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1. Introduction

Algebraic smooth genus two curves defined over an algebraically closed non-

Archimedean valued field K, with residue field K̃ of char K̃ �= 2 can be studied from 

three perspectives:

(i) as a planar curve defined by a (dehomogeneized) hyperelliptic equation:

y2 = u

6∏

i=1

(x − αi) ; (1.1)

(ii) as a K-point of the space M2 of smooth genus two curves;

(iii) as a hyperelliptic cover of P1
K with six simple branch points α1, . . . , α6 ∈ P1

K .

The hyperelliptic cover is determined, up to isomorphism, by a choice of six branch 

points, i.e., by a K-point in the space M0,6 of smooth rational curves with six marked 

points.

The top row in Fig. 1.1 contains the three relevant spaces and maps between them. 

The first and third characterizations are related by a projection to the x-coordinate and 

a forgetful map that disregards the planar embedding of the curve induced by (1.1).

The present paper exploits the aforementioned description to characterize the tropical 

and Berkovich non-Archimedean analytic counterparts of smooth genus two curves. It 

relies on known comparison methods between the moduli of (stable) algebraic and ab-

stract tropical curves via the vertical tropicalization maps from Fig. 1.1 [1,14,18]. Such 

curves come in seven combinatorial types, and they form a poset under degenerations. 

Their associated Berkovich skeleta are obtained as dual metric graphs to the central 

fiber of a semistable regular model of each input curve over the valuation ring K◦ of 

K [5,51]. Each vertex in the graph is assigned the genus of the corresponding irreducible 

component as its weight. The induced poset of skeleta is depicted on the left of Fig. 1.2. 

The good reduction case is the only smooth one and it corresponds to Type (VII). The 

tropical moduli space of abstract genus two tropical curves M trop
2 is obtained as the im-

age of M2(K) under the tropicalization map [1, Theorem 1.2.1]. It has the structure of 

a stacky fan with seven cones, each labeled by a type and isomorphic to an orthant of 

dimension equal to the number of edges on the skeleton [1,16,18]. We discuss this space 

in more detail in Section 2.

The tropical moduli space M trop
0,6 of rational tropical curves with six marked points 

is the space of phylogenetic trees on six leaves of Billera–Holmes–Vogtmann [7]. It is 

realized as the image of M0,6(K) under the vertical tropicalization map in Fig. 1.1, i.e., 

by taking coordinatewise negative valuations of all K-points of M0,6 embedded in the 

toric variety defined by the pointed fan M trop
0,6 ⊂ R9. This map and the combinatorial 

structure of M trop
0,6 are also discussed in Section 2.
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Fig. 1.1. Three ways to represent genus two curves, their relations, and their tropical analogues.

As in the algebraic case, abstract genus two tropical curves are hyperelliptic: they 

admit a tropical hyperelliptic cover of a metric tree with six markings, given by a 2-to-1 

harmonic map branched at all six legs of the tree [3,18]. We review this construction 

in Section 4. The tropical covers turn the right square of Fig. 1.1 into a commuting 

diagram, but the assignment is not explicit: it requires prior knowledge of each Berkovich 

skeleton. We bypass this difficulty by factoring the right square of the diagram through 

the map ϕ. The assignment depends on the valuations of the points α1, . . . , α6 ∈ K∗ and 

their differences:

ωi := − val(αi) for i = 1, . . . , 6, and dij := − val(αi−αj) for i < j, if ωi = ωj . (1.2)

Here is our first main result, which we discuss in Section 5:

Theorem 1.1. Each point in M trop
2 together with an explicit harmonic 2-to-1 map to a 

metric tree in M trop
0,6 is determined by the ordering of the quantities ωi and dij (see Ta-

ble 5.1).

For example, the two maximal cells in M trop
2 correspond to the orders ω1 < ω2 <

ω3 < ω4 < ω5 < ω6 (the dumbbell graph (I)) and ω1 < ω2 < ω3 ≤ ω4 < ω5 < ω6 with 

d34 < ω3 (the theta graph (II)). They are realized as 2-to-1 harmonic covers of the 

caterpillar and snowflake trees as shown in Fig. 1.2. Similar results were obtained earlier 

by Ren–Sam–Sturmfels [46, Table 3] but with very different methods.

Our proof of Theorem 1.1 is sketched in the right of Fig. 1.2. Starting from TP1, 

tropical modifications of TP1 at the locations of the points ωi dictated by the quantities 

dij allow us to construct the target metric trees. The source curve and the map are 

determined by the tropical Riemann–Hurwitz formula [13]. Proposition 5.2 provides a 

list of seven regions in M0,6(K) that surject onto M trop
2 . Algorithms 5.1 and 5.2 take 

six arbitrary points in (K∗)6 and return a linear change of coordinates of P1 that sends 

these six points to one of these seven witness regions. The same techniques will lead to 

a natural extension of Theorem 1.1 to the tropical hyperelliptic locus in M trop
g for any 

g ≥ 2.

The left side of Fig. 1.1 involves embedded tropicalizations. Given the hyperellip-

tic equation (1.1) defining a smooth genus two curve X , the tropical plane curve 

Trop X ⊂ R2 is the dual complex of the Newton subdivision of X . An explicit cal-

culation shown in Table 6.1 proves that the planar tropicalization is always a tree, so it 
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Fig. 1.2. From left to right: poset of stable genus two curves, and their weighted dual graphs encoding the 
genus and intersections of all components; harmonic 2-to-1 covers of tropical lines with six legs for each 
type, and ordering of the valuations of the six branch points. All edge weights in the source curve equal 
two or one (indicated). All vertices in the source curves have genus zero, unless otherwise indicated. The 
unfilled points in type (II) share initial terms and yield a dashed branch on the metric tree.

does not reflect the genus of our algebraic curve. Thus, outside Types (V) and (VII), the 

minimal Berkovich skeleton of X an will not map isometrically to a subgraph of Trop X
under the hyperelliptic tropicalization map trop: X an → Trop X . The forgetful map on 

the bottom left of Fig. 1.1 is analogous to the retraction map of X an onto the minimal 

Berkovich skeleton: it shrinks all unbounded edges of the tropical curve and contracts 

edges adjacent to one-valent vertices if they correspond to a rational initial degenera-

tion of X . The map is further described in Section 3, and it will only be defined if the 

tropicalization is faithful.

Faithful tropicalizations are a powerful tool to study non-Archimedean curves through 

combinatorial means [5]. In [20], we proposed a program for effectively producing faith-

fulness for curves over non-Archimedean fields, starting in genus one. Our second main 

result shows that similar methods can be used to faithfully re-embed genus two curve 

in three-space in a uniform fashion. The explicit construction is the subject of Section 6

and it relies on the notion of tropical modifications, which we review in Section 3.

Theorem 1.2. Outside Types (V) and (VII), the naïve tropicalization induced by the hy-

perelliptic equation can be repaired in dimension three by adding one equation of the form 

z −f(x, y) where f is linear in y and quadratic in x. The re-embedded tropical curve con-

tains an isometric copy of the minimal Berkovich skeleton (see Table 6.1 and Fig. 6.9).

A precise formula for f(x, y) can be found in (6.2). An alternative refinement of 

this polynomial, denoted by f̃(x, y) in (6.5) will sometimes be used to simplify the 

combinatorics.

In concrete computations, it is always desirable to bound the ambient dimension 

required to achieve faithful tropicalizations on minimal skeleta. In genus two, Wagner [52]

showed that, under certain length restrictions, any Mumford curve (curves with totally 
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degenerate reduction, namely Types (I), (II) and (III)) can be embedded faithfully in 

dimension three. Starting from the Schottky uniformization [25] of the given Mumford 

curve, his techniques involve tropical Jacobians, together with an explicit description of 

the Abel–Jacobi map and they apply not only to the minimal Berkovich skeleta but also 

to unbounded subgraphs of extended skeleta.

Theorem 1.2 recovers the same dimension bound for every curve of genus two where 

the curve is given by its hyperelliptic equation. In addition to contributing a larger class 

of curves where the same bound can be attained, our techniques have the additional 

advantage of extending to the whole hyperelliptic locus in any genus. Generalizations of 

this result to extended skeleta are also treated in Section 6.

Remark 1.3 (Algorithmic faithful tropicalization in genus 2). Theorems 1.1 and 1.2 can 

be combined with Algorithms 5.1 and 5.2 to produce an explicit algorithm that inputs 

a hyperelliptic equation of the curve X and outputs a faithful tropicalization. Indeed, 

starting from the six branch points α1, . . . , α6 of the cover, we use Algorithms 5.1 and 5.2

to construct an automorphism of the projective line that places the branch points in 

one of the seven special configurations described in Table 5.1. This step recovers the 

type of the Berkovich skeleton of X an. With this knowledge, after shifting two of the 

branch points to be the origin and the point at infinity via Lemma 6.1, we can pick 

the appropriate function f(x, y) (which depends on the branch points) that gives the 

faithful embedding for the minimal Berkovich skeleton by Theorem 1.2. As a result, 

we obtain an explicit projective model for the input curve X in dimension three where 

we detect the topological type of its Berkovich analytification through its embedded 

tropicalization. In case we wish to recover faithfulness on the extended skeleta we must 

refine our choice of f(x, y) and perform further linear re-embeddings. These refined 

methods are type-dependent. We explain them in detail in Subsections 6.1–6.6.

A second motivation for Theorems 1.1 and 1.2 and the explicit description of the 

diagonal map ϕ from Fig. 1.1 originates in the invariant theory of M2 [33] and the search 

for a coordinate system for M trop
2 . Defining complete sets of tropical invariants for each 

cell in the tropical hyperelliptic locus from their algebraic counterparts is challenging 

already in small genera. The genus one case is well-understood. The j-invariant has its 

tropical analog: the tropical j-invariant. It arises as the expected negative valuation of the 

j-invariant by using the conductor-discriminant formula for Weierstrass equations [37]. 

This tropical invariant defines a piecewise linear function on the space of smooth tropical 

plane cubics (i.e., the identity on M trop
1 ) and it is crucial in tropical enumerative geometry 

of genus one curves [38].

In the algebraic setting, the isomorphism classes of curves of genus two are determined 

by the three (absolute) Igusa invariants [33]. They can be expressed as rational functions 

on all pairwise differences of the six ramification points [27]. From a computational 

perspective, they can be viewed as a coordinate-dependent interpretation of the top row 

in Fig. 1.1. We refer to Section 7 for the precise definitions.
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Any point on a maximal cell in M trop
2 is determined by three edge lengths: L0, L1

and L2 in Fig. 2.1. In analogy with recent work of Helminck [32], our third main result 

relates these three numbers to the tropicalization of the Igusa invariants, but confirms 

that these classical invariants are not well suited for tropicalization:

Theorem 1.4. The tropicalization of the Igusa invariants j1, j2 and j3 are piecewise linear 

functions in M trop
2 , with domains of linearity given by the seven cones in M trop

2 . They do 

not form a complete set of invariants in M trop
2 since ji

trop =L1+L0+L2 for all i = 1, 2, 3, 

whereas j1
trop = L1+12L0+L2, and j2

trop = j3
trop =L1+8L0+L2 whenever char K̃ �= 2, 3.

Replacing j3 by the new invariant j4 = j2 − 4j3 induces a piecewise linear function 

on M trop
2 with j4

trop = L0 + L1 + L2 − min{L0, L1, L2}, and j4
trop = L1 + 8L0 + L2

when char K̃ �= 2, 3. The tropicalization of the invariants {j1, j2, j4} recovers two of the 

three edge lengths on each point in the tropical moduli space. Similar formulas hold if 

char K̃ = 3.

The ill-behavior of the Igusa invariants under tropicalizations is similar to a phe-

nomenon occurring in the ring of symmetric polynomials: power sums will never yield a 

complete set of tropical invariants. Indeed, their valuation only captures the root with 

lowest valuation. In turn, the elementary symmetric functions enable us to recover the 

valuation of all roots. Theorem 1.4 manifests again the non-faithfulness of the hyperellip-

tic embedding and shows that faithfulness should be viewed as the natural replacement 

for the tropical Igusa invariants. It remains an interesting challenge to find three new 

algebraic invariants on M2 inducing tropical coordinates on each cell of M trop
2 .

Supplementary material

Many results in this paper rely on calculations performed with Singular [21] (in-

cluding its tropical.lib library [36]), Macaulay2 [28], Polymake [24] and Sage [49]. 

We have created supplementary files so that the reader can reproduce all the claimed 

assertions done via explicit computations and numerical examples. The files are available 

at:

https://people .math .osu .edu /cueto .5 /tropicalGeometryGenusTwoCurves/

In addition to all Sage scripts, the website contains all input and output files both as

Sage object files and in plain text. We have also included the supplementary files on the 

latest arXiv submission of this paper. They can be obtained by downloading the source.

