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Abstract— During the Covid pandemic, we gave a Java 

assignment that exercised threads, synchronization, and 

coordination and wrote tests to check each concurrency aspect 

of the assignment. We used four different technologies to record 

events related to work on this assignment: the Piazza discussion 

forum, the Zoom conferencing system, an Eclipse plugin, and a 

testing framework. The recorded data have given the instructors 

of the course broad awareness of several aspects of student 

work: How much time did a student spend on an assignment? 

How many attempts students made on thread, synchronization, 

and coordination tests before they reached their final scores? 

How many times did they go to Piazza or use Zoom-supported 

office-hour visits to fix concurrency problems, and what was the 

nature of these problems? How effective was Zoom 

transcription to classify the office hour problems? How long and 

effective were the office hour visits, and to what extent was 

screen sharing used during these visits? To what extent did 

students use the tests to determine if they had met assignment 

requirements? These data, in turn, have provided us with 

preliminary answers to a variety of questions we had about 

unseen work and the concurrency aspects of the assignment.  

While the answers may be specific to our assignment, the 

questions answered by these mechanisms can be expected to 

apply to other settings. 

Keywords—awareness, metrics, concurrency, education, 

defects, distance education, hands-on learning 

I. INTRODUCTION  

Programming assignments are critical in courses on 
concurrency as they allow students to see its non-deterministic 
impact on performance [1] and/or the user-interface [2]. For 
this reason, “nifty” assignments have been an important 
component of many workshops on concurrency education. 

Traditionally, the only objective metric available to judge 
the impact of an assignment is the total score a student 
received on the submitted solution. This information does not 

indicate several aspects of the assignment, such as how 
challenging its various requirements were on students who 
completed it, and the extent and nature of the help they sought 
to implement it. Such awareness could potentially be used to 
offer help to shy struggling students, change the assignments, 
and adapt the presentation of the underlying concepts. These 
applications of awareness are particularly important for an 
early course on concurrency as there is less experience with 
them, and concurrent programs are believed to be difficult to 
implement and debug. Feedback about the difficulty of 
concepts is particularly important in remote instruction and 
large classes as visual clues of student confusion are absent.  

Such awareness requires technology to record events 
relevant to the work. In summer 2021, during the Covid 
pandemic, we offered a remote course on object-oriented 
programming that covered concurrency. The last assignment 
exercised threads, synchronization, and coordination, and was 
accompanied with tests to check concurrency and non-
concurrency aspects of the assignment. We used four different 
technologies to record events related to work on this 
assignment: Piazza for asynchronous discussions, Zoom for 
synchronous office hour visits, an Eclipse plugin called 
Fluorite [3], and a testing framework. Use of each of these 
recording technologies was voluntary.  

In this paper, we describe the awareness mechanisms we 
derived from these events and the kind of concurrency 
questions they answered about the assignment. We first 
identify related work on awareness. Next, we give the context 
for this case study, outlining the nature of the course and the 
concurrency assignment. We then provide an integrated 
discussion of our awareness mechanisms and associated 
questions and answers. We end with conclusions and future 
directions. 

This work was funded in part by NSF awards OAC 1829752 and 1924059. 



II. RELATED WORK 

In collaborative systems, awareness is defined as 
information about the activities of one or more actors that can 
influence the activities of the observers of this information [4]. 
In our context, the actors are students and the observers are 
instructors. 

The Codeopticon [5] system was designed for exactly this 
context. It allows instructors to see the current programming 
windows of several students all at once. Whenever a student 
gets an error, this is flagged in the view of the students, and 
they can engage in chats with the instructors to help them 
solve their problems. The windows displayed in the instructor 
view are also grouped according to the number of errors a 
trainee has generated so that the instructor can focus on the 
students in need of the most assistance. The instructor can 
replay the history of actions of any student to further 
investigate the nature and severity of the difficulty.  

Digital Show-How [6] also targets the education context. 
It is designed to provide scalable help when a student’s task is 
to follow an instructor’s demonstration in class. Thus, it is not 
designed for tracking homework on assignments. The system 
uses a programming environment called Bricks to give the 
instructor a summary of students’ progress in terms of how 
many steps they have followed. Unlike Codeopticon, it 
supports solicited rather than unsolicited help. Whenever 
students have trouble, they can submit their code and the 
instructor can work to correct it in class.  

