Broad Awareness of Unseen Work on a Concurrency-
Based Assignment

Prasun Dewan Samuel George

Department of Computer Science Department of Computer Science
University of North Carolina

University of North Carolina
Chapel Hill, NC 27599
dewan@cs.unc.edu

Chapel Hill, NC 27599
sdgeorge@cs.unc.edu

Hao Wang

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599
harrywh@live.unc.edu

Abstract— During the Covid pandemic, we gave a Java
assignment that exercised threads, synchronization, and
coordination and wrote tests to check each concurrency aspect
of the assignment. We used four different technologies to record
events related to work on this assignment: the Piazza discussion
forum, the Zoom conferencing system, an Eclipse plugin, and a
testing framework. The recorded data have given the instructors
of the course broad awareness of several aspects of student
work: How much time did a student spend on an assignment?
How many attempts students made on thread, synchronization,
and coordination tests before they reached their final scores?
How many times did they go to Piazza or use Zoom-supported
office-hour visits to fix concurrency problems, and what was the
nature of these problems? How effective was Zoom
transcription to classify the office hour problems? How long and
effective were the office hour visits, and to what extent was
screen sharing used during these visits? To what extent did
students use the tests to determine if they had met assignment
requirements? These data, in turn, have provided us with
preliminary answers to a variety of questions we had about
unseen work and the concurrency aspects of the assignment.
While the answers may be specific to our assignment, the
questions answered by these mechanisms can be expected to
apply to other settings.

Keywords—awareness, metrics, concurrency, education,
defects, distance education, hands-on learning

I. INTRODUCTION

Programming assignments are critical in courses on
concurrency as they allow students to see its non-deterministic
impact on performance [1] and/or the user-interface [2]. For
this reason, “nifty” assignments have been an important
component of many workshops on concurrency education.

Traditionally, the only objective metric available to judge
the impact of an assignment is the total score a student
received on the submitted solution. This information does not

This work was funded in part by NSF awards OAC 1829752 and 1924059.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Bowen Gu Zhizhou Liu

Department of Computer Science Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599
gubowen2@live.unc.edu

University of North Carolina
Chapel Hill, NC 27599
yiwk321@cs.unc.edu

Andrew Wortas

Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599
ajwortas@cs.unc.edu

indicate several aspects of the assignment, such as how
challenging its various requirements were on students who
completed it, and the extent and nature of the help they sought
to implement it. Such awareness could potentially be used to
offer help to shy struggling students, change the assignments,
and adapt the presentation of the underlying concepts. These
applications of awareness are particularly important for an
early course on concurrency as there is less experience with
them, and concurrent programs are believed to be difficult to
implement and debug. Feedback about the difficulty of
concepts is particularly important in remote instruction and
large classes as visual clues of student confusion are absent.

Such awareness requires technology to record events
relevant to the work. In summer 2021, during the Covid
pandemic, we offered a remote course on object-oriented
programming that covered concurrency. The last assignment
exercised threads, synchronization, and coordination, and was
accompanied with tests to check concurrency and non-
concurrency aspects of the assignment. We used four different
technologies to record events related to work on this
assignment: Piazza for asynchronous discussions, Zoom for
synchronous office hour visits, an Eclipse plugin called
Fluorite [3], and a testing framework. Use of each of these
recording technologies was voluntary.

In this paper, we describe the awareness mechanisms we
derived from these events and the kind of concurrency
questions they answered about the assignment. We first
identify related work on awareness. Next, we give the context
for this case study, outlining the nature of the course and the
concurrency assignment. We then provide an integrated
discussion of our awareness mechanisms and associated
questions and answers. We end with conclusions and future
directions.

II. RELATED WORK

In collaborative systems, awareness is defined as
information about the activities of one or more actors that can
influence the activities of the observers of this information [4].
In our context, the actors are students and the observers are
instructors.

The Codeopticon [5] system was designed for exactly this
context. It allows instructors to see the current programming
windows of several students all at once. Whenever a student
gets an error, this is flagged in the view of the students, and
they can engage in chats with the instructors to help them
solve their problems. The windows displayed in the instructor
view are also grouped according to the number of errors a
trainee has generated so that the instructor can focus on the
students in need of the most assistance. The instructor can
replay the history of actions of any student to further
investigate the nature and severity of the difficulty.