2. Tropical moduli spaces

In this section, we introduce the objects in the center and right of Fig. 1.1 involving 

abstract tropical curves and their moduli spaces.
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Definition 2.1. An abstract tropical curve is a connected metric graph consisting of the 

data of a triple Γ = (G, g, ℓ) where G = (V, E, L) is a connected graph G with vertices 

V , edges E and unbounded legs L (called markings), together with a weight function 

g : V → Z≥0 on vertices and a length function ℓ : E → R>0 on edges. Legs are considered 

to have infinite length. In the absence of legs, we say the curve has no markings. The 

genus of a metric graph Γ equals

genus(Γ) := b1(Γ) +
∑

v∈V

g(v), (2.1)

where b1(Γ) = |E| − |V | + 1 is the first Betti number of the graph G. A genus zero curve 

is called rational: it corresponds to a metric tree with constant weight function g ≡ 0.

An isomorphism of a tropical curve is an automorphism of the underlying graph G

that respects both the length and weight functions. The combinatorial type of a tropical 

curve is obtained by disregarding the metric structure, i.e. it is given by (G, g).

The set of all tropical curves with a given a combinatorial type (G, g) can be param-

eterized by the quotient of an open cone RE
>0 under the action of automorphisms of G

that preserve the weight function g. Cones corresponding to different combinatorial types 

can be glued together by collapsing edges and adjusting the genus function accordingly. 

Such operations keep track of possible degenerations of the algebraic curves. Fig. 1.2

describes this process for unmarked genus two curves. In this way, the tropical moduli 

space M trop
g,n (respectively, M trop

g ) of n-marked (respectively, unmarked) curves of genus 

g inherits the structure of an abstract cone complex. For more details on tropical moduli 

spaces of curves, we refer to [1,16,18,23,44].

In this paper, we focus on two examples: M trop
0,6 and M trop

2 . The first is the space of 

rational tropical curves with six markings. Up to relabeling of the markings, the moduli 

space M trop
0,6 has two top-dimensional cells, corresponding to the snowflake and caterpillar 

trees on six leaves. The second object of interest is the space of genus two tropical curves 

with no marked legs. Fig. 1.2 shows the labeling of the two top-dimensional cones: the 

dumbbell and theta graphs, indicated by Types (I) and (II).

The connection between moduli spaces of stable marked curves and their counterparts 

in tropical geometry has been studied on various occasions [1,26,46]. The spaces M0,n

can be identified with a quotient of the open orbit of the cone over the Grassmannian of 

planes by the torus (K∗)n and tropicalized thereafter, as in [46]. In turn, M trop
0,n becomes 

the space of trees on n leaves [48,50] where we assign length zero to all leaf edges, as we 

now explain.

Up to an automorphism of P1 we may assume that our marked points exclude (1 : 0)

and (0 : 1), so we identify them with a tuple in α ∈ (K∗)n. The torus (K∗)n acts on 

Gr0(2, n) by t ⋆ (pij)i,j = (titjpij)i,j . In particular, we get an isomorphism

Φ: M0,n
≃−→ Gr0(2, n)/(K∗)n ⊂ (K∗)

(
n

2

)
/(K∗)n Φ(α) = (αi − αj)1≤i<j≤n, (2.2)
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Fig. 2.1. Minimal skeleta of genus two curves obtained by applying the forgetful map to the double covers 
in the right of Fig. 1.2.

The space M0,n of stable rational curves with n marked points is the tropical compact-

ification of M0,n induced by M trop
0,n := Trop Gr0(2, n)/Rn ⊂ R

(
n

2

)
/Rn [50, Theorem 5.5]. 

Here, Rn ⊂ R
(

n

2

)
is the image of the linear map α 	→ (αi + αj)i,j . This is precisely the 

lineality space of Trop Gr0(2, n). It is generated by the n cut-metrics [48].

The lattice spanned by the cut-metrics has index two in its saturation in Z
(

n

2

)
. For 

this reason, a factor of 1/2 must be added when considering lattice lengths on the space 

of trees (see [29, Section 3.1].) In particular, when n = 6, the tropicalization map sends 

a tuple α of six distinct points in K∗ to the pairwise half -distances between the legs of 

the corresponding tree on six leaves:

trop: M0,6(K) → M trop
0,6 ⊂ R15/R6 trop(α) = (− val(αi − αj))1≤i<j≤6. (2.3)

All seven combinatorial types of trees with six leaves are depicted in the right 

of Fig. 1.2. The poset structure of all labeled seven cells matches that of stable genus 

two curves and their tropical counterparts. Furthermore, the space M trop
2 can be con-

structed from M trop
0,6 via tropical hyperelliptic covers as in Section 4. Indeed, starting 

from a metric tree T with six leaves, there is a unique tropical hyperelliptic cover of it by 

a tropical curve Γ of genus two with six legs. Our genus two abstract tropical curve will 

be obtained as the image of Γ under the tropical forgetful map that contracts all legs and, 

in turn, all edges adjacent to one-valent vertices of genus zero [10]. This identification 

describes the commuting right square of Fig. 1.1, as proved in [46, Theorem 5.3].

The tropicalization map trop: M2(K) → M trop
2 factors through trop: M2

an
։

M trop
2 [1, Theorem 1.2.1]. Under this map, abstract tropical curves correspond to the 

minimal Berkovich skeleta: metrized dual graphs of central fibers of semistable regular 

models of a smooth curve over the valuation ring K◦ [5,51].

3. Faithful tropicalization, skeleta and tropical modifications

In this section, we discuss embedded tropicalizations of curves and their relation to 

abstract tropical curves and their moduli. Embedded tropical curves are determined by 

the negative valuations of all K-points on a curve X inside the multiplicative split torus 

(K∗)n [41, Chapter 3]: they are balanced weighted graphs in Rn with rational slopes. 
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While this approach is computationally advantageous due to its connection to Gröbner 

degenerations [35] it also poses a major challenge: tropicalization in this setting strongly 

depends on the embedding. Furthermore, certain features of an abstract tropical curve 

can be lost under a given choice of coordinates. For example, the naïve tropicalization of 

a genus two hyperelliptic plane curve induced by (1.1) is a graph Γ ⊂ R2 with b1(Γ) = 0.

The connection to Berkovich non-Archimedean spaces [6] initiated by Payne [45]

hands us a way to overcome this coordinate-dependency: a faithful tropicalization is 

the best candidate to reflect relevant geometric properties of the algebraic curve [5]. 

An embedding X ⊂ (K∗)n induces a faithful tropicalization if Trop X contains an iso-

metric copy of the minimal Berkovich skeleton of X an under the tropicalization map 

trop: X an → Trop X . The latter can be obtained from a given (extended) skeleton by 

contracting it to its minimal expression [4].

Just as in the abstract setting, faithful tropicalizations induced by X ⊂ (K∗)n admit 

a tropical forgetful map to M trop
g , where g is the arithmetic genus of X . In order to 

do so, we must endow the rational weighted balanced graph Γ = Trop X in Rn with a 

weight function on its vertices. This can be achieved by means of an extended Berkovich 

skeleton Σ(X ) coming from a semistable model of X with a horizontal divisor (i.e. the 

closure of a divisor of the generic fiber in the model) that is compatible with Γ [30,31]. 

Indeed, to each vertex v in Γ we assign the sum of the genera of all semistable vertices 

of Σ(X ) mapping to v under trop: Σ(X ) → Trop X . The semistable vertices correspond 

exactly to the components of the central fiber [4], so we weigh them with the genus of 

the associated component.

For planar tropicalizations, a similar ad-hoc rule can be put in practice. If we let Γ be 

the dual complex of the Newton subdivision of the corresponding curve, each vertex of 

Γ gets assigned the number of interior lattice points of its dual polygon. This quantity is 

the genus of the initial degeneration of the curve induced by the vertex minus the number 

of nodes (assuming it is nodal). However, unless our planar embedding is faithful (which 

only occurs for Types (V) and (VII)), we will not be able to define a forgetful map on the 

tropical side (by collapsing all legs and weight zero one-valent vertices, as we did in the 

abstract case) that recovers the image of the Berkovich skeleton under tropicalization.

In the algebraic setting, the forgetful map sending planar genus two smooth hyperel-

liptic curves to points in M2(K) is surjective if we allow the curves to be defined over 

valued field extensions L|K. Since the forgetful map on the associated tropical plane 

curves is only defined for Types (V) and (VII), faithfulness becomes an essential prop-

erty to define the left square in Fig. 1.1. A similar behavior in genus three and four was 

encountered by Brodsky–Joswig–Morrison–Sturmfels [10, Theorems 5.1 and 7.1]. Sec-

tion 6 and Table 6.1 give explicit effective methods for producing faithful re-embeddings

of smooth planar genus two curves in a suitable torus. The main technique involved is 

tropical modifications of Rn along tropical divisors [12,34,43], which we now recall.



466 M.A. Cueto, H. Markwig / Journal of Algebra 517 (2019) 457–512

Definition 3.1. Fix a tropical polynomial F defining a piecewise linear function

F : Rn → T = R ∪ {−∞} F (X) = max
β∈Zn

≥0

{Cβ + β1X1 + . . . + βnXn} in T[X1, . . . , Xn].

The graph of F is a rational polyhedral complex of pure dimension n. Unless F is linear, 

the bend locus of F has codimension 1. At each break codimension-one cell σ, we attach 

a new cell σ̃ spanned by σ and −en+1 := (0, . . . , 0, −1). The result is a pure rational 

polyhedral complex in Rn+1. We call it the tropical modification of Rn along F .

It will often be useful to consider polynomial lifts of F , namely

f(x) =
∑

β∈supp(F )

cβxβ ∈ K[x1, . . . , xn] where supp(F ) := {β : Cβ �= −∞} (3.1)

satisfies trop(f)(X) := maxβ{− val(cβ) + β1X1 + . . . + βnXn} = F (X) as functions on 

Rn.

By the Structure Theorem [41, Proposition 3.1.6], any polynomial lift f of F will allow 

us to turn the tropical modification of Rn along F into a weighted balanced complex, 

since it will be supported on the tropical hypersurface Trop V (f). In turn, any tropical 

hypersurface Trop V (g) in Rn can be modified along F in a similar fashion and the 

attached cells can be endowed with suitable multiplicities to turn the resulting complex 

into a balanced one. For precise multiplicity formulas, we refer to [2, Construction 3.3].

Example 3.2. The leftmost map in Fig. 5.1 describes the tropical modification of R along 

the tropical function F = max{X, − val(α2)} = trop(x −α2). The result is a tropical line 

in R2 with vertex (− val(α2), − val(α2)). All its tropical multiplicities equal 1. A higher 

dimensional analog can be found in Example 3.4. ⋄

Tropical modifications can be used to define re-embeddings of irreducible plane curves 

X [12,20,34]. This technique is also known as tropical refinement in parts of the literature. 

Consider a tropical polynomial F ∈ T[X, Y ] and a lift f . Given a defining equation g(x, y)

for X , the tropicalization of the ideal

Ig,f := 〈g, z − f〉 ⊂ K[x±, y±, z±] (3.2)

is a tropical curve in the modification of R2 along F . For almost all lifts f , Trop V (Ig,f )

coincides with the modification of Trop V (g) along F , i.e. we only bend Trop V (g) so 

that it fits the graph of F and attach suitable weighted downward legs. However, for 

some special choices of lifts f , the cells of Trop V (Ig,f ) in the downward cells of the 

modification of Rn along F become more interesting. Such choices are determined by 

the initial degenerations of g along the bend locus of F . More details can be found 

in Section 6.
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In addition to linear tropical polynomials, which were the main players in [20], our 

main focus in Section 6 will be modifications of R2 along tropical polynomials of the 

form

F = max{Y, A + X, B + 2X} = trop(f) for A, B ∈ R. (3.3)

The tropical surface Trop V (f) consists of six two-dimensional cells σ1, . . . , σ6, as de-

picted in Fig. 3.1. They are defined by the following systems of linear equations and 

inequalities:

σ1 :={Z = X + A ≥ Y, X ≤ A − B},

σ2 :={Z = 2X + B ≥ Y, X ≥ A − B},

σ3 :={Z = Y ≥ X + A, 2X + B},

σ4 :={Z, Y ≤ 2A − B, X = A − B},

σ5 :={Y = 2X + B ≥ Z, X ≥ A − B},

σ6 :={Y = X + A ≥ Z, X ≤ A − B}.

(3.4)

Just as it happened in the linear case [20, Lemma 2.2], the choice of F in (3.3) allows us 

to recover Trop V (Ig,f ) in R3 from the three coordinate projections. This property will 

be exploited in Section 6 to certify faithfulness by planar computations.

