreads();

Fig. 7. Event DBMS Interface

changes. It allows registering of two kinds of selectors: ignore

and wait selectors. Each registered ignore and wait selector is
invoked each time an event is received. The event is not stored
if the select method of any of the ignore selectors returns true.
An upper half thread can execute selectorBasedWait() to block
until the specified timeout or the select method of any of the wait
selectors returns true. The DBMS also provides the upper half
with operations to determine all threads that have been notified
since the last reset and those that were created after the reset.

D. Two Generic Selectors

To reduce the overhead of writing selectors, we have written
two important predefined parameterized selectors. The first, an
event matching selector, assumes its select method is passed a
concurrent property change. It returns true if the source, old
value, and new values of the event matches a regular expression
passed to the constructor of the selector, whose header is shown
below

ParameterizedPropertyChangeSelector(
Object[] aParameters)

Thus, if the constructor has been passed the regular
expression array: [“.*”, “.*” “Chop.*”, “.Used, “false”, “true”]
then events 2, 3, and 8 in Fig. 5 are matched by this selector.
Such a selector is used to determine, for instance, if a non-atomic
change to the Used property of a Chopstick results in the old and
new announced values being the same, which can happen if a
context switch occurs between the time a thread checks the
property value and makes and announces the change.

The second selector we provide is a thread-based history
matching selector, whose constructor is shown below.

ConcurrentPropertyChangeThreadMatchesSelector (
Object[] aParameters, int numThreads, int numMatches,
String threadPattern, long minDelay)

Its select method takes an instance of the event DBMS as an
argument. The method returns true if at least numThreads
threads whose names match threadPattern have announced
events separated by at least minDelay that have at least
numMatches of parameters with the events stored so far in the
database passed as an argument. It uses the selector above to
determine if an event matches aParameters. To illustrate its use,
assume a DBMS that stores the events shown in Fig. 5 is passed
as an argument to its select method and its constructor
parameters are as follows:

numThreads = 2; numMatches = 1;

threadPattern = “.*; minDelay = 0;

aParameters = [.*”, “Phil.*: “Fed”, “false”, “true”]

Then the select method will return true when event 23 is
received as two threads have announced a change matching
parameters. We use this selector to unblock the upper half of the
dining philosopher test when all philosophers have been fed.

We also use this selector in our lockstep animation test code
to store events separated by a minimum delay. The reason is that
multiple events fired by the same avatar movement give no
additional information for testing. What is of interest is not how
many events are fired on each beat (guard clap) by an avatar
thread but the sequence of events fired by different avatar
threads on each beat. Fig. 8 shows a subsequence of events when
the minimum delay for each thread is 0. Fig. 9 shows a
subsequence of stored events when this delay is 10. As we see

from Fig. 8, a thread fires several events on each beat at the same
time. In Fig. 9, only one of these events is stored for each thread.

D. Partitioning, Matching, Interleaving Operations

Our framework also provides three kinds of generic
operations on event lists we have found useful in our test cases.
These can be invoked during (a) online event processing by the
lower-half threads or (b) offline processing by the upper-half
threads after they have been unblocked.

15518:[0, Thread-3,grail.shapes.RotatinglLine@47a41338,Height, -24,-29]
15518:[1,Thread-3,grail.shapes.RotatinglLine@47a41338,Width, -16,-5]
15518:[2,Thread-3,grail.shapes.RotatinglLine@4c879elf,Height,-26,-29]
15518:[3,Thread-3,grail.shapes.RotatinglLine@4c879elf,Width,13,1]

Fig. 8. Part of Stored Event Sequence with Min Thread Delay 0

18222:[0,Thread-3,grail.shapes.RotatinglLine@l118e6e22,Height, -24,-29]
18479:[1,Thread-3,grail.shapes.RotatinglLine@l118e6e22,Height, -29,-24]
18479:[2,Thread-1,grail.shapes.ImageShape@477dc525,X,30,50]
18480:[3,Thread-2,grail.shapes.ImageShape@734b6086,X,100,120]

Fig. 9. Part of Stored Sequence with Min Thread Delay 10

Sequence partitioning operations split the input sequence by
thread, source and time. Given the sequence of events in Fig. 5,
Fig. 10, 11, and 12 show one of the splits produced by a partition
by thread, source and time, respectively. Splits are useful for not
only writing testing code but also understanding the behavior of
the concurrent programs by both a student and a human grader.
For instance, the Fig. 10 thread split shows that philosopher 0’s
first attempts to eat occurs at event 0 but is not successful until
the last event because the other philosopher was able to get both
chopsticks first. The Fig. 11 source split shows that, because of
polling, the chopstick is picked three times rather than the
optimal number of two. The Fig. 12 time partition shows that
philosopher 0 is able to get both chopsticks at this time.

