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ARTICLE INFO ABSTRACT

Keywords: Objective: The growing availability of electronic health records (EHR) data opens opportunities for integrative
Code mapping analysis of multi-institutional EHR to produce generalizable knowledge. A key barrier to such integrative
PMI matrix analyses is the lack of semantic interoperability across different institutions due to coding differences. We
Word embedding propose a Multiview Incomplete Knowledge Graph Integration (MIKGI) algorithm to integrate information
Transfer learning from multiple sources with partially overlapping EHR concept codes to enable translations between healthcare
Knowledge graph

systems.

Methods: The MIKGI algorithm combines knowledge graph information from (i) embeddings trained from
the co-occurrence patterns of medical codes within each EHR system and (ii) semantic embeddings of the
textual strings of all medical codes obtained from the Self-Aligning Pretrained BERT (SAPBERT) algorithm.
Due to the heterogeneity in the coding across healthcare systems, each EHR source provides partial coverage
of the available codes. MIKGI synthesizes the incomplete knowledge graphs derived from these multi-source
embeddings by minimizing a spherical loss function that combines the pairwise directional similarities of
embeddings computed from all available sources. MIKGI outputs harmonized semantic embedding vectors for
all EHR codes, which improves the quality of the embeddings and enables direct assessment of both similarity
and relatedness between any pair of codes from multiple healthcare systems.

Results: With EHR co-occurrence data from Veteran Affairs (VA) healthcare and Mass General Brigham (MGB),
MIKGI algorithm produces high quality embeddings for a variety of downstream tasks including detecting
known similar or related entity pairs and mapping VA local codes to the relevant EHR codes used at MGB.
Based on the cosine similarity of the MIKGI trained embeddings, the AUC was 0.918 for detecting similar
entity pairs and 0.809 for detecting related pairs. For cross-institutional medical code mapping, the top 1 and
top 5 accuracy were 91.0% and 97.5% when mapping medication codes at VA to RxNorm medication codes
at MGB; 59.1% and 75.8% when mapping VA local laboratory codes to LOINC hierarchy. When trained with
500 labels, the lab code mapping attained top 1 and 5 accuracy at 77.7% and 87.9%. MIKGI also attained
best performance in selecting VA local lab codes for desired laboratory tests and COVID-19 related features
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for COVID EHR studies. Compared to existing methods, MIKGI attained the most robust performance with
accuracy the highest or near the highest across all tasks.

Conclusions: The proposed MIKGI algorithm can effectively integrate incomplete summary data from biomed-
ical text and EHR data to generate harmonized embeddings for EHR codes for knowledge graph modeling and
cross-institutional translation of EHR codes.

1. Introduction

The adoption of electronic health record (EHR) systems has not only
changed clinical practice, but also expanded the breadth of biomedical
research, providing a myriad of opportunities for clinical research such
as predicting disease diagnosis [1-3], comparing treatment options [4,
5], extracting medical features, and representing medical concepts [6—
8]. A key barrier to EHR-based multi-institutional research is the lack
of interoperability across healthcare systems [3,9,10]. EHR data harmo-
nization, which is a process of standardizing definitions for core data
elements from a variety of sources [11-13], has been recognized as
a critical step to reduce heterogeneity in data elements and improve
reproducibility of research [14,15].

To harmonize EHR data across healthcare systems, a standard prac-
tice is to employ a common data model, such as the Observational
Medical Outcomes Partnership (OMOP) [16] and Patient-Centered
Outcomes Research network (PCORnet) [17], which organizes data into
a standard structure, maps data elements into a common format, and
standardizes vocabularies into the same ontology [18,19]. Although
the widespread adoption of common data models has improved inter-
operability, EHR data harmonization remains challenging for several
reasons.

First, although the common data model can standardize coding vo-
cabulary, heterogeneity remains due to differential coding practices and
financial incentives between healthcare systems. With the increasing
diversity and specificity of coding systems, there is more and more
potential variation in the way a clinical concept can be coded even
within the same vocabulary. In fact, it is often observed in practice
that the same clinical feature might be represented by distinct codes
at different healthcare systems [20,21].

Second, existing ontologies such as the International Classification
of Diseases, Ninth Revision (ICD-9) [22] and Tenth Revision (ICD-
10) [23], RxNorm medication codes [24], Current Procedural Termi-
nology (CPT) [25], and Logical Observation Identifiers Names and
Codes (LOINC) [26], are only partially useful since most healthcare
systems adopted some but not all of the ontologies. Mappings from
local codes to standardized ontologies tend to be incomplete, ambigu-
ous [21] and sometimes inaccurate [27]. In addition, these ontologies
are constantly updated over time. Mapping between coding systems,
such as the Generalized Equivalence Mapping (GEM) for ICD-9 to
ICD-10 mapping [28], comes with complicated relationships such as
one-to-many and many-to-many mapping, which further complicates
vocabulary standardization.

Third, the process of code mapping generally requires some level
of manual effort and relies on clinical and informatics domain knowl-
edge [29-31], which is time-consuming, resource-intensive, and partic-
ularly hard to scale for projects with large amounts of codes [29,32].
Manual curation is also susceptible to subjective bias and human errors.
Recently, automated methods such as open access mapping tools [33—
36] and corpus or lexical based algorithms [20,37-41] have been
explored for mapping terminologies in diverse domains [20,37,38].
However, these methods may rely on domain knowledge with the
requirement of golden labels; the methods are not data-driven in the
sense that they do not fully utilize the rich information from routinely
collected EHR data to learn the relationship among medical codes. In
addition, a majority of the methods are limited to one type of medical
codes, such as drug or lab codes.