Lemma 3.3. Given an irreducible curve X ⊂ (K∗)2 defined by a polynomial g ∈ K[x, y]

and a polynomial lift f(x, y) = y − ax − bx2 ∈ K[x, y] of the tropical polynomial F

from (3.3), the tropicalization induced by the ideal Ig,f = 〈g, z − f〉 ⊂ K[x±, y±, z±] is 

completely determined by the tropical plane curves Trop V (g), Trop V (Ig,f ∩ K[x±, z±]), 

and Trop V (Ig,f ∩ K[y±, z±]).

Proof. Since coordinate projections are monomial maps, functoriality ensures that the 

three coordinate projections of Trop V (Ig,f ) are supported on the three tropical plane 

curves in the statement. The tropical space curve is completely determined by its inter-

section with the relative interiors of the six maximal cells of Trop V (f). By construction, 

each open cell σ◦
i maps to a two-dimensional open region under two out of the three 

projections. The precise choices are indicated on Fig. 3.1. Note that overlaps occur only 

in the Y Z-projection between two pairs of cells: (σ1, σ4) and (σ4, σ6).

The tropical multiplicities in all coordinate projections let us recover the support of 

Trop V (Ig,f ) along the bend locus from the generalized push-forward formula for multi-

plicities of Sturmfels–Tevelev in the non-constant coefficients case [5, Corollary 7.3]. ✷

Example 3.4. Consider the smooth genus two curve in (K∗)2 defined over C{ {t} } by

g(x, y) = y2 − x(x − (3t5)2)(x − (11t2 + 5t7)2)(x − (11t2)2)(x + (1 + t2)2),

the tropical polynomial F = max{Y, −4 +X, 2X} and its lift f(x, y) = y−(1 +t2)(11t2 +

5t7)(11t2) x +(1 + t2) x2. The tropicalization induced by Ig,f ⊂ K[x±, y±, z±] is depicted 

in the left of Fig. 3.1 and it lies in the tropical surface in R3 obtained by modifying 
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Fig. 3.1. A tropical modification of R
2 and its coordinate projections.

R2 along F . We reconstruct the tropical curve from the three coordinate projections 

shown on the right of the picture, accounting for additivity of multiplicities and the two 

false crossings on the Y Z-projection. The naïve plane tropicalization agrees with the 

XY -projection. The Berkovich skeleton is a theta graph. For further details we refer 

to Example 6.12. ⋄

4. Tropical hyperelliptic covers of metric trees

Algebraic genus two curves are hyperelliptic and hence can be realized as the source 

curve of a 2-to-1 cover of the projective line branched at six points. The analogous 

results for tropical hyperelliptic genus g curves and metric trees with n = 2g + 2 legs 

and genus zero vertices was first established by Baker–Norine [3] and Chan [19], and 

later generalized to admissible covers and harmonic morphisms by Caporaso [15] and 

Cavalieri–Markwig–Ranganathan [17]. We restrict the exposition to our case of interest.

Definition 4.1. A map π : Γ → Γ′ is a morphism of metric graphs if π sends the vertices 

of Γ to vertices of Γ′, and the edges (respectively, legs) of Γ to edges (respectively, legs) 

of Γ′ in a piecewise fashion with integral slopes.

Remark 4.2. Assume the morphism π sends an edge e of Γ with length ℓ(e) onto an 

edge e′ of Γ′ of length ℓ(e′). We may write the map π|e
as h : [0, ℓ(e)] ։ [0, ℓ(e′)] with 
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h(t) = w(e)t for some w(e) ∈ Z>0. By construction, w(e) = ℓ(e′)/ℓ(e). Similarly, the 

map π restricted to a leg e of Γ equals h : [0, ∞) ։ [0, ∞) with h(t) = w(e)t for some 

w(e) ∈ Z>0.

Definition 4.3. A map π : Γ → Γ′ of metric graphs is harmonic if for each vertex v of Γ

and any edge e′ adjacent to π(v), the number

dv :=
∑

e∈E(Γ)
v∈e,π(e)=e′

w(e) (4.1)

does not depend on the choice of edge e′. We call dv the local degree of the map π at v. 

The degree of π is the sum over all local degrees in the fiber of any vertex v′ ∈ Γ′.

Definition 4.4. A tropical hyperelliptic cover of a metric tree T by a metric graph Γ is 

a surjective degree two harmonic map π : Γ → T of metric graphs satisfying the local 

Riemann–Hurwitz conditions at each v vertex of Γ:

2 − 2g(v) = 2dv − #{e ∋ v : ω(e) = 2}. (4.2)

Definition 4.5. A branch point of a hyperelliptic cover π : Γ → T of a genus zero metric 

tree T is a leg or edge of T which is covered by a leg or edge e of Γ with weight w(e) = 2.

Since we are interested in metric graphs Γ of genus two, we are restricted to covers 

of trees T with precisely six leaves. Each vertex of T has valency between three and 

six. The following technical lemma describes the local behavior of a hyperelliptic cover 

Γ → T .

Lemma 4.6. There are precisely five tropical hyperelliptic covers of a single genus zero 

vertex with valency between three and six with source curve a vertex of genus at most 

two.

Proof. We let v′ be the vertex in the target curve and fix a covering vertex v on the 

source curve. The result follows by analyzing all possible combinations of genus g(v) and 

valency of v′. Replacing each value of gv = 0, 1, or 2 in (4.2) yields all cases in Fig. 4.1. ✷

Our main result in this section describes the combinatorics of hyperelliptic covers of 

trees on six leaves. It implies that the poset structures on M trop
0,6 and M trop

2 agree, as 

shown in [46, Theorem 5.3]. Unlike the latter, our proof is elementary and uses the local 

tropical Riemann–Hurwitz conditions (4.2). The general hyperelliptic case is treated 

in [8, Lemma 2.4]. Superhyperelliptic curves are discussed in [9]:

Proposition 4.7. Each tree on six leaves is covered by exactly one genus two graph with 

six legs via a harmonic 2-to-1 map branched at all six leaf edges as in Fig. 1.2.
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Fig. 4.1. All possible degree two covers of a single genus zero vertex with valency between three and six by 
a single vertex of genus up to two.

Proof. The leaf edges on the trees are branch points, hence they must be covered by 

legs of weight two. Lemma 4.6 characterizes the local behavior at each vertex of the tree. 

These two facts uniquely determine the combinatorial type of the graph and the cover 

itself. ✷

Remark 4.8. Following Remark 4.2, the length of an edge e in Γ covering an edge e′ in 

Γ′ satisfies ℓ(e) = ℓ(e′)/ω(e). In particular, when two weight-one edges in Γ form a loop 

that covers a single edge e′ in Γ′, then the loop has length 2 ℓ(e′).

5. The Classification Theorem and the diagonal map M0,6(K) → M
trop
2

Throughout this section, we let α1, . . . , α6 be six distinct points in K∗ defining an 

element of M0,6(K) via the six marking (1 : α1), . . . , (1 : α6) in P1. We consider the 

diagonal map

ϕ : M0,6(K) → M trop
2 (5.1)

from Fig. 1.1 sending a smooth rational curve X ∈ M0,6(K) to the minimal Berkovich 

skeleton ϕ(X ) of the unique hyperelliptic curve covering X with branching at (1 :

α1), . . . , (1 : α6), as in Fig. 1.2. This map is well-defined since it only depends on the 

equivalence class of α := (α1, . . . , α6) in (K∗)6 up to isomorphism. Combining Table 5.1

with Algorithms 5.1 and 5.2 will completely determine ϕ. Furthermore, this characteri-

zation depends solely on the relative order of the negative valuations of the entries of α

and some of their differences, as in (1.2). As discussed in Remark 1.3, results in this sec-

tion can be used to take an arbitrary genus two curve given by a hyperelliptic equation 

to one of the seven forms corresponding to the seven cones in M trop
2 .

Since K = K is non-trivially valued by assumption, it follows that the valued group 

of K is dense in R [41, Lemma 2.1.12]. As a consequence, we can construct a splitting of 
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the valuation map [41, Lemma 2.1.15]. Inspired by the canonical splitting for the Puiseux 

series field, we write it as γ 	→ tγ . We use this notion to define initial forms in K∗:

Definition 5.1. Given a splitting γ 	→ tγ of the valuation on K, we define the initial form

in(α) of any α ∈ K∗ as the class of α t− val(α) in the residue field K̃ of K obtained as 

the quotient of the valuation ring by its maximal ideal.

We let ω := (ω1, . . . , ω6) ∈ R6 be the weight vector from (6.13) associated to α

and assume ω1 ≤ ω2 ≤ . . . ≤ ω6. Whenever there is a tie between ωi and ωi+1 and 

the corresponding initial forms of αi and αi+1 agree, we consider the valuation of the 

difference αi − αi+1 and notice that di,i+1 := − val(αi − αi+1) < ωi = ωi+1 if in(αi) =

in(αi+1). In this situation, we replace the (i + 1)-st. entry of ω by di,i+1.

As a first step towards a complete classification of the image of ϕ and its domains of 

linearity, we construct seven regions in the space of branch points whose associated trees 

have different combinatorial types:

Ω(i) := {α ∈ M0,6(K) : weight ω ∈ R6 satisfies conditions (i) in Table 5.1}, (5.2)

for i ∈ {I, . . . , VII}. Even though these sets do not cover all tuples of distinct points in 

(K∗)6 we show that they parameterize all seven cones in M trop
2 and the harmonic maps 

from the metric graphs in M trop
2 to M trop

0,6 given in Fig. 1.2. Here is the precise statement:

Proposition 5.2. For each i ∈ {I, . . .,VII}, the diagonal map ϕ from (5.1) restricted to 

Ω(i) parameterizes the cone of Type (i) in M trop
2 and induces a hyperelliptic cover of a 

tree in M trop
0,6 by an abstract tropical curve of Type (i) in M trop

2 . Furthermore, the metrics 

on both objects are completely determined by piecewise functions on the weight vectors ω

of points in each Ω(i) as in the second and fourth column of Table 5.1.

Proof. Starting from a tuple α ∈ Ω(i) viewed as a marking on P1, we consider the 

smooth rational curve X in M0,6 and the associated weight vector ω ∈ R6. Our goal 

is to determine the combinatorial type of the tree Trop X and to express its metric 

structure in terms of ω. We do so by analyzing each of the seven sets Ω(i) separately. 

By Proposition 4.7 we can label each tree by the type of the genus two metric graph 

Γ covering it. The edge length formulas on Γ indicated on the last column of Table 5.1

are obtained directly from the metric structure on each tree using Remark 4.8. It is 

important to emphasize that the tropical Plücker map will give the half-distance vector 

on the tree, as we saw in Section 2.

In what remains, we discuss the second column of the table. The combinatorial 

type of each tree is determined by the isomorphism Φ: M0,6
≃−→ Gr0(2, 6)/(K∗)6 ⊂

(K∗)15/(K∗)6 from (2.2) and the four-point conditions (i.e., the tropical 3-term Plücker 

relations [41, Lemma 4.3.6]) on − val(Φ(α)) ∈ R15/R6. We use the lexicographic order 

on R15.
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Type (I): We claim Trop X is a trivalent caterpillar tree on six leaves with internal edge 

lengths ω3 −ω2, ω4 −ω3 and ω5 −ω4. Indeed, since − val(αi −αj) = ωj for i < j we have

−val(Φ(α)) :=(ω2, ω3, ω4, ω5, ω6, ω3, ω4, ω5, ω6, ω4, ω5, ω6, ω5, ω6, ω6)∈Trop Gr0(2,6)/R6.

By construction, the half-distance vector equals − val(Φ(α)). The four-point condition 

implies that the corresponding line in P5 is a trivalent caterpillar tree. Linear algebra 

recovers the expected lengths on its three bounded edges [41, Remark 4.3.7]. Note that 

the lengths assigned to the six legs in the second column of Table 5.1 play no role here: 

the associated half-distance vector in R15 is in the same class modulo the lineality space 

in Trop Gr0(2, 6). The claim follows.

Type (II): By construction, Φ(α) has negative valuation vector

−val(Φ(α)) :=(ω2, ω3, ω4, ω5, ω6, ω3, ω4, ω5, ω6, d34, ω5, ω6, ω5, ω6, ω6)∈Trop Gr0(2,6)/R6,

where the ωi and d34 are as in (6.13). The four-point conditions imply that the tropical 

line in P5 is a snowflake tree with internal edges ω3 − ω2, ω5 − ω3 and ω3 − d34, as 

indicated on the second column of the table.