Digital Show-How [6] also targets the education context.
It is designed to provide scalable help when a student’s task is
to follow an instructor’s demonstration in class. Thus, it is not
designed for tracking homework on assignments. The system
uses a programming environment called Bricks to give the
instructor a summary of students’ progress in terms of how
many steps they have followed. Unlike Codeopticon, it
supports solicited rather than unsolicited help. Whenever
students have trouble, they can submit their code and the
instructor can work to correct it in class.

CollabVS [7] is a related system built for industrial
programming that provides members in a small software
engineering team awareness about each other’s actions in
Visual Studio. Like Codeopticon, it can be used to provide
unsolicited help on open-ended tasks. A programmer is
provided with tiles for all team members that indicate (a)
whether they are active, (b) whether they are editing or
debugging, and (c) the file, class, and procedure they last
edited. This information can be used by programmers to avoid
conflicts and provide help to team members who have spent
an undue amount of time on code on which the observers are
experts.

None of these systems provide awareness of the kind of
problems programmers face. The work by Lonnberg [8] has
gathered this information in the context of a visual
concurrency assignment in which students (a) create threads
for different trains that can share tracks, and (b) ensure that a
train changes tracks to avoid collision with another train. They
are provided with assignment-specific code to create a
visualization of the train movement which is referred to as the
assignment environment. Based on the grading of the
submitted solutions, accompanying reports, and student
interviews, the authors identified defects in the submitted
solution and created two classifications. One classification
separated them into deterministic and non-deterministic
errors. The other separated them into four categories: incorrect
algorithm or implementation, assignment requirements,
programming environment (language and standard libraries),
and assignment environment. The same assignment was given
in three different years. The number of errors in each category
reduced in subsequent years, perhaps based on

countermeasures taken in response to awareness of the
information from previous years.

Like these efforts, our work is intended to provide
awareness information to both help students and find ways to
improve the course. Our contribution is using novel
information recorded automatically and a new set of
awareness mechanisms based on the recorded information that
can, in turn, be used to offer new ways to offer help and
improve the assignment.

III. CONTEXT

The assignment discussed here, which we refer to as the
target assignment, was the last assignment in a Java-based
course on object-based programming, offered in the summer
0f 2021, in which concurrency was a major component. As it
was a summer-course assignment, it had the size of three
semester-course assignments. It covered threads
(concurrency), synchronization (mutual exclusion),
coordination (managing thread interdependencies), assertions,
exceptions, and abstract classes. The data structure course was
a prerequisite. The first, second, fourth and sixth authors were
instructors of the course. The first author was the lecturer. This
was his first offering of this course, which is relatively new in
our curriculum. The course had three other instructors, and
together, they ensured that office-hours were scheduled from
9 am to 5 pm each weekday.

This course was a variation of a previous course (taught
several times by the first author), which preceded the data
structure course [9]. The concurrency aspects of the
assignment of this course were based on three different
assignments in the previous version [9]. A major difference
was that concurrency aspects were required in this course and
optional in the previous version.

In this offering, the assignments in the course together
simulated a variation of the bridge scene from the movie
Monty Python and the Holy Grail (Fig. 1).

Fig. 1. Holy Grail Bridge Scene

The target assignment had four concurrency requirements
checked by instructor-provided tests:

1. Asynchronous Knights: Provide a command to create
a thread to animate the movement of a selected Knight
such as Arthur or Galahad. The implementation
creates a separate animator object for each thread or
Knight, which provides an animation method that
executes one or more loops that call sleep() before
each movement.

2. Synchronized Knights: Two executions of a
command to move the same (different) Knight are
now serialized (execute concurrently). The
implementation now has to create a single animator
object for each Knight and declare its animation
method as synchronized.

3. Waiting Knights: A thread is created to animate each
Knight, but the threads wait for a start user-command
to start the animations. The time between the steps of
the animation can be different. The animation method
now executes the wait() call in a global object before
executing the animation loop. It unblocks when a
notifyall() is executed on the global object in response
to the execution of the start user-command.

4. Lockstep Knights: As above a thread is created to
animate each Knight, which now makes its Knight
move to a beat set by the clapping of the Guard. The
animation method of the Guard executes the notify()
method of a global object after each sleep() call and
the animation() method for a Knight executes the
wait() method of the global object before each
movement (instead of a sleep() call).

Thus, the first requirement exercises threads, the second
one synchronization, and the last two coordination. 31
Students submitted solutions to the assignment. Our
discussion focuses on 20 of them for whom we have all of the
recorded data needed by our awareness mechanisms. The
assignment was given as homework, so students’ work on it
was not visible to the instructors.