CollabVS [7] is a related system built for industrial 
programming that provides members in a small software 
engineering team awareness about each other’s actions in 
Visual Studio. Like Codeopticon, it can be used to provide 
unsolicited help on open-ended tasks. A programmer is 
provided with tiles for all team members that indicate (a) 
whether they are active, (b) whether they are editing or 
debugging, and (c) the file, class, and procedure they last 
edited. This information can be used by programmers to avoid 
conflicts and provide help to team members who have spent 
an undue amount of time on code on which the observers are 
experts. 

None of these systems provide awareness of the kind of 
problems programmers face. The work by Lonnberg [8] has 
gathered this information in the context of a visual 
concurrency assignment in which students (a) create threads 
for different trains that can share tracks, and (b) ensure that a 
train changes tracks to avoid collision with another train. They 
are provided with assignment-specific code to create a 
visualization of the train movement which is referred to as the 
assignment environment. Based on the grading of the 
submitted solutions, accompanying reports, and student 
interviews, the authors identified defects in the submitted 
solution and created two classifications. One classification 
separated them into deterministic and non-deterministic 
errors. The other separated them into four categories: incorrect 
algorithm or implementation, assignment requirements, 
programming environment (language and standard libraries), 
and assignment environment. The same assignment was given 
in three different years. The number of errors in each category 
reduced in subsequent years, perhaps based on 

countermeasures taken in response to awareness of the 
information from previous years. 

Like these efforts, our work is intended to provide 
awareness information to both help students and find ways to 
improve the course. Our contribution is using novel 
information recorded automatically and a new set of 
awareness mechanisms based on the recorded information that 
can, in turn, be used to offer new ways to offer help and 
improve the assignment. 

III. CONTEXT 

The assignment discussed here, which we refer to as the 
target assignment, was the last assignment in a Java-based 
course on object-based programming, offered in the summer 
of 2021, in which concurrency was a major component. As it 
was a summer-course assignment, it had the size of three 
semester-course assignments. It covered threads 
(concurrency), synchronization (mutual exclusion), 
coordination (managing thread interdependencies), assertions, 
exceptions, and abstract classes. The data structure course was 
a prerequisite. The first, second, fourth and sixth authors were 
instructors of the course. The first author was the lecturer. This 
was his first offering of this course, which is relatively new in 
our curriculum. The course had three other instructors, and 
together, they ensured that office-hours were scheduled from 
9 am to 5 pm each weekday.  

This course was a variation of a previous course (taught 
several times by the first author), which preceded the data 
structure course [9]. The concurrency aspects of the 
assignment of this course were based on three different 
assignments in the previous version [9]. A major difference 
was that concurrency aspects were required in this course and 
optional in the previous version. 

In this offering, the assignments in the course together 
simulated a variation of the bridge scene from the movie 
Monty Python and the Holy Grail (Fig. 1).  

             

Fig. 1. Holy Grail Bridge Scene 

The target assignment had four concurrency requirements 
checked by instructor-provided tests: 

1. Asynchronous Knights: Provide a command to create 
a thread to animate the movement of a selected Knight 
such as Arthur or Galahad. The implementation 
creates a separate animator object for each thread or 
Knight, which provides an animation method that 
executes one or more loops that call sleep() before 
each movement.  

 



2. Synchronized Knights: Two executions of a 
command to move the same (different) Knight are 
now serialized (execute concurrently). The 
implementation now has to create a single animator 
object for each Knight and declare its animation 
method as synchronized.  

3. Waiting Knights: A thread is created to animate each 
Knight, but the threads wait for a start user-command 
to start the animations. The time between the steps of 
the animation can be different. The animation method 
now executes the wait() call in a global object before 
executing the animation loop. It unblocks when a 
notifyall() is executed on the global object in response 
to the execution of the start user-command.  