Types (III) through (VII): The tropicalization induced by the Plücker embedding shows 

that the metric trees on these lower-dimensional cells of M trop
0,6 are obtained by special-

izing the trees for Type (I) or Type (II): both the combinatorial type and the metric 

are obtained by coarsening either the caterpillar or the snowflake trees. The edge length 

formulas match those given in Table 5.1. ✷

In the remainder of this section we discuss why these seven regions Ω(i) suffice to 

classify all smooth genus two tropical curves. Indeed, Algorithms 5.1 and 5.2 describe 

an explicit combinatorial procedure that takes six distinct points α1, . . . , α6 in K∗ and 

provides linear changes of coordinates in P1 producing a tuple of points in one of the 

sets Ω(i), after iteratively combining two steps:

(A) Separate points: We take a coordinate ωk of ω and two points αi and αj of valuation 

−ωk where val(αi − αj) is maximal, and make a linear change of coordinates 

that turns the tuple α ∈ (K∗)6 into α′ ∈ (K∗)6, where − val(α′
i) is the unique 

smallest element of ω′. The method is described in Lemma 5.3.

(B) Turn around: We change coordinates from one open affine chart of P1 to another 

by replacing x by 1/x. As a result, − val(α′
i) = val(αi) and the relative order of 

the valuations on the tuple α is reversed on the new tuple α′.

As was mentioned earlier in this section, our assumptions on K ensures the density 

of the value group of K in R and the existence of a splitting γ 	→ tγ to the valuation. 

We use these to properties to separate branch points:
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Table 5.1
Combinatorial types with the corresponding defining valuation conditions, and length data for Mtrop

0,6 and 
Mtrop

2 . Here, ωi = − val(αi), d34 = − val(α3 − α4), and the edge lengths L0, L1 and L2 refer to Fig. 2.1.

Type Cover with lengths on Mtrop
0,6 Defining conditions Lengths on Mtrop

2

(I) ω1 <ω2 <ω3 <ω4 <ω5 <ω6

L0 = (ω4 − ω3)/2

L1 = 2(ω5 − ω4)

L2 = 2(ω3 − ω2)

(II)
ω1 < ω2 < ω3 < ω5 < ω6 L0 = 2(ω3 − d34)

ω3 = ω4 L1 = 2(ω5 − ω3)

in(α3) = in(α4) L2 = 2(ω3 − ω2)

(III)
ω1 < ω2 < ω4 < ω5 < ω6 L0 = 0

ω3 = ω4 L1 = 2(ω5 − ω3)

in(α3) 	= in(α4) L2 = 2(ω3 − ω2)

(IV)
ω1 < ω2 < ω3 < ω4 < ω6 L0 = (ω4 − ω3)/2

ω4 = ω5 L1 = 0

in(α4) 	= in(α5) L2 = 2(ω3 − ω2)

(V)

ω1 < ω2 < ω4 < ω6 L0 = (ω4 − ω2)/2

ω2 = ω3 , ω4 = ω5 L1 = 0

in(α2) 	= in(α3)
L2 = 0

in(α4) 	= in(α5)

(VI)

ω1 < ω2 < ω3 < ω6 L0 = 0

ω3 = ω4 = ω5 L1 = 0

in(α3) 	= in(α4)
L2 = 2(ω3 − ω2)in(α3) 	= in(α5)

in(α4) 	= in(α5)

(VII)

ω1 < ω2 < ω6 L0 = 0

ω2 = ω3 = ω4 = ω5 L1 = 0

in(αi) 	= in(αj)
L2 = 0

for 1 < i < j < 6
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Lemma 5.3. [Separating points] Consider a repeated coordinate ω of ω, and write

β = max{val(αm − αl) : ωm = ωl = ω for m �= l} ≥ −ω.

Fix two indices i, j with ωi = ωj = ω and β = val(αi − αj). If in(αi − αj) = ζ ∈ K̃ for 

some ζ with val(ζ) = 0, choose γ ∈ val(K∗) with β < γ < val(αi − αj − ζtβ). Then, the 

linear change of coordinates ψ : P1 → P1 defined locally by

ψ(x) = x − αj − ζtβ − tγ (5.3)

turns the tuple α ∈ (K∗)6 into α′ ∈ (K∗)6, where their coordinatewise negative valuations 

ω and ω′ satisfy the following properties:

(1) ω′
s = ωs > ωi if ωs > ωi;

(2) ω′
s = ωi, and in(α′

s) = − in(αi) if ωs < ωi;

(3) ω′
i = −γ < ω′

s = − val(αs − αi) ≤ ωi if ωs = ωi and s �= i.

Proof. The first claim follows immediately from the strong non-Archimedean triangle 

inequality since αj + ζtβ + tγ has valuation −ωi. A similar argument proves the second 

claim. In particular, α′
s �= 0 whenever ωs �= ωi.

We now prove the third item. Again, val(αi − αj − ζtβ) > γ, so val(α′
i) = γ and 

α′
i �= 0. Pick s �= i with ωs = ωi. We write

α′
s = (αs − αi)︸ ︷︷ ︸

−ωi≤val(·)≤β

+ (αi − αj − ζtβ) − tγ

︸ ︷︷ ︸
val(·)=γ>β

.

By the strong non-Archimedean inequality, −ωi ≤ val(α′
s) = val(αs − αi) < γ, so α′

s �=
0. ✷

As the next example illustrates, the effect of the coordinate change in Lemma 5.3

can easily be visualized by means of a tropical modification followed by a coordinate 

projection.

Example 5.4. Consider points in the Puiseux series field K = C{ {t} }:

α1 = t3, α2 = 2 + t, α3 = 2 + t2, α4 = t−2, α5 = t−3, and α6 = t−4 in K∗,

where ω1 = −3, ω = ω2 = ω3 = 0, ω4 = 2, ω5 = 3, ω6 = 4, β = ζ = 1, 1 < γ = 3/2 <

val(t2).

To separate α2 from α3, and place − val(α2) to the very left of R, we reembed the line 

in the plane via y = x − (2 + t2) − t − t3/2. The tropicalization of this planar line together 

with its marked points and the projection to the y-coordinate is depicted in Fig. 5.1. ⋄
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Fig. 5.1. Visualizing the coordinate change (A) via tropical modifications.

Our first combinatorial procedure uses a change of coordinates in P1 and a relabeling 

to produce a new tuple α′ from α with the additional property that the maximum and 

minimum values of ω′ are attained exactly once. This is the content of Algorithm 5.1. 

In turn, Algorithm 5.2 transforms the output of Algorithm 5.1 into a configuration of 

points in a suitable region Ω(i). We measure improvement by two auxiliary variables:

• the deficiency def(α) of the point configuration defined as the size of the partition 

of [6] = {1, . . . , 6} identifying equal coordinates of ω,

• a refined partition Λ taking both the valuation and the initial terms into account.

Our partitions will always have the singletons {1} and {6} since ω1 and ω6 remain 

isolated after each iteration of Step (A).

Algorithm 5.1: Separate the minimum and maximum values of ω.
Input: A tuple α = (α1, . . . , α6) of six distinct labeled points in K∗.
Assumption: val(K∗) is dense in R and the valuation on K splits via ω 
→ tω.
Output: A tuple α′ obtained from α by a linear change of coordinates in P1 followed by a relabeling, 

where − val(α′
1) <− val(α′

2) ≤ . . .≤− val(α′
5) <− val(α′

6).

Relabel the points so that − val(α1) ≤ − val(α2) ≤ . . . ≤ − val(α5) ≤ − val(α6);
α′ ← α ; ω′ ← − val(α′) := (− val(α′

1), . . . , − val(α′
6));

Λmin ← {i : ωi = min(ω′)} ; Λmax ← {i : ωi = max(ω′)};
if |Λmin| > 1 then

Relabel Λmin so that {val(αi − αj) : i, j ∈ Λmin, i 	= j} is maximized at i =1, j =2;
α′ ← ψ(α) where ψ is defined as in (5.3) with ω = ω1, i = 1, j = 2;
ω′ ← − val(α′);

if |Λmax| > 1 then
α′ ← Coordinate change (B) on P1 applied to α′ ; Λmax ← Λmin;
Relabel Λmax so that {val(α′

i − α′
j) : i, j ∈ Λmax, i 	= j} is maximized for i =6, j =5;

α′ ← ψ(α′) where ψ is defined as in (5.3) with ω = ω′
6, i = 6, j = 5;

α′ ← Coordinate change (B) on P1 applied to α′;

return α′.

Proof of Algorithm 5.2. If the input α is already in one of the desired regions Ω(i) for i in 

{I, . . . , VII}, the algorithm outputs the pair (α, i). If not, the deficiency of the partition Λ

of α′ gives us precise rules to apply transformations (A) and (B) to improve this invariant 

one step at a time. Before each iteration, we use the turn around transformation (B) 

followed by a relabeling of [6] (to satisfy − val(αj) ≤ − val(αj+1) for all j = 1, . . . , 6) to 
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Algorithm 5.2: Finding a representative of a tuple α in some Ω(i) for i ∈ {I, . . . , VII}.

Input: A tuple α = (α1, . . . , α6) of six distinct labeled points in K∗ with 
− val(α1) < − val(α2) ≤ . . . ≤ − val(α5) < − val(α6).

Assumption: val(K∗) is dense in R and the valuation on K splits via ω 
→ tω.

Output: A pair (α′, i) where i ∈ {I, . . . , VII} and α′ lies in Ω(i). Here, α′ is obtained from α by a 
linear change of coordinates in P1 followed by a relabeling of [6] = {1, . . . , 6} if needed.

α′ ← α ; ω′ ← − val(α′) ; d ← def(α′) := deficiency of α′;
Λ ← part(α′) := partition of [6] determined by equality among (ω′

i, in(α′
i))’s;

while d = 3 do
if |Λ| = 6 then return (α′, VII).
Relabel {2, . . . , 5} so max{val(α′

i − α′
j) : ω′

i = ω′
j = ω′

2} = val(α′
2 − α′

3);

α′ ← ψ(α′) where ψ is defined as in (5.3) with ω = ω′
2, i = 2, j = 3;

Relabel [6] by incr. − val(α′); Λ ← part(α′); ω′ ← − val(α′); d ← def(α′);

while d = 4 do
if |Λ| = 6, ω′

2 = ω′
3, and ω′

4 = ω′
5 then return (α′, V).

else if |Λ| = 6, ω′
2 < ω′

3 then return (α′, VI).
else if (|Λ| = 6 and ω′

4 < ω′
5) or (|Λ| < 6, ω′

3 < ω′
4 and in(α′

2) 	= in(α′
3)) or (|Λ| < 6 and 

ω′
2 < ω′

3) then
α′ ← Coordinate change (B) on P1 applied to α′ with relabeling of [6];
ω′ ← − val(α′) ; Λ ← part(α′) ; d ← def(α′);

else
Relabel {2, . . . , 5} so that max{val(α′

i − α′
j) : ω′

i = ω′
j = ω′

2} =val(α′
2 − α′

3);

α′ ← ψ(α′) where ψ is defined as in (5.3) with ω = ω′
2, i = 2, j = 3;

Relabel [6] by incr. − val(α′); Λ ← part(α′); ω′ ← − val(α′); d ← def(α′);

while d = 5 do
if ω′

3 = ω′
4 and in(α′

3) = in(α′
4) then return (α′, II).

else if ω′
3 = ω′

4 and in(α′
3) 	= in(α′

4) then return (α′, III).
else if ω′

2 = ω′
3 and in(α′

2) = in(α′
3) then

α′ ← ψ(α′) where ψ is defined as in (5.3) with ω =ω2, i =2, j =3;
Relabel [6] by incr. − val(α′) and return (α′, I).

else if ω′
4 = ω′

5 and in(α′
4) 	= in(α′

5) then return (α′, IV).
else

α′ ← Coordinate change (B) on P1 applied to α′ with relabeling of [6];
ω′ ← − val(α′) ; Λ′ ← part(α′);

return (α′, I).

reduce ourselves to the case when ω2 = ω3 > − val(α2 − α3) and {val(αi − αj) : ωi =

ωj = ω2} is maximized at i = 2, j = 3. In this situation, the change of coordinates (A) 

on P1 with ω = ω2, i = 2, and j = 3 turns α to α′ ∈ (K∗)6 and def(α′) > def(α). After 

each such transformation, a relabeling of [6] is performed to ensure the − val(αi) are 

ordered increasingly. The process stops in at most four steps. ✷

6. Faithful re-embedding of planar hyperelliptic curves

Up to this point, we have only dealt with abstract tropical curves. In this section, 

we turn our attention to embedded tropical plane curves, defined as the dual complex to 

Newton subdivisions of (1.1) [11,41,47]. Our objective is to prove Theorem 1.2. Along 

the way, we analyze the combinatorics of the re-embedded tropical curves, which will 

vary with the type of the input planar hyperelliptic curve. We assume throughout that 

the valued group of K is dense in R and we fix a splitting ω → tω of the valuation.
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Our first result allows us to assume that the hyperelliptic cover (1.1) is branched at 

both 0 and ∞, and that the leading coefficient u equals 1. It ensures that the description 

of witness regions from Table 5.1 remains valid in this setting, for ω1 =−∞ and ω6 =∞:

Lemma 6.1. After an automorphism of P1 sending α′ to α, the equation (1.1) becomes

g(x, y) := y2 − x
5∏

i=2

(x − αi) = 0 α2, . . . , α5 ∈ K∗, (6.1)

where ωi := − val(αi) ∈ R, ωi = ω′
i − 2ω′

6 = 2 val(α′
6) − val(α′

i), in αi = in α′
i/ in α′ 2

6 for 

all i = 2, . . . , 5, and ω2 ≤ ω3 ≤ ω4 ≤ ω5.