17:[1,Thread Philosopher ©,Philosopher 0,Fed,false,false]

228:[4,Thread Philosopher @,Philosopher @,WithLeftChopstick,false,true]
228:[7,Thread Philosopher @,Philosopher @,WithLeftChopstick,true,false]
634:[16,Thread Philosopher 0,Philosopher @,WithLeftChopstick,false,true]
634:[18,Thread Philosopher ©,Philosopher 0,WithRightChopstick,false,true]
851:[20,Thread Philosopher 0,Philosopher @,WithLeftChopstick,true,false]
851:[22,Thread Philosopher ©,Philosopher @,WithRightChopstick,true,false]
851:[23,Thread Philosopher @,Philosopher ©,Fed,false,true]

Fig. 10. Thread Philosopher 0 Partition

1 228:[2,Thread Philosopher @,Chopstick @,Used,false,true]
1 228:[6,Thread Philosopher ©,Chopstick ©,Used,true,false]
1 229:[8,Thread Philosopher 1,Chopstick 0,Used,false,true]
1 432:[12,Thread Philosopher 1,Chopstick @,Used,true,false]
' 634:[15,Thread Philosopher @,Chopstick @,Used,false,true]
' 851:[19,Thread Philosopher @,Chopstick ©,Used,true,false]

Fig. 11. Source Chopstick 0 Partition

634:[15,Thread Philosopher ©,Chopstick @,Used,false,true]
634:[16,Thread Philosopher @,Philosopher @,WithLeftChopstick,false,true]
634:[17,Thread Philosopher 0,Chopstick 1,Used,false,true]
634:[18,Thread Philosopher 0,Philosopher @,WithRightChopstick,false,true]

Fig. 12 Time 634 Partition

We saw earlier the ability to match a single event with a
regular expressions array. A sequence matching operation
matches a sequence of, possibly non-consecutive, events with a
sequence of regular expressions arrays, returning the number of
matches that occur. Thus, the regular-expression array sequence
of Fig. 13 matches all thread partitions created from Fig. 5 (such
as Fig. 10) once. An interleaving operation takes as input N
event sequences and determines if they interleave or are
executed serially.

E. Anatomy of a Concurrency Test

The test we have implemented for the polling dining
philosopher solution illustrates the usefulness of the event
DBMS and the predefined operations based on it. It creates an
instance of the DBMS and registers it as an observer of all
chopsticks and philosopher objects by calling an entry point in
the tested code. The test then registers with the DBMS an online
selector that returns true when all philosophers have been fed
once. It next calls two entry points in the application code that
set the number of philosophers and pause time, respectively, and
then waits for the selector to return true or a timeout to occur. In
the latter case, it gives an error message. Otherwise, it checks
the stored event sequence for the following constraints: (1) Did
some interleaving occur? (2) Was the number of newly created
notifying threads the same as the number of philosophers? (3)
Did the expected thread sequence of Fig. 13 occur in each thread
partition? (4) Were the old and new values of each notification
different? If any of these checks fails, it gives an appropriate
error message. Otherwise, it declares success.

public static fimal String[][] EXPECTED_THREAD CHANGES = {
{".*", "Philosopher.*", "Fed”, ".*", "false"},

{".*", "Chopstick.*", "Used", "false", "true"},
{".*", "Phileosopher.*", "With.*Chopstick"”, "false", "true"}
{".*", "Chopstick.*", "Used", "false", "true"},
{".*", "Philosopher.*", "With.*Chopstick"”, "false", "true"}
{".*", "Chopstick.*", "Used"”, "true", "false"},
{".*", "Philosopher.*", "With.*Chopstick"”, "true"”, "false"}
{".*", "Chopstick.*", "Used", "true", "false"},
{".*", "Phileosopher.*", "With.*Chopstick"”, "true"”, "false"}

{".*", "Philosopher.*", "Fed”, "false", "true"},

Fig. 13. Sequence Matching

VI. EXPERIENCE

A. Programming Tests

The first author implemented the following tests for the
concurrency-covering assignment (A4) of our target course: (a)
AsyncAvatar: Checks that separate threads are created for
moving the Knights in the bridge scene (Fig. 2). (b) SyncAvatar:
Checks that two threads that move the same Knight do so
atomically. (c) WaitingAvatar: Checks that threads for moving
the Knights do not start the animation until the user presses the
ProceedAll button (Fig. 2). (d) LockstepAvatar: Checks that the
Knights march to the beat set by the Guard’s clapping. Each test
was first implemented without the event DBMS abstractions and
then (after the course terminated) with these abstractions. In both
cases, AsyncAvatar and SyncAvatar had four subclasses, one for
each Knight (e.g. AsyncArthur and AsyncLancelot), but these
were trivial checks not concerned with events and thus not
considered here. Both sets of checks were equivalent in that they
produced the same result and error messages on the same events,
used the same principles to remove code duplication, were
formatted similarly, and had the same or equivalent comments.