The student solutions had to conform to expectations set
by the tests. For instance, they had to use a Java annotation to
identify the method that animated Arthur’s movement.
Similarly, they had to ensure that the time an animation
method took was bounded by lower and upper limits set by the
tests. We refer to these constraints as test requirements to
distinguish them from the assignment requirements above.

IV. AWARENESS MECHANISMS

Our awareness mechanisms were developed in response to
several questions we had about the unseen work in the
submitted solutions. While we focus on those that are relevant
to concurrency, many of these also apply to any unseen
homework. The answers these mechanisms gave us illustrate
and motivate the mechanisms. As they are specific to a
particular assignment given to a small set of students, the
answers may not apply to other settings. Thus, the awareness
mechanisms are expected to be general but not the illustrative
answers provided by them. Before we present an awareness
mechanism, we pose the questions that motivate it.

A. Standard Total and Topic-based Scores

Since concurrency was now a required element of the
assignment, we naturally wished to know the absolute and
relative performance of students on the concurrency and non-
concurrency aspects of the assignment. The test scores on the
submitted assignments give this information readily.

£5 L =

(a) Total (b) Concurrency (c) Other

(d) Threads (e) Synchronization (f) Coordination

Fig. 2. Topic-Based Percentages

Fig. 2 shows by topic score histograms, with the X-axis
being score percentages and the Y-axis being the number of
students with a score range. Other stands for non-concurrency
topics. Fig. 2 (a) shows that the vast majority of students did
very well on the assignment. Fig. 2 (b) shows that a greater
number did very well on concurrency aspects, though there
were a few extremely low scores on these aspects. Fig 2 (d)
shows that low scores on concurrency were not caused by the
thread component- all students did very well on it. Fig. 2(e)
and (f) show that synchronization and coordination posed
problems for the students who received low scores on
concurrency, with coordination posing more problems. This
trend is consistent with the fact that the three concurrency
concepts are inherently layered in the order: threads,
synchronization, and coordination, with each topic building
on the topics that precede it.

The high scores here are inconsistent with the number of
defects in student submissions of the assignment reported by
Lonnberg [8], which like our assignment, also visualized
concurrency. Perhaps the reason is the use of instructor-
provided tests to check the requirements before submission.
We later discuss how extensively they were used.

Did students who struggled with some concurrency topic
also struggle with other topics? If not, then perhaps the
concurrency topic was especially difficult for some students.

The concurrency-centered plots of Fig. 3 provide answers
to this question. In such a plot, each circle represents a student
whose color identifies the student and size is proportional to
the student’s concurrency percentage The X-coordinate of the
circle gives the total assignment score as a fraction of 1 for the
student. The Y-coordinate of such plots vary. In Fig. 3(a), (b),
(c), and (d), it gives the scores on the portion of the assignment
characterized as other, threads, synchronization, and
coordination. . In all such plots the Y-axis 0 is the line above
the X-axis. as circles on the X-axis look bad.

These plots confirm that all students did very well on
threads. Almost all of them (did well on synchronization and
coordination — the exceptions are labelled A, B, C, and D. Of
these four students, one of them did poorly only on
synchronization (B), two did poorly only on coordination (C
and D), and one student did poorly on both synchronization
and coordination (A).

(a) Other (b) Threads

o]

O <] 2]
"éﬁ

Yo
9]

(c) Synchronization (d) Coordination

Fig. 3. Concurrency-Centered Plots for Topic Scores (Y-
Axis Increment = 0.1)

The students in the other plot were more closely clustered
together. However, students who did poorly on
synchronization or coordination also received lower scores on
other and overall. Based on these data, synchronization and
coordination made the spread more extreme than other and
threads, which is consistent with the intuition that these are
more advanced topics than threads.

B. Help Awareness

Was the good performance of the vast majority of students
on concurrency a result of seeking help? Was the poor
performance of some students a result of not seeking help?
Which concurrency topics required more help? What was the
nature of the problems for which students sought help?

As a step towards answering these questions, we classified
each concurrency-based Piazza help post and office-hours
visit along the topic and type dimension. The topic dimension
indicated whether it had to do with threads, synchronization,
or coordination. The type dimension had the following
categories:

1. Assignment requirement: Did the student need help in
the initial understanding of some assignment
requirement. An example was a Piazza post that
resulted from a wrong assumption that the same class
had to implement the animators for unsynchronized,
synchronized, waiting, and lockstep animations.

