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Abstract. We propose a novel combinatorial inference framework to conduct general uncer-
tainty quantification in ranking problems. We consider the widely adopted Bradley-Terry-
Luce (BTL) model, where each item is assigned a positive preference score that determines
the Bernoulli distributions of pairwise comparisons’ outcomes. Our proposedmethod aims to
infer general ranking properties of the BTLmodel. The general ranking properties include the
“local” properties such as if an item is preferred over another and the “global” properties
such as if an item is among the top K-ranked items. We further generalize our inferential
framework to multiple testing problems where we control the false discovery rate (FDR) and
apply the method to infer the top-K ranked items. We also derive the information-theoretic
lower bound to justify the minimax optimality of the proposed method. We conduct exten-
sive numerical studies using both synthetic and real data sets to back up our theory.
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1. Introduction
Ranking problems aim to study relative orderings of
some set of items and find many applications such as
sports competition (Pelechrinis et al. 2016, Xia et al.
2018), online gamers ranking (e.g., Microsoft TrueSkill
ranking system; Minka et al. 2007, 2018), web search
and information retrieval (Dwork et al. 2001, Bouadje-
nek et al. 2013, Guo et al. 2020), recommendation sys-
tems (Baltrunas et al. 2010, He et al. 2018, Geyik et al.
2019), crowdsourcing (Chen et al. 2013, Suh et al. 2017,
Liang and de Alfaro 2020), gene ranking (Boulesteix and
Slawski 2009, Kolde et al. 2012, Kim et al. 2015), assort-
ment optimization (Aouad et al. 2018, Li et al. 2018), and
healthcare (Adelman 2020), among many others. Because
of the practical importance, ranking problems draw signif-
icant attention from different communities such as opera-
tions research (McFadden 1974, Mohammadi and Rezaei
2020), statistics (Hunter 2004, Chen et al. 2020), machine
learning (Richardson et al. 2006, Guo et al. 2020), and soci-
ology (Brown 2003, Subochev et al. 2018).

In ranking problems, given some comparisons among
pairs of n items, we aim to infer the relative ranking of
these items. Many models are proposed to study this
problem, and one of the most widely used parametric
models is the Bradley-Terry-Luce (BTL) model (Bradley

and Terry 1952, Luce 1959). In the BTL model, each item
is assigned a latent positive preference score that deter-
mines its rank, and the latent scores determine the rela-
tive preference among the n items.

Based on the BTL model, there are several tracks of
works that estimate the ranks of the items by estimating
the latent scores. The first track is the rank centrality
method (Dwork et al. 2001, Maystre and Grossglauser
2015, Jang et al. 2016, Vigna 2016, Negahban et al. 2017),
which is also known as the spectral method. This class
of methods connects pairwise comparisons with ran-
dom walk over the comparison graph. In particular,
each node in the graph represents an item, and the
probability of moving from node i to node j equals the
probability that item j is preferred over item i. Based on
this approach, Negahban et al. (2017) show that the
preference scores of items coincide the stationary distri-
bution under the random walk and derive a fast rate of
convergence of the estimator for the scores. Chen et al.
(2019) further improve the convergence rate in Negahban
et al. (2017) by removing the logarithmic factor. The sec-
ond track is based on considering the regularized max-
imum likelihood estimator (MLE) (Ford 1957, Hunter
2004, Lu and Negahban 2015). This approach estima-
tes the latent scores by maximizing the regularized
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likelihood function, and Chen et al. (2019) derive the
rate of convergence of the estimator under the ℓ2 regula-
rization. Negahban et al. (2018) also consider nuclear
norm regularization. In addition, Azari Soufiani et al.
(2013) consider the method of moments for the Plackett-
Luce model, and Mosteller (2006), Jiang et al. (2011), and
Neudorfer and Rosset (2018) consider general least square
methods, and their estimation consistency for preference
scores are established by various works (Duchi et al. 2010;
Rajkumar and Agarwal 2014, 2016; Chen and Suh 2015;
Maystre and Grossglauser 2015; Jang et al. 2016).

Despite the aforementioned significant progress of
rank estimation, the uncertainty quantification in
ranking problems remains largely unexplored, which
is of crucial importance in practice. For example, say-
ing that player i is ranked higher than player jwithout
a confidence score is not very informative in practice.
In this paper, we propose a novel combinatorial infer-
ential framework for testing ranking properties. In
particular, given n items, we define a ranking list γ as
a permutation over the set of n items [n] � {1, : : : ,n},
and let R be the set of all possible rankings (i.e., all
possible permutation over [n]). Let ranking list γ∗ be
the true underlying ranking of n items. We aim to test
whether γ∗ satisfies certain ranking properties based
on partial pairwise comparison observations. For
example, letRi be a subset ofR representing the rank-
ing property with respect to item i. We test the general
ranking property for a given item i, that is, whether
item i has certain properties, that is,

H0 : item i does not satisfy the property v:s:
Ha : item i satisfies the property,

which is equivalent to

H0 : γ
∗
∉Ri v:s: Ha : γ

∗ ∈Ri:

1.1. Motivating Applications
The inference in ranking problems finds many appli-
cations. For instance, it is of practical interest to test
whether movie A is preferred over movie B on aver-
age and test whether chess player C is stronger than
player D. Such problems are pairwise ranking infer-
ence problems that fit into our framework as defined
in the following example.

Example 1.1 (Pairwise Ranking Inference). Consider
testing whether item i is ranked higher than item j. Let
Ri be the set of all possible rankings that item i is
ranked higher than item j. We consider the following
hypothesis testing problem that

H0 : Item j is ranked higher than item i v:s:
Ha : Item i is ranked higher than item j:

Another important application of inference in ranking
problems is the top-K inference. For instance, in

recommendation systems, one important goal is to
find a few most appealing items for the users (Cremo-
nesi et al. 2010). In biomedical studies, only a small
subset of top-ranked genes is informative, and it is
crucial for the investigators to identify this set of genes
to perform detailed analysis (Boulesteix and Slawski
2009). In assortment optimization, the challenge is to
identify a subset of items that maximize revenue
based on customer preferences (Li et al. 2018, Aouad
et al. 2018). We first summarize the single top-K infer-
ence problem in the following example.

Example 1.2 (Single Top-K Inference). Consider test-
ing whether item i is among the top-K items (a special
case is K � 1). Here Ri is the set of all possible rank-
ings that item i is among the top-K items. We consider
the following hypothesis testing problem that

H0 : Item i is not among the top-K items v:s:
Ha : Item i is among the top-K items:

We then extend the problem to the multiple testing
setup, where the goal is to infer the set of all top-K
items.

Example 1.3 (Top-K Inference). Consider the problem
of identifying the set of top-K items. Here Ri is the set
of all possible rankings that item i is among the top-K
items, i ∈ [n]. We consider the following multiple test-
ing problem that

H0 : Item i is not among the top-K items v:s:
Ha : Item i is among the top-K items, for i ∈ [n]:

1.2. Major Contributions
To the best of our knowledge, this paper provides the
first inferential framework for ranking problems. Our
proposed method can test a broad class of hypotheses
for ranking problems. Theoretically, we show that the
p values are valid, and our procedures are powerful.
We summarize the major contributions here.

• We are among the first to study general inferential
approaches for ranking problems beyond estimation,
and we propose a novel general framework for infer-
ring different ranking properties. We show that our
proposed methods are asymptotically valid and
powerful. Furthermore, we generalize the method to
the more challenging multiple testing setup to widen
the applicability.

• In our inferential framework, we propose a novel
general Lagrangian debiasing procedure to handle the
constrained parameter space. Our Lagrangian debiasing
procedure addresses the challenge raised by the noni-
dentifiability of the BTL model. Most existing works on
high-dimensional inference, such as Zhang and Zhang
(2014), Van de Geer et al. (2014), and Ning and Liu
(2017), focus on inferring the parameter under the
unconstrained space and do not apply to the BTLmodel
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because of the constraints. By considering the optimality
condition of the Lagrangian dual problem, our proposed
approach provides a new tool for high-dimensional
inference under general constraints. We also derive the
asymptotic distribution of our debiased estimator. We
point out that this new Lagrangian debiasing procedure
can be applied to general high-dimensional constrained
inferential problems beyond ranking problems, which
itself is of great interest.

• We provide a new framework to derive the mini-
max lower bound for multiple testing in ranking prob-
lems, which provides new theoretical insights. To the
best of our knowledge, this is the first time that such a
lower bound is derived. In particular, let the preference
score vector be θ ∈ R

n, which represents the scores of
all n items that determine the ranks of all items. We
first define a new minimax risk for the multiple testing
problems that

R � inf
ψ

supθP(# false positives+ # false negatives≥ 1),

where the infimum is taken over all possible selection
procedure ψ. Here the risk is the probability of mak-
ing at least one type I or type II error. If the minimax
risk R ≥ 1− ε for some constant ε > 0, we say that any
procedure fails for the multiple testing problem
because they cannot control the type I error or type II
error in the minimax sense. To derive the necessary
conditions for controlling minimax risk, we further
define a novel distance Δ(θ) in (4.2) and a divider set
M(θ) in Definition 5.1, which capture the combinato-
rial structures of ranking properties. Intuitively, the
distance is a signal strength for selecting the items of
interest; the divider set is the set of items that are cru-
cial for selecting the items, and the size of the divider
set increases as the distance decreases. We show that
the numerical signal strength Δ(θ) and combinatorial
signal strength |M(θ) | together measure the difficulty
in the multiple testing problems. We also give two
concrete examples where R is arbitrarily close to one

if Δ(θ)�
�����
logn
npL

√
. In addition, we show that our lower

bound matches our upper bound to justify the opti-
mality of the proposed method.

1.3. Literature Review
1.3.1. Ranking Problem. There has been a long history
of works on ranking problems (Mallows 1957, Keener
1993, Altman and Tennenholtz 2005, Jiang et al. 2011,
Osting et al. 2013, Vigna 2016, Ding et al. 2018, Filiberto
et al. 2018, Guo et al. 2020, Pujahari and Sisodia 2020).
Some ranking systems are based on explicit preference
scores or ratings provided by individuals, which is closely
related to the matrix completion problem (Candès and
Recht 2009, Negahban and Wainwright 2012). In these

problems, an individual only provides scores for a subset
of items, and we estimate the individual’s preference
scores for other items. However, users’ explicit scores can
be inconsistent and noisy, or even not available in some
cases. This motivates researchers to develop methods for
ranking aggregations from comparison results or partial
rankings provided by users (Saaty 2003; Ailon et al. 2008;
Ailon 2010; Gleich and Lim 2011; Ammar and Shah 2011,
2012; Farnoud et al. 2012; Volkovs and Zemel 2012; Jang
et al. 2017, 2018; Nápoles et al. 2017; Swain et al. 2017;
Chen et al. 2018b; Zhang 2020).