Table I shows the lines of code written with and without the
abstractions. As expected, the abstractions reduced the code
sizes as they required writing of only the upper half.
AsyncAvatar was much larger than the other classes because, in
both cases, it was their superclass and implemented common

code inherited by the latter. What is most striking is the small
amount of code required to check lockstep movement with
abstractions. The reason was that with the abstraction, the test
asked the DBMS to store for each thread only events that
occurred at different beats, and then asked the event sequence
matching operation to determine how many sequences of Guard
followed by Knight events occurred.

The first author

also used the
TABLE L TEST LINES OF CODE gbstractlons to
implement several
Test Without With different versions
abstraction | Abstraction of the dining
AsyncAvatar 300 195 philosopher
problem. (1)

SyncAuvat: 116 47 .
ynevaar Sequential: A
WaitingAvatar | 129 38 single thread
LockstepAvatar | 198 38 exeCUt.es the
operations of all
philosophers,

making them eat serially. (ii) Shared: A separate thread executes
the operations of each philosopher and a chopstick can be used
simultaneously by both adjacent philosophers. (ii) Exclusive:
Same as Shared but a chopstick cannot be shared and there is no
mutual exclusion. (iv) Locked: Same as Exclusive except the
operation to check if a chopstick is used is atomic and a thread
waits until the necessary chopsticks are available, leading
possibly to deadlock. (v) Polling: Same as Locked except that a
thread does not wait. Instead, it releases the chopstick and keeps
trying to get both chopsticks together until they are not in use,
waiting for a time period between successive attempts. (Vi)
NoDeadlock: Same as Locked except that deadlock is
prevented. (vii) ButlerCoordination: The prompt for the next
course does not appear until all philosophers have eaten the
previous course. Again, inheritance was used extensively to
share code among the tests. The number lines of code for these
seven tests were 165, 72, 17, 43, 15, 7, and 10, respectively.
What is remarkable about these data is that the six concurrency
checks added relatively little code to the sequential check —
again because the lower half did not have to be written.
Appendix I gives GitHub links to the source code of our checks.

The fact that the same abstractions were used in all checks
shows their generality. However, as the two classes of
applications are very different, techniques for using the
abstractions were also very different. On the other hand,
techniques for writing our tests for the Holy Grail assignments
should easily transfer to all other concurrency assignments
described in [22, 23] as their concurrency requirements are
similar. The reported lines of code in Table I give an accurate
indication of the relative ease of programming the tests. None of
these tests was straightforward, even though an isolating
architecture and high-level abstractions designed and
implemented by their author were used for some of them. This
is consistent with our experience that both concurrent code and
tests are inherently difficult to implement.

B. Automatic vs Manual Testing

In our target course, we used both automatic and manual
testing of concurrency and other constraints. Manual checking

was done after automatic testing. It tried to find obvious false
positives and negatives given by the tests, and ensured students
had written code demonstrating that met requirements.
Assignment 4, the assignment that covered concurrency, also
covered exceptions and assertions. 31 Students submitted it to
Gradescope for fully automatic grading and 27 of them
submitted it to Sakai for manual grading.

Fig. 3 shows the rubric used for manual testing of
Assignment 4. As it was a summer-course assignment, it had the
size of three semester-course assignments. A single learning
assistant (LA) graded all submissions. He gave extra credit for
particularly nice demonstrations and examined source code
when the demonstrations did not work. Our grading
management system logged all grader interactions. Assuming a
particular student would be graded without a break, we found
that the average time to manually grade an assignment was about
7 minutes. This is a remarkably small time given the number of
and kind of tasks performed by the LA. It is likely low because
concurrency was visualized, our framework provided rubric and
navigation support, the LA knew that automatic testing would
probably catch his mistakes, and the vast majority of students
had made sure they passed the tests before submission. For a
small class whose assignment set is a one-off, it might be less
time-consuming to grade only manually. As we point out, saving
instructor grading time is not the only benefit of tests,

The average (standard deviation) of the concurrency scores
given by the auto and human grader were 83.8%(30) and
76.4%(38) when considering only the 27 assignments graded
both automatically and manually. This is somewhat surprising
as both gradings were checking similar things. There are two
reasons for the lower manual score. First, our automatic checks
gave extensive partial credit based on the events observed, while
manual checks could only look at the results shown on the
display. Second, some students did not demonstrate features
they had implemented, which were found by automatic checks,
The second reason is an argument for adding manual checking
to automatic grading, as, arguably, students understand better
their solution if they demonstrate it working.