In recent years, automated code mapping algorithms have evolved
around a technique in natural language processing (NLP) termed word

embedding [42-44]. Word embeddings are numeric vectors that cap-
ture the meaning of words, such that embeddings of synonyms have
smaller distances. Such semantic representations have been widely
used to translate words between two languages [45]. By analogy to
language translation based on word embeddings, one can achieve code
translation based on code embeddings that represent the similarity and
relatedness of medical codes. That is, one can train embeddings of
‘words’, which are medical codes in the context of EHR data harmo-
nization, then map them between two ‘languages’, which are the use of
codes in two healthcare institutions with distinct coding practices. Ex-
isting methods include knowledge graph (KG) [46-49], neural network
based methods such as the skip-gram algorithm [44,50-52], and matrix
factorization [6,53-55]. KG embedding methods translate components
of a KG, which are essentially entities and their relations, to lower
dimensional embedding vectors [56]. The code mapping problem can
then be viewed as a fundamental link prediction task [57-59] to infer
whether two codes from different institutions have similar meanings.
Neural network based methods typically train a shallow neural net-
work to predict codes or context of codes, with embeddings being
a byproduct extracted from a hidden layer. To improve downstream
code translation, the embedding vector spaces are first aligned across
institutions [60-63]. A dictionary that maps codes between two in-
stitutions is then developed by finding nearest neighbors of a code
with distances typically measured via cosine similarity [28,45,64].
Matrix factorization based method takes as input a shifted positive
pointwise mutual information (SPPMI) matrix computed from medical
codes’ co-occurrence patterns in patient health records, and computes
code embeddings via a singular vector decomposition (SVD) [65]. This
method has been shown to have similar performance as the skip-gram
algorithm [53]. It is advantageous because embeddings are trained
based on population-level summaries of EHR data which breaks data
sharing barriers and offers scalability.

The above methods have several limitations. KG embedding meth-
ods require input data to be structured as triples of the form (head
entity, relation, tail entity). Thus, KG embeddings are typically trained
from well structured knowledge databases such as the Unified Medical
Language System (UMLS) [66], which contains relational informa-
tion between entity pairs. On the other hand, free form unlabeled
EHR data cannot be easily turned into such triplets for KG training.
Neural-network-based embeddings are often trained on patient-level
EHR data, which poses significant administrative challenges when data
sharing across research groups and institutions is not feasible due
to privacy concerns. Matrix factorization-based embedding algorithms
trained with EHR data does not incorporate information from code
textual descriptions. Since code descriptions provide important infor-
mation about the interpretation and relationship of medical codes, the
embeddings trained with only EHR data tend to have limited accuracy
in cross-institutional code mapping as demonstrated in the validation
studies below.

In this paper, we propose the Multiview Incomplete Knowledge
Graph Integration (MIKGI) algorithm to co-train embeddings for EHR
codes from multiple institutions by combining both EHR co-occurrence
information and textual information from the code descriptions. We
leverage the Self-Aligning Pretrained Bidirectional Encoder Repre-
sentations from Transformers (SAPBERT) algorithm proposed by [67]
to extract semantic information from code descriptions. By combin-
ing the pre-trained language model with contrastive representation
learning using synonyms in the MRCONSO table of the UMLS, the
SAPBERT algorithm achieves state-of-the-art performance for the syn-
onymous medical entity linking task. For extracting information from
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Fig. 1. Illustration of MIKGI and other relevant methods.

the co-occurrence matrix, we utilize the SPPMI-SVD algorithm. We
hypothesize that integrating information from SAPBERT with SPPMI-
SVD can improve the quality of embeddings significantly. Our rationale
is that SAPBERT embeddings provide information on code similarity
based on the textual description of codes, while SPPMI-SVD captures
code relationships based on the co-occurrence of codes. The latter
is an effective supplement since diseases and related treatments may
have completely different descriptions not captured by SAPBERT. Our
method combines the information in two types of embeddings properly
to reveal the code relationships in the same or different coding systems.
We choose hyperparameters to ensure the generalizability of the
embeddings while allowing users to tune hyperparameters with a user-
specified loss function for their specific tasks. Finally, we validate our
method in four tasks in comparison to existing methods.

2. Materials and methods

The proposed MIKGI algorithm derives high quality embeddings
for EHR codes from two institutions by integrating information from
the text description of the codes and co-occurrence patterns of EHR
codes within each institution, leveraging the shared codes as anchors.
As illustrated in Fig. 1, the MIKGI algorithm consists of two key steps:
(1) generating two initial sets of embeddings, one based on the text
descriptions of all codes via the SAPBERT algorithm and the other one
based on co-occurrence patterns of the EHR data, and (2) integrating
the multi-source embeddings into the final MIKGI embeddings.

2.1. Step 1: Generating initial embeddings from multiple sources

2.1.1. Generating code embeddings based on text description of medical
codes

We first generate one set of embeddings for all codes, denoted by
N, based on their textual descriptions via the SAPBERT algorithm.