Another important track of works on ranking prob-
lems are based on pairwise comparison data (Kendall
and Smith 1940; Kendall 1955; Adler et al. 1994; Talluri
and Van Ryzin 2006; Beutel et al. 2019; Jain et al. 2020;
Chen et al. 2021, 2022). For instance, Lu and Boutilier
(2011) study the Mallows model from pairwise compar-
isons. Chen et al. (2022) study the sequential design
with pairwise comparisons. Chen and Suh (2015) pro-
pose a new two-step method called the spectral MLE
and prove that it is minimax optimal. Jang et al. (2016)
show that the spectral method itself is optimal for iden-
tifying the top-K items in the sense of achieving the
minimal sample size. Chen et al. (2019) further study
the sample complexity of regularized MLE and spectral
method in a sparse pairwise comparison setting.

There are other general frameworks on ranking
problems such as the Thurstone model (Thurstone
1927, Vojnovic and Yun 2017, Orbán-Mihálykó et al.
2019, Jin et al. 2020) and Plackett-Luce model (Guiver
and Snelson 2009, Hajek et al. 2014). For instance, Jin
et al. (2020) propose a heterogeneous Thurstone model
capturing heterogeneity of different individuals and
propose an algorithm to estimate the preference score
vector and heterogeneity. Beyond parametric models,
there are also nonparametric methods for ranking prob-
lems. For instance, Shah andWainwright (2017) analyze
a simple counting algorithm proposed by Copeland
(1951), which counts the numbers of wins of each item,
and show its optimality and robustness. Shah et al.
(2016), Chen et al. (2018a), and Pananjady et al. (2017)
consider the strong stochastically transitive (SST) model
for pairwise comparisons. Furthermore, some other
works consider ranking problems under specific set-
tings such as active-ranking (Jamieson and Nowak
2011, Busa-Fekete et al. 2013, Heckel et al. 2019), and
crowd-sourcing (Chen et al. 2013, 2016; Suh et al. 2017;
Liang and de Alfaro 2020). However, we point out that
all these works focus on the estimation problem and do
not consider uncertainty quantification and inferential
methods in ranking. One exception is Hall and Miller
(2009). This work focuses on using m-out-of-n bootstrap
to estimate the distribution of an empirical rank, which
requires empirical choice of m and is of less practical
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interest. In contrast, we provide a more general frame-
work that solves the problems of practical interest.

1.3.2. Constrained Inference. The inference under
equality or inequality constraints is of great interest in
literature. The low-dimensional constrained inference
dates back to Chernoff (1954), which proves that the
likelihood ratio weakly converges to a weighted chi-
square distribution for constrained testings. Under the
low-dimensional setting, the constrained inference has
been further studied in Gourieroux et al. (1982), Kodde
and Palm (1986), Rogers (1986), Shapiro (1988), Wolak
(1989), Molenberghs and Verbeke (2007), and Susko
(2013), among many others. For the high-dimensional
constrained inference, Yu et al. (2019) assume the exis-
tence of natural constraint on parameters and test
whether the parameters lie on the boundary of the con-
straint. By applying the debiasing approach in Ning
and Liu (2017), the authors study the asymptotic distri-
bution of test statistics under constraints.

We note that the previously mentioned methods
cannot be applied to solve our problem. This is mainly
because of the unique challenge that, in our setting,
the Fisher information matrix is singular because of
the nonidentifiability issue.

During the revision of this work, we note an arXiv
work (Gao et al. 2021) for ranking inference, which
focuses on inferring the latent scores without debias-
ing. In comparison, our work focuses on inferring the
combinatorial structures of the rankings.

1.3.3. Paper Organization. The rest of our paper is
organized as follows. In Section 2, we introduce some
preliminaries of ranking problems and some ranking
properties. In Section 3, we present our debiased esti-
mator with constraints. We then provide the general
hypothesis testing. In Section 4, we extend our
method to handle multiple testing problems. In Sec-
tion 5, we present the lower bound theory with appli-
cations to several examples. We provide numerical
results in Section 6 and some discussions in Section 7.

1.3.4. Notations. Let |A| represent the cardinality of set
A, and [n] represent the set of {1,: : : ,n} for n ∈ Z

+. For
vector v � (v1,: : : ,vd)T ∈ R

d, and 1 ≤ q ≤∞, we define
norm of v as ||v||q � (∑d

i�1 |vi | q)
1=q. In particular, ||v||∞ �

max1≤i≤d |vi | . For a matrixM � [Mij], let ℓ1-norm ||M||1 �
maxj

∑
i |Mij | , ℓ∞-norm ||M||∞ �maxi

∑
j |Mij | , and the

operator norm ||M||2 � σmax(M) where σmax(M) repre-
sents the largest singular value of matrix M. In addi-
tion, an �O(bn) or an�bn means there exists a constant
C > 0 such that an ≤ Cbn, and an � o(bn) means limn→∞
an
bn
� 0. we write an 	 bn if C ≤ an=bn ≤ C′ for some

C,C′
> 0. For a sequence of random variables {Xn}, we

write Xn →d X if Xn converges in distribution to the
random variable X. Throughout the paper, we let

C,C1,C2, : : : , c, c1, c2, : : : be generic constants which
may change in different places.

2. Preliminaries and Problem Setup
In this section, we provide some preliminaries to facil-
itate our discussions. We first briefly review the BTL
model and introduce our data generating scheme.
Then, we provide the definitions of rankings and
ranking properties.

2.1. BTL Model
We consider the BTL parametric model (Bradley and
Terry 1952, Luce 1959). This model assumes a hidden pref-
erence score ω∗

i > 0 for each item i, 1 ≤ i ≤ n. The scores
determine the ranking and the distributions of comparison
results. Let ω∗ � (ω∗

1,
: : : ,ω∗

n)
� ∈ R

n be the true prefer-
ence score vector, and its log-transformation is

θ∗ � (θ∗
1,
: : : , θ∗

n)
�, where θ∗

i � logω∗
i :

Here ω∗
j > ω∗

i or θ∗
j > θ∗

i means that item j is ranked
higher (preferred) than item i. In this paper, for ease
of presentation, we consider the case that all scores
are in a bounded domain that w∗

i ∈ [wmin,wmax] for all
i ∈ [n], where wmin, wmax > 0. We let κ � ωmax=ωmin be
the condition number, and κ is a constant which does
not depend on n.

When we collect data, we compare the items in a
pairwise fashion. To model the random pairs for com-
parisons, we adopt the Erdös-Rényi random graph. In
particular, suppose we have an undirected graph G �
{V,E} where V � [n] is the vertex set, and E ⊆ [n] × [n]
is the edge set. In the Erdös-Rényi random graph
G(n,p), each edge is drawn independently from a Ber-
noulli distribution with probability p. Here we assume
that for each pair (i, j) ∈ E, we observe the comparisons
L times. We assume for all pairs in E, we have a same
number of observations for ease of presentation, but
our proposed method can be easily generalized to
handle the general setting where we have different
numbers of observations of different pairs. Denote by
y(ℓ)i,j the ℓ th comparison between items i and j for
some i < j, which depends only on the relative scores
of the two items. We assume that each y(ℓ)i,j is generated
independently from a Bernoulli distribution that

y(ℓ)i,j �ind: 1, with probability
w∗

j

w∗
i +w∗

j

� eθ
∗
j

eθ
∗
i + eθ

∗
j

0, otherwise,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2.1)

where y(ℓ)i,j � 1 means item j is preferred over item i.

Here we assume that all y(ℓ)i,j ’s are independent for all

i, j, (i < j), and ℓ.
We point out that the BTL model is invariant that if

we multiply ω∗
i , or increase θ∗, by a constant c, the
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distribution of y(ℓ)i,j does not change. That is, θ∗ and

θ∗ + c � (θ∗
1 + c,: : : ,θ∗

n + c)� are observationally equiva-
lent. Hence, we regard a score vector θ∗ ∈ R

n as an
equivalence class [θ∗] � {θ′

: θ∗ + c, c ∈ R}, and regard
the parameter space as the set of equivalence classes
of R

n (Hunter 2004, Negahban et al. 2017). For the
identifiability of the parameters, we impose a constraint
on the parameter space C that we let C � {θ : f (θ) � 0},
and propose our inferential framework under this con-
straint, where the function f is smooth, and ensures the
identifiability of the parameter θ. Specific examples of f

include 1�θ � 0, θ1 � 1 (θ1 is the preference score of the
first item), among others (Chen et al. 2013, Negahban
et al. 2017, Jin et al. 2020).

2.2. Ranking and Ranking Property
As discussed in Section 1, our goal is to infer some
general ranking properties based on the BTL model
using samples of pairwise comparisons among all
items. We first provide the formal definition of the
ranking and its properties.

Definition 2.1 (Ranking). Assume there are n items.
Let R be all bijections from the set [n] onto itself.
Then each γ ∈R is a possible rank of the n items. Let
γi be the rank of item i in ranking γ, where γi < γj if
item i is ranked higher (preferred) than item j. Let
γ∗ ∈R be the true ranking of these n items. Finally,
we let γ(θ) be the induced ranking from the under-
lying preference score vector θ.

When we are interested in some ranking property of
a given item, we are essentially interested in testing if
the ranking satisfies some properties as we discussed
in the introduction. Thus, we infer if the true ranking
belongs to some set of rankings. To facilitate our dis-
cussion, we define the equivalent rankings and rank-
ing properties with respect to a single item.

Definition 2.2 (Equivalent Rankings with Respect to a
Single Item). Rankings γ and γ′ ∈R are equivalent
with respect to item i if

{ j ∈ [n] : γj < γi} � { j ∈ [n] : γ′
j < γ′

i},

or equivalently,

{ j ∈ [n] : γj > γi} � { j ∈ [n] : γ′
j > γ′

i}:

Furthermore, we let the equivalent class of a ranking γ
with respect to item i be Rγ,i � {γ′ ∈R : γ′ is equivalent
to γ with respect to item i}.
Definition 2.3 (Ranking Property with Respect to a
Single Item). A ranking property Ri with respect to a
single item i is a set of rankings such that Ri ⊂R, and

for any ranking γ ∈ Ri, its equivalent class Rγ,i satis-
fiesRγ,i ⊆Ri.