2. Conceptual: Was the problem based on a failure to
understand some theoretical concept or develop an
algorithm to implement some understood requirement
using an understood concept? An example was an
office hour visit to understand how to implement the
lockstep animations.

3. Test-unrelated: Was the problem based on
unexplained behavior uncovered by the student’s own
debugging rather than an instructor-provided test?

4. Test-uncovered: Did the student seek help to interpret
test output that uncovered some misunderstanding of

assignment requirements or mistake with the
implementation? An example was a Piazza post that
resulted from the test for lockstep animation failing
because the wait() calls were not called correctly.

5. Test-requirement: Did the student seek help to
interpret some implicit or explicit test requirement?
An example was a Piazza post resulting from an
animation taking more than the upper limit of 5
seconds set by tests for synchronized animations.

The classifications were done by the third and fifth
authors, who first did them independently, and then worked
together to resolve their differences. Classifying the office-
hour transcripts was particularly a problem as a result of
transcription errors. These were of three kinds:

1. Word errors: The wrong word appeared in the
transcript. Example: “lockstep: was translated into
“lock semester.”

2. Sentence errors: The context of a specific sentence
was not enough to understand it. Example: “Yes, so
your enemy they're basically your elevator store or
the animation steps that you have to take in your
strength right so, which means that yeah that's it.”

3. Transcript errors: The context of the full transcript of
an office-hour visit was not enough to classify it.
There was no example of such an error.

To determine the usefulness of transcripts as a mechanism
for help awareness we made some estimates of these errors
after processing the transcripts using the Grammarly system
for checking grammar problems. The number of
grammatically incorrect sentences was considered a count of
the number of word errors. The third author then looked at the
sentences with these alerts and manually determined the
number of sentences that were not understandable. The third
and fifth authors then determined from all the sentences in a
transcript whether they could classify it. As mentioned above,
there was no such transcript. In 11 transcripts of office visits
related to our target assignment containing 46651 words and
5441 sentences, we found 2842 grammatically incorrect
sentences and 170 sentence errors.

Table 1 shows the number of posts for each topic and
nature combination. A combination with 0 posts is not
included. What is most striking is the small number of these
posts in each concurrency row. This number indicates either
(a) that students did not have problems represented by these
rows, or (b) that the types of these problems were few, so each
answer was helpful to many, or (c) that the problems were so
severe that office-hour visits were used to resolve them.

The first three columns of Table II show the same
information for office-hour visits. The numbers are higher
now for the more advanced topics. For example, coordination
was associated with 11 visits and 5 posts, while threads was
associated with 3 posts and 2 visits. Unlike Piazza posts,
information in office-hour visits is not shared. Hence a
repeated problem results in repeated visits.

The data show that tests uncovered more problems than
they introduced in the form of misunderstanding of the
requirements they introduced.

TABLE L CLASSIFYING ALL POSTS

Topic Nature Number
Other Test-unrelated 9
Other Assignment-requirements 7
Other Test-uncovered 5
Other Conceptual 1
Other Test-requirements 1
Threads Test-requirements 4
Threads Test-uncovered 2
Threads Conceptual 1
Coordination Assignment-requirements 1
Coordination Test-unrelated 1
Coordination Test-uncovered 4
Synchronization Test-uncovered 2

Based on the office--hour transcripts, we give in the last
three columns of Table II the number of visits involving
screen sharing (SS), the average duration of a visit, and the
average fraction of this duration used for screen sharing. The
visit duration indicates the severity of the problem. Screen
sharing is a necessary condition for debugging so it may imply
debugging.