Proof. Equation (1.1) is obtained from (6.1) by means of the projective transformation 

ϕ(x) :=(x −α′
1)/

(
(α′

1−α′
6)(x −α′

6)
)

and replacing y with y/
(

(x − α′
6)3

√
u

∏

1≤k≤5

(α′
k − α′

6)
)

. ✷

As discussed in Section 3, the naïve tropicalization Trop V (g) induced by (6.1) is 

almost never faithful. Our goal in this section is to produce faithful re-embeddings in 

(K∗)3 for all seven witness regions, both at the level of minimal and extended Berkovich 

skeleta. We will make full use of the techniques developed in Section 3, in particular 

Lemma 3.3, which describe these re-embedded tropical curves by means of the three 

coordinate projections.

As we will see, except for Type (II), faithfulness can be achieved in the XZ-plane, since 

the relative interior of the cell σ4 from (3.4) will contain no point from the re-embedded 

tropical curve Trop V (Ig,f ). For this reason, we postpone the treatment of Type (II) to 

the end of this section. Furthermore, a refined algebraic lift of the tropical polynomial 

F = max{Y, A + X, B + 2X} from (3.3) will yield faithfulness on the extended skeleta 

for Types (I) and (III).

The rest of this section is organized as follows. We start by giving a complete de-

scription of vertices, edges and tropical multiplicities of the xy-tropicalizations, whose 

Newton subdivisions are shown in the middle column of Table 6.1 and in Fig. 6.1. We 

do so by calculating various initial forms of the input hyperelliptic equation g(x, y). The 

explicit values will depend on the genericity of the branch points α2, . . . , α5 and the re-

lation between the expected valuations of all coefficients in g and their actual valuations. 

These computations allow us to determine the function f(x, y) from (6.2) appearing in 

Theorem 1.2. Lemma 6.2 confirms the validity of f as a lift of the tropical polynomial 

F . A refined choice f̃(x, y) of this function, described in (6.5), will allow us to control 

the combinatorics of the re-embedded tropical curves and achieve faithfulness on the ex-

tended skeleta on certain types of curves. Propositions 6.3, 6.5 and Lemma 6.4 analyze 

the combinatorics of the xz-tropicalizations, visible on the right-column of Table 6.1. 

The description of the yz-tropicalizations for each type is done on separate subsections.
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In order to find the appropriate lift f(x, y) of the tropical polynomial F , we must 

first predict the Newton subdivision of (6.1) for each witness region. This is done by 

computing the expected heights of all monomials (i.e., the negative valuation of the 

coefficients) in the Newton polytope of g(x, y) in terms of ω:

ht(x5)=ht(y2)=0 , ht(x)=

5∑

i=2

ωi , ht(x2)=

5∑

i=3

ωi , ht(x3)=ω5 + ω4 and ht(x4)=ω5.

These heights determine the induced subdivision, as seen in Table 6.1 and Fig. 6.9. 

Notice that outside Types (I) and (II), the expected heights may not be attained. For 

example, the coefficient of x3 equals α5(α4+α3) +
∑

i<j<5 αiαj . Unless in(α4) = − in(α3), 

its expected height in Type (III) will be achieved. We indicate these situations by red 

points in the Newton polytopes. Nonetheless, these special situations have no effect on 

the tropical world: they will only unmark the given lattice point.

The expected heights determine all vertices in Trop V (g) from Table 6.1 and Fig. 6.9:

v1=(ω2, ω2+
ω3 + ω4 + ω5

2
), v2=v1+(ω3−ω2)1, v3=(ω4, 2ω4+

ω5

2
), v4=v3+(ω5−ω4)(1, 2).

Unless v1 = v2, the edge e12 joining v1 and v2 has tropical multiplicity 2. Similar be-

havior occurs for the edge e34 joining v3 and v4. Notice that the combinatorial types for 

Trop V (g) are all distinct, except for Types (II) and (III). However, these two differ as 

tropical cycles, since the tropical multiplicities of the vertex v2 are distinct: it is one for 

Type (III) but two for Type (II). This follows by computing the initial degenerations 

with respect to v2:

inv2
(g) = y2 + x2 in(α5)(x − in(α3))(x − in(α4)) ∈ K̃[x±, y±].

Indeed, inv2
(g) is irreducible if and only if in(α3) �= in(α4). This holds for Type (III) 

but fails for Type (II) as Table 5.1 indicates. In the latter case, inv2
(g) has two reduced 

components, so mtrop(v2) = 2.

The tropical polynomial F from (3.3) associated to A := (ω3 + ω4 + ω5)/2 and B :=

ω5/2 contains all vertices of Trop V (g) and the edges between them. Our choice of lifting 

for F is governed by the initial degenerations of Trop V (g) along the (possibly degenerate) 

multiplicity two edges e12 = v1v2 and e34 = v3v4. Whenever these edges have positive 

length, the method unfolds them and produces loops in the re-embedded tropical curve, 

as in [20, Theorem 3.4]. We propose:

f(x, y) := y −
√

−α3 α4 α5 x +
√

−α5 x2. (6.2)

Since ine12
(g) = y2 + in(α3α4α5) x2 and ine34

(g) = y2 + in α5 x4 we verify:

Lemma 6.2. The polynomial f from (6.2) is a lifting of F and its initial degenerations 

ine12
(f) and ine34

(f) are irreducible components of ine12
(g) and ine34

(g), respectively.
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Table 6.1
Naïve tropicalization for cells (I), (II), (III), (IV) and generic (VI), and planar re-embeddings described 
by Newton subdivisions. All planar re-embeddings are faithful except for Type (II). The polygon P will 
be further subdivided, as in Subsection 6.5. The dashed edges correspond to the refined lift f̃ (6.5) of 
the tropical polynomial F . The red points’ heights might be lower than expected for special choices of 
α2, . . . , α5. The grey points have height −∞. All vertices are described in (6.4) and (6.7). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Cells and skeleta Naïve tropicalization xz-tropicalization

(I)

(II)

(III)

(IV)

(VI)

The next result recovers the Newton subdivision of the polynomial

g̃(x, z) :=g(x, z + β3β4β5 x − β5 x2) where αi =β2
i for i = 2, 3, 4 and α5 =−β2

5 , (6.3)

generating the ideal Ig,f ∩ K[x±, z±] from Table 6.1:

Proposition 6.3. For Types (I), (III), (IV) and (VI), the expected heights of g̃(x, z) are:

ht(z2)= ht(x5) = 0 , ht(xz)=
ω5+ω4+ω3

2
, ht(x2z)=

ω5

2
, ht(x)=ω5+ω4+ω3+ω2,

ht(x3) = ω5 + ω4 , ht(x4) = ω4 , ht(x2) = ω5 + ω4 + ω3.
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The expected heights for z2, x5, xz and x2z are always achieved. For the remaining mono-

mials, genericity conditions need to be imposed for Types (III) and (VI) (see Table 6.1.)

Proof. An explicit computation with Singular (see the Supplementary material): reveals 

that the coefficients of g̃ from (6.3) equal:

coeff(x5) = − coeff(z2) = 1 , coeff(xz) = −2β3β4β5 , coeff(x2z) = 2β5 ,

coeff(x4) = −α2 − α3 − α4 , coeff(x3) = α5(β3 − β4)2 + α3α4 + α2(α3 + α4 + α5) ,

coeff(x2) = −α2((α3 + α4)α5 + α3α4) , coeff(x) = α2α3α4α5 .

The characterization of each witness region in Table 5.1 gives both the expected heights 

for each relevant monomial and the genericity conditions required to achieve them:

x4: in(α3) + in(α4) �= 0 for (III) or (VI),

x3: in(α5)(in(β3) − in(β4))2 + in(α3) in(α4) �= 0 for (VI),

x2: in(α3) +in(α4) �=0 for (III); (in(α3) +in(α4)) in(α5) +in(α3) in(α4) �=0 for (VI). ✷

The previous result, together with the characterization of all six maximal cells of 

Trop V (f) in (3.4) yield explicit formulas for all vertices of the XZ-projections depicted 

in Table 6.1:

v1 = (ω2, ω2+
ω3+ω4+ω5

2
, ω2+

ω3+ω4+ω5

2
),

v12 = v′
12 = v1 + (ω3 − ω2)/2 (1, 1, 0) ,

v34 = v′
34 =v3 + (ω5 − ω4)/2 (1, 2, 1) ,

v3 = (ω4, 2ω4+
ω5

2
, 2ω4+

ω5

2
),

v2 = v1 + (ω3 − ω2)1 ,

v4 = v3 + (ω5 − ω4)(1, 2, 2).

(6.4)

The formulas for v12 and v34 are valid for Types (III) and (VI) only generically. Fur-

thermore, the description of Type (VI) curves done in Table 6.1 is only generic. Fig. 6.1

shows the combinatorial types of Trop V (g̃) for special configurations of Type (VI). In 

particular, for this type we can only get a triangle as the dual polygon to v2 in the 

Newton subdivision of g̃(x, y) when the coefficients of x3 and x4 are non-generic. We 

conclude:

Lemma 6.4. On Type (VI), the initial form inv2−(0,0,λ)(g̃(x, z)) for any λ > 0 is monomial 

only if in(α3) = − in(α4) and 2 in(α5) = in(β3β4).

In order to address this non-generic behavior and the combinatorics of Trop V (g̃) for 

all types discussed in Proposition 6.3, it will be convenient to choose a refined lift f̃ of 

F on Types (I), (III), (IV) and (VI). We define:

f̃(x, y) :=y −
√

−α3 α4 α5(1+tε) x+
√

−α5 (1+δtε′

) x2 for 0<ε, ε′ ≪1, δ =0/1. (6.5)
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By construction, Lemma 6.2 holds for f̃ as well, and Trop V (f) =Trop V (f̃). The param-

eters ε, ε′ depend on the branch points α2, . . . , α5, while the choice of δ depends solely on 

the curve type: δ = 1 for Types (I) and (III), whereas δ = 0 for (IV) and (VI). Following 

the notation from (6.3), the generator g̃′ of the ideal Ig,f̃ ∩ K[x±, z±] becomes

g̃′(x, z) :=g(x, z + β3β4β5 (1 + tε)x − β5 (1 + δtε′

)x2). (6.6)

Our next result shows that when ε and ε′ are chosen appropriately, f̃ produces faith-

fulness on the whole extended skeleton in Types (I) and (III), as Table 6.1 indicates.

Proposition 6.5. For Types (I), (III), (IV) and (VI), the coefficients of g̃′(x, z) and g̃(x, z)

agree with the following five exceptions:

coeff(x2z) =2β5(1+δtε′

) , coeff(x2)=−α2(α3+α4)α5 − α2α3α4 + α3α4α5tε(2 + tε) ,

coeff(xz) =−2β3β4β5(1+tε) , coeff(x4)=−α2 − α3 − α4 + α5δtε′

(2 + δtε′

) ,

coeff(x3) = α5(β3 − β4)2 + α3α4 + α2(α3 + α4 + α5) − 2α5β3β4(tε + δtε′

+ δtε+ε′

) .

The heights of xz and x2z agree with those in Proposition 6.3. The expected height of x3

is ω5 + ω4 and it is achieved for Type (VI) only when val(α5(β3 − β4)2 + α3α4) = −2ω4.

Moreover, if 0 < ε < (ω3 − ω2)/2 and 0 < ε′ < (ω5 − ω4)/2 (if ω5 �= ω4)), then

• ht(x2) = ω5 + ω4 + ω3 − ε > ω5 + ω4 + ω2 for all four types,

• ht(x4) = ω5 − ε′ for Types (I) and (III),

• ht(x4) = ω4 for Type (IV), and

• ht(x4) ≤ ω4 for Type (VI). Equality is achieved if and only if in(α3) �= − in(α4).