Essentially, the ranking property Ri with respect to
item i is a subset of all possible rankings R, and a col-
lection of disjoint equivalent classes. Specific examples
of ranking property with respect to item i include
Examples 1.1 and 1.2 where we are interested in test-
ing if item i is preferred over another given item, or
item i is ranked within top-K.

• Example 1.1 (Pairwise Preference Between Item i
and Item j). We aim to test if item i is ranked higher
than item j, which means γ∗

i < γ∗
j or θ

∗
i > θ∗

j . Letting

Ri � {γ : γi < γj} � {γ(θ) : θi > θj},

we show that Ri is a ranking property as defined in
Definition 2.3. If γ ∈Ri, which means γi < γj, then for
any ranking γ′ equivalent to γ (i.e., γ′ ∈Rγ,i), we have

{k ∈ [n] : γk < γi} � {k ∈ [n] : γ′
k < γ′

i}:

Thus, γ′
i < γ′

j , which means that γ′ ∈Ri and further
gives the equivalent class Rγ,i ⊆Ri. We have that Ri

in this example satisfies Definition 2.3.
• Example 1.2 (Top-K Test). If item i’s preference

score is larger than n – K items, that is, θi > θ(K+1),
where θ(K+1) denotes the (K+ 1)-th largest preference
score, or equivalently, γi ≤ K. We aim to test if item
i is ranked among top-K items. Thus, we have that
Ri is

Ri � {γ : γi ≤ K} � {γ(θ) : θi > θ(K+1)}:
To see thatRi is a ranking property as defined in Defi-
nition 2.3, we have that, if γ ∈Ri, which means γi ≤ K,
then for any ranking γ′ equivalent to γ (i.e., γ′ ∈Rγ,i),
and we have {k ∈ [n] : γk < γi} � {k ∈ [n] : γ′

k < γ′
i}.

Thus, the ranking of item i does not change, and we
still have γ′

i ≤ K, which means γ′ ∈Ri. We have that
Ri is a ranking property satisfying Definition 2.3.

In the next section, given a ranking property Ri, we
propose a novel approach to test whether item i satis-
fies this property that

H0 : γ
∗
∉Ri v:s: Ha : γ

∗ ∈Ri:

3. Inference
In this section, we propose our inferential framework
to test general ranking properties. The first step in our
inferential framework is a novel Lagrangian debiasing
method, which handles the general constrained infer-
ence with penalization, and we apply the method to
infer the latent scores. We then adopt a Gaussian mul-
tiplier bootstrap approach to test general ranking
properties. We conclude this section by showing that
our method controls the type I error and is asymptoti-
cally powerful.
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3.1. Lagrangian Debiasing Approach
We first propose a novel Lagrangian debiased estima-
tor of the preference scores. Our proposed method is
motivated from the regularized MLE approach.
Assuming the BTL model, the MLE approach (Ford
1957, Hunter 2004) provides an estimator for the latent
preference scores by solving the following convex
optimization problem

θ̂ � argmin
θ∈Rn

Lλ0(θ) :� L(θ) + λ0 ||θ ||22 , (3.1)

where λ0 > 0 is a tuning parameter, and the negative
log-likelihood function L(θ) is

L(θ) �
∑

(i, j)∈E, i>j

{
− yj,i(θi −θj) + log(1+ eθi−θj)

}
, (3.2)

where yj,i �
∑L

ℓ�1y
(ℓ)
j,i =L.

The regularization guarantees that the obtained

estimator satisfying 1Tθ̂ � 0 (Chen et al. 2019), and the
deduction of optimal rate of the obtained estimator
relies on the strong convexity of Lλ0

(θ). Different
works study the theoretical guarantees of the MLE
approach (Shah et al. 2015, Negahban et al. 2017,
Chen et al. 2019, Wang et al. 2020). In particular, Chen
et al. (2019) study the convergence rate of the estima-
tor (3.1) in terms of ℓ∞-norm. For self-completeness,
we provide the following result.

Lemma 3.1. Under the BTL model, suppose that κ :�
wmax

wmin
< C for some constant C > 0. If the pairwise compari-

son probability p in Erdös-Rényi graph satisfies p ≥ C0logn
n

for some sufficiently large constant C0 > 0, and the regula-

rization parameter λ0 � cλ0

�������������
nplogn=L

√
for some constant

cλ0
> 0, we have that the estimator θ̂ derived from the regu-

larized MLE achieves the optimal rate

||θ̂ −θ∗ ||∞�
�������
logn

npL

√

with probability at least 1−O(n−5).
Remark 3.1. We point out that the same rate can also
be achieved by the spectral method Negahban et al.
(2017), and we provide the proof in the online appen-
dix, Section H.1.

Because θ̂ is derived from a regularized MLE,
conducting inference based on θ̂ is challenging. Over
the last few years, the debiasing approach achieves
great successes for penalized regression. For examples,
Zhang and Zhang (2014), Van de Geer et al. (2014), and
Javanmard and Montanari (2014a, b) study the debias-
ing approach based on linear or generalized linear mod-
els, and Ning and Liu (2017) provide a decorrelation
approach to inferring estimators derived from penal-
ized MLE methods.

However, these existing debiasing methods cannot
be directly used in our problem. This is because that
the parameter of interest is nonidentifiable in the BTL
model, and the Fisher information matrix is singular.
To ensure the identifiability, as discussed in Section
2.1, we impose a constraint of the parameter that we
let θ belongs to the set C � {θ : f (θ) � 0} for some
smooth function f. To handle the challenges raised by
the constraint, we propose a general Lagrangian
debiasing method in the next part.

3.1.1. Lagrangian Debiasing Method. We propose a
general Lagrangian debiasing method for inference based
on penalized MLE with constraints. Our method is moti-
vated byNing and Liu (2017), where the authors consider
a one-step estimator by solving the first-order approxima-

tion of the score function ∇L(θ̂) + ∇2
L(θ̂)(θ− θ̂) � 0. To

handle the constraint on the parameters that f (θ) � 0, we
consider the Lagrangian dual function. In particular,
under the constraint f (θ) � 0, the MLE method aims to
solve the problem that

min
θ

L(θ), subject to f (θ) � 0:

The corresponding Lagrangian dual problem is

max
λ

min
θ

L(θ) + λf (θ),

where λ ∈ R is the Lagrangian multiplier. Considering
the first-order optimality condition of the Lagrangian
dual problem, we have that an optimal dual solution
pair (θ,λ) satisfies

∇L(θ) +λ∇f (θ) � 0, and f (θ) � 0: (3.3)

Based on these equations, we propose our debiasing

approach. In particular, given a penalized estimator θ̂

from (3.1), we obtain a debiased estimator θ̂
d
by solv-

ing the following system of equations of θ and λ,
which are first-order approximations of (3.3),

{
∇L(θ̂) + ∇2

L(θ̂)(θ− θ̂) +λ∇f (θ̂) � 0

f (θ̂) + ∇f (θ̂)�(θ− θ̂) � 0, (3.4)

or equivalently,
(
∇2

L(θ̂) ∇f (θ̂)
∇f (θ̂)� 0

)(
θ− θ̂
λ

)
�

(
−∇L(θ̂)
−f (θ̂)

)
: (3.5)

See Figure 1 for illustration.
We point out that our Lagrangian debiasing method

can be applied to general inference problems beyond
the BTL model. In what follows, we first present the
debiasing approach for inference under general con-
straints. Then we provide the debiasing method under
the BTL model under the special case that the con-
straint function f is linear.

For general inferential problems under some constraint
that the parameter belongs to the set C � {θ : f (θ) � 0},
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suppose we have an initial estimator θ̂ ∈ C, and let the
loss function be L(θ). By (3.4), if the following matrix is
invertible, we define

Σ̂ :�
(
∇2

L(θ̂) ∇f (θ̂)
∇f (θ̂)� 0

)
: (3.6)

We have that the debiased estimator θ̂
d
satisfies

(
θ̂
d − θ̂
λ

)
� Σ̂

−1
(
−∇L(θ̂)
−f (θ̂)

)
: (3.7)

When the problem is high dimensional, the matrix Σ̂

is not invertible because of the rank deficiency, and it
becomes challenging to solve Problem (3.4). Moti-
vated by (3.7), we aim to find an estimator for the
inverse of the population version of Σ̂, which is

Σ
∗ �

(
E[∇2

L(θ∗)] ∇f (θ∗)
∇f (θ∗)� 0

)
:

We achieve this by first finding an estimator for the
inverse of the population version of E[∇2

L(θ∗)], and
then obtain an estimator for the inverse by block
matrix inverse.

Specifically, we estimate the inverse of E[∇2
L(θ∗)]

using the constrained ℓ1-minimization for inverse ma-
trix estimation (CLIME) method (Cai et al. 2011).

Denote the estimator as Ω̂. We obtain an estimator for

the inverse of Σ̂ by Θ̂ �
(
Θ̂11 Θ̂12

Θ̂
�
12 Θ̂22

)
, where

Θ̂11 � Ω̂ − Ω̂∇f (θ̂)(∇f (θ̂)�Ω̂∇f (θ̂))−1∇f (θ̂)�Ω̂,

and

Θ̂12 � Ω̂∇f (θ̂)(∇f (θ̂)�Ω̂∇f (θ̂))−1, and

Θ̂22 � −(∇f(θ̂)�Ω̂∇f(θ̂))−1:

Thus, we obtain θ̂
d
by plugging Θ̂ into (3.7) that

(
θ̂
d − θ̂
λ

)
� Θ̂

(−∇L(θ̂)
−f (θ̂)

)
(3.8)

and

θ̂
d � θ̂ − Θ̂11∇L(θ̂): (3.9)

Before presenting the asymptotic properties of θ̂
d
, we

first impose some assumptions. We point out that
here we purposely do not specify the convergence
rates in the following assumptions because our pro-
posed method is a general framework, and as long as
the assumptions for Theorem 3.1 are satisfied, the
Lagrangian debiased method achieves the asymptotic
normality. We also point out that, under our scaling
assumptions in the following theorems, the assump-
tions are indeed satisfied.

Assumption 3.1 (Consistency for Initial Estimation of
Parameters). For some rate r1 that depends on the sample

size and parameter dimension, we assume ||θ̂ −θ∗ ||∞�r1.