TABLE II. CLASSIFYING ALL VISITS
Topic Nature # # Avg. SS Pet.
SS Duration Duration
(Min)

Other Test-unrelated | 1 1 7.5 99.6%

Other Assignment- 3 3 23.8 99.6%
requirements

Other Test- 4 4 9.9 85.1%
uncovered

Other Conceptual 4 4 23.8 97.9%

Other Test- 3 3 16.9 97.6%
requirements

Threads Test- 2 2 7.4 92.9%
uncovered

Coordination | Test- 10 8 19.9 91.8%
uncovered

Coordination | Conceptual 1 0 1.1 0%

Sync. Test- 7 6 12.6 85.3%
uncovered

Some offerings of large courses known to the first author
limit an in-person office-hour visit to 15 minutes. These data
seem to indicate that this time would be sufficient even for
online meetings. Our data showed that meetings longer than

20 minutes usually did not resolve the problem, and typically,
these required the student to debug on their own. The fact that
screen sharing was used so extensively, even for conceptual
problems, is somewhat dismaying. It seems to indicate that
students were not able to abstract out the nature of the problem
in words and perhaps that the instructor did not try to make
them do that. More investigation of these visits is necessary to
determine if screen sharing was not warranted. If all of these
problems required debugging, then, of course, screen sharing
is desirable and these data show the benefits and usability of
such sharing to solve concurrency and other problems in
remote Visits.

These data do not answer a question we raised earlier. Did
the students who did poorly on a concurrency topic seek help
through Piazza on that topic? The concurrency-centered plots
of Fig. 4 and 5 address this issue. They mirror Fig. 3 except
that in Fig. 4 the Y-axes show the number of posts of each
student and in Fig. 5 they show the number of office-hour
visits.

Continuing with our investigation of the low-performing
students on concurrency, Fig. 4 shows that the low-performing
student D was the only student to post anything on Piazza, and
that was a single post not related to concurrency topics. Fig. 5
shows that only one of these four students, B, made an office-
hour visit for any reason, and that visit was related to the topic
of coordination, a topic on which B scored well. Thus, these
plots indicate the low-performance on the advanced
concurrency topics did not occur despite seeking help.

Fig. 4 and 5 show an example of a student, F, who
performed well and had high posts (8) and office hour visits
(16). We also see another high-performing student, E, who
had no posts and only 4 office hour visits. We will investigate
E in more depth later.

C. Task Completion-Time Awareness

As we see above, even high-scoring students made posts
and office-hour visits. This, in turn, seems to indicate that they
achieved success with some struggle. Help requests indicate
problems students could not solve in the time available to
them. Task completion time is an indication of struggle with
problems solved by programmers on their own.

To estimate this time, we processed students’ Eclipse
timestamped commands logged by the Fluorite [3] Eclipse
plugin. Assuming that a five-minute pause is a break, we
calculated from these logs the total work-time of each student
on a submitted assignment. Fig. 6 shows a concurrency-
centered plot in which the Y coordinate gives the student’s
active work-time in minutes.

As we see here, students had widely varying work-times.
Continuing with the low-performing students, their active
time spent working was over 500 minutes, which is around the
average. Thus, their poor performance cannot be explained by
less than average work.

Among the students who had a high work-time is student
F, who also asked for a relatively high amount of help. The
highest work-time is of student E, who as mentioned earlier,
sought very little help in comparison, which is consistent with

research that shows some people are shy about asking for help.
F took around 1500 minutes of active time to complete the
assignment, while E took around 1800 minutes. Both students
scored over 90% on the assignment. This information seems
to indicate that some help might have reduced E’s work-time,
perhaps at the cost of some learning.

: ®
|
. ®
o @ LN]
(a) Other
S] -
(b) Threads

0%

(¢) Synchronization

[0}

T
(d) Coordination

Fig. 4. Concurrency-Centered Plots for Posts (Y-axis
Increment = 1)

As instructors, we are told that a course worth X credits
should require 3X hours per week outside class lectures. The
data show here a large variance in these times, which is
consistent with research that shows estimating project
completion time is difficult. The fact that programming
assignments take a high toll on some students may be a result
of high variance and lack of data about task completion times.
This awareness mechanism provides these times.

D. Topic Test-Attempts Awareness

Task-completion time does not give us information about
how much students struggled with individual concurrency

aspects. One measure of such struggle, we introduced in an
earlier paper [2], is the number of attempts on a test, which is
the number of times the test was executed before it gave its
final score. For each topic, we calculated the average of the
number of attempts on a test related to that topic, which we
refer to as fopic test-attempts.