Proof. The result follows by direct computation (see the Supplementary material). The 

conditions on ε (and ε′ for (I) and (III)) guarantee that the heights of x2 and x4 satisfy:

ht(x)+ht(x3) ≤ ht(x)+exp ht(x3)<2 ht(x2) and ht(x3)+ht(x5) ≤ exp ht(x3)<2 ht(x4).

Under these constraints, the point x2 lies above the plane spanned by x, x3 and xz in 

the extended Newton polygon. Therefore, the triangle in the Newton subdivision with 

vertices x, x3 and xz will be subdivided by an edge joining xz and x2. For Types (I) and 

(III), our choice of ε′ produces the same effect for x4 and the facet spanned by x3, x5

and x2z. ✷

Proposition 6.5 implies that when the expected height of x3 is attained, the refined 

modifications replace v12 and v34 by two pairs of vertices, as seen in Table 6.1:

v12 =v1 + ε(1, 1, 0) , v′
12 =v2 − ε(1, 1, 2) , v34 =v4 − ε′(1, 2, 3) and v′

34 =v3 + ε′(1, 2, 1).

(6.7)
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Fig. 6.1. Non-generic xz-tropicalizations for Type (VI) with respect to the height of x3. The rightmost is 
non-generic with respect to x4 as well.

Remark 6.6. The combinatorial types arising from g̃(x, z) and g̃′(x, z) for non-generic 

Type (VI) curves is more subtle. All possible Newton subdivisions are shown in Fig. 6.1

and they depend on the behavior of x3 and x4. Our bound for ε given in Proposition 6.5

allows us to split the vertex v12 into two or three vertices. There are three cases to 

analyze:

(1) When x3 is non-generic but marked and the behavior of x4 is generic (as in the 

leftmost picture), there will be no high-multiplicity leg in the direction (0, 0, −1)

and the xz-tropicalization will be faithful on the whole extended skeleton. Precise 

formulas for v12, v′
12 and v′′

12 will depend on the heights of x3 and x4.

(2) When x4 is generic and x3 is unmarked (as in the middle picture), the vertex v12

splits into two vertices, with coordinates

v12 = v1 + ε(1, 1, 0) , v′
12 = (ω4 − ε/2, (5ω4/2 − ε)/2, (5ω4 − 3ε)/2).

A multiplicity two leg in the direction of (0, 0, −1) is attached to the vertex v′
12, so 

faithfulness on the extended skeleton induced by g̃′ is not guaranteed. If we consider 

g̃ instead, then v12 = v′
12 and the leg has multiplicity three. The precise coordinates 

of v12 will depend on the height of x3.

(3) When x4 and x3 are both non-generic, we cannot predict the combinatorics of the 

Newton subdivision of g̃. We bypass this difficulty by choosing the refined lift f̃

from (6.5) with δ = 1 and ε, ε′ satisfying:

0 < ε < ε′ < min{ω4 − ω2/2, ω4 + val(α3 + α4)}.

In this case, convexity shows that the xz-tropicalization of Ig,f̃ has a unique high-

multiplicity leg dual to the segment with endpoints x2 and x5, as in the rightmost 

picture. The remaining legs are adjacent to v1 and v4 and lie in the cells σ1 and σ2. 

The heights of x2, x3 and x4 in the right-most picture in Fig. 6.1 become 3ω4 − ε, 

2ω4 −ε′ and ω4 −ε′, respectively. Furthermore, the vertices of Trop V (Ig,f̃ ) in σ6 are 

v1 = (ω2, ω2 + 3ω3/2, ω2 + 3ω3/2), v4 = (ω3, 5ω3/2, 5ω3/2) and

v12 = v1 + ε(1, 1, 0), v′
12 = v4 − ε/3(1, 1, 4).

The remainder of this section is devoted to the proof of Theorem 1.2, which we do by 

a detailed case-by-case analysis. Following [5, Theorem 5.24] we certify faithfulness for 
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Ig,f and Ig,f̃ by verifying that the tropical multiplicities of all vertices and edges on the 

tropical (extended) skeleton under the forgetful map equal one. The Poincaré–Lelong 

formula [4, Theorem 5.15] will help us analyze the tropicalizations

trop: Σ(X ) → Trop V (Ig,f ) and trop′ : Σ(X ) → Trop V (Ig,f̃ ), (6.8)

where Σ(X ) denotes the extended skeleton of X an with respect to the six branch points. 

They correspond to the source curves on the left of Fig. 1.2. For all types except (V) 

and (VII), the legs in Σ(X ) marked with α1 = 0 and α6 = ∞ are mapped isometrically 

to the legs attached to v1 and v4 with directions (−2, −1, −1) and (2, 5, 5), respectively.

Whenever faithfulness on Σ(X ) cannot be achieved via f or f̃ , we overcome this issue 

by employing vertical modifications along tropical polynomials of the form trop(x − αi). 

Example 6.12 provides a detailed explanation of our re-embedding methods presented 

briefly in Example 3.4. The Supplementary material includes a complete list of examples 

(with scripts) for each combinatorial type, considering generic and special branch point 

behaviors. The interested reader can simply change the parameters α2, and βi’s on the 

script corresponding to a fixed curve type to produce new examples.

6.1. Proof for Type (I)

From the XZ-projections of both Trop V (Ig,f ) and Trop V (Ig,f̃ ) given in Table 6.1

we know that the maximal cell σ4 does not meet any of these two curves. Thus, we 

can ignore the Y Z-projection when reconstructing the space curves using Lemma 3.3: it 

suffices to attach a leg in the direction (0, −1, 0) to the vertices v1, v2, v3 and v4 in the 

charts σ1 and σ2.

From Table 6.1, we see that all vertices and edges in Trop V (g̃) and Trop V (g̃′) have 

tropical multiplicities one, since their initial degenerations are reduced and irreducible. 

This shows that both xz-tropicalizations are faithful on the minimal skeleta. Further-

more, all legs in Trop V (g̃′) have multiplicity one, thus the refined modification induces a 

faithful tropicalization on the whole tropical curve. This is not the case for Trop V (Ig,f )

since there are two multiplicity two legs in the direction (0, 0, −1).

The tropicalization maps in (6.8) can be read off from the combinatorics of both 

re-embedded curves. The legs attached to v1, v2, v3 and v4 are the isometric images of 

the legs marked with α2, α3, α4 and α5 under the tropicalization maps. These legs get 

contracted under the XZ-projections. ✷

6.2. Proof for Type (III)

The XY - and XZ-projections reveal that σ4 intersects both tropical curves

Trop V (Ig,f ) and Trop V (Ig,f̃ ) along the ray σ1 ∩ σ2 ∩ σ4. Thus, we can use Table 6.1 to 

reconstruct the space curves.
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All trivalent vertices in the XZ-projections of both space curves have tropical multi-

plicities 1. By [20, Corollary 2.14], we can confirm that v2 has also multiplicity one by 

showing that the discriminants ∆ of inv2
(g̃(x, z)) and inv2(g̃′(x, z)) do not vanish. The 

explicit descriptions of g̃(x, z) and g̃′(x, z) from Propositions 6.3 and 6.5 give

∆=in(coeff(xz)) in(coeff(x2z))−in(coeff(x3)) in(coeff(z2))=in(α5)(in(β3)+in(β4))2 �=0.

From the Newton subdivisions, we see that all bounded edges of both XZ-projections 

have tropical multiplicity one, so both planar re-embeddings are faithful on the minimal 

skeleta. Since all legs on Trop V (g̃′) have also multiplicity one, we conclude that the 

XZ-projection for the refined modification is also faithful on the extended skeleton.

As with Type (I), the tropicalization (6.8) maps the legs of Σ(X ) marked by α2

and α5 isometrically onto the leg adjacent to v1 and v4 in the cells σ1 and σ2. Since 

mtrop(v2) = 2, the legs marked with α3 and α4 are mapped isometrically onto the leg 

adjacent to v2, so these tropicalizations in R3 are not faithful on the extended skeleta. 

This can be repaired in dimension four by a vertical modification along X = ω4, via the 

ideal

J = Ig,f̃ + 〈u − (x − α4)〉 ⊂ K[x±, y±, z±, u±]. (6.9)

The tropical curve Trop V (J) in R4 is obtained from Trop V (Ig,f̃ ) by four simple opera-

tions:

(i) points p = (p1, p2, p3) in Trop V (Ig,f̃ ) with p1 < ω4 lift to points of the form (p, ω4);

(ii) points p = (p1, p2, p3) in Trop V (Ig,f̃ ) with p1 > ω4 lift to points (p, p1);

(iii) the vertex v3 in Trop V (J) has coordinates (ω4, 2ω4 + ω5/2, 2ω4 + ω5/2, ω4);

(iv) the multiplicity two leg with direction (0, −1, 0) adjacent to v3 splits into two mul-

tiplicity one legs ℓ3 and ℓ4, with directions (0, −1, 0, 0) and (0, −1, 0, −2): these are 

the images of the corresponding legs in Σ(X ) under the tropicalization map. Indeed,

inℓ3
(J) = 〈−x2 in(α5)(x − in(α3))u, u − x + in(α4), z + in(β5β4β3)x − in(β5)x2〉,

inℓ4
(J) = 〈y2 − x2 in(α5)(x − in(α3))u, −x + in(α4), z + in(β5β4β3)x − in(β5)x2〉.

These two identities follow from standard Gröbner bases techniques over valued fields, 

in particular [41, Proposition 2.6.1, Corollary 2.4.10]. Notice that the UY -projection and 

its Newton subdivision can be easily obtained by the change of variables u = x + α4. 

Indeed, the result is a hyperelliptic genus two curve covering P1, whose six branch points 

have negative valuations −∞, ω4, ω4, ω4, ω5 and ∞. As a consequence, we subdivide 

its Newton polytope along an edge joining y2 and u4. Similar reasoning applies to the 

UZ-projection. ✷
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6.3. Proof for Type (IV)

The XY -and XZ-projections from Table 6.1 confirm that the two tropical space 

curves contain no points in σ4. Furthermore, both curves can be obtained from their 

XZ-projections by attaching a leg in the direction (0, −1, 0) to the vertices v1, v2 and v3. 

The leg attached to v3 has multiplicity two, and it is the image of the legs marked with 

α4 and α5 in Σ(X ). The legs marked with α2 and α3 are mapped isometrically onto the 

legs adjacent to v1 and v2 in σ1. Both curves have a multiplicity two leg ℓ with direction 

(0, 0, −1) attached to v3:

inℓ(Ig,f ) = inℓ(Ig,f̃ ) =

〈
y2 − x3

5∏

i=4

(x − in(αi)), y + in(β3β4β5)x − in(β5)x2

〉
. (6.10)

The vertex v3 is the image of the unique genus one vertex in the Berkovich skeleton, and 

it is dual to the unique genus one triangle in the Newton subdivision of g. Furthermore:

Claim 1. The initial degeneration inv3
(g) defines a smooth elliptic curve in (K̃∗)2.

Indeed, a direct computation and the Type (IV) defining conditions from Table 5.1

reveal

inv3
(g) = y2 −x3(x− in(α4))(x− in(α5)) = x2((y/x)2 −x(x− in(α4))(x− in(α5)), (6.11)

so its projectivization is a double cover of P1
K̃

branched at four distinguished points.

Remark 6.7. An alternative proof for Claim 1 can be given in terms of j-invariants, by 

considering the plane cubic curve X ′ defined by the truncation g′ of g corresponding to 

all monomials in the triangle dual to v3 in the Newton subdivision of g. By construction, 

Trop V (g′) is the star of Trop V (g) along v3. A direct computation with Singular and

Sage (available in the Supplementary material) confirms that for any characteristic of 

K̃ other than two, the j-invariant of X ′ has non-negative valuation, so X ′ has good 

reduction and the vertex of Σ(X ′) maps to v3.

The previous discussion confirms that faithfulness occurs at the level of the minimal 

skeleta but fails for the extended one, due to the presence of the multiplicity two leg 

ℓ in σ2 adjacent to v3. This can be fixed using a vertical modification and the ideal J

from (6.9). The same procedure from Subsection 6.2 allows us to recover Trop V (J) from 

Trop V (Ig,f̃ ) and Trop V (Ig,f ), where the role of ℓ3 is replaced by a leg ℓ5. The following 

identities hold:

inℓ5
(J) = 〈−x3(x − in(α5))u, u − x + in(α4), z + in(β3β4β5)x − in(β5)x2〉,

inℓ4
(J) = 〈y2 − x3 in(α5)u, −x + in(α4), z + in(β3β4β5)x − in(β5)x2〉.
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The legs ℓ4 and ℓ5 adjacent to v3 have directions (0, −1, 0, −2) and (0, −1, 0, 0) and 

they are isometric images of the legs in Σ(X ) marked with α4 and α5, respectively. By 

combining (6.10) with the identity inℓ(J) = inℓ(Ig,f̃ ) +〈u −x +in(α4)〉 we see that the leg 

ℓ from Trop V (Ig,f̃ ) survives in Trop V (J): it has direction (0, 0, −1, 0) and multiplicity 

two. ✷

6.4. Proof for Type (VI)

From Table 6.1 we see that the vertex v2 is dual to the unique genus one lattice 

polygon in the Newton subdivision of g. As in Type (IV), v2 is the image of the unique 

genus one vertex in the Berkovich skeleton under the xy- and xz-tropicalizations.