Since some codes are shared between the two institutions and hence
have the same descriptions, SAPBERT embeddings would generate
distinct embeddings for codes that are unique to two institutions but
the same embeddings for codes that shared by the institutions. We let

U= (UTI,UITZ,UL)T € Rm+m2+m)Xr1 denote the r,-dimensional code
embeddings for all codes in N' = N}, U N}, U Ny, trained from the
SAPBERT algorithm, referred to as SAPBERT embeddings, where Uy,
U,,, and U,, are the respective normalized unit-length embeddings for
codes in N}, (codes unique to institution 1), N}, (codes shared by
the institutions), and N,, (codes unique to institution 2), and n

Card(N,,,,1)-

mm! =

2.1.2. Generating embeddings based on EHR code co-occurrence patterns
To generate embeddings for EHR codes based on their co-occurrence
patterns, we first obtain two initial sets of embeddings, one for N} =
N1 U N}, and one for N, = N, U N),, based on the pairwise co-
occurrence counts of the codes within each institution. Second, we
synchronize the two sets of embeddings by generating an alternative
representation of all codes based on their distance from the n;, over-
lapping codes. Specifically, we construct the co-occurrence matrix of
codes in WV,,, C,, = [Cm(i,j)], following [6] such that C,(i, ) is the
total co-occurrence the ith code and the jth code within 30-day moving
windows of a patient’s health record across all patients. For the mth
institution, the (i, j)th entry of the SPPMI matrix is obtained as
SPPMI,, (i, j) = max {0, log % - log(k)} ,
where k is the negative sample which is often set as 1 (i.e., no shift-
ing), and C,,(i,-) is the row sum of C, (i, j). The SPPMI-SVD algorithm
generates embeddings for the mth institution by taking an SVD of the
SPPMI matrix as SPPMI,, = [SPPMI,,(i, j)] = U, diag(A ,Amyﬂm)[U;
and letting

1 1
X, =R {[Ufrjz)diag (Aj“, ,A,f,y,z) } ,

where [UE,ZZ) is the first r, singular vectors with positive eigenvalues,

R() M - RM) is the unit-length normalization operator that
standardizes each row of M to have unit length, and the dimension
r, can be selected to optimize embedding quality as detailed in the
validation studies. This scalable variant of the skip-gram algorithm
has been shown to be effective in generating high quality embeddings

mls
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for EHR codes [6,55]. We write X; = (X[, X]))T € Rmtm2x2 and

X, = (X],,X] )T € Rtmztm2%r2 where X, and X,; € R"2*"2 correspond
to N,, the overlapping codes in the two institutions.

We next generate an alternative EHR embedding vector for each
EHR code based on its cosine similarity with the n,, overlapping codes,
which can be viewed as anchor codes. As illustrated in Fig. 2, we
compute the cosine-similarity matrices vV, = XX, Vi, = X, XT,
and V,, = X22XL, where each row of these matrices represents the
distance between a candidate code and the n;, anchor codes. The
final set of synchronized cosine-similarity (SynC) based embeddings is
obtained as V = (VITI,Vsz, V;Z)T € R™m2, where V,,,, = Z(V,,). These
SynC embeddings integrate information from the EHR co-occurrence
patterns from two institutions and will be further combined with the

SAPBERT embeddings as detailed in Section 2.2.
2.2. Step 2: Generating MIKGI embeddings

In the second step, we generate MIKGI embeddings
W = (W] ,W,, Wl )T € R by further integrating information from
the code descriptions and co-occurrence patterns. We achieve this via
consensus learning with WWT obtained as low-rank approximations to
both the pairwise cosine similarity matrices defined by SAPBERT em-
beddings and by SynC embeddings. Specifically, we generate the final
MIGKI embeddings W € R™" by solving a constrained minimization
problem

min f(W), (€8]
WeR™r diag(WWT)=1
where
FW) = ”wa - UUT”; + A”WWT - VVTH§ . %)

The first component of the loss function, “WWT —-uuT

‘12:, leverages
information from textual descriptions, while the second component,
A”WWT - VVT| %, incorporates information from the co-occurrence
patterns. The tuning parameter A allows the multiple sources of infor-
mation to contribute differently, which can be tuned for specific down-
stream tasks, as detailed in Section 2.2.1. The constraint diag(WW') = 1
is imposed to reflect the cosine similarity as the distance metric.

Since f(W) is non-convex, we develop a projected gradient descent
algorithm (PGD) to solve for W in (1). With a user-specified initial
value, we iterate over the following two steps until a stopping condition
is met: (1) update the W towards descent direction; (2) normalize each
row of the W. Details of the PGD algorithm are given in Appendix S.2.

2.2.1. Tuning parameters

There are four hyper-parameters: the SAPBERT embedding dimen-
sion r|, the initial EHR embedding dimension r,, the regularization
coefficient A, and the dimension r of W in the MIKGI algorithm loss
f(W). We follow [68] to select the dimension of the SAPBERT embed-
ding r,. For r,, we rely on the eigen decay of the two SPPMI matrices
and choose r, as the smallest L that explains 80% of variation in that
(X T A /U T, Ay} > 0.8 [55,69]. For simplicity, we
use the same r, for both embeddings although different dimensions can
be used for X, and X,. Finally, for different down-stream tasks, we tune

4 and r using a small set of golden labels. To be specific, for the task of
detecting similar or related codes, we tune A and r by maximizing the
accuracy of the trained embeddings W in detecting known relationship
pairs as detailed in Section 3.2.1. These known relationship pairs were
curated from a range of knowledge sources and have been mapped
to EHR codes as described in [55]. We randomly selected 20% of the
relationship pairs for a training set to tune {4,r}, and the remaining
80% were used to evaluate the quality of the embeddings. In addition to
the relation pairs from the training set, we randomly selected an equal
number of random pairs as controls. For W trained with a given {4, r},
we calculate the area under the receiver operating characteristic curve
(AUCQ) of the cosine similarity based on W in distinguishing relation
pairs from random pairs. The final {4, r} are selected to maximize the
AUC. For the task of mapping synonymous medication codes across
the two institutions, we utilize the drug-drug hierarchy detailed in
Section 3.2.1 to select {4,r} that maximize the AUC of detecting the
drug-drug similar pairs. For the mapping of local lab codes to LOINC
codes, we randomly sample 50 pairs of manually mapped local lab
codes to LOINC codes and choose the parameters that maximize the
acc@1 with details in Section 3.2.2.