(a) Other

®
(X -
(b) Threads
0 © -
(¢) Synchronization
F
B||E

I/_\I
py
' I_/I
= -

B4

(d) Coordination

Fig. 5. Concurrency-Centered Plots for Office Hour Visits
(Y-axis increment = 2)

Fig. 7 mirrors Fig. 3-6 except the Y-axes now show
average topic test-attempts. As we see here, there is high
variance also in these numbers. Some instructors like to limit
the number of times instructor-provided tests are run, though
there is no agreement on what this number should be. Our
tracked data tell us how many attempts would be made when
no bounds are placed. There were 46 tests overall (on all
topics) and on average a student attempted an individual test
about 3.5 times giving an average number of total test attempts

of 162, a number much higher than the bounds we expect
instructors place. If this is indeed the case, then these data
show that limits are unnatural, in that, left to themselves,
students would like to have more attempts. What impact the
number of attempts has on learning is a matter for future
research. Assuming the average of actual attempts divided by
the number of desirable attempts is constant, the differences
in the topic attempts distributions indicate that the limits
should depend on the topic.
A
E S

Fig. 6. Active Time Awareness (Y-axis increment is 200
minutes)

E. Topic Test-Time Awareness

The number of attempts on a test does not indicate how
much time it took to fix the problems uncovered by it. Our
test-attempts algorithm gives the time a test was first
attempted and the time it reached its final score. Our task
completion algorithm gives work-time between any two
times, given the timestamped commands logged during this
period. Using these two algorithms we computed the time a
student spent on a test, and from these data, the average time
spent on a test on a topic, which we refer to as the topic test-
time. Fig. 8 mirrors previous concurrency-based plots with the
Y-axes now showing average topic test-times in minutes.

Continuing with the low-scoring students, we find that
though they had average work-times, they had lower than
average attempts and times on concurrency topics, which
seems to imply that they did not make enough progress to have
large numbers in these metrics. E and F have average attempts
and times, which seems to indicate that their high work-time
was caused by other topics.

We observed a much more significant variance in students'
time and attempts for Threads than all other topics. For
example, the standard deviation of average attempts for the
thread topic is 7.04, while the standard deviation for other
topics is only 1.75. Similarly, the standard deviation for
average test times on threads was 51.77 minutes, while other
topics were 9.38 minutes. Threads was also the topic on which
every student received a high score, Thus, these data may
indicate that with enough time, this is a topic that can be
mastered, unlike the more advanced topics. Another cause
might be that thread tests run student animations, and there
were no requirements for the nature of the animations or how
much time they took. Animations that finished much before

the test timeouts (which were several minutes) resulted in
much smaller test times than those that ran until the timeouts.

It seems intuitive to assume that the number of test
attempts and test time would be correlated. We saw no
correlation between the total number of attempts per test and
the time spent on tests (Pearson Correlation = 0.07). Likewise,
there was only a significant correlation between attempts and
time on tests for the synchronization topic (Pearson
Correlation = 0.90). With a bigger class, we might have seen

some correlation.
o
ol
B

1
.
1 o
’
¥ |
N
g ‘@

(a) Other

(b) Threads

B|| DM

D -

(c) Synchronization

C \.y_ﬂ

A

(d) Coordination

Fig. 7. Concurrency-Centered Plots for Test Attempts (Y-
axis increment is 5)

It is generally thought that some programmers are
inherently faster than others. This could imply that a student
who spent less than average time on tests on one topic would

also do so for other topics. We found a strong correlation
between time on other and total time (Pearson Correlation =
0.84), but found no correlation between times spent on other
pairs of topics. This result can perhaps be explained by the fact
that other had a very high fraction of tests and this contributed
heavily to the grade — 36 out of 46.

c[N\ 4
A _..-r(:u:))i,;n\

(¢) Synchronization

DB

/

A I'.I /
R

C k

(d) Coordination

Fig. 8. Concurrency-Centered Plots for Test Time (Y-
Axis increment = 20 minutes)

V. CONCLUSIONS

Our awareness mechanisms provided us with several
insights about unseen student work on our assignment: Scores
on concurrency topics, especially the two more advanced
ones, created a much wider separation of students than non-
concurrency scores. The low concurrency scores were not
associated with lack of attempts or time spent on the
associated tests, but were associated with low help requests in
terms of office-hour visits and Piazza posts. Students who
were not separated by scores were separated by other metrics
such as requests for help, total work time, number of test
attempts, and test time. The distributions created by these

metrics were mostly unrelated. Threads created a wider
distribution of attempts and test time than other topics. The
problems solved by the tests were more than those created by
the requirements they imposed. Screen sharing was used in the
vast majority of office hour visits, even those that apparently
required not debugging. The ones that were successful in
debugging were less than 20 minutes. The more advanced
concurrency topics also had more posts and office-hour visits.
Some students spent an undue amount of time on the non-
concurrency aspects of the assignment while asking for little
help.