Assumption 3.2 (Condition on Loss Function). For
some rate r2 and constant L1, if θ � θ∗ + t(θ̂ −θ∗) for
t ∈ [0, 1], it holds that

||∇L(θ∗)||∞�r2, ||∇2
L(θ) −∇2

L(θ∗)||∞ ≤ L1 ||θ−θ∗ ||∞:

Assumption 3.3 (Condition on Constraint Function).
For some constants c1 and L2, if θ � θ∗ + t(θ̂ −θ∗) for
t ∈ [0, 1], it holds that

||∇f (θ∗)||∞�c1, ||∇f (θ) −∇f (θ∗)||∞ ≤ L2 ||θ−θ∗ ||∞:

Assumption 3.4. For some rates r3, r4, r5 and constants c2,
c3, we assume that

||I − Ω̂∇2
L(θ̂)||∞�r3, ||Ω̂ −Ω

∗ ||∞�r4,

||Ω∗ ||∞�c2, ∇f (θ∗)�Ω∗∇f (θ∗)� c3, ||Θ∗ ||∞�r5:

Assumption 3.5 (Central Limit Theorem (CLT) of the

Score Function). For every i≠ j, if (Θ∗
11Σ

∗
11Θ

∗
11

�)jj ≥ C

and (ei − ej)� (Θ∗
11Σ

∗
11Θ

∗
11

�)(ei − ej) ≥ C for some constant

C > 0, it holds that
��
n

√
[Θ∗

11∇L(θ∗)]j��������������������
[Θ∗

11Σ
∗
11Θ

∗
11

�]jj
√ →d N(0, 1)

Figure 1. (Color online) Geometric Illustration of Our
Lagrangian DebiasingMethod

Notes. The green surface is the approximation of the loss function
L(θ). The green circles are the contour lines of the surface. The trans-
parent purple plane is the constraint f (θ) � 0. The red arrow repre-

sents ∇L(θ̂) + ∇2
L(θ̂)(θ̃ − θ̂), and the purple arrow represents

λ∇f (θ).
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and

��
n

√ [Θ∗
11∇L(θ∗)]i − [Θ∗

11∇L(θ∗)]j���������������������������������������
(ei − ej)T(Θ∗

11Σ
∗
11Θ

∗
11

�)(ei − ej)
√ →d N(0, 1),

where [Θ∗
11∇L(θ∗)]j is the jth entry of Θ

∗
11∇L(θ∗),

[Θ∗
11Σ

∗
11Θ

∗
11

�]jj is the jth diagonal element of matrix

Θ
∗
11Σ

∗
11Θ

∗
11

�, and Σ
∗
11, Θ

∗
11 is the upper left n × n block of

Σ
∗, Θ∗, respectively.

By these assumptions, the following two corollaries
hold, which are crucial for later proofs. Proofs of Cor-
ollaries 3.1 and 3.2 can be found in the online appen-
dix, Section B.1 and B.2.

Corollary 3.1. Under Assumptions 3.1–3.4, we have
||Θ̂ −Θ

∗ ||∞�r1 + r4.

Corollary 3.2. Under Assumptions 3.1–3.4, we have
||I− Θ̂Σ̂ ||∞�r3:

We then present the asymptotic distribution of the
Lagrangian debiased estimator.

Theorem 3.1. Under Assumptions 3.1–3.5, if c1, c2,
c3,L1,L2 �O(1) and

��
n

√
(r21r5 + (r1 + r4)(r21 + r2) + r1r3) �

o(1), we have the following asymptotic distribution for the
Lagrangian debiased estimator (3.9):

��
n

√ θ̂
d

j −θ∗
j��������������������

[Θ∗
11Σ

∗
11Θ

∗
11

�]jj
√ →d N(0, 1),

and

��
n

√
(
θ̂
d

i −θ∗
i

)
−

(
θ̂
d

j −θ∗
j

)

�������������������������������������
(ei − ej)�Θ∗

11Σ
∗
11Θ

∗
11

�(ei − ej)
√ →d N(0, 1),

where ek is the natural basis with the kth entry be one and
other entries be zero.

Proof. See the online appendix, Section A.1, for the
detailed proof. w

Remark 3.2. If the constraint function f is linear, it is

not difficult to say that θ̂
d
satisfies the constraint.

Meanwhile, under the general constraint, as the prob-

lem is nonconvex, θ̂
d
may violate the constraint. How-

ever, even if the constraint is violated, the previous
asymptotic results still hold.

Remark 3.3. In the Lagrangian debiasing procedure,
we do not explicitly assume the loss functions and the
constraints on parameters to be convex. We provide
more discussions here. First, in our Assumption 3.1,
we assume that the convergence rate for initial esti-
mator θ̂ satisfies ||θ̂ −θ∗ ||∞�r1. Recall that r1 needs to
be sufficiently small for the proposed method to
work. Obtaining a sufficiently “good” initial estimator

implicitly assumes some nice properties of the loss
function L(·) (Casella and Berger 2021), which is usu-
ally convex.

Second, in our debiasing step, as long as the initial esti-
mator is good enough, we do not need convexity, because

we approximate ∇L(θ) by ∇L(θ̂) + ∇2
L(θ̂) (θ− θ̂) and

f (θ) by f (θ̂) + ∇f (θ̂)�(θ− θ̂) when Assumption 3.1 (the

initial estimator θ̂ converges to true parameter θ∗ suffi-
ciently rapidly), Assumption 3.2 (∇L(·) is smooth around
θ∗), and Assumption 3.3 ( f (·) is smooth around θ∗) are
satisfied.

3.1.2. Lagrangian Debiasing for BTL Model. We
present the debiasing method under the BTL model.
In particular, for ranking problems, letting the con-
straint function be linear that 1�θ � 0 as in Chen et al.
(2013), Negahban et al. (2017), and Jin et al. (2020), we
define

Θ̂11
1
n1

1
n1

� 0

( )
�

(
∇2

L(θ̂) 1
1� 0

)−1
and

Θ
∗
11

1
n1

1
n1

� 0

( )

�
(
∇2

L(θ∗) 1
1� 0

)−1
: (3.10)

Here the invertibility is provided in Remark H.2 in
the online appendix, and the form of inverse is vali-
dated in Corollary H.1.

The next theorem shows that under mild scaling

conditions, the Lagrangian debiasing estimator θ̂
d

j

and the component-wise difference θ̂
d

i − θ̂
d

j for any i

and j (1 ≤ i, j ≤ n) are asymptotically normal with
mean θ∗

j and θ∗
i −θ∗

j , respectively.

Theorem 3.2. Considering the BTL model, under con-

straint parameter set C � {θ : 1�θ � 0}, if p ≥ C0logn
n for

some sufficiently large constant C0 > 0 and
n logn��

L
√ +

logn���
pL

√ � o(1), we have that the Lagrangian debiasing estima-

tor satisfies that, as n,L→∞,

��
L

√ θ̂
d

j −θ∗
j���������

[Θ∗
11]jj

√ →d N(0, 1),

and

��
L

√ θ̂
d

i − θ̂
d

j − (θ∗
i −θ∗

j )��������������������������
(ei − ej)�Θ∗

11(ei − ej)
√ →d N(0, 1):

Proof. See the online appendix, Section A.2, for the
detailed proof. w

Remark 3.4. By Corollary H.1 in the online appendix,
we have that [Θ∗

11]jj 	 1
np for all 1 ≤ j ≤ n. Consequently,
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for all j ∈ [n], we have

∣∣∣θ̂d

j −θ∗
j

∣∣∣�
�����
1

npL

√

with a probability that goes to one. This matches the
ℓ∞-norm error achieved by the spectral and regular-
ized MLE methods as analyzed in Chen et al. (2019).

The asymptotic normality of θ̂
d

i − θ̂
d

j is the funda-
mental building block for inferring the pairwise prefer-
ence such as in Example 1.1, where we test if item i is
preferred over item j. Basically, it is a “local” test that
only involves two items, which can be done with the

asymptotic distribution of θ̂
d

i − θ̂
d

j . For the more chal-

lenging “global” testing problems, such as Example 1.2,
where we test if a given item is among the top-K ranked
items, we need to uniformly control the quantile of maxi-
mal statistic, which will be discussed in the next section.

3.2. Hypothesis Testing
In this section, we propose our general inferential
framework for ranking problems. As mentioned in
Section 1, we first test whether a given item i satisfies
some property that

H0 : γ
∗
∉ Ri v:s: Ha : γ

∗ ∈ Ri:

To facilitate our discussion, we define the legal pair and a
distance between the null and alternative, which essen-
tially measure the signal strengths in our testing problems.
In particular, when we test some property of item i, we
say a pair (i, i′) is a legal pair if the property is true, and if
we swap the scores of item i and item i′, the property no
longer holds. That is, swapping the scores of item i and
item i′ changes the property of our interest. The distance
between the null and alternative is thus defined as the
minimal difference of scores among all legal pairs.

Definition 3.1 (Legal Pair). Suppose γ ∈Ri. After
swapping the scores of item i and item i′, we obtain a
new rank γ′. We say that the pair of items (i, i′) is legal
if γ′

∉Ri.

Definition 3.2 (Distance Between the Null and Alterna-
tive). We define the distance between the null and
alternative as

Δ(θ,Ri) � min
i′:(i,i′) is legal

|θi − θi′ | :

Then, we provide the specific legal pairs and distances
Δ(θ,Ri) for Examples 1.1 and 1.2.