3. Validation of MIKGI using real-world EHR data
3.1. EHR data sources and preprocessing

We validate the performance of the MIKGI algorithm using real
world EHR data from two large hospital systems, the Veterans Affairs
(VA) Healthcare System and the Mass General Brigham (MGB) [70].
The VA Corporate Data Warehouse (CDW) aggregates EHR data from
23 million unique individuals (1999 — 2019) over 150 VA facilities into
a single data warehouse. A total of 12.6 million patients with inpatient
and outpatient codified data from at least 1 visit were included for
this analysis. The MGB EHR data contains codified information on
diagnoses, medications, procedures, and laboratories from 2.5 million
patients with at least 3 visits spanning more than 30 days. The analysis
included coded data from all inpatient, outpatient and emergency
department visits of these patients between 1998 and 2018.

We gathered four domains of codified data including ICD diag-
nosis codes, procedures, lab tests, and medications prescriptions. All
ICD codes were aggregated into PheCodes using the ICD-to-PheCode
mapping from PheWAS catalog (https://phewascatalog.org/phecodes).
All procedure codes except for medications, including CPT-4, HCPCS,
ICD-9-PCS, ICD-10-PCS, are grouped into clinical classification software
(CCS) categories based on the CCS mapping (https://www.hcup-us.
ahrq.gov/toolssoftware/ccs_svesproc/cessveproc.jsp). For medication
codes, all local medication codes at MGB have been aggregated and
rolled up into ingredient level RxNorm codes. At VA, a majority of
medication codes have been previously mapped to RxNorm codes but
199 medication codes are not mapped. We pre-processed the VA local
medication codes by removing dose information and manually mapped
those codes to RxNorm codes. These manual mappings are used only for
validating the MIKGI algorithm, not as part of the overlapping codes.
All MGB laboratory codes have been mapped to LOINC codes while only
16.7% of VA laboratory codes have been mapped to LOINC codes or
higher level lab concepts such as leukocytes and platelets. In addition,


https://phewascatalog.org/phecodes
https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp

D. Zhou et al.

Table 1
Number of PheCodes, CCS codes, RxNorm codes, LOINC codes, LP codes ShortName
codes and local lab codes in the two institutions.

PheCodes CCS RxNorm LOINC LOINC:LP ShortName Local lab

MGB only 74 20 511 2068 3624 0 0
VA only 78 1 745 204 171 94 2367
overlap 1698 223 724 178 481 0 0

mapping of local laboratory codes to LOINC codes can be ambiguous
since multiple LOINC codes can be appropriate. To reduce ambiguity,
we further leverage the LOINC Multiaxial Hierarchy, which has a tree
structure with higher level LOINC Parts codes (LP codes) that reflect
broader laboratory code concepts [71]. For instance, as shown in Fig. 3,
code ‘LOINC:5821-4’ (leukocytes in urine sediment by microscopy
high power field) is rolled up to the first level LP code ‘LP402498-2’
(leukocytes | urine sediment | urinalysis) and the second level code
‘LP14419-3’ (leukocytes). We include these LP codes that are either
parent or grandparent nodes of existing base LOINC codes as additional
EHR entities when creating the EHR co-occurrence matrices and the
SAPBERT embeddings. The co-occurrence of an LP code x with any
EHR code c is calculated by summing over the co-occurrence between
any leaf LOINC codes under x and ¢. SAPBERT embeddings are also
generated for LP codes based on their descriptions. All PheCodes, CCS
codes, RxNorm codes, LOINC codes, local medication and laboratory
codes with frequency lower than 5000 in VA or 1000 in MGB were
removed to reduce the noise from the rare codes following [55]. All
local laboratory codes with identical descriptions were merged and
treated as the same code. This results in a total of 9601 codes at MGB
and 6964 codes at VA, with 3304 overlapping codes with details in
Table 1.

The code descriptions, used as the input to SAPBERT, were ob-
tained from either existing ontologies for codes have been mapped
or local institutions for local codes. For instance, LOINC:10335-8,
has the description ‘color of cerebral spinal fluid’ and the local VA
lab code ‘1200087498’ has the description ‘calcium’. An ideal code
description should fully describe the meaning of the code, thus con-
taining enough information, to generate high-quality embeddings from
SAPBERT. However, many local codes have very short and ambigu-
ous descriptions, for example, the description of the local lab code
1000019610’ is ‘ig #, which cannot describe the code fully. Com-
monly used codes with less clear descriptions may have lower qual-
ity SAPBERT embeddings and can be better represented by MIKGI
embeddings.

3.2. Validation analyses

The performance of the MIKGI algorithm was validated in four
tasks: (1) detecting known similar or related clinical concepts; (2)
mapping synonymous medication and laboratory codes across MGB
and VA; (3) identifying relevant VA local lab codes for 21 laboratory
tests for a COVID-19 study by the 4CE international Consortium for
Clinical Characterization of COVID-19 by EHR [72]; and (4) identifying
EHR features important for COVID-19. Most evaluations are based
on unsupervised classifications using the cosine similarities between
the embedding vectors associated with relevant concept pairs. For
cross-institutional lab code mapping, we also examined the perfor-
mance based on supervised training with learned embeddings as input
features.