C. Automatic Testing: Student Experience

Automatic tests can be an extra collaborator for
programmers, giving information about the requirements they
are expected to meet, determining which of them they have met
so far, and sometimes, based on the error messages, even giving
direction on how to meet the pending requirements. On the other
hand, they can be buggy, give misleading or confusing error
messages, impose unintuitive requirements about entry points,
and not identify the requirements they are testing, which is
probably why Lumsdaine’s talk [17] mentioned they led to
student frustration. To reduce the chance of such frustrations,
students were told they did not have to worry about running
automatic tests — if they had implemented the assignment
requirements correctly, regardless of test scores, they would get
full points from manual grading. Every student still relied on our
tests to ensure they met the requirements.

This does not imply there were no negative consequences.
Students were told that if the tests gave unexpected messages,
they would get prompt attention in Piazza forum posts and office
hours. Since this was a summer course, there were scheduled

Zoom office hours 9 to 5 every weekday. Before an office hour
visit, students were also asked to add a comment in a special
office hours Piazza thread about the issue they would discuss.

We analyzed data from office hour issues on Piazza, regular
Piazza posts, and Zoom audio transcripts of visits relevant to
Assignment 4. We classified each of these items into the
following categories — mnot about concurrency, about
concurrency but not about tests, and about concurrency and
tests. Table II shows the results. Assuming each item
categorized as concurrency and tests had to do with meeting the
constraints of tests or understanding test messages rather than
how to meet concurrency requirements, the last column shows

TABLE II. P1AZZA POSTS AND ZOOM TRANSCRPTS
Non Conc. &
Assignment 4 Total Conc. | Conc. Tests.
OH Issues on Piazza 91 62 20
Zoom Transcripts 24 18 4
Piazza Posts 36 30 3 3

that there were far more questions about concurrency than
concurrency tests. To the best of our knowledge, none of our
tests had errors, though some of them did have misleading
messages which we fixed when identified. Appendices II, III,
and IV give the raw data reported in this table.

D. Test-based Awareness

Like our grading management system, our tests, when run
on the computer of the students (as opposed to Gradescope)
logged timestamped test executions. Based on these logs, we
have developed an algorithm to determine how many times a test
was attempted before it reached its final score [22], and how
much time was
spent during
these attempts
(assuming that
five-minute
pause is a
break). This
algorithm, in
turn, can be
used to give

test-based
visual
awareness of
student

200 activities while
attempting the
solution. Fig.
13 shows an
example of
such awareness
created from 15
submitted logs.

The stacked
bars represent
the number of
attempts by

250 b
Student 0 00
Student 1
Student 2
Student 3 a
Student 4 |
Student 5
Student &
Student 7 1500
Student &

Student 9

Student 10
Student 11 [400
B Student 12
. Student 13
m Student 14

i

2001

150

sidwainy sal

100+

WaitingAvatars

LockstepAvatars

AsyncArthurAnimation
AsynclLancelotAnimation
AsyncRobinAnimation
AsyncGalahadAnimation
SyncArthurAnimation
SyncLancelotAnimation
SyncRobinAnimation
SyncGalahadAnimation

Fig. 13. Test-based Awareness

each student to complete the given test. Each color represents a
different student. The blue line represents the average time spent
by students (in minutes) trying to complete the test.

How such awareness is used is, of course, a matter of future
research but this example shows some possibilities. The figure
confirms the intuition that once a student is able to
asynchronously animate one Knight, then the work required to
animate other Knights should be low, if code is reused properly.
We see that the number of attempts and testing time associated
with AsyncArthurAnimation is much more than what is
associated with animation of other Knights such as Lancelot and
Galahad. This test appeared earlier than others in the testing user
interface and was therefore executed before others. The high
number of attempts on WaitingAvatars is consistent with the fact
that thread coordination is difficult. The relatively low time on
it may show that a few changes whose effect is visualized can
quickly correct the problem.

The figure also shows that there is not a strong correlation
between the number of attempts and the amount of time spent
trying to complete a given test. Most tests were worked on
between 5 and 30 minutes except for the LockstepAvatars and
AsyncArthurAnimation tests. The attempt data also illustrates
that a small collection of students is often responsible for a very
large portion of attempts on a given test. Student 9, for example,
was responsible for almost half the attempts on the
WaitingAvatars test. Looking at the distribution of attempts for
a single student also demonstrates that most tests require few
attempts, but a few tests may prove difficult. For example,
Student 0 had fewer than 50 attempts on all tests except for the
AsyncArthurAnimation and SyncArthurAnimation tests, which
accounted for over 100 attempts each. This information, if
gathered incrementally, could be used to offer help to those who
are late to seek it.