• Example 1.1 (Pairwise Preference Between Item i
and Item j). We aim to test if item i is ranked higher
than item j, which means γ∗

i < γ∗
j or θ∗

i > θ∗
j . Let the

ranking property be

Ri � {γ : γi < γj} � {γ(θ) : θi > θj}:

If γ ∈Ri (i.e., θi > θj) and we swap scores of item i
and item i′ where θi′ ≤ θj, the new rank does not sat-
isfy Ri. Meanwhile, if we swap scores of item i and
item i′′ where θi′′ > θj, the new rank still satisfies Ri.
So (i, i′) is a legal pair if θi′ ≤ θj. See Figure 2 for
illustration. This observation leads to the distance

Δ(θ,Ri) � min
i′:θi′≤θj

|θi −θi′ | � |θi −θj |:

Equivalently, we can test on preference scores instead
of ranking, that is, testing whether item i has a larger
score than item j,

H0 : θ
∗
i ≤ θ∗

j v:s: Ha : θ
∗
i > θ∗

j :

• Example 1.2: (Top-K Test). If item i’s preference
score is larger than n – K items, that is, θi > θ(K+1),
where θ(K+1) denotes the (K+ 1) th largest preference
score, or equivalently, γi ≤ K, we say that item i
is ranked among top-K items. We aim to test if item i
is ranked among top-K items. Thus, we have that
Ri is

Ri � {γ : γi ≤ K} � {γ(θ) : θi > θ(K+1)}:
If γ ∈Ri (i.e., θi > θ(K+1)), and we swap scores of item i
and item j where θj ≤ θ(K+1), the new rank does not
satisfy Ri. Meanwhile, if we swap scores of item i and
item j where θj > θ(K+1), we have that the new rank
satisfies Ri. Thus, (i, j) is a legal pair if θj ≤ θ(K+1), and

Figure 2. (Color online) Illustration of Example 1.1

Notes. Assuming θ1 > θ2 > : : : > θn. Here γ ∈Ri since θi > θj. If we swap scores of item i and item i′, where θi′ ≤ θj, the new rank does not sat-
isfyRi. Meanwhile, if we swap scores of item i and item i′′, where θi′′ > θj, the new rank still satisfiesRi. Thus, (i, i′) is a legal pair if θi′ ≤ θj.
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the distance is

Δ(θ,Ri) � min
j:θj≤θ(K+1)

|θi −θj | � |θi −θ(K+1) | :

Similarly, we can transform the test on ranking into
testing on preference score, our test is

H0 : θ
∗
i − θ∗

(K+1) ≤ 0 v:s: Ha : θ
∗
i − θ∗

(K+1) > 0:

Next, we explain our testing procedure with the above
two examples. Consider Example 1.1, where we test
whether item i is ranked higher than item j, or equiva-
lently, we test whether item i has a larger score than item j,

H0 : θ
∗
i ≤ θ∗

j v:s: Ha : θ
∗
i > θ∗

j :

For this example, by Theorem 3.2, if the assumptions
are satisfied, we have

��
L

√ θ̂
d

i − θ̂
d

j − (θ∗
i − θ∗

j )���������������������������
(ei − ej)�Θ∗

11(ei − ej)
√ →d N(0, 1):

We thus reject H0 if

��
L

√ θ̂
d

i − θ̂
d

j���������������������������
(ei − ej)�Θ̂11(ei − ej)

√ > Φ(1 − α),

where Φ(·) is the cumulative distribution function of a
standard normal random variable.

This example only involves two items, which is a
relatively simple local test. However, for more general
testing problems, we need to consider more than two
items. For instance, in Example 1.2, we test if item i is
ranked among the top-K items that

H0 : θ
∗
i − θ∗

(K+1) ≤ 0 v:s: Ha : θ
∗
i − θ∗

(K+1) > 0,

where θ∗
(K+1) is the (K+ 1) th largest score in terms of

order statistic. If the score of item i is larger than the
(K+ 1) th largest score, we have that item i is ranked
among top-K items. In this example and more general
problems, we need to study the maximal statistic

maxj≠i(θ̂
d

i −θ∗
i − θ̂

d

j +θ∗
j ). In what follows, we demon-

strate that we can estimate the quantiles of this maxi-
mal statistic via the Gaussian multiplier bootstrap.

3.2.1. Gaussian Multiplier Bootstrap. We start from a
general fixed edge set E ⊆ V × V. The goal is to control
the tail probability of the statistic that

T :� max
(i, j)∈E

�����
npL

√ (
θ̂
d

i −θ∗
i − θ̂

d

j +θ∗
j

)

� −max
(i, j)∈E

�����
1

npL

√
∑L

ℓ�1

∑
k>m

Emk −y(ℓ)mk +
eθ

∗
k

eθ
∗
k + eθ

∗
m

( )
np

× ([Θ∗
11]i − [Θ∗

11]j)(ek − em) +
�����
npL

√
(ri − rj)

:� max
(i, j)∈E

��
1

L

√ ∑L

ℓ�1
x(ℓ)ij +

�����
npL

√
(ri − rj), (3.11)

where ek is the natural basis, and [Θ∗
11]i is the ith row

of matrix Θ
∗
11 defined in (3.10). The second equality

comes from (A.13) and (A.5); x(ℓ)ij is defined as

x(ℓ)ij :� − ����
np

√ ∑
k>m

Emk −y(ℓ)mk +
eθ

∗
k

eθ
∗
k + eθ

∗
m

( )

× ([Θ∗
11]i − [Θ∗

11]j)(ek − em): (3.12)

which is an independent zero-mean random variable
in R for ℓ � 1, : : : ,L. Here Emk � 1 if (m,k) ∈ E the com-
parison graph, and Emk � 0 otherwise.

To estimate the quantile of T, we consider the Gaus-
sianmultiplier bootstrap in Chernozhukov et al. (2013).
The main idea is to approximate the distribution of the
maximum of a sum of independent random vectors
with unknown covariance by the distribution of the
maximum of a sum of conditional Gaussian random
vectors, which is obtained by multiplying the original
vectors with independently and identically distributed
normal random variables. In our case, even though
vector θ∗ is not observable, we have some estimators θ̂
are available, and we use the estimators to approxi-
mate θ∗ in the bootstrap.

Hence, we define the following statistic from Gaus-
sian multiple bootstrap

W :� max
(i, j)∈E

��
1

L

√ ∑L

ℓ�1
− ����

np
√ ∑

k>m

Emk −y(ℓ)mk +
êθk

êθk + êθm

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

× ([Θ̂11]i − [Θ̂11]j)(ek − em)
}
zℓ, (3.13)

where zℓ, ℓ � 1, : : : ,L, are i.i.d standard normal ran-
dom variables.

We then estimate the conditional quantile of W
given data y � {y(ℓ)mk}

ℓ�1,: : : ,L
k>m by

cW(α,E) � inf{t ∈ R : P(W > t | y) ≤ α}: (3.14)

The next theorem uniformly controls the tail proba-
bility of T by cW(α,E).
Theorem 3.3. Considering the BTL model, for any edge set

E ⊆ V × V, if n2p
(log(nL))7

L � o(1) and n(logn)3=2��
L

√ � o(1),we have

sup
α∈(0,1)

| P(T > cW(α,E)) − α |→ 0:

as n,L→∞,

Proof. We provide the proof in the online appendix,
Section D. w

This theorem shows that cW(α,E) obtained from the
Gaussian multiplier bootstrap is a valid quantile estimator

for T �maxi,j∈E
�����
npL

√
(θ̂d

i −θ∗
i − θ̂

d

j +θ∗
j ). In this theorem,

the first scaling condition n2p
(log(nL))7

L � o(1) is from the

Gaussian approximation for the maximum of a sum of
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random vectors, and the second scaling condition
n(logn)3=2��

L
√ � o(1) is from approximating T and W by their

leading terms. Given this statistic, we are ready to present
the procedure for testing general ranking properties.

3.2.2. General Testing Procedure. For general ranking
property test with respect to item i

H0 : γ
∗
∉ Ri v:s: Ha : γ

∗ ∈ Ri,

we perturb the preference score of every item (i.e., θ̂
d

i )

up to α-quantile of maxj≠i(θ̂
d

i −θ∗
i − θ̂

d

j +θ∗
j ), and con-

duct the test. Specifically, let Θ̃ be the set of all possi-
ble score vectors after perturbation that

Θ̃ �
{
θ :θk ∈

[
θ̂
d

k − cW(α, i)=
�����
npL

√
, θ̂

d

k + cW(α, i)=
�����
npL

√ ]
,

1≤ k≤ n
}
, (3.15)

where cW(α, i) � cW(α, {i} × { j : j≠ i}). We reject the

null hypothesis if γ(θ) ∈Ri for any θ ∈ Θ̃, that is, the
event ∩

θ∈Θ̃
{γ(θ) ∈Ri} holds.

Remark 3.5. We point out that we can simplify this
general procedure for specific problems. For instance,
when we test if item i is ranked within the top-K, we
only need to consider the extreme point of the pertur-
bation, where for k � 1, : : : ,n, its kth entry is defined as

θk �
θ̂
d

k θ̂
d

k > θ̂
d

i ,

θ̂
d

k − cW(α, i)=
�����
npL

√
k � i,

θ̂
d

k + cW(α, i)=
�����
npL

√
θ̂
d

k < θ̂
d

i :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

In fact, we can further simplify this procedure that we
only consider θ where its kth entry is defined as

θk �
θ̂
d

k θ̂
d

k > θ̂
d

i ,

θ̂
d

k − cW(α, i)=
�����
npL

√
k � i,

θ̂
d

k θ̂
d

k < θ̂
d

i :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

We justify this procedure in the online appendix, Sec-
tion E.2.

We conclude this section by the following theorem
that we show that the proposed procedure controls
the type I error, and we provide the power analysis.

Theorem 3.4. Under same assumptions as in Theorem 3.2
and 3.3., we have the general testing procedure satisfies
that, as n,L→∞,

sup
γ∗∉Ri

P0(Reject H0) ≤ α,

and we have

inf
γ∗∈Ri,Δ(θ∗,Ri)>δ

P(Reject H0) → 1,

where δ � C
�����
logn
npL

√
for some constant C.

Proof. We provide the proof in the online appendix,
Section E. w

4. Multiple Testing
In this section, we extend the proposed procedure to the
multiple testing setting. As discussed in the introduction,
the multiple testing finds important applications in our
ranking inference problems such as Example 1.3, where
we aim to infer the set of all top-K ranked items. In general
multiple testing problems, we aim to control the family-
wise type I error rate (FWER), or the false discovery rate
(FDR), while achieving certain power. Widely used pro-
cedures include Bonferroni correction, Dunn-Šidák
procedure (Šidák 1967), Holm procedure (Holm 1979) for
controlling FWER, and Benjamini-Hochberg procedure
(BH) (Benjamini and Hochberg 1995) and Benjamini-
Yekutieli procedure (Benjamini and Yekutieli 2001) for
controlling FDR. In addition, there are also resampling
based procedures such as permutation testing and boot-
strap method (Westfall and Young 1993, Ge et al. 2003).
However, these methods cannot be directly applied to our
problems, as their theoretical properties cannot be easily
justified. This is mainly because that the test statistics for
the hypotheses are clearly dependent, which makes our
multiple testing problems challenging.