The findings we made from the awareness mechanisms
presented here are, of course, of interest to us and anyone who
wishes to offer a similar concurrency-based assignment to a
similar set of students. Future work is required to determine if
they apply to other settings.

Our more general contribution is the set of new awareness
mechanisms themselves, which apply to other concurrency
courses. Moreover, while our concurrency-centered plots are
specific to concurrency assignments, the underlying
information captured by the awareness mechanisms applies to
any course.

Our mechanisms were developed after the course was
completed. If these mechanisms indeed can identify struggling
students to offer help to them, then infrastructures and user-
interfaces are needed to provide their information to
instructors as the assignment is being implemented.

Such mechanisms may not be usable in large, under-
resourced classes, as they impose on instructors the burden of
processing additional information. At least two approaches
can be used to combat this problem. One is to provide this
information, anonymized, to students, who can then learn
from and help other students. The other is to use the
information from these mechanisms to augment existing
algorithms for automatically identifying difficulty [10] and
recommending solutions [11]. The fact that these mechanisms
created wide uncorrelated distributions indicates that each of
them provides information that is independently useful.

Our classification of office hour visits and Piazza posts
reveals information about the kind of problems students face
in concurrency assignments. However, it is relatively coarse-
grained and does not tell us, for example, if coordination
problems were caused by people forgetting to call a notify() to
unblock a corresponding wait(). A more detailed analysis of
the recordings could reveal this information. Such an analysis
is possible only because the Covid pandemic required us to
provide online, recordable office hours, and thus the
pandemic, interestingly, in this respect, was useful rather than
detrimental. Motivated by this experience, the first author
continues to support recorded online office-hour visits in the
in-person class he is currently teaching. Our work also
highlights the need for more NLP and transcription research
to make transcripts more understandable. This work provides
the basis for investigating these future directions.

ACKNOWLEDGMENT

This work was funded in part by NSF awards OAC
1829752 and 1924059.

REFERENCES

Grossman, M., M. Aziz, H. Chi, A. Tibrewal, S. Imam, and V. Sarkar,
Pedagogy and tools for teaching parallel computing at the sophomore
undergraduate level. J. Parallel Distrib. Comput., 2017. 105(C): p. 18-
30.

Dewan, P., S. George, A. Wortas, and J. Do, Techniques and tools for
visually introducing freshmen to object-based thread abstractions.
Journal of Parallel and Distributed Computing, 2021. 157.

Yoon, Y. and B.A. Myers. Capturing and analyzing low-level events
from the code editor. in Proceedings of the 3rd ACM SIGPLAN
workshop on Evaluation and usability of programming languages and
tools. 2011. New York.

Gutwin, C. and S. Greenberg, A Descriptive Framework of Workspace
Awareness for Real-Time Groupware. Comput. Supported Coop.
Work, 2002. 11(3): p. 411-446.

Guo, P.J. Codeopticon: Real-Time, One-To-Many Human Tutoring for
Computer Programming. in ACM Symposium on User Interface
Software and Technology (UIST). 2015.

(6]

(7

(8]

(9]

[10

[

[11

—

Stotts, D. “Digital Show-How”: Extreme Active Learning for
Introductory Programming. in 2019 14th International Conference on
Computer Science & Education (ICCSE). 2019. IEEE.

Hegde, R. and P. Dewan. Connecting Programming Environments to
Support Ad-Hoc Collaboration. in Proc 23rd IEEE/ACM Conference
on Automated Software Engineering. 2008. L'Aquila Italy:
IEEE/ACM.

Lonnberg, J. Defects in concurrent programming assignments. in
Proceedings of the Ninth Koli Calling International Conference on
Computing Education Research (Koli Calling 2009). 2010.

Dewan, P., S. George, A. Wortas, and J. Do, Techniques and Tools for
Visually Introducing Freshmen to Object-Based Thread Abstractions
Journal of Parallel and Distributed Computing..

Carter, J. and P. Dewan. Mining Programming Activity to Promote
Help. in Proc. ECSCW. 2015. Oslo: Springer.

Price, T.W., Y. Dong, and D. Lipovac. iSnap: Towards Intelligent
Tutoring in Novice Programming Environments. . in ACM SIGCSE
Technical Symposium on Computer Science Education (SIGCSE '17).
2017. ACM.