Claim 2. The initial degeneration inv2
(g) defines a smooth elliptic curve in (K̃∗)2.

Indeed, the conditions from Table 5.1 reveal that inv2
(g) = x2((y/x)2 − ∏5

i=3(x −
in(αi)), so its projectivization is a double cover of P1

K̃
branched at four distinguished 

points.

By construction, the naïve tropicalization maps the legs marked with α3, α4, α5 in 

Σ(X ) isometrically to the leg adjacent to v2 with direction (0, −1). The next initial form 

computation reveals that this leg is the projection of a multiplicity three leg ℓ with 

direction (0, −1, 0) adjacent to v2 which is the image of the aforementioned marked legs 

in Σ(X ):

inℓ(Ig,f ) = inℓ(Ig,f̃ ) = 〈x2
5∏

i=3

(x − in(αi)), z + in(β3β4β5)x − in(β5)x2〉. (6.12)

As was discussed earlier, the combinatorics of the xz-tropicalizations depend heavily 

on the genericity of the coefficients of x3 and x4 in both g̃(x, z) and g̃′(x, z). A careful 

case-by-case analysis confirms that all vertices have multiplicity one. Furthermore,

inv2
(Ig,f ) = inv2

(Ig,f̃ ) = 〈inv2
(g), z − y + in(β3β4β5)x − in(β5)x2〉.

Since all bounded edges also have multiplicity one, we conclude that the xz-tropicali-

zations are faithful on the minimal skeleton. In what follows, we describe the combina-

torics of both space curves in each relevant case and analyze faithfulness on the extended 

skeleton. The genericity conditions for both x3 and x4 are described in Propositions 6.3

and 6.5.

Case 1: generic for x3. Extended faithfulness cannot be guaranteed since each star of v2

contains a multiplicity two leg in σ5 with direction (0, 0, −1). The vertex v12 = v′
12 of 

Trop V (Ig,f ) also has a multiplicity two leg in σ6 with the same direction.

Case 2: non-generic for x3, generic for x4. The two possible xz-tropicalizations are 

obtained from the Newton subdivision of g̃ and g̃′ in the left and center of Fig. 6.1. They 
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depend on whether x3 is marked or not. Both cases were discussed in Remark 6.6. In the 

marked case, the xz-tropicalization Trop V (g̃′) is not faithful on the extended skeleton. 

Indeed, the high multiplicity leg attached to v12 = v′
12 in the direction (0, 0, −1) induces 

an initial degeneration with two distinct reduced components, and faithfulness fails for 

the extended skeleton. It can be repaired by a vertical modification along this leg and a 

lift induced by one of these two components.

Similarly, in the unmarked case, Proposition 6.5 shows that the high multiplicity leg 

attached to v′
12 in the direction (0, 0, −1) induces an initial degeneration with reduced 

distinct components. So extended faithfulness fails for the xz-tropicalization. Vertical 

modifications along this leg adapted to these components will repair this situation in 

dimension three for Ig,f̃ and four for Ig,f .

Finally, the multiplicity of the leg ℓ described in (6.12) and Lemma 3.3 ensure that 

the leg attached to the vertex v2 in both xz-tropicalizations is the projection of a sin-

gle multiplicity two leg in the direction (0, 0, −1) attached to v2. This completes the 

description of the combinatorics of both space curves.

Case 3: non-generic for both x3 and x4. As discussed in Remark 6.6, the Newton sub-

division of g̃ cannot be predicted, so we focused on the refined modification and the 

embedding Ig,f̃ . The Newton subdivision of g̃′, depicted in the right of Fig. 6.1 shows 

that no point of Trop(Ig,f̃ ) lies in the relative interior of σ4. The star of v2 consists of 

the multiplicity three leg ℓ with direction (0, −1, 0), the leg ℓ6 with direction (2, 5, 5)

and two bounded edges with directions (−1, −1, −1) and (−1, −1, −3), respectively. The 

vertex v1 is adjacent to a unique leg, with direction (−2, −1, −1). By Proposition 6.5, 

the vertex v′
12 is adjacent to a multiplicity two leg with direction (0, 0, −1) whose ini-

tial degeneration has two distinct reduced components. The xz-tropicalization is not 

faithful on the extended skeleton. This can be repaired by a vertical modification along 

max{Z, (5ω4 − 3ε)/2}, adapted to one of these components.

As with Type (III), the extended skeleton Σ(X ) can only be revealed by means of 

vertical modifications through v2 designed to separate the images of the legs marked 

with α3, α4 and α5. We use the ideal

J = Ig,f̃ + 〈z3 − (x − α3), z4 − (x − α4)〉 ⊂ K[x±, y±, z±, z±
3 , z±

4 ].

The leg ℓ in the star of v2 in Trop V (Ig,f ) and Trop V (Ig,f̃ ) is replaced by three mul-

tiplicity one legs (ℓ3, ℓ4 and ℓ5), with directions (0, −1, 0, −2, 0), (0, −1, 0, 0, −2), and 

(0, −1, 0, 0, 0), each coming from the expected marked leg in Σ(X ). ✷

6.5. Proof for Type (II)

Throughout this section, and to simplify the exposition, we assume char K̃ �= 2, 3. 

A refinement of our methods will be required in characteristic three.

The Type (II) cone manifests itself as the most combinatorially challenging cell of 

M trop
2 . It is the only case for which the chart σ4 in the tropical modification of R2
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contains points of the re-embedded tropical curve Trop V (Ig,f ) in its relative interior. 

In particular, information from all three coordinate projections is necessary to recover 

the space curve using Lemma 3.3. Furthermore, as was already observed in Fig. 3.1, 

depending on the values of the three edge lengths in the theta graph, the Y Z-projection 

of Trop V (Ig,f ) introduces extra crossings and higher multiplicities that need to be un-

raveled in the reconstruction process. Here is our main result:

Theorem 6.8. In Type (II) the tropical curves Trop V (Ig,f ) come in 13 combinatorial 

types, depicted in Fig. 6.8. These graphs are determined by a subdivision of the Type (II) 

cone along its baricenter. Precise coordinates for all vertices are given in (6.15).

The proof of this result is computational and it involves genericity conditions of the 

branch points giving each graph. As usual, examples for all cases are provided in the 

Supplementary material.

The condition in(α3) = in(α4) characterizing the witness Type (II) region in Table 5.1

suggests a new strategy to determine the combinatorics of Trop V (Ig,f ) by controlling 

the value of d34. We introduce a new variable β34 := β3−β4 and redefine the third branch 

point as α3 := (β4 +β34)2, where − val(β34) = d34 +val(α4)/2 = − val(α3 −α4) +val(β4). 

The hyperelliptic equation becomes g(x, y) = y2 −x(x −β2
2)(x − (β4 +β34)2)(x −β2

4)(x +

β2
5), and the lifting f from (6.2) of the tropical polynomial F from (3.3) equals

f(x, y) = y − β5(β4 + β34)β4 x + β5 x2.

The weight vector u ∈ R4 encoding the negative valuation of the four parameters 

equals:

u := (− val(β5), − val(β4), − val(β34), − val(β2)) = (ω5/2, ω4/2, d34 − ω4/2, ω2/2).

(6.13)

We set ui = − val(βi) for each i = 5, 4, 34, 2 and write the coordinates of R4 in that 

order. The Type (II) cone is then determined by the following inequalities:

u5 > u4, u4 > u34, and u4 > u2. (6.14)

An easy Sage computation reveals that the closure of this cone is spanned by three 

vectors (R1, R2 and R3 in Fig. 6.2) and has a one-dimensional lineality space generated 

by the all-ones vector. We are solely interested in its interior, since its various proper 

faces correspond to other curve types in M2.

On the algebraic side, the interplay between the combinatorics of Trop V (Ig,f ) and the 

weight vector u is determined by the projection to R4 of the Gröbner fan of the extended 

ideal Ig,f K[β±
5 , β±

4 , β±
34, β±

2 , x±, y±, z±]. Since the computation of this fan with build-in

Sage functions does not terminate, we turn to Lemma 3.3 and compute Trop V (Ig,f ) by 
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Fig. 6.2. Refined subdivision of the Type (II) cone induced by all possible Newton subdivisions of the 
yz-projection after removing the one-dimensional lineality space. The first index of each cone reflects the 
label within the subdivision by leading terms of coefficients as in Table 6.2. The blue cones have max-
imal dimension four, the red cones have dimension three and the purple cone has dimension two. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 6.2
From top to bottom: Expected leading terms for all relevant coefficients of h(y, z) (14 total) and g̃(x, z)
(three total) on the nine cones Ci coarsening the refined subdivision of the Type (II) Cone in Fig. 6.2. Each 
bi is the initial form of the parameter βi.

Monomials Leading Terms Weights Cones

y4
2 b2

2 b3
5 ω2 + 3ω5/2 [0, 2, 7]

2 b2
34 b3

5 2d34 − ω4 + 3ω5/2 [1, 3, 5]
2 b3

5 (b2
34 + b2

2) ω2 + 3ω5/2 [4, 6, 8]

y3z −2 b2
4 b3

5 ω4 + 3ω5/2 all

y2z2, yz3, z4 b5
5 (coeffs 4, −4, 1, resp.) 5ω5/2 all

y3

−b2
2 b4

4 b4
5 ω2 + 2(ω4 + ω5) [0]

−b2
34 b4

4 b4
5 2(d34 + ω5) + ω4 [1]

b4
2 b6

5 2ω2 + 3ω5 [2]
b4

34 b6
5 4d34 − 2ω4 + 3ω5 [3]

−b4
4 b4

5 (b2
34 + b2

2) ω2 + 2(ω4 + ω5) [4]
b2

34 b4
5 (−b2

4 + b5 b34) (b2
4 + b5 b34) 2(d34 + ω5) + ω4 [5]

b6
5 (b2

34 + b2
2)

2
2ω2 + 3ω5 [6]

b2
2 b4

5 (−b2
4 + b5 b2) (b2

4 + b5 b2) ω2 + 2(ω4 + ω5) [7]
b4

5 (b2
34 + b2

2) (−b4
4 + b2

5 b2
34 + b2

5 b2
2) ω2 + 2(ω4 + ω5) [8]

y2z, yz2, z3
b2

2 b2
4 b6

5 (coeffs 2, −3, 1 resp.) ω2 + ω4 + 3ω5 [0, 2, 7]
b2

34 b2
4 b6

5 (coeffs −6, 9, −3, resp.) 2d34 + 3ω5 [1, 3, 5]
b2

4 b6
5 (3 b2

34 − b2
2) (coeffs −2, 3, −1, resp.) ω2 + ω4 + 3ω5 [4, 6, 8]

y2 −4 b2
2 b2

34 b4
4 b7

5 2d34 +ω2 +ω4 +7ω5/2 all

yz, z2 b2
34 b6

4 b7
5 (coeffs 2, −1, resp.) 2d34 +2ω4 +7ω5/2 all

y, z b2
2 b2

34 b8
4 b8

5 (coeffs 1, −1, resp.) 2d34 +ω2 +3ω4 +4ω5 all

x4 −2 b2
4 2ω4 all

x3

b4
4 2ω4 [0, 1, 4]

−b2
2 b2

5 ω2 + ω5 [2]
−b2

34 b2
5 2d34 + ω5 − ω4 [3]

−(−b2
4 + b5 b34) (b2

4 + b5 b34) 2ω4 [5]
−b2

5 (b2
34 + b2

2) ω2 + ω5 [6]
−(−b2

4 + b5 b2) (b2
4 + b5 b2) 2ω4 [7]

−(−b4
4 + b2

5 b2
34 + b2

5 b2
2) 2ω4 [8]

x2 2 b2
2 b2

4 b2
5 ω2 + ω4 + ω5 all
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means of the three coordinate projections as we vary u. In the remainder of this section we 

describe the interplay between the weight vector u and the (x, z)- and (y, z)-subdivisions.