In general, we aim to test the following hypotheses
simultaneously,

H0i : item i does not satisfy property Ri v:s: Hai

: item i satisfies Ri, for i ∈ [n]: (4.1)

4.1. Control FWER
We first present our procedure for controlling the
FWER. Recall that the FWER is the probability of mak-
ing at least one type I error that

FWER � P(# false positives > 0):
Specifically, when we aim to control the FWER in
multiple testing, we let the maximal statistic be

M � max
i∈[n]

max
j∈[n]

�����
npL

√
(θ̂d

i − θ∗
i − θ̂

d

j + θ∗
j ),

and we estimate its (1− α) th percentile CM(α, [n] × [n])
by Gaussian multiplier bootstrap and taking the edge
set E as [n] × [n] in (3.11). Next, we reject theH0i in (4.1)
if item i satisfies property Ri for all possible perturba-

tion for the debiased estimator θ̂
d
up to CM(α, [n] ×

[n])=
�����
npL

√
entrywise. Equivalently, letting Θ̃ be the set

of possible latent scores after perturbation that

Θ̃ �
{
θ : θk ∈

[
θ̂
d

k −CM(α, [n] × [n])=
�����
npL

√
, θ̂

d

k

+ CM(α, [n] × [n])=
�����
npL

√ ]
, 1 ≤ k ≤ n

}
,

we reject H0i in (4.1) if for any θ ∈ Θ̃, we have
γ(θ) ∈Ri, that is, the event ∩

θ∈Θ̃
{γ(θ) ∈Ri} holds.
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To facilitate our power analysis, we define the sig-
nal strength for multiple testing problems as

Δ(θ) � min
i:γ(θ)∈Ri

Δ(θ,Ri) � min
i:γ(θ)∈Ri

min
i′:(i,i′) is legal

|θi − θi′ | :

(4.2)

In what follows, we use two examples to illustrate
some insights of this signal strength.

• Consider the problem of selecting all top-K ranked
items. Denote the ith largest order statistic as θ(i). For
any given 1 ≤ i ≤ n satisfying θi ≥ θ(K), the pairs of
items (i, i′) such that θi′ ≤ θ(K+1) are the legal pairs, and
the smallest distance is |θi −θ(K+1) |. Hence, we have

Δ(θ) � min
θi≥θ(K)

min
θi′ ≤θ(K+1)

|θi −θi′ | � min
θi≥θ(K)

|θi −θ(K+1) |

� |θ(K) −θ(K+1) | :

This is consistent with our intuition that when we
aim to choose the top K items, the gap between the
scores of θ(K) and θ(K+1) somewhat determines this
problem’s difficulty.

• Consider the problem of selecting all items ranked
higher than item k with score θk. For any item i satisfy-
ing θi > θk, the pairs (i, i′)where θi′ ≤ θk are legal pairs.
Hence, we have that the distance is

Δ(θ) � min
θi>θk

min
θ′
i≤θk

|θi −θi′ | � min
θi>θk

|θi −θk | :

The following theorem shows that the FWER based
on our procedure above is guaranteed to be no greater
than α asymptotically and is powerful.

Theorem 4.1 (Familywise Type I Error Rate). Under the
same assumptions for Theorems 3.2 and 3.3, following the
previous multiple testing procedure, for any 0 < α < 0:5,
we have

FWER � P(Making at least one Type I error)
≤ α+ o(1):

Furthermore, if Δ(θ∗)�
�����
logn
npL

√
holds, we have

P(Making at least one Type II error) → 0:

Proof. We provide the proof in the online appendix,
Section F.1. w

This theorem shows that our method controls the
FWER asymptotically for the given level. Meanwhile, our

procedure is asymptotically powerful if Δ(θ∗)�
�����
logn
npL

√
,

which matches the lower bound we derive in Section 5.

4.2. FDR Control
We then consider the problem of controlling the FDR.
FDR is the expected proportion of type I errors among

all discoveries (Benjamini and Hochberg 1995), and
our goal is to control the FDR under some prespeci-
fied level α that

FDR � E
# false positives

# discoveries
I # discoveries > 0[ ]

[ ]
≤ α:

Consider the multiple testing problem of interest (4.1).
For each hypothesis of item i, we perform our pro-
posed single testing procedure in Section 3.2 and get
the p value pi that

pi � inf{α0 : ∩
θ∈Θ̃(α0)

{γ(θ) ∈ Ri}} for 1 ≤ i ≤ n,

where

Θ̃(α0) �
{
θ : θk ∈

[
θ̂
d

k − cW(α0, i)=
�����
npL

√
, θ̂

d

k + cW(α0, i)=

�����
npL

√ ]
, 1 ≤ k ≤ n

}
:

Because the p values pis for different tests have com-
plicated dependency, we consider the Benjamini-
Yekutieli procedure by Benjamini and Yekutieli (2001)
to control the FDR, which ranks the hypotheses
according to their corresponding p values and chooses
a cutoff to control the FDR. In particular, we order the
n p values in the ascending order as p(1), : : : ,p(n) and
reject the null hypothesis for all H(i), i � 1, : : : , r, where

r �max
k

k : p(k) ≤
k

n ·N ·α
{ }

and N �
∑n

k�1

1

k
:

The following theorem shows that the FDR based on
our procedure achieves the desired FDR level asymp-

totically if |H0 | 1
Lc3 + 2

n5

( )
� o(1), where |H0 | is the num-

ber of true null hypotheses.

Theorem 4.2 (FDR Control). Suppose that the conditions
in Theorems 3.2 and 3.3 hold. Following the previous mul-
tiple testing procedure, for any 0 < α < 1, we have

FDR ≤ |H0 |
n

·α+C |H0 |
1

Lc3
+ 2

n5

( )
,

for some constant C > 0, and the constant c3 satisfies
the condition in Remark D.1.

Proof. We provide the proof in the online appendix,
Section F.2. w

Remark 4.1. We point out that, as show in the pre-
vious theorem and in our simulation studies, our
developed Benjamini-Yekutieli–based FDR controlling
procedure is relatively conservative when the number
of true nulls |H0 | is small compared with total number
of items n. The similar conservative result also holds
in Eisenach et al. (2020).
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5. Lower Bound Theory
In this section, we derive a lower bound for the multi-
ple testing problem (4.1). To the best of our knowl-
edge, even beyond ranking problems, all existing
works focus on discussing the lower bound for single
hypothesis testing problems. To facilitate our discus-
sion, we first define a novel minimax risk of multiple
testing problems. In particular, we let the risk be the
probability of making at least one type I or type II
error that

R� inf
ψ
sup
θ∗∈Ξ

P(#false positives+# false negatives≥ 1),

(5.1)

where ψ is any selection procedure giving a vector
ψ ∈ {0, 1}n that ψi � 1 means that we reject H0i in (4.1),
and Ξ is our parameter space, which is closed under
swapping scores of any two items. If R ≥ 1− ε, where
ε > 0 is a constant, we say that any procedure fails in
the sense that type I or type II error cannot be
controlled. Given this setup, we aim to characterize
necessary conditions under which we can control the
minimax risk to the desired level.

5.1. Lower Bound Theorem
Recall that we define the legal pair in Definition 3.1
and the distance Δ(θ) in (4.2). We then define a critical
subset of all legal pairs, which is crucial in deriving
the information-theoretic lower bound and captures
the “hardness” of multiple testing for different
properties.

Definition 5.1 (Divider Set). A set M(θ) ⊆ [n] × [n] is
a divider set if M(θ) satisfies the following two
conditions:

• For any (i, i′) ∈M(θ), it satisfies γ ∈Ri, (i, i′) is
legal, and |θi −θi′ | � Δ(θ).

• For any two pairs (i1, i′1), (i2, i′2) ∈M(θ), letting γ1
be the scores by swapping items i1 and i′1, and γ2 be the
scores by swapping items of i2 and i′2. They must satisfy
{i : γ1 ∈Ri}≠ {i : γ2 ∈Ri}.

The following theorem derives necessary signal
strengths in Δ(θ) and |M(θ)| for controlling the risk
R ≤ 1− ε.

Theorem 5.1 (Necessary Signal Strength). Considering
the BTL model where the pairwise comparison probability p

in Erdös-Rényi graph satisfies p�
logn
n , if there exists θ ∈ Ξ

such that

Δ(θ)�
�������������������������������
εlog(|M(θ)| + 1) − log2

npL

√
, (5.2)

we have the minimax risk R � infψsupθ∗∈ΞP(# false
positives+ # false negatives ≥ 1) > 1− ε.

Proof. Our proof is based on three steps. In the first
step, we reduce the problem of obtaining a lower
bound of minimax risk in (5.1) for θ∗ ∈ Ξ to the prob-
lem of deriving a lower bound for θ∗ in a finite set.
Next, we construct a finite set of hypotheses. Finally,
we derive the minimax risk by Fano-type arguments
and derive the necessary signal strength condition.

Step 1. LetRj be a ranking property for a single item
j as defined in Definition 2.3. We have

R � inf
ψ
sup
θ∗∈Ξ

P(# false positives+ # false negatives ≥ 1)

� inf
ψ
sup
θ∗∈Ξ

P(ψ≠ ψ∗) � inf
ψ
sup
θ∗∈Ξ

P(d(ψ,ψ∗) ≥ 1=2),

(5.3)

where ψ∗ ∈ {0,1}n with ψ∗
j � 1 meaning γ∗ ∈Rj and

ψ∗
j � 0 meaning γ∗

∉Rj for j � 1, : : : ,n, and ψ ∈ {0,1}n is
a selection procedure that ψi � 1 means that we reject
H0i in (4.1), and the distance d(ψ,ψ∗) � ||ψ−ψ∗ ||1. By
section 2.2 of Tsybakov (2008), the problem of obtain-
ing a lower bound of minimax risk in (5.3) for θ∗ ∈ Ξ

can be reduced to the problem of deriving a lower
bound for θ∗ in a finite set.

In particular, suppose that we have a collection M + 1
hypotheses HM � {Hi : θ

∗ � θ(i), 0 ≤ i ≤M}. Recall that a
test is any measurable function φ : Y � {Y(ℓ)}L

ℓ�1 �→
{0, 1, : : : ,M}. Let Pe,M be the minimax probability of error

Pe,M :� inf
φ

max
θ∗∈{θ(0),θ(1), : : : ,θ(M)}

Pi(φ≠ i)

� inf
φ

max
0≤i≤M

Pi(φ≠ i), (5.4)

where Pi denotes the probability measure under the ith
hypothesis θ∗ � θ(i). The following lemma in section
2.2 of Tsybakov (2008) shows that the minimax risk R
in (5.3) is lower bounded by Pe,M above, and we pro-
vide the proof in the online appendix, Section G.1, for
self-completeness.