4. Lockstep Knights: As above a thread is created to 
animate each Knight, which now makes its Knight 
move to a beat set by the clapping of the Guard. The 
animation method of the Guard executes the notify() 
method of a global object after each sleep() call and 
the animation() method for a Knight executes the 
wait() method of the global object before each 
movement (instead of a sleep() call).  

Thus, the first requirement exercises threads, the second 
one synchronization, and the last two coordination. 31 
Students submitted solutions to the assignment. Our 
discussion focuses on 20 of them for whom we have all of the 
recorded data needed by our awareness mechanisms.  The 
assignment was given as homework, so students’ work on it 
was not visible to the instructors.  

The student solutions had to conform to expectations set 
by the tests. For instance, they had to use a Java annotation to 
identify the method that animated Arthur’s movement. 
Similarly, they had to ensure that the time an animation 
method took was bounded by lower and upper limits set by the 
tests. We refer to these constraints as test requirements to 
distinguish them from the assignment requirements above. 

IV. AWARENESS MECHANISMS 

Our awareness mechanisms were developed in response to 
several questions we had about the unseen work in the 
submitted solutions. While we focus on those that are relevant 
to concurrency, many of these also apply to any unseen 
homework. The answers these mechanisms gave us illustrate 
and motivate the mechanisms. As they are specific to a 
particular assignment given to a small set of students, the 
answers may not apply to other settings. Thus, the awareness 
mechanisms are expected to be general but not the illustrative 
answers provided by them. Before we present an awareness 
mechanism, we pose the questions that motivate it.  

A. Standard Total and Topic-based Scores 

Since concurrency was now a required element of the 
assignment, we naturally wished to know the absolute and 
relative performance of students on the concurrency and non-
concurrency aspects of the assignment. The test scores on the 
submitted assignments give this information readily.  

      

  (a) Total      (b) Concurrency      (c) Other    

 

  (d) Threads             (e) Synchronization (f) Coordination 

Fig. 2. Topic-Based Percentages 

Fig. 2 shows by topic score histograms, with the X-axis 
being score percentages and the Y-axis being the number of 
students with a score range.  Other stands for non-concurrency 
topics. Fig. 2 (a) shows that the vast majority of students did 
very well on the assignment. Fig. 2 (b) shows that a greater 
number did very well on concurrency aspects, though there 
were a few extremely low scores on these aspects. Fig 2 (d) 
shows that low scores on concurrency were not caused by the 
thread component- all students did very well on it. Fig. 2(e) 
and (f) show that synchronization and coordination posed 
problems for the students who received low scores on 
concurrency, with coordination posing more problems. This 
trend is consistent with the fact that the three concurrency 
concepts are inherently layered in the order: threads, 
synchronization, and coordination, with each topic building 
on the topics that precede it. 

The high scores here are inconsistent with the number of 
defects in student submissions of the assignment reported by 
Lonnberg [8], which like our assignment, also visualized 
concurrency. Perhaps the reason is the use of instructor-
provided tests to check the requirements before submission. 
We later discuss how extensively they were used. 

Did students who struggled with some concurrency topic 
also struggle with other topics? If not, then perhaps the 
concurrency topic was especially difficult for some students.  

The concurrency-centered plots of Fig. 3 provide answers 
to this question. In such a plot, each circle represents a student 
whose color identifies the student and size is proportional to 
the student’s concurrency percentage The X-coordinate of the 
circle gives the total assignment score as a fraction of 1 for the 
student. The Y-coordinate of such plots vary. In Fig. 3(a), (b), 
(c), and (d), it gives the scores on the portion of the assignment 
characterized as other, threads, synchronization, and 
coordination. . In all such plots the Y-axis 0 is the line above 
the X-axis. as circles on the X-axis look bad. 

These plots confirm that all students did very well on 
threads. Almost all of them (did well on synchronization and 
coordination – the exceptions are labelled A, B, C, and D. Of 
these four students, one of them did poorly only on 
synchronization (B), two did poorly only on coordination (C 
and D), and one student did poorly on both synchronization 
and coordination (A).  