VII. CONCLUSIONS

This paper makes several contributions. We survey and
critique current efforts on testing student programs based on the
extent to which they handle concurrency. We present a
framework for manually and automatically testing a subset of
concurrent programs that visualize concurrency and make all
visualized events observable by observer objects. The
framework consists of a novel grading management system that
allows interactive testing and debugging of student programs, a
producer-consumer architecture for writing observer-based
concurrency tests, a generic event-based DBMS for automating
the producer component, and the generic interleaving, partition,
and match operations on data stored in the DBMS. We give our
experience using the framework based on lines of code required
to write tests, the time required to do manual grading, the scores
assigned by manual and automatic grading, the contents of
Piazza post and office visits. We also show the possibilities of
creating new forms of visualization based on data logged by
tests, which is another argument for writing them.

The main future work is to extend and adapt these ideas to
procedural programming languages such as C and numeric
assignments that do not inherently visualize concurrency. How
to report and use test-based experiences is another exciting
future direction. This paper motivates and provides a basis for
such work.

ACKNOWLEDGMENT

This work was funded in part by NSF awards OAC
1829752 and 1924059. The in-depth comments of the
reviewers improved the presentation of the research.

REFERENCES

[11 Brito, M.A.S., K.R. Felizardo, P.S.L. Souza, and S.R.S. Souza,
Concurrent Software Testing: A Systematic Review, in Proceedings of
the Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging. 2011.

[2] McDowell, C.E. and D.P. Helmbold, Debugging concurrent programs.
ACM Computing Surveys (CSUR), 1989. 21(4): p. 593-622.

[3] Chen, J. and S. MacDonald, Towards a better collaboration of static
and dynamic analyses for testing concurrent programs, in Proceedings
of the 6th workshop on Parallel and distributed systems: testing,
analysis, and debugging. 2008, ACM: Seattle, Washington. p. 1-9.

[4] Arun Singh, S.K., Kevin Gutowski, Pieter Abbeel. Gradescope: A
Fast, Flexible, and Fair System for Scalable Assessment of
Handwritten Work. in Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale. 2017. ACM.

[5] Adams, J., R. Brown, and E. Shoop, Patterns and Exemplars:
Compelling Strategies for Teaching Parallel and Distributed
Computing to CS Undergraduates, in Proceedings of the 2013 IEEE
27th International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum. 2013, IEEE Computer Society. p. 1244-
1251.

[6] Ayewah, N., D. Hovemeyer, J.D. Morgenthaler, J. Penix, and W. Pugh,
Using Static Analysis to Find Bugs. IEEE Softw., 2008. 25(5): p. 22-
29.

[7] Fraser, G., F. Wotawa, and P.E. Ammann, Testing with model
checkers: a survey. Softw. Test. Verif. Reliab., 2009. 19(3): p. 215-261.

[8] Howden, W.E., Reliability of the Path Analysis Testing Strategy. IEEE
Trans. Softw. Eng., 1976. 2(3): p. 208-215.

[91 Yoon, Y. and B.A. Myers. Capturing and analyzing low-level events
from the code editor. in Proceedings of the 3rd ACM SIGPLAN
workshop on Evaluation and usability of programming languages and
tools. 2011. New York.

[10] Banerjee, U., B. Bliss, Z. Ma, and P. Petersen. Unraveling data race
detection in the intel thread checker. in Proceedings of STMCS ’06.

2006.
[11] Corporation, 1. Intel® Thread Checker 3.1 for Windows*. 2018;
Available from:

https://www.polyhedron.com/threading_tools/reseller productpage th
read_checker.html.

[12] Sack, P., B.E. Bliss, Z. Ma, P. Petersen, and J. Torrellas, Accurate and
efficient filtering for the Intel thread checker race detector, in
Proceedings of the 1st workshop on Architectural and system support
for improving software dependability. 2006, ACM. p. 34-41.

[13] Btrace, B. BTrace User's Guide. 2014; Available from:
https://kenai.com/projects/btrace/pages/UserGuide.

[14] Edwards, S.H. and M.A. Perez-Quinones, Web-CAT: automatically
grading programming assignments. SIGCSE Bull., 2008. 40(3).

[15] Edwards, S.H., Z. Shams, M. Cogswell, and R. C. Senkbeil, ,. Running
students' software tests against each others' code: New life for an old
"gimmick". in Proceedings of the 43rd ACM SIGCSE. 2012.