Lemma 5.1. Suppose we have M+ 1 hypotheses HM �
{Hi : θ

∗ � θ(i), 0 ≤ i ≤M} with deduced tests ψ(i) ∈ {0,1}n
where ψ(i)

j � 1 means γ(θ(i)) ∈Rj and ψ(i)
j � 0 means

γ(θ(i)) ∉Rj for 0 ≤ i ≤M, 1 ≤ j ≤ n. If these hypotheses sat-
isfy d(ψ(i1),ψ(i2)) ≥ 1 for any i1 ≠ i2, we have

R � inf
ψ
sup
θ∗∈Ξ

P(d(ψ,ψ∗) ≥ 1=2) ≥ Pe,M:

Thus, if Pe,M > 1− ε, we have R > 1− ε; that is, for any
selection procedure ψ, there exists a preference vector
θ ∈ Ξ such that the probability of making at least one
type I or type II error in the family is uncontrollable.
This shows that if we can find a finite set {θ(i), 0 ≤ i ≤
M} satisfying the conditions of Lemma 5.1, we can
derive the lower bound. We construct this set in Step 2.

Step 2. In this step, we construct a finite set of
hypotheses for deriving the lower bound. We choose a
base preference score vector θ first. Without loss of
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generality, we assume that the preference score θ is in
descending order, that is,

θ1 > θ2 > : : : > θn: (5.5)

Recall that the divider set M(θ) ⊆ [n] × [n] defined in
Definition 5.1 is a collection of pairs with cardinality
|M(θ)|. Denote this set by M(θ) � {(ki,k′i ), i � 1, : : : ,
|M(θ)|}. Based on the base preference score θ and
the divider set, we construct a set of hypotheses
HM � {H0,H1, : : : ,H|M(θ)|} such that

H0 : θ
∗ � θ(0), Hi : θ

∗ � θ(i), 1 ≤ i ≤ |M(θ)| , (5.6)

where θ(0) � θ, and θ(i) is obtained by swapping scores
of the ith pair (ki,k′i ) ∈M(θ) in the base score vector θ.
For each hypothesis Hi : θ

∗ � θ(i), we also have the
induced rank γ(i) � γ(θ(i)) and vector ψ(i) ∈ {0,1}n with

ψ(i)
j � 1 meaning γ(i) ∈Rj and ψ(i)

j � 0 meaning γ(i)
∉

Rj, j � 1, : : : ,n.

By the construction of M(θ) in Definition 5.1, for

i1 ≠ i2, we have { j : γ(i1) ∈Rj}≠ { j : γ(i2) ∈Rj}, which

gives ψ(i1) ≠ ψ(i2), and we have d(ψ(i1),ψ(i2)) ≥ 1 for any
i1 ≠ i2, which satisfies the condition in Lemma 5.1.

Step 3. In this step, we obtain a lower bound on the
minimax risk by Fano-type bounds.

Here we denote M(θ) by M for simplicity. Let the
average probability of error and the minimum aver-
age probability of error of a test φ : Y � {Y(ℓ)}L

ℓ�1 �→
{0, 1, : : : ,M} be

P̄e,M(φ) � 1

|M| + 1

∑|M|

j�0
Pj(φ≠ j), and

P̄e,M � inf
φ
P̄e,M(φ):

One can easily verify that Pe,M ≥ P̄e,M, where the min-
imax probability of error Pe,M is defined in (5.4). Then
we reduce bounding the minimax probability of error
to bounding the minimum average probability of
error because, if P̄e,M > 1− ε, we have R > 1− ε.

Following the argument in Chen and Suh (2015),
we also apply the generalized Fano inequality in
Verdú (1994), which gives a lower bound for P̄e,M.
We summarize the result in the following lemma
and provide the proof in the online appendix,
Section G.2.

Lemma 5.2. Under the BTL model, let M �M(θ) be the
divider set defined in Definition 5.1. Given the set of
hypothesesHM constructed in Step 2, we have

P̄e,M ≥ 1− 1

log(|M| +1)
pL

(|M| + 1)2
∑

H,H̃∈HM

∑
i<j

KL
(
P
y(1)
i,j |H

∣∣∣
∣∣∣ P

y(1)
i,j |H̃

)
+ log2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
: (5.7)

Let ω � exp(θ), and define

dM(ω) � max
(k1, k2)∈M

ωmin(k1 ,k2)
ωmin(k1,k2)+1

+ : : : +ωmax(k1 ,k2)−1
ωmax(k1,k2)

− |k1 − k2 |
( )

:

We further have the following lemma to control the
right-hand side of (5.7). We provide the proof in the
online appendix, Section G.3.

Lemma 5.3. Under the BTL model, let M �M(θ) be the
divider set defined in Definition 5.1. Given score vector ω
(ω1 > : : : > ωn) and the set of hypotheses HM constructed
in Step 2, we have

∑

H, H̃∈HM

∑
i<j

KL
(
P
y(1)
i,j |H

∣∣∣
∣∣∣ P

y(1)
i,j | H̃

)
≤ 4n |M|2(d2M(ω)+

O(d3M(ω))): (5.8)

Plugging (5.8) into (5.7), we have P̄e,M > 1− ε if

1

log(|M| + 1)

4npL
|M|2

(|M| + 1)2
(d2M(ω) +O(d3M(ω))) + log 2

{ }
< ε:

(5.9)

Finally, we have the following lemma, and the proof
is provided in the online appendix, Section G.4.

Lemma 5.4. Under the BTL model where the pairwise
comparison probability p in Erdös-Rényi Graph satisfies
p�

logn
n , letM �M(θ) be the divider set defined in Defini-

tion 5.1, and θ (θ1 > θ2 > : : : > θn) be the score vector in
Step 2. Assuming that

Δ(θ)�
�����������������������������
ε log (|M| + 1) − log 2

npL

√
,

we have

dM(ω)�
�����������������������������
ε log(|M| + 1) − log 2

npL

√
: (5.10)

We have that (5.10) implies (5.9). This essentially con-
cludes the proof that when (5.2) holds, we have the
minimax risk R ≥ P̄e,M > 1− ε. w

5.2. Applications
We provide some examples of ranking property test-
ing to illustrate the lower bound.

Example 5.1 (Top-K Items Inference). Consider the
problem of selecting all items ranked among top-K.
We construct a base preference score θ satisfying
θ1 � : : : � θK > θK+1 � : : : � θn. Here the target select
set is {i : γ(θ) ∈Ri} � {1, : : : ,K}. Intuitively, for this
example, if θK and θK+1 are close, this multiple testing
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problem becomes difficult, and Theorem 5.1 justifies
this intuition.

In particular, because swapping scores θi (1 ≤ i ≤ K)
with θj (K+ 1 ≤ j ≤ n) changes the top K items, and we
have |θi −θj | � θK −θK+1, we have {(i,j)}1≤i≤K,K+1≤j≤n
are all legal pairs, and the distance is Δ(θ) � θK −θK+1.
Among all legal pairs, after swapping scores θi

(1 ≤ i ≤ K) with θj (K+ 1 ≤ j ≤ n), the target selection
set becomes {[n]={i}}⋃{ j}. Thus, all legal pairs are
included in divider set M(θ) � {(i, j)}1≤i≤K,K+1≤j≤n,
which gives us that log(|M(θ)|) 	 log(n). Thus, Theo-
rem 5.1 implies that in this example, the minimax risk
R is uncontrollable if

Δ(θ) � θK −θK+1�

����������
εlog(n)
npL

√
:

Example 5.2. Consider the problem of inferring all
items ranked higher than item k with score θk. We
construct a base preference score θ satisfying
θ1 � : : : � θk−1 > θk � : : : � θn. In this example, we
have {i : γ(θ) ∈Ri} � {1, : : : ,k− 1}. Swapping score θi

(1 ≤ i ≤ k− 1) with θj (k ≤ j ≤ n) changes the target selec-
tion set {i : γ(θ) ∈Ri} � {1, : : : ,k− 1}, and |θi −θj | �
θk−1 −θk. Thus, {(i, j)}1≤i≤k−1,k≤j≤n are all legal pairs, and
the distance is Δ(θ) � θk−1 −θk. Among all legal pairs,
after swapping score θi (1 ≤ i ≤ k− 1) with θk, we have
the same target selection set {i : γ(θ) ∈Ri} � ∅, so
only one of them can be included in set M(θ). We
then have M(θ) � {(i, j)}1≤i≤k−1,k+1≤j≤n

⋃{(k− 1,k)} with

log(|M(θ)|) � log((k− 1)(n− k) + 1) 	 log(n). Theorem
5.1 implies that in this example, the minimax risk R is

uncontrollable if Δ(θ) � θk−1 −θk�

�������
εlog(n)
npL

√
.

Remark 5.1 (Upper Bound). In the previous two

examples, we have that if Δ(θ)�
������
εlogn
npL

√
, any procedure

fails to control the risk. Meanwhile, Theorem 4.1

shows that if Δ(θ)�
�����
logn
npL

√
, we can control the FWER

and achieve power one asymptotically at the same
time, which shows our procedure achieves the mini-
max optimality.

6. Numerical Experiments
In this section, we conduct extensive numerical stud-
ies to test the empirical performance of the proposed
methods using both synthetic data and two real
datasets.

6.1. Synthetic Data
Using synthetic data, we first investigate the asymp-
totic normality of Lagrangian debiased estimators for
latent preference scores. Specifically, we generate the
latent scores θ∗

i s independently from a uniform distribu-
tion over [8, 10], where we set the number of items n �
100. We let L ∈ 2, 6, 20{ }, p ∈ 1:25, 2{ } × log(n)

n . Following

the procedure developed in Section 3.1, we repeat the
generating scheme 2,500 times and present the empiri-
cal distribution of the estimator. In particular, Figure 3

Figure 3. (Color online) Q-Q Plots for Lagrangian Debiased Estimators, Comparing Quantiles of Standardized Lagrangian
Debiased Estimators with Standard Normal

Note. We fix n � 100 and let L ∈ 2, 6, 20{ }, p ∈ 1:25, 2{ } × log(n)
n .
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displays the Q-Q plots of θ1, and we find that the
empirical distribution of our estimator is closed to a
normal distribution, especially when the number of
repeated comparisons L is large. This justifies our result
in Theorem 3.2 that our estimator weakly converges to
a normal distribution.