  



   

    (a) Other   (b) Threads 

    

  (c) Synchronization              (d) Coordination 

Fig. 3. Concurrency-Centered Plots for Topic Scores (Y-
Axis Increment = 0.1) 

The students in the other plot were more closely clustered 
together. However, students who did poorly on 
synchronization or coordination also received lower scores on 
other and overall. Based on these data, synchronization and 
coordination made the spread more extreme than other and 
threads, which is consistent with the intuition that these are 
more advanced topics than threads.  

B. Help Awareness 

Was the good performance of the vast majority of students 
on concurrency a result of seeking help? Was the poor 
performance of some students a result of not seeking help? 
Which concurrency topics required more help? What was the 
nature of the problems for which students sought help?  

As a step towards answering these questions, we classified 
each concurrency-based Piazza help post and office-hours 
visit along the topic and type dimension. The topic dimension 
indicated whether it had to do with threads, synchronization, 
or coordination. The type dimension had the following 
categories: 

1. Assignment requirement: Did the student need help in 
the initial understanding of some assignment 
requirement. An example was a Piazza post that 
resulted from a wrong assumption that the same class 
had to implement the animators for unsynchronized, 
synchronized, waiting, and lockstep animations. 

2. Conceptual: Was the problem based on a failure to 
understand some theoretical concept or develop an 
algorithm to implement some understood requirement 
using an understood concept? An example was an 
office hour visit to understand how to implement the 
lockstep animations. 

3. Test-unrelated: Was the problem based on 
unexplained behavior uncovered by the student’s own 
debugging rather than an instructor-provided test?  

4. Test-uncovered: Did the student seek help to interpret 
test output that uncovered some misunderstanding of 

assignment requirements or mistake with the 
implementation? An example was a Piazza post that 
resulted from the test for lockstep animation failing 
because the wait() calls were not called correctly. 

5. Test-requirement: Did the student seek help to 
interpret some implicit or explicit test requirement? 
An example was a Piazza post resulting from an 
animation taking more than the upper limit of 5 
seconds set by tests for synchronized animations. 

The classifications were done by the third and fifth 
authors, who first did them independently, and then worked 
together to resolve their differences. Classifying the office- 
hour transcripts was particularly a problem as a result of 
transcription errors. These were of three kinds:  

1. Word errors: The wrong word appeared in the 
transcript. Example: “lockstep: was translated into 
“lock semester.”  

2. Sentence errors: The context of a specific sentence 
was not enough to understand it. Example: “Yes, so 
your enemy they're basically your elevator store or 
the animation steps that you have to take in your 
strength right so, which means that yeah that's it.” 

3. Transcript errors: The context of the full transcript of 
an office-hour visit was not enough to classify it. 
There was no example of such an error. 

To determine the usefulness of transcripts as a mechanism 
for help awareness we made some estimates of these errors 
after processing the transcripts using the Grammarly system 
for checking grammar problems. The number of 
grammatically incorrect sentences was considered a count of 
the number of word errors. The third author then looked at the 
sentences with these alerts and manually determined the 
number of sentences that were not understandable. The third 
and fifth authors then determined from all the sentences in a 
transcript whether they could classify it. As mentioned above, 
there was no such transcript. In 11 transcripts of office visits 
related to our target assignment containing 46651 words and 
5441 sentences, we found 2842 grammatically incorrect 
sentences and 170 sentence errors. 

Table I shows the number of posts for each topic and 
nature combination. A combination with 0 posts is not 
included. What is most striking is the small number of these 
posts in each concurrency row. This number indicates either 
(a) that students did not have problems represented by these 
rows, or (b) that the types of these problems were few, so each 
answer was helpful to many, or (c) that the problems were so 
severe that office-hour visits were used to resolve them. 

The first three columns of Table II show the same 
information for office-hour visits. The numbers are higher 
now for the more advanced topics. For example, coordination 
was associated with 11 visits and 5 posts, while threads was 
associated with 3 posts and 2 visits. Unlike Piazza posts, 
information in office-hour visits is not shared. Hence a 
repeated problem results in repeated visits. 



The data show that tests uncovered more problems than 
they introduced in the form of misunderstanding of the 
requirements they introduced. 