[16] Jackson, D. and M. Usher. Grading student programs using ASSYST.
in Proceedings of the 28th SIGCSE technical symposium. 1997.

[17] Lumsdaine, A. The only constant is change: Maintaining an up-to-date
HPC curriculum. in Proc. of EduHiPC-18 worksahop in IEEE HPC.
2018.

[18] Aziz, M., H. Chi, A. Tibrewal, M. Grossman, and V. Sarkar, Auto-
grading for parallel programs, in Proceedings of the Workshop on
Education for High-Performance Computing. 2015, ACM: Austin,
Texas. p. 1-8.

[19] Grossman, M., M. Aziz, H. Chi, A. Tibrewal, S. Imam, and V. Sarkar,
Pedagogy and tools for teaching parallel computing at the sophomore
undergraduate level. J. Parallel Distrib. Comput., 2017. 105(C): p. 18-
30.

Spacco, J., D. Hovemeyer, W. Pugh, F. Emad, J.K. Hollingsworth, and
N. Padua-Perez. Experiences with Marmoset: Designing and Using an
Advanced Submission and Testing System for Programming Courses.
in Proc. ITiCSE. 2006.

Sarkar, V., M. Grossman, Z. Budimlic, and S. Imam, Preparing an
Online Java Parallel Computing Course. 7th NSF/TCPP Workshop on
Parallel and Distributed Computing Education (EduPar-17). 2017.

Dewan, P., S. George, A. Wortas, and J. Do, Techniques and tools for
visually introducing freshmen to object-based thread abstractions.
Journal of Parallel and Distributed Computing, 2021. 157.

[23] Dewan, P. Visually Introducing Freshmen to Low-Level Java
Abstractions for Creating, Synchronizing and Coordinating Threads. in
Proc. of EduHiPC-19 worksshop in IEEE HiPC. 2019. Hyderabad:
IEEE.

[24] Gamma, E., R. Helm, R. Johnson, and J. Vlissedes, Design Patterns,
Elements of Object-Oriented Software. 1995, Reading, MA.: Addison
Wesley, 1995.

[20

[

[21

—

[22

—

https://www.polyhedron.com/threading_tools/reseller_productpage_thread_checker.html
https://www.polyhedron.com/threading_tools/reseller_productpage_thread_checker.html
https://kenai.com/projects/btrace/pages/UserGuide

REPRODUCIBILITY APPENDIX :EVENT DBMS/CHECKS

Our implementation of the event DBMS and associated
generic operations is available from the following GitHub
directory:
https://github.com/pdewan/GraderBasics/tree/master/src/grad
ingTools/shared/testcases/concurrency/propertyChanges

The checks we wrote using the event DBM for the various
versions of the dining philosopher problem are available here:
https://github.com/pdewan/DemoCourseLocalBasicChecks/tr

ee/master/src/gradingTools/comp999/assignment2

The concurrency checks we wrote using the event DBMS
for the target class are available in the following GitHub files:

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp301ss21/assignment4/async/Abstra

ctionAsyncArthurAnimationTestCase.java

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp301ss2 1/assignment4/sync/Abstrac
tionSyncArthurAnimationTestCase.java

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp301ss2 1/assignment4/coordination/

AbstractionLockstepAvatarsAnimationTestCase.java

https://github.com/pdewan/Comp401LocalChecks/tree/maste
r/src/gradingTools/comp301ss21/assignment4/coordination

The concurrency checks we wrote without using the event
DBMS for the target class are available in these files:

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp401f1 6/assignment10/async/testcas
es/AsyncArthurAnimationTestCase.java

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp401f16/assignment1 1/sync/testcase

s/SyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/mast

er/src/gradingTools/comp401f16/assignment]2/waitnotify/te
stcases/LockstepAvatarsAnimationTestCase.java

https://github.com/pdewan/Comp401LocalChecks/blob/mast
er/src/gradingTools/comp401f1 6/assignment12/waitnotify/te

stcases/WaitingAvatarsAnimationTestCase.java

REPRODUCIBILITY APPENDIX II:OFFICE HOUR VISIT ISSUES

The following table shows each office hour issue posted
on Piazza and its classification into non concurrency (N),
Concurrency but not Testing (C), and Concurrency and
Testing (C & T)