As benchmark comparisons, we compare MIKGI embeddings with (i)
embeddings from SAPBERT [67], BioBERT [73], PubmedBert [74] and
CODER [49] based on textual descriptions of the codes; (ii) embeddings
derived from the VA and MGB SPPMI matrices based on the orthogonal
transformation (OT) [64] and the pre-training (PT). OT aligns the
SPPMI-SVD embeddings derived from the two institutions separately by
an orthogonal rotation matrix using the overlapping codes. PT merges
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Table 2
Number of curated relationship pairs categorized by seven categories.

Relation type Relation category # Code pairs

RxNorm-RxNorm (Drug-Drug) 2258
Similarity PheCode Hierarchy 3506
Lab-Lab 2177
PheCode-PheCode (Disease-Disease) 1996
Relatedness PheCode-RxNorm (Disease-Drug) 4646
PheCode-CCS (Disease-Procedure) 2093
PheCode-Lab (Disease-Lab) 595

the co-occurrence matrices to obtain the complete SPPMI matrix, which
combined the information of two institutions with details in Appendix
S.1 . The hyper-parameters of the two methods (e.g., the embedding
dimension) are selected using the same procedure in Section 2.2.1.

3.2.1. Detecting similar or related concepts

We first evaluate the quality of the learned embeddings based
on their ability to detect known related or similar pairs of clinical
entities. The entities (e.g., drugs) have been mapped to EHR codes
such that related pairs are represented by EHR code pairs. Similar
code pairs refer to pairs of codes that represent highly similar clinical
concepts according to existing ontologies; while related code pairs refer
to pairs of codes that have more complex relation like ‘may cause’ or
‘may treat’. For similarity evaluation, we leverage several ontologies’s
hierarchy to define similar pairs, including PheCode for disease—disease
pairs, the LOINC Multiaxial Hierarchy for lab-lab pairs, as well as
drug—drug pairs from the 2ATC classification system in the UMLS.
In addition, we have 916 similar lab-lab pairs manually curated by
domain experts. For relatedness, we curated known relationship pairs
from online knowledge sources including related disease-disease pairs
from Wikipedia, disease-drug pairs from https://www.drugs.com/ [75]
and MEDRT [76], and disease-lab pairs from the UMLS. As shown
in Table 2, we stratify these relationship pairs into seven categories,
with 7941 similar pairs of codes and 9330 related pairs. For each type
of relationship, we calculate the cosine similarities of the embedding
vectors of known pairs and those of randomly selected pairs. Finally,
we calculate the AUC of the cosine similarities in distinguishing known
pairs from random pairs. We summarize the overall performance by
averaging over different similarity and relatedness categories .

3.2.2. Code mapping across two institutions

We next evaluate the quality of learned embeddings for the task
of mapping synonymous medication and laboratory codes across MGB
and VA, including mapping (i) local VA medication codes to RxNorm
codes; and (ii) local VA lab codes to MGB LOINC and/or LP codes.
For medications, at VA there are a list of medications that are not
harmonized and coded in the format of local medications, while at
MGB, all the medications have been mapped to RxNorm. For laboratory
tests, there are a total of 2246 lab codes at MGB, all mapped to LOINC
codes, and 2843 lab codes at VA, out of which only 16.7% have been
mapped to LOINC codes or higher level lab concepts manually curated
by VA (e.g., ‘CRP’ for all C-reactive Protein measures). To map each VA
local code x using embeddings, we identify the codes from the same
category (e.g., medications) with highest cosine similarities with x as
potential matches. We then evaluate the accuracy against manually
curated labels: (i) 199 local VA medication codes to RxNorm codes,
and (ii) 1897 local VA lab codes to LOINC or LP codes. Since a local
lab code can potentially be mapped to multiple LOINC codes and most
clinical studies only concern broader lab concepts (e.g., leukocytes),
we assess the matching accuracy based on whether the mapped LOINC

2 https://www.nlm.nih.gov/research/umls/rxnorm/sourcereleasedocs/atc.
html.
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Fig. 3. Lab codes rolling up hierarchy.

and the gold standard labels share the same LP code. We evaluate the
code mapping accuracy based on the top k accuracy (acc@k). Denote
the top k codes from LOINC and LP code set that are closest in cosine
similarity distance to the given local lab code x as y,. All the LOINC
and LP codes that share the same LP code with the gold standard labels
are denoted as z,. The acc@*k is defined as the ratio of the number of
codes x that y, Nz, # @ and the total number of codes.

For VA—MGB lab code mapping, we additionally trained supervised
algorithms based on the standard orthogonal transform algorithm [60]
with the learned embeddings of 450 labeled pairs as input along with
50 labeled pairs for the tuning of hyper-parameters (see Section 2.2.1).
We also compared to a maximum entropy (Max) based supervised algo-
rithm for code mapping [39]. The Max algorithm uses the normalized
local lab descriptions as input features by generating a set of tokens
using lexical rules and the corresponding LOINC codes of each local
codes as labels. For example, the local term description ‘CSF CELL
COUNT/DIFF’ is tokenized to generate four tokens ‘csf’, ‘cell’, ‘count’,
‘diff’, which are then treated as one-hot vectors. Max can only map
lab codes to LOINC codes that already exist in the training set and
hence has limited generalizability. For supervised algorithms, acc@k
is calculated using the curated pairs excluding the 500 training pairs.