TABLE I.  CLASSIFYING ALL POSTS 

Topic Nature Number 

Other Test-unrelated 9 

Other Assignment-requirements 7 

Other Test-uncovered 5 

Other Conceptual 1 

Other Test-requirements 1 

Threads Test-requirements 4 

Threads Test-uncovered 2 

Threads Conceptual 1 

Coordination Assignment-requirements 1 

Coordination Test-unrelated 1 

Coordination Test-uncovered 4 

Synchronization Test-uncovered 2 

 

Based on the office--hour transcripts, we give in the last 
three columns of Table II the number of visits involving 
screen sharing (SS), the average duration of a visit, and the 
average fraction of this duration used for screen sharing. The 
visit duration indicates the severity of the problem. Screen 
sharing is a necessary condition for debugging so it may imply 
debugging. 

TABLE II.  CLASSIFYING ALL VISITS 

Topic Nature # # 

SS 

Avg. 

Duration 

(Min) 

SS Pct.  

Duration 

Other Test-unrelated 1 1 7.5 99.6% 

Other Assignment-
requirements 

3 3 23.8 99.6% 

Other Test-
uncovered 

4 4 9.9 85.1% 

Other Conceptual 4 4 23.8 97.9% 

Other Test-
requirements 

3 3 16.9 97.6% 

Threads Test-
uncovered 

2 2 7.4 92.9% 

Coordination Test-
uncovered 

10 8 19.9 91.8% 

Coordination Conceptual 1 0 1.1 0% 

Sync. Test-
uncovered 

7 6 12.6 85.3% 

 

Some offerings of large courses known to the first author 
limit an in-person office-hour visit to 15 minutes. These data 
seem to indicate that this time would be sufficient even for 
online meetings. Our data showed that meetings longer than 

20 minutes usually did not resolve the problem, and typically, 
these required the student to debug on their own. The fact that 
screen sharing was used so extensively, even for conceptual 
problems, is somewhat dismaying. It seems to indicate that 
students were not able to abstract out the nature of the problem 
in words and perhaps that the instructor did not try to make 
them do that. More investigation of these visits is necessary to 
determine if screen sharing was not warranted. If all of these 
problems required debugging, then, of course, screen sharing 
is desirable and these data show the benefits and usability of 
such sharing to solve concurrency and other problems in 
remote visits. 

These data do not answer a question we raised earlier. Did 
the students who did poorly on a concurrency topic seek help 
through Piazza on that topic? The concurrency-centered plots 
of Fig. 4 and 5 address this issue. They mirror Fig. 3 except 
that in Fig. 4 the Y-axes show the number of posts of each 
student and in Fig. 5 they show the number of office-hour 
visits. 

Continuing with our investigation of the low-performing 
students on concurrency, Fig. 4 shows that the low-performing 
student D was the only student to post anything on Piazza, and 
that was a single post not related to concurrency topics. Fig. 5 
shows that only one of these four students, B, made an office- 
hour visit for any reason, and that visit was related to the topic 
of coordination, a topic on which B scored well. Thus, these 
plots indicate the low-performance on the advanced 
concurrency topics did not occur despite seeking help.  

Fig. 4 and 5 show an example of a student, F, who 
performed well and had high posts (8) and office hour visits 
(16). We also see another high-performing student, E, who 
had no posts and only 4 office hour visits. We will investigate 
E in more depth later. 

C. Task Completion-Time Awareness 

As we see above, even high-scoring students made posts 
and office-hour visits. This, in turn, seems to indicate that they 
achieved success with some struggle. Help requests indicate 
problems students could not solve in the time available to 
them. Task completion time is an indication of struggle with 
problems solved by programmers on their own. 

To estimate this time, we processed students’ Eclipse 
timestamped commands logged by the Fluorite [3] Eclipse 
plugin. Assuming that a five-minute pause is a break, we 
calculated from these logs the total work-time of each student 
on a submitted assignment. Fig. 6 shows a concurrency-
centered plot in which the Y coordinate gives the student’s 
active work-time in minutes.  

As we see here, students had widely varying work-times. 
Continuing with the low-performing students, their active 
time spent working was over 500 minutes, which is around the 
average. Thus, their poor performance cannot be explained by 
less than average work. 