Office hour Piazza Posts C/T
How to run the debugger properly to see the expandable

threads N
syntax errors N
discuss the demoing of the view class N
how the RestrictedLine connects to the new Legs class N

how to account for the left and right lines and their subsequent
angle range N

Observing Bridge-Scene View

parts 3 and 4 of A4

failing some controller checks + throw the exceptions for part
2 of A4

Z

button issue + localchecks for the buttons and syncanimations
NOT passing

Q
&
—

assertions are not getting call correctly

failing all the SceneControllerButton checks

discuss part 1 of A4

discuss syncAnimation and AsyncAnimation

Q
—~

discuss TokensRun tests

help with the async/sync methods

discuss SceneControllerButtonDynamics

A4 part 1's last section with the JButtons

logistical questions around part 1 of A4

how to implement part 1 of A4

z|z|Z|z|o|z|®x|z|Z|Z

not able to get the ImageShapes for each avatar to display in
the scenes

implementing the button part (part 1 of A4)

Z|z

unsure of what type of preconditions that should be looking
for + when the notification of event changes should be firing

Object Editor and the Keyboard presses

discuss an issue with waiting avatars

o|z|z

not passing the SceneControllerButtonDynamics test +
keyboard presses in the object editor

failing a scenecontrollerbuttondynamics test and impossible
angle exception test

failing the scenecontrollerbuttondynamics test + don't
understand how broadcastingclearancemanagers work

how to properly register the scene controller as a listener

discuss the use of the Coordinating Animators in the bridge
scene class for the lockstep animation methods

gradescope grade does not match localcheck grade

ZO

clarify some parts of bridgescenecontroller + some null
pointers getting in bridgescene

discuss exceptions

get help on the Synch method

check if the student's project has been sent out successfully

get help on the async/sync method

failing bridge scene controller tests

unable to get the avatars to speak

ask about preconditions and button listeners in part 1 of A4

the button controllers in part 1 of A4

exceptions after creating legs and restricted line classes

failing a few syncanimation and controller checks

x|Z|Z|z|Zz|Z||z|0Z|Zz

e

discuss how the animation commands should be called within
(or outside of) the asynchronous methods

o

ask about the synchronous and coordinated methods in part 4
of A4

animating the scene using the buttons

discuss part 4 of A4

mouseListener stopped working

not passing some checks regard to buttons

failing the bridgescenebuttoncontroller test

failing the button dynamics test

failing the scene controller dynamics test

finding a new error with the test

get help with Coordinated Animation

O

A4 scene and button dynamics do not work on gradescope

Z\x|z|Z|z|Z|Z|Z|0|Zz|a

passing localchecks for A4 part 1
(AssertingBridgeSceneDynamics) but not in gradescope

failing A4 SceneControllerButtonDynamics test

Z|z

discuss the SceneControllerButtonDynamics test in
SceneControllerButtons of A4

https://github.com/pdewan/GraderBasics/tree/master/src/gradingTools/shared/testcases/concurrency/propertyChanges
https://github.com/pdewan/GraderBasics/tree/master/src/gradingTools/shared/testcases/concurrency/propertyChanges
https://github.com/pdewan/DemoCourseLocalBasicChecks/tree/master/src/gradingTools/comp999/assignment2
https://github.com/pdewan/DemoCourseLocalBasicChecks/tree/master/src/gradingTools/comp999/assignment2
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/async/AbstractionAsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/async/AbstractionAsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/async/AbstractionAsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/sync/AbstractionSyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/sync/AbstractionSyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/sync/AbstractionSyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/coordination/AbstractionLockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/coordination/AbstractionLockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp301ss21/assignment4/coordination/AbstractionLockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/tree/master/src/gradingTools/comp301ss21/assignment4/coordination
https://github.com/pdewan/Comp401LocalChecks/tree/master/src/gradingTools/comp301ss21/assignment4/coordination
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment10/async/testcases/AsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment10/async/testcases/AsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment10/async/testcases/AsyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment11/sync/testcases/SyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment11/sync/testcases/SyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment11/sync/testcases/SyncArthurAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/LockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/LockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/LockstepAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/WaitingAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/WaitingAvatarsAnimationTestCase.java
https://github.com/pdewan/Comp401LocalChecks/blob/master/src/gradingTools/comp401f16/assignment12/waitnotify/testcases/WaitingAvatarsAnimationTestCase.java

discuss child thread not found error for the sync and async Scene controller dynamics; On the key events seems it's not

animations C&T firing N
how to implement abstract classes in part 1 of A4 N Scene controller, unable to access anything when you call the
understanding of the extended console view and the button presses - N
implementation of buttons N Scene controller, unable to access anything when you call the

get some more clarification on the buttons part of A4 + clear buttqn presses _ . N
up some implementation concerns about the factory method Passing everything on grade scope, but issues with my walk