3.2.3. Case study of selecting VA local lab codes for a COVID-19 EHR study

We further validated the performance of MIKGI in an EHR study of
predicting COVID-19 mortality by the Consortium for Clinical Charac-
terization of COVID-19 by EHR (4CE) international COVID-19 consor-
tium for which VA is a contributing site [72]. We selected relevant VA
local lab codes for 21 laboratory tests required in the study, including
C-reactive protein (CRP), Albumin, white blood cell count, and D-
dimer. We manually curated all VA lab codes and MGB LOINC and LP
codes that should be mapped to these 21 laboratory tests, denoted by
{G;,i=1,...,21}. VA lab codes include manually curated lab concepts,
local lab codes, and LOINC codes. The manually curated lab concepts,
such as CRP, are well annotated with accurate descriptions and can be
easily identified even via simple string match. We thus only consider
the task of identifying local VA lab codes and LOINC codes for each
G;. Let x; = {x;;,j = L,...,n;} denote all such lab codes including
curated lab concepts for the ith test, let xx; = {x #00 = Lo,n x)
denote all such lab codes except curated lab concepts for the ith test
and let y; = {y;,/ = 1,...,m;} denote all LOINC and LP codes in

MGB that should be mapped to G;. We perform mapping for lab G;
by identifying all VA codes whose top k LOINC or LP code matches
(Match@k) include any code in x;, with k = 1,5,10 and 20. For each
VA lab code x, we let 3, denote the top k LOINC or LP codes that x is
mapped to. Then we evaluate the accuracy of the MIKGI based mapping
by calculating sensitivity and specificity of the mapping defined as

U e 100y #8)
. XEX; x i
specificity = 1 — ( —_—— /21,
; #{x|x & x;}
21 Z;’l*il ](j}\x*ij nyi # ﬂ)>/21

sensitivity = (z -
n,

i=1 !

3.2.4. Identifying features important for COVID-19

Finally, we evaluate the quality of embeddings based on their ability
in identifying important features for selecting important features for
studying a disease of interest. Specifically, we examine whether MIGKI
can effectively identify relevant signs/symptoms, medications, labora-
tory tests to study COVID-19 as a novel disease. These features can be
used as downstream predictive modeling such as predicting mortality
risk for patients hospitalized with COVID-19 or the risk of experiencing
post acute sequelae COVID-19 infection. To identify COVID-19 related
features, we created the SPPMI matrix for MGB and VA based on co-
occurrence matrices from the EHR data of 14,885 and 100K COVID-19
positive patients up to December, 2020, respectively. We trained MIKGI
embeddings for COVID-19 by integrating the COVID-specific SPPMI
matrices together with the SAPBERT embeddings. We set the U07.1
ICD code as the target code and identify all EHR codes with cosine
similarity higher than a threshold value ¢, where ¢, is chosen as the
99% percentile of the cosine similarity of randomly selected code pairs.

4. Results

Based on the strategy of tuning parameters discussed in
Section 2.2.1, we chose the dimension of the SPPMI-SVD embedding
for building SynC embedding as 1500.
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Table 3

Weighted average AUCs of between-vector cosine similarity in detecting known similar
pairs and related pairs with embeddings trained via MIKGI, SAPBERT, BioBERT,
PubmedBert, CODER, Orthogonal transformation (OT) of SPPMI-SVD, and Pre-training
(PT) of SPPMI-SVD.

Method MIKGI SAPBERT BioBERT PubmedBERT CODER OT PT
Similarity 0.918 0.832 0.691 0.643 0.940 0.877 0.863
Relatedness 0.809 0.698 0.581 0.556 0.733 0.805 0.792

4.1. Performance in detecting known similar or related pairs

For detecting similar pairs, the dimension r of MIKGI was chosen
as 200 and the coefficient A is set as 0.55; for detecting related pairs,
r = 200 and 4 = 0.95. Table 3 presents the average AUCs of the
between vector cosine similarity in detecting known similar pairs and
related pairs. The AUGs for detecting different types of relation pairs are
shown in Tables 6 and 7 of Appendix S.3. MIKGI is the only algorithm
that attained the highest or near the highest performance for both
similarity and relatedness detection. It is not surprising that the CODER
embeddings attained a high AUC of 0.940 in detecting similar pairs
since they are trained leveraging similarity and relatedness information
stored in the UMLS. SAPBERT, which only used synonymous informa-
tion in the UMLS, attained a lower AUC of 0.832. Nevertheless, MIKGI
has a comparable result to CODER with an AUC of 0.918 in detecting
similar pairs. For detecting the relatedness relationship, SAPBERT,
BioBERT, PubmedBert and CODER perform substantially worse with
an AUCs lower than 0.74 while OT, leveraging EHR co-occurrence
patterns within each of the two institutions, attained an AUC of 0.805.
On the other hand, by combining both textual descriptions and co-
occurrence information, MIGKI attained the highest AUC of 0.809.
The PT embeddings based on EHR co-occurrence and the SAPBERT,
PubmedBERT and BioBERT embeddings did not perform well in general
with relatively low AUC for both similarity and relatedness. The CODER
embeddings can detect the similar pairs but are less useful in detecting
the related pairs. MIKGI is the only algorithm that can accurately detect
both similarity and relatedness relationships. It is not supervising as
MIKGTI utilizes two kind of information and integrates them properly.