Among the students who had a high work-time is student 
F, who also asked for a relatively high amount of help. The 
highest work-time is of student E, who as mentioned earlier, 
sought very little help in comparison, which is consistent with 



research that shows some people are shy about asking for help. 
F took around 1500 minutes of active time to complete the 
assignment, while E took around 1800 minutes. Both students 
scored over 90% on the assignment. This information seems 
to indicate that some help might have reduced E’s work-time, 
perhaps at the cost of some learning.  

 

 

(a) Other 

 

(b) Threads 

 

(c) Synchronization 

 

(d) Coordination 

Fig. 4. Concurrency-Centered Plots for Posts (Y-axis 
Increment = 1) 

As instructors, we are told that a course worth X credits 
should require 3X hours per week outside class lectures. The 
data show here a large variance in these times, which is 
consistent with research that shows estimating project 
completion time is difficult. The fact that programming 
assignments take a high toll on some students may be a result 
of high variance and lack of data about task completion times. 
This awareness mechanism provides these times. 

D. Topic Test-Attempts Awareness 

Task-completion time does not give us information about 
how much students struggled with individual concurrency 

aspects. One measure of such struggle, we introduced in an 
earlier paper [2], is the number of attempts on a test, which is 
the number of times the test was executed before it gave its 
final score. For each topic, we calculated the average of the 
number of attempts on a test related to that topic, which we 
refer to as topic test-attempts. 

 

(a) Other 

 

(b) Threads 

 

(c) Synchronization 

 

(d) Coordination 

Fig. 5. Concurrency-Centered Plots for Office Hour Visits 
(Y-axis increment = 2) 

Fig. 7 mirrors Fig. 3-6 except the Y-axes now show 
average topic test-attempts. As we see here, there is high 
variance also in these numbers. Some instructors like to limit 
the number of times instructor-provided tests are run, though 
there is no agreement on what this number should be. Our 
tracked data tell us how many attempts would be made when 
no bounds are placed. There were 46 tests overall (on all 
topics) and on average a student attempted an individual test 
about 3.5 times giving an average number of total test attempts 



of 162, a number much higher than the bounds we expect 
instructors place. If this is indeed the case, then these data 
show that limits are unnatural, in that, left to themselves, 
students would like to have more attempts. What impact the 
number of attempts has on learning is a matter for future 
research. Assuming the average of actual attempts divided by 
the number of desirable attempts is constant, the differences 
in the topic attempts distributions indicate that the limits 
should depend on the topic. 

 

Fig. 6. Active Time Awareness (Y-axis increment is 200 
minutes) 

E. Topic Test-Time Awareness 

The number of attempts on a test does not indicate how 
much time it took to fix the problems uncovered by it. Our 
test-attempts algorithm gives the time a test was first 
attempted and the time it reached its final score. Our task 
completion algorithm gives work-time between any two 
times, given the timestamped commands logged during this 
period. Using these two algorithms we computed the time a 
student spent on a test, and from these data, the average time 
spent on a test on a topic, which we refer to as the topic test-
time. Fig. 8 mirrors previous concurrency-based plots with the 
Y-axes now showing average topic test-times in minutes. 

Continuing with the low-scoring students, we find that 
though they had average work-times, they had lower than 
average attempts and times on concurrency topics, which 
seems to imply that they did not make enough progress to have 
large numbers in these metrics. E and F have average attempts 
and times, which seems to indicate that their high work-time 
was caused by other topics. 

We observed a much more significant variance in students' 
time and attempts for Threads than all other topics. For 
example, the standard deviation of average attempts for the 
thread topic is 7.04, while the standard deviation for other 
topics is only 1.75. Similarly, the standard deviation for 
average test times on threads was 51.77 minutes, while other 
topics were 9.38 minutes. Threads was also the topic on which 
every student received a high score, Thus, these data may 
indicate that with enough time, this is a topic that can be 
mastered, unlike the more advanced topics. Another cause 
might be that thread tests run student animations, and there 
were no requirements for the nature of the animations or how 
much time they took. Animations that finished much before 

the test timeouts (which were several minutes) resulted in 
much smaller test times than those that ran until the timeouts. 