for the Part 2 exceptions N step methods C
get a better idea of how to implement part 1 of A4 N Controller factory method i _ N
clear up some wording issues of part 2 of A4 N Messages for different things (extends io exception) N
clarify some parts of BridgeSceneDyanamics N Avatar moving i _ C
failing style checks tests + get some help with part 4 of A4 C Grades group of the local checks (bridge team dynamics) N
et some help with part 4 of Ad C Sync controller buttons (New value false does not equal

failing Asynchronous animations test C&T app'r(')ach button enabled status) . C&T
questions about gradescope test N Waiting Avatar; about scene button; about synchronous; it

get help with Synch method and Buttons Dynamics C]saayslthat lockhstep' . ") CI(%T
discuss an issue with waiting avatars C Xpiain synchronize keywor

mismatch in checks between Gradescope and Localchecks N

questions about exceptions N .

discuss exceptions and Asynchronous animation C REPRODUCIBILITY APPENDIX IV: PIAZZA POST SUBJECTS

failing SceneControllerButtons and The following table shows the subject lines of each Piazza

AssertingBridgeSceneDynamics tests + ask about part 4 of A4 | C&T post classification into non concurrency (N), Concurrency but
questions about manual grading of A4 N not Testing (C), and Concurrency and Testing (C & T)
getting errors in sync and async animations C
discuss SceneControllerButtonDynamics N Piagza Posts /T
get help with async animations C Assignment 4
talk about Observing Bridge-Scene View N Assignment 4 Due Date
discuss some concepts of paint() and repaint() N Early Deadline
creating the buttons in part | of A4 N A4 Part 1 OE not making grey if precondition is false?
resolve some issues with part 1 and part 2 of A4 + get some ﬁi&iﬁ; Dynamically Enabled Buttons for Calling Asserting
help understanding part 3 C
et a better understanding of part 3 for A4 C chec}(styh.e - - -
£ £ 07 part - Clarification with Assignment 4 Instructions
télk about part 2 of A4 and creating the exception class N Failing SceneControllerRegistersAsActionListener
discuss I.’art 2 of Ad - - N Failing SyncAnimation tests, unsure why from console trace
mouseListener and keyListener are not working properly N Delayed Events Error with implemented sleep call C&T
approach method and say method not working in localchecks N JButton problem
discuss how to debug A4 for the LocalCheck errors such as Indentation Issue
"Child thread 1 not found" and "Child thread not found." C&T Animation for speaking not loading properly
add buttons to the JPanel N AssertingBridgeSceneDynamics failing
figuring out how the lockstep methods work C Steps and Claps
discuss Asynchronous Animation and controller calls C Lockstep test failed
discuss waitingAvatars and LockstepAvatars C&T Typo in grader

scene controller button tests

Exception Thrown and Grader Test

A4 part lockstep animator issue

Lockstep Animators

A4 gradescope

Style Checks Partially Passing

Gradescope not match with Checkstyle

A4 sakai submission

GradeScope grades not match with localcheck

REPRODUCIBILITY APPENDIX III: ZOOM TRANSCRIPTS

The following table shows the summary of each Zoon
transcript during office hours and its classification into non
concurrency (N), Concurrency but not Testing (C), and
Concurrency and Testing (C & T)

Z|Z|z|z|Z|Z|z|z|z|0|z|z|z|Z|Z|q|z|Z|Z|Z|®|Z|Z|z|z|z |Z|Z|Z|z

Office h.our. transc.r ipt summary Cr SceneControllerISAPropertyChangeListener not passing
Debugging in practice 4.1 N - - = —
= BridgeScene Dynamics checks- failing preconditions
Exceptions N -
Questions on how to implement restricted legs and | Table Demonstration
uestions on how to impiement restricted fegs and iegs Waiting Test on Local Checks not matching Gradescope test
throwing exceptions N Asynch/Synch/Wait Animations and the Use of synchroniz
The head is in the correct position, but the body is not right; szn“clordync a ations & ¢ Lse ol synchronize C&T
wires water only see like property check that that's for x's and Y - -
Vo [LocalChecks not matching gradescope for SceneDynamics
y's (either rotatable by or locatable) N .
- - and ButtonDynamics C&T
Null pointer exception N -
- A4 SceneControllerButtonDynamics Error N

Lots of things wrong on local checks N AssertineBridecS D — Thomnt
Confused on how to go about the threads part C exScS: tli];rg1 rAgescencliynamics 1S grving me a null poin N
Part four in part one C L - -
This tango is caught by rotating line or restricted line N AssertingBridgeSceneDynamics N

1S 1ang u Y me 1 ! ! A4 Exception in thread... EmptyStackException C
Button issue N
Exceptions N
Mouse clicking no longer work N
Buttons not focus N