4.2. Cross-institutional code mapping

For code mapping tasks, we tuned the MIKGI to optimize lab map-
ping based on 50 pairs of labels and detection of known similar drugs
which yielded r = 200 and 4 = 0.75 for lab mapping and r = 200 and
4 = 0.25 for medication mapping. After supervised training with 500
pairs of labels, we obtain r = 200 and 4 = 0.45 for lab mapping. Table 4
summarizes the acc@k of mapping VA local laboratory codes to LOINC
or LP codes and VA local medication codes to RxNorm, for k = 1,5, 10,
and 20.

For both lab and medication code mapping, OT, PT, BioBERT and
PubMedBERT performed poorly. Compared to SAPBERT and CODER,
MIKGI attained a higher accuracy with acc@1 of 0.59 vs. 0.54 and
0.46 for lab code mapping and 0.91 vs. 0.76 and 0.78 for medication
to RxNorm mapping. Using the supervised training with 500 labels,
the lab code mapping accuracy improved substantially for MIKGI,
SAPBERT and CODER, although the improvement of MIKGI is the most
substantial with acc@! of supervised MIKGI vs SAPBERT and CODER
was 0.77 vs. 0.66 and 0.69.

4.3. Case study of selecting VA local lab codes for a COVID EHR study

Table 5 shows the accuracy of mapping VA local lab codes to
desired LOINC codes for 21 laboratory tests used in a COVID study.
Some examples of the Match@3 of MIKGI are given in Table 8 of
Supplementary Materials S.3. MIKGI achieved the highest sensitivity
among all methods while maintaining a high specificity. For Match@1,
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MIKGI and SAPBERT attained comparable accuracy with a sensitivity
of 80% and 71% and a specificity of 99%. All other approaches led to
much lower sensitivity, ranging from 2% to 55%. These results suggest
that MIKGI can be effectively used as a screening tool to identify
potential local codes for a set of target lab tests.

4.4. Performance in identifying COVID-19 related codes

Based on MIKGI trained embeddings, a total of 167 original EHR
codes and 25 LP codes were identified as potentially relevant for
COVID-19 according to their cosine similarity with the U07.1 ICD
code being higher than the threshold c,. On the other hand, SAPBERT
and CODER failed to identify any code whose cosine with U07.1 is
higher than the critical value. The top 140 selected codes by MIKGI
are shown in Fig. 4 and we present top 140 selected codes by SAPBERT
and by CODER in Figure 5 and Figure 6 of Supplementary Materials.
MIKGI is able to identify key symptoms including shortness of breath
and respiratory failure, highly important laboratory tests including
C-reactive Protein, D-dimer, ferritin, cardiac troponin, and various
oxygen level related measures; medications including dexamethasone
and remdesivir, as well as procedures including respiratory intubation
and mechanical ventilation. These selected symptoms, laboratory tests,
medications, and procedures are consistent with recent literature on the
diagnosis and management of COVID-19 [77,78], can serve as candidate
features for deriving risk prediction models for COVID-19.

5. Discussion

In this paper, the proposed MIKGI algorithm generates high qual-
ity embeddings to simultaneously represent EHR codes from multiple
institutions by integrating information from code descriptions and co-
occurrence patterns. As demonstrated via our experiments, the pro-
posed loss function is simple yet effective in combining such informa-
tion efficiently. The algorithm only requires sharing of summary level
EHR data, overcoming data privacy challenges. By providing a unified
set of embeddings for all EHR codes from multiple institutions, MIKGI
enables cross institutional code mapping for data harmonization.

MIKGI attains the most robust performance across multiple down-
stream tasks compared to the commonly used embedding methods
including SAPBERT, BioBERT, PubmedBERT, CODER, OT, and PT. For
detecting known relationship tasks, MIKGI is more effective than the ex-
isting embedding methods in detecting relatedness relationships since
such relationships can be well captured in EHR data from healthcare
systems, and the co-occurrence patterns reflect physician’s decision
processes in managing diseases.

For cross-institutional code mapping tasks, OT, PT, BioBERT, and
PubmedBert performed poorly since these methods do not compre-
hensively leverage existing knowledge on biomedical entities from the
UMLS. Both OT and PT only leverage code co-occurrence patterns in
EHR data and do not incorporate code textual description information.
In addition, since the code pairs requiring cross-institutional mapping
do not co-occur within either institution, OT and PT are expected to
have difficulty in inferring their relationships. BioBERT and PubMed-
Bert also fail to accurately map the codes since these methods heavily
rely on contextual information while the code descriptions are short
phrases with insufficient contextual information. SAPBERT and CODER
substantially outperform BioBERT and PubMedBERT in code mapping
since both algorithms leverage a large amount of relational information
between biomedical entities in the UMLS via contrastive learning.
Nevertheless, MIKGI attains more robust performance than SAPBERT
and CODER by further leveraging code co-occurrence patterns in EHR
data, which essentially encode the meaning of codes in clinical practice
based on their relationship with other codes.

In addition to its robust performance, the MIKGI algorithm has
several major advantages in practice. First, MIKGI provides a statis-
tically and computationally efficient framework for automated data
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Table 4

Accuracy of mapping codes from other local lab codes in VA to LOINC codes in MGB and accuracy of mapping codes from
MedProc codes in VA to RxNorm codes in MGB with embeddings trained via MIKGI, SAPBERT, BioBERT, PubmedBert, CODER,
OT and PT. An corpus-based supervised learning algorithm (Max) is also included for the supervised learning analysis with
500 training labels.