It seems intuitive to assume that the number of test 
attempts and test time would be correlated. We saw no 
correlation between the total number of attempts per test and 
the time spent on tests (Pearson Correlation = 0.07). Likewise, 
there was only a significant correlation between attempts and 
time on tests for the synchronization topic (Pearson 
Correlation = 0.90). With a bigger class, we might have seen 
some correlation. 

 

(a) Other 

 

 (b) Threads 

 

(c) Synchronization 

 

  (d) Coordination 

Fig. 7. Concurrency-Centered Plots for Test Attempts (Y-
axis increment is 5) 

It is generally thought that some programmers are 
inherently faster than others. This could imply that a student 
who spent less than average time on tests on one topic would 



also do so for other topics. We found a strong correlation 
between time on other and total time (Pearson Correlation = 
0.84), but found no correlation between times spent on other 
pairs of topics. This result can perhaps be explained by the fact 
that other had a very high fraction of tests and this contributed 
heavily to the grade – 36 out of 46. 

 

(a) Other 

 

 (b) Threads 

 

(c) Synchronization 

 

(d) Coordination 

Fig. 8. Concurrency-Centered Plots for Test Time (Y-
Axis increment = 20 minutes) 

V. CONCLUSIONS 

Our awareness mechanisms provided us with several 
insights about unseen student work on our assignment: Scores 
on concurrency topics, especially the two more advanced 
ones, created a much wider separation of students than non-
concurrency scores. The low concurrency scores were not 
associated with lack of attempts or time spent on the 
associated tests, but were associated with low help requests in 
terms of office-hour visits and Piazza posts. Students who 
were not separated by scores were separated by other metrics 
such as requests for help, total work time, number of test 
attempts, and test time. The distributions created by these 

metrics were mostly unrelated. Threads created a wider 
distribution of attempts and test time than other topics. The 
problems solved by the tests were more than those created by 
the requirements they imposed. Screen sharing was used in the 
vast majority of office hour visits, even those that apparently 
required not debugging. The ones that were successful in 
debugging were less than 20 minutes.  The more advanced 
concurrency topics also had more posts and office-hour visits. 
Some students spent an undue amount of time on the non- 
concurrency aspects of the assignment while asking for little 
help. 

The findings we made from the awareness mechanisms 
presented here are, of course, of interest to us and anyone who 
wishes to offer a similar concurrency-based assignment to a 
similar set of students. Future work is required to determine if 
they apply to other settings. 

Our more general contribution is the set of new awareness 
mechanisms themselves, which apply to other concurrency 
courses. Moreover, while our concurrency-centered plots are 
specific to concurrency assignments, the underlying 
information captured by the awareness mechanisms applies to 
any course.  

Our mechanisms were developed after the course was 
completed. If these mechanisms indeed can identify struggling 
students to offer help to them, then infrastructures and user-
interfaces are needed to provide their information to 
instructors as the assignment is being implemented. 

Such mechanisms may not be usable in large, under-
resourced classes, as they impose on instructors the burden of 
processing additional information. At least two approaches 
can be used to combat this problem. One is to provide this 
information, anonymized, to students, who can then learn 
from and help other students. The other is to use the 
information from these mechanisms to augment existing 
algorithms for automatically identifying difficulty [10] and 
recommending solutions [11]. The fact that these mechanisms 
created wide uncorrelated distributions indicates that each of 
them provides information that is independently useful. 

Our classification of office hour visits and Piazza posts 
reveals information about the kind of problems students face 
in concurrency assignments. However, it is relatively coarse-
grained and does not tell us, for example, if coordination 
problems were caused by people forgetting to call a notify() to 
unblock a corresponding wait(). A more detailed analysis of 
the recordings could reveal this information. Such an analysis 
is possible only because the Covid pandemic required us to 
provide online, recordable office hours, and thus the 
pandemic, interestingly, in this respect, was useful rather than 
detrimental.  Motivated by this experience, the first author 
continues to support recorded online office-hour visits in the 
in-person class he is currently teaching. Our work also 
highlights the need for more NLP and transcription research 
to make transcripts more understandable. This work provides 
the basis for investigating these future directions. 
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