Following earlier notation, we call g̃(x, z) = g(x, z + (β4 + β34)β4β5x − β5z2) and let 

h(y, z) be the generator of Ig,f ∩K[y, z]. The latter is determined by an easy elimination 

ideal computation using Singular, available in the Supplementary material. Its extremal 

monomials are y, z, y5 and z5. The coefficients of both g̃ and h lie in Z[β5, β4, β34, β2]. The 

first column of Table 6.2 shows the 17 terms of both polynomials with non-monomial 

coefficients. The second column shows the factorization of the leading terms of these 

non-monomial coefficients for each of the nine cones in Lemma 6.9 and justifies our 

characteristic assumption on K̃. The u-weights give the expected heights of all relevant 

coefficients of g̃ and h (indicated in the third column.) The table also provides the precise 

conditions on the initial forms of β5, β4, β34 and β2 under which these heights are lower 

than expected.

The (y, z)- and (x, z)-Newton subdivisions of Ig,f will be determined by the valuations 

of these 17 coefficients. The answer will vary with u in a piecewise linear fashion. At 

first glance, the domains of linearity are determined by the common refinement of the 

Type (II) cone in R4 and the Gröbner fan of the product of all these 17 non-monomial 

coefficients. The latter has f -vector (1, 21, 54, 35), so the refinement is performed by 

intersecting the Type (II) cone with the 35 chambers in the fan. The next statement 

describes this naïve subdivision of the Type (II) cone into four triangles determined by 

the baricenters R123 and R23 from Fig. 6.2. Its proof is computational, and the required 

scripts are available in the Supplementary material.

Lemma 6.9. The Gröbner fans of all 17 non-monomial coefficients of g̃ and h induce a 

subdivision of the Type (II) cone into nine cones. Following Fig. 6.2 they are:

C0 :=R>0〈R23,R123,R3〉⊕R·1,

C3 :=R>0〈R1,R123,R2〉 ⊕ R·1,

C6 :=R>0〈R123, R1〉 ⊕ R·1,

C1 :=R>0〈R23,R123,R2〉⊕R·1,

C4 :=R>0〈R23, R123〉 ⊕ R·1,

C7 :=R>0〈R123, R3〉 ⊕ R·1,

C2 :=R>0〈R1,R123,R3〉⊕R·1,

C5 :=R>0〈R123, R2〉 ⊕ R·1,

C8 :=R>0〈R123〉 ⊕ R·1.

In what follows we discuss the combinatorics of the Newton subdivisions of g̃. The 

next result summarizes our findings, depicted in Fig. 6.3:

Proposition 6.10. There are eight combinatorial types of unmarked Newton subdivisions 

of g̃. The monomial x3 in g̃(x, z) is the sole responsible for non-generic behavior, which 

only occurs in the cells Ci for i = 5, 6, 7, 8.

Proof. By Table 6.1, the Newton subdivision of g̃ is determined by all possible subdi-

visions of the parallelogram P. To find the generic subdivision on each cell, we take 

as a sample weight vector u the average of its spanning rays. We compute an exam-

ple of parameters β5, . . . , β2 with coordinatewise negative valuation u and pick initial 

forms bi = in(βi) ensuring the corresponding leading terms in Table 6.2 do not van-

ish. We compute the corresponding plane tropical curve and its dual subdivision with 
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Fig. 6.3. All eight subdivisions of the parallelogram P from Table 6.1. The generic and non-generic behavior 
of x3 on the four relevant cells are indicated by a red dot. The dashed lines correspond to two combinatorial 
types arising for non-generic initial forms. If absent, both vertices agree with v12 and v34, accordingly. For 
non-generic C7, x3 is unmarked. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

the tropical.lib package in Singular. All examples and scripts are available in the 

Supplementary material.

To certify that each generic subdivision is valid on the entire cell, we compute explicit 

formulas for all the vertices dual to polygons in the subdivision, in terms of the weights of 

the monomials on P being maximized (these weights are provided in Table 6.2). Finally, 

the inequalities defining each of the nine cells confirm that these vertices maximize the 

same monomials for every weight vector in the given cell.

To address non-generic behavior on the cells C5, C6, C7 and C8, we need only to focus 

on the monomial x3. We list all possible subdivisions of P that can arise by lowering x3

and construct numerical examples showing which ones are realized. ✷

Since the linear inequalities between the expected heights of each relevant monomial in 

h(y, z) can vary within each cell, the methods used for g̃ will not suffice to determine all 

possible Newton subdivisions of h. A refined subdivision of the Type (II) cone induced 

by a subdivision of C0, C2 and the relative interior of their common facet C7 will be 

required to address this point and the effect of non-generic choices of β-parameters.

To this end, we construct nine polynomials hi for i = 0, . . . , 8, obtained by replacing 

each coefficient of h by its leading term on the corresponding cone Ci. We compute the 

Gröbner fan Gi of each hi in R6, and intersect each Ci with the projection of all maximal 

cells in Gi to the four β-coordinates. These calculations are easily performed since each 

fan has at most 16 chambers and lineality space R ·1. The result of this subdivision 

process is depicted in Fig. 6.2.

Next, we describe all possible Newton subdivisions of h. As with Proposition 6.10, the 

proof is computational in nature and requires a careful analysis for non-generic cases.

Proposition 6.11. Each cell in Fig. 6.2 will give rise to one generic subdivision of h(y, z), 

with further possibilities if genericity conditions are detected in Table 6.2. Figs. 6.4

through 6.7 depict all possible outcomes, grouped conveniently.
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Before providing the details of the proof for each cell, we point out some common 

features of the various subdivisions and clarify notation. In all cases, we only indicate 

vertices of Trop V (Ig,f ) rather than false crossings arising from certain parallelograms 

(seen, for example, in the subdivision of Q1 in Fig. 6.6.) False crossings may also appear 

from a polygon with at least two parallel edges when a vertex in σ6 maps to the interior of 

an edge or leg in σ4. This is seen in the polygon Q4 in the same figure: the Y Z-projection 

of the vertex v12 in σ6 lies in the projection of the leg with direction (0, 0, −1) adjacent 

to the vertex v21 in σ4.

In addition to these false crossings, the Y Z-projection has other undesirable effects: 

we will see vertices in σ4 hidden in edges of Trop V (h), overlapping of vertices, as well 

as higher multiplicity edges and legs coming in two flavors:

(i) Multiplicity one edges and legs inherit higher multiplicities in the yz-tropicalization 

due to the push-forward formula for multiplicities. This occurs for the leg with 

direction (2, 5, 5) in σ3 adjacent to v4 which inherits multiplicity 5 in Trop V (h).

(ii) Two edges or legs (one in σ4 and one in σ6) overlap in the yz-tropicalization, and 

their multiplicities get added accordingly. This will always be the case for the edges 

joining z4 and y2z2 in all Newton subdivisions of h. On the tropical side, this was 

observed already in Fig. 3.1.

(iii) Vertices in σ4 lie in relative interiors of edges in Trop V (h). This occurs for the 

vertex v2 and the cells C0,i: v2 maximizes the edge between z4 and y2z2 in Fig. 6.4.

(iv) A vertex in σ4 and one in σ6 become the same vertex in Trop V (h). This will 

be indicated in all figures by equalities between labeling vertices dual to a given 

polygon.

Proof of Proposition 6.11. To determine the generic subdivisions we proceed by direct 

computation, as in the proof of Proposition 6.10. The results for each one of the 17 

cells are shown in Figs. 6.4 through 6.7, where superscripts gen indicate generic param-

eters.

Next, we discuss the labeling of all polygons in the generic subdivisions. By Lemma 3.3, 

we can place the vertices of Trop V (Ig,f ) we already know from Table 6.1 and Fig. 6.3

as duals to polygons or edges in the subdivision. The remaining unlabeled poly-

gons correspond to either false crossings or vertices in σ4. The false crossings cor-

respond to parallelograms, and we leave them blank. The others get labeled with 

blue vertices of the form v2i with i = 0, 1 to emphasize that they come from 

σ4.

In order to determine all non-generic subdivisions, we look for vanishing of expected 

leading terms in Table 6.2 that will lower the corresponding monomials. In most cases, 

the resulting special subdivisions (marked with the superscript sp on the figures) will 

differ from the generic ones in only a few polygons. We treat each cell separately to pre-

dict these special behaviors and construct numerical examples to confirm these potential 

subdivisions do occur.
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Fig. 6.4. All possible subdivisions corresponding to weight vectors in the cells C0,i for i = 0, . . . , 4. The 
polygon Q0,i indicates the subdivision of the polygon Q on C0,i. Unlabeled polygons correspond to false 
crossings. Blue vertices come from σ4. The notation on the remaining vertices is compatible with that 
of Table 6.1 and Fig. 6.3. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 6.5. All possible subdivisions for the cells C2,i for i = 0, 1, 2 and C8. Red (respectively pink) dots 
indicate marked (resp. unmarked) monomials whose behavior varies with the genericity conditions. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We start with the cell C4. The monomials affected are y4 (if b2
34 = −b2

2), and y2, yz2

and z3 (if 3b2
34 = b2

2). From Fig. 6.6 we see that lowering any of these four monomials 

will have no effect on the generic subdivision since these points were already unmarked 

(the unmarking of y4 was indicated in pink). Therefore, there will be a single Newton 

subdivision for C4, namely the generic one.

Special subdivisions on the cell C5 are determined by the behavior of y3 whenever 

b2
4 = ±b5b34. This monomial is marked in Qgen

5 , as seen in Fig. 6.6. When the height 

of this monomial is reduced, an edge between yz and y4 arises. Furthermore, with the 

exception of y3, the heights of all points in the triangle T with vertices y, yz and y4

are known from Table 6.2. Depending on the height of y3, there will be two possible 

subdivisions: either T is a polygon in the subdivision, or it gets divided along an edge 

between y3 and yz. Numerical examples confirm that both cases do occur.

The cell C6 has the same defining genericity conditions as C4, with the addition that y4

drops height whenever y3 does. Since y2 is marked, the lowering of the monomials z3, y2z

and yz will not change the subdivision, so we can disregard this genericity condition, 

and only require b2
34 = −b2

2 for special behavior.

Furthermore, since y3 and y4 are both marked in Qgen
6 as we see in Fig. 6.6, for 

special parameters, an edge joining y2 and y2z2 will appear and give rise to a tri-
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Fig. 6.6. All possible subdivisions for the cells Ci for i = 1, 3, 4, 5, 6. The polygon Q gets subdivided differently 
on each cell. The subscript gen correspond to generic parameters β5, β4, β34 and β2, whereas the superscript 
sp indicate special ones. As with Fig. 6.3, dotted lines correspond to extra possible subdivisions. When 
absent, the corresponding vertices agree.

Fig. 6.7. All possible subdivisions for the cells C7,i for i = 0, 1, 2.

angle T with vertices y2, y2z2 and y5. We claim that T can only be further subdi-

vided by an edge between y2z2 and y3 leading to the two possibilities for Qsp
6 shown 

in the figure. The reason for this lies in Lemma 3.3 and Proposition 6.10. Since 

v12 = (2ω4 + ω5/2, ω2 + ω4 + ω5/2), this vertex lies in σ4 ∩ σ5. Therefore, all cells 

in a subdivision of T will come from vertices in σ5, namely the vertices v′
34 and v′′

34

in Fig. 6.3. Unless these two agree, the edge between them in Trop V (g̃) is dual to an 

edge with slope −2 in a subdivision of T . By convexity, there is only one option for such 

an edge.

The analysis of non-genericity for the cells C7,i with i = 0, 1, 2 is simpler that ear-

lier cases since only the monomial y3 imposes restrictions on the parameters. Only 

if b2
4 = ±b2b5 this monomial will be lower than expected. If so, due to the mark-

ing of y4 in the polygon Bgen from Fig. 6.7, an edge between y2z and y4 will ap-

pear for special parameters. Depending on the height of y3, we will have one extra 

edge joining y2z and y3. This yields the two possible configurations Bsp in the fig-

ure.

Finally, we discuss the subdivisions for non-generic parameters coming from C8. The 

same six monomials from C6 are responsible for special choices of parameters. Since 

these six monomials were not vertices in the generic subdivision in Fig. 6.5, lower-

ing them will not alter the subdivision, except for unmarking y3 and y4 accordingly. 

Thus, the generic and the special Newton subdivisions agree for C8. This concludes our 

proof. ✷
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Formulas for all vertices in Trop V (Ig,f ) can be given in terms of the vertices v1, v2, v4

from (6.4) (where ω3 = ω4) and the weight vector (ω5, ω4, d34, ω2) from Table 5.1:

v12 := v1 + (ω5 − ω2)/2 (1, 1, 0),

v34 := v4 − (ω5 − ω2)/2 (1, 2, 3),

ṽ34 := v4 − (ω5 + ω4 − 2d34)/2 (1, 2, 3),

v20 := v2 − (ω4 − d34)(0, 1, 1),

v21 := v′′
2 − (3ω4 + 2ω5 − 2d34)/2 (0, 1, 1),

ṽ21 := v′
2 − (ω