Next, we examine the performance of the pairwise test
and top-K test procedure in Section 3.2. For pairwise test,
we test H0 : θ

∗
1 ≤ θ∗

2 v:s: Ha : θ
∗
1 > θ∗

2. Figure 4(a) dis-
plays the type I error with p � 0.2 for different total
number of items n and number of repeated compari-
sons L. Here we fix θ∗

1 � θ∗
2 � 10 and θ∗

i � 7:5 for
3 ≤ i ≤ n. As seen from this figure, the empirical type I
error rate is close to the nominal α � 0:05. Figure 4(b)
shows the empirical power of this test with different
Δ � |θ∗

1 −θ∗
2 |. Here we set θ∗

1 � 10,θ∗
2 � 10−Δ and θ∗

i �
7:5 for 3 ≤ i ≤ n, and we let n � 100 and p � 0.2 and

change Δ and L. We observe that the empirical power
goes to one quickly.

For top-K test, we test whether item K + 1 is ranked
among the top K items. We fix K � 30 and p � 0.2, and
we let θ∗

i � 10 for 1 ≤ i ≤ K+ 1, and θ∗
j � 7:5 for

K+ 2 ≤ j ≤ n. Figure 5(a) displays the empirical type I
error rate with different n and L, and we find that that
the empirical type I error is close to the nominal
α � 0:05. Figure 5(b) displays the empirical power of
this test with different separation Δ between top K
items and other items that Δ � |θ∗

(K) −θ∗
(K+1) |. We let n

� 100, L ∈ {100,200,300,400,600}, and we set θ∗
i � 10

for 1 ≤ i ≤ K, θ∗
K+1 � 10−Δ, and θ∗

j � 7:5 for K+ 2
≤ j ≤ n. As seen from this plot, the empirical power
goes to one as Δ and L increase.

Finally, we evaluate the empirical performance of
our FDR procedure in Section 4.2 by considering the

Figure 4. (Color online) Performance of Pairwise TestH0 : θ
∗
1 ≤ θ∗

2 vs: Ha : θ
∗
1 > θ∗

2

(a) (b)

Notes. (a) Type I error for our proposed pairwise test procedure with different n and L. (b) Power curve as a function of signal strength
Δ � |θ∗

1 −θ∗
2 |with n � 100, p � 0.2, and L ∈ {100, 200, 300, 400, 600}.

Figure 5. (Color online) Performance of Top 30 Test Using Our Proposed Simplified Testing Procedure in Remark 3.5

(a) (b)

Notes. (a) Averaged type I error with different n and L. (b) Averaged power as a function of signal strength Δ � |θ∗
(K) −θ∗

(K+1) | with n � 100,
p � 0.2, and L ∈ {100, 200, 300, 400, 600}.
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top-K test. We let K � 30, θ∗
i � 10 for 1 ≤ i ≤ K+ 10,

and θ∗
j � 6:5 for K+ 11 ≤ j ≤ n. Figure 6(a) displays

the empirical FDR based on our procedure with p �
0.2 and different n, L. This figure illustrates that the
FDR is well controlled below the nominal α � 0:05,
consistent with our results in Theorem 4.2. Figure 6(b)

displays the empirical power of the FDR procedure,
which is defined as true positive rate, with different
separation Δ � |θ∗

(K) −θ∗
(K+1) |. We set θ∗

i � 10 for
1 ≤ i ≤ K, θ∗

K+1 � 10−Δ, and θ∗
j � 6:5 for K+ 2 ≤ j ≤ n,

and we let n � 100, p � 0.2, and L ∈ {100,200,300,
400,600}. As shown in this plot, the empirical power

Figure 6. (Color online) Performance of Benjamini-Yekutieli–Based FDR Procedure for Selecting Top 30 Items

(a) (b)

Notes. (a) Empirical FDRwith different n and L. (b) Empirical FDR power as a function of signal strength Δ � |θ(K) −θ(K+1) |with n � 100, p � 0.2,
and L ∈ {100, 200, 300, 400, 600}.

Figure 7. (Color online) Application of Our FDR Procedure on Jester Data Set to Select Top K Jokes

Notes. The four panels display the ordered p values and adjusted threshold by Benjamini-Yekutieli procedure with K ∈ {20, 40} and
L ∈ {1000, 5000}. The horizontal red line represents 0.05.
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increases and goes to one as Δ and L increase, show-
ing that the proposed FDR procedure is able to iden-
tify the top K items with well-controlled FDR.

6.2. Real Data
In this section, we apply our method to analyze two
real data sets.

6.2.1. Jester Data Set. We first apply our method to
the Jester data set from Goldberg et al. (2001). This
data set contains ratings of 100 jokes from 73,421
users. The more detailed description and the data set
are available through http://eigentaste.berkeley.edu/
dataset/. In this data set, 14,116 users rated all 100
jokes, whereas others only rated some of jokes. We
only use samples from users who ranked all 100 jokes
for our experiments. Because we need pairwise com-
parisons for our ranking analysis, we generate Erdös-
Rényi comparison graph randomly with p � 0.3 and
obtain each pairwise comparison results based on
the relative rating of compared pairs by the same
user. To be specific, if joke 1 receives a higher rating
than joke 2 from a same user, we have joke 1 beats
joke 2 in this comparison. Negahban et al. (2017) and
Kim et al. (2017) also use similar approaches to break

rating results into pairwise comparisons. Further-
more, we randomly choose L samples from the total
14,116 samples.

Table 1 displays the top 10 jokes’ IDs and their esti-
mated scores obtained from the spectral method and our
debiasing method with L � 1,000. Furthermore, we
evaluate the performance of our FDR-controlling proce-
dure with K ∈ {20, 40} and L ∈ {1000, 5000}. Figure 7
presents the p values from multiple testing and thre-
shold obtained from Benjamini-Yekutieli procedure
described in Section 4.2. It shows that our FDR proce-
dure gains more power as L increases.

6.2.2. MovieLens Data Set. We also apply our method
to analyze the MovieLens data set (Harper and Kon-
stan 2015). Similar to our analysis before, we obtain
pairwise comparisons results based on the relative rat-
ings of two movies by the same user. In particular, we
analyze n � 218 movies with the largest number of rat-
ings and randomly sample L � 1,000 comparisons.

Table 1. Top 10 Jokes on the Jester Data Set and Their
Estimated Scores Obtained from the Spectral Method and
Our Lagrangian Debiasing Method

Joke ID

Spectral method Debiasing method

Score Rank Score Rank

89 0.841 1 0.840 1
50 0.799 2 0.801 2
29 0.651 3 0.645 3
36 0.623 4 0.628 4
27 0.621 5 0.620 5
62 0.616 6 0.616 6
32 0.603 7 0.599 7
35 0.596 8 0.596 8
54 0.527 9 0.526 9
69 0.515 10 0.516 10

Table 2. Top 10 Movies in the MovieLens Data Set Based on a Lagrangian Debiased Estimator

Rank Movie title Average rating Debiased score
p value in
top 10 test

p value in
top 20 test

1 The Shawshank Redemption (1994) 4.42 1.985 < 1e− 6 < 1e− 6
2 The Matrix (1999) 4.16 1.766 < 1e− 6 < 1e− 6
3 The Godfather (1972) 4.25 1.755 < 1e− 6 < 1e− 6
4 Star Wars: Episode V—The Empire Strikes Back (1980) 4.12 1.684 < 1e− 6 < 1e− 6
5 The Usual Suspects (1995) 4.28 1.530 < 1e− 6 < 1e− 6
6 Star Wars: Episode IV—A New Hope (1977) 4.10 1.471 0.0010 < 1e− 6
7 The Silence of the Lambs (1991) 4.15 1.418 0.0070 < 1e− 6
8 Seven (a.k.a. Se7en) (1995) 4.08 1.367 0.0401 < 1e− 6
9 Lord of the Rings: The Fellowship of the Ring (2001) 4.10 1.329 0.1133 < 1e− 6
10 Schindler’s List (1993) 4.25 1.288 0.3431 0.0002

Notes. The table includes their titles, average rating in https://movielens.org/, estimated scores by Lagrangian debiased procedure, and their
corresponding p values in the top 10 and top 20 test by our proposed testing procedure in Remark 3.5.

Figure 8. (Color online) Application of Top-K Test on Four
Movies (The Shawshank Redemption, The Matrix, The Usual
Suspects, Schindler’s List) in the MovieLens Data Set, Which
Are Ranked 1, 2, 5, and 10 Based on a Lagrangian Debias-
ing Estimator

Notes. The figure displays the change of their p values in the top 1, 5,
10, and 20 test by our proposed testing procedure in Remark 3.5. The
horizontal dotted red line represents 0.05.
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Table 2 shows the top 10 movies with highest scores
based on Lagrangian debiasing procedure and the
corresponding p values, where we test whether they
are ranked among the top 10 and top 20 movies.
Figure 8 displays the change of p values when each
movie is tested if it is among top 1, 5, 10, or 20 ranked
movies. We display the p values of four movies (The
Shawshank Redemption, The Matrix, The Usual Suspects,
Schindler’s List), which are ranked 1, 2, 5, and 10 based
on our debiased estimator.

7. Conclusion
To conclude, to the best of our knowledge, we pro-
pose the first general framework for conducting
inference and quantifying uncertainties for ranking
problems. Under the BTL model, we first propose a
Lagrangian debiasing method to infer the latent score
for each item, where we can then test “local” proper-
ties. Next, by leveraging the powerfulness of Gaussian
multiplier bootstrap, we can test more general “global”
properties. Furthermore, we extend the framework to
multiple testing problems where we control both the
familywise type I error and the FDR. We prove the opti-
mality of the proposed method by deriving the mini-
max lower bound. Using both synthetic and real data
sets, we demonstrate that our method works well in
practice.

There are still numerous promising directions that
would be of interest for future investigations. We
point out a few possibilities as follows. First, the Gaus-
sian multiplier bootstrap approach is computationally
expensive, and it is worth investigating if we can
develop a more computationally efficient approach to
make the method more scalable. Second, as we have
discussed, the current approach for FDR control is
conservative, and we plan to develop a more power-
ful method to tightly control the FDR. In addition, the
ranking of different items may change over time, and
we plan to develop new models to study dynamic
ranking systems.
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