Mapping type Method acc@1 acc@5 acc@10 acc@20
MIKGI 0.591 0.758 0.818 0.871
SAPBERT 0.541 0.671 0.702 0.743
BioBERT 0.113 0.151 0.174 0.196
VA LAB Code — LOINC/LP PubmedBERT 0.108 0.165 0.197 0.237
CODER 0.459 0.645 0.698 0.755
OoT 0.017 0.060 0.101 0.178
PT 0.008 0.025 0.044 0.078
MIKGI 0.777 0.879 0.904 0.929
SAPBERT 0.657 0.792 0.833 0.872
BioBERT 0.067 0.126 0.164 0.210
VA Lab Code — LOINC/LP PubmedBERT 0.097 0.181 0.219 0.284
supervised learning with 500 labels CODER 0.693 0.811 0.853 0.887
oT 0.123 0.211 0.284 0.369
PT 0.098 0.177 0.232 0.306
Max 0.654 0.677 0.711 0.736
MIKGI 0.910 0.975 0.995 0.995
SAPBERT 0.759 0.945 0.960 0.975
BioBERT 0.000 0.005 0.005 0.005
VA Medication Code — RxNorm PubmedBERT 0.000 0.000 0.000 0.000
CODER 0.784 0.925 0.970 0.985
oT 0.241 0.497 0.608 0.724
PT 0.000 0.010 0.020 0.030
Table 5
The sensitivity and specificity of mapping 21 COVID related laboratory tests.
Method Match@1 Match@5 Match@10 Match@20
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
MIKGI 0.796 0.988 0.911 0.976 0.929 0.961 0.960 0.933
SAPBERT 0.714 0.989 0.812 0.977 0.844 0.962 0.906 0.936
BioBERT 0.140 0.993 0.235 0.979 0.251 0.964 0.282 0.935
PubmedBERT 0.169 0.994 0.236 0.979 0.308 0.960 0.396 0.929
CODER 0.549 0.991 0.740 0.975 0.798 0.960 0.873 0.936
oT 0.119 0.997 0.167 0.988 0.217 0.976 0.270 0.955
PT 0.016 0.998 0.016 0.992 0.125 0.985 0.146 0.974
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for conciseness. Since many oxygen related local codes were selected, we manually merged and annotated in the figure for ease of presentation.
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harmonization across multiple institutions compared to the state-of-
art NLP models and KG embedding models which require extensive
training. As illustrated by the COVID-19 study, inconsistent coding of
the key laboratories measures impose a great challenge for federated
predictive modeling analyses. Therefore, the MIKGI framework is crit-
ical to facilitating federated learning. Second, besides code mapping,
the MIKGI-based code embeddings can be used to directly project
patient features to an embedding space. Because MIKGI integrates
data from multiple institutions, such patient level embeddings are
harmonized features with low heterogeneity across institutions, which
can facilitate multi-institutional integrative analysis and improve cross-
institutional transportability. By incorporating EHR co-occurrence in-
formation, MIKGI also allows the same code (e.g., U07.1 for COVID-19)
to be represented differently at different healthcare centers to capture
between-healthcare heterogeneity. Furthermore, since MIKGI only re-
lies on the simple co-occurrence matrix of code pairs from the EHR
along with code descriptions, it can be updated over time to incorporate
new diseases or treatments such as COVID-19. Once these new clinical
concepts appear in the EHR, we may generate MIKGI embeddings
for these concepts for downstream analysis of a relevant disease, ei-
ther serving as feature selection tools or directly representing selected
features.

Although the current implementation of MIKGI only includes two
institutions, it can be easily adapted to include three or more EHR sys-
tems. This can be achieved by formulating the problem as a multi-task
matrix completion, which can be solved via a gradient descent algo-
rithm. An potential alternative approach is to first employ the Block-
wise Overlapping Noisy Matrix Integration (BONMI) algorithm [79] to
generate a EHR SPPMI based embeddings to replace the embeddings
V proposed in Section 2.1.2. The BONMI algorithm allows any number
of institutions and hence can be combined with SAPBERT through the
proposed consensus learning algorithm in (1).

The main goal of MIKGI is to provide high quality embeddings for
multi-institutional EHR codes to enable downstream tasks such as code
mapping or predictive modeling. We use the code mapping task as
one approach to evaluate the quality of the MIKGI embedding and the
MIKGI embeddings do not rely on cross-institutional code mapping la-
bels. The unsupervised mapping of VA medication to RxNorm attained
a high acc@!1 of 91% while the unsupervised VA lab code mapping
only attained acc@1 of 59%. This is in part due to (i) the challenge
of lab code descriptions having varying degrees of ambiguity with the
use of acronyms; (ii) not fully utilizing the EHR information on the
laboratory tests such as their findings (e.g., high vs normal); (iii) certain
laboratory tests are always ordered together as part of a panel, which
results identical EHR embeddings for their associated EHR codes. It is
possible to further improve the code mapping accuracy via supervised
methods as demonstrated in the validation study. The acc@10 of MIKGI
based supervised algorithm can reach 90%, suggesting that one may
use the MIKGI algorithm as a smart search tool to semi-automatically
identify the correct mapping. This can substantially reduce human
effort needed to map local codes to common ontology. Other supervised
or semi-supervised machine learning methods can be used such as
transductive vector support machine [80], set covering machine [81],
and freetext matching algorithm [82]. Such supervised approaches can
also be used to further enrich the knowledge network by predicting
specific associations between a pair of EHR concepts such as “may
treat” or “may cause”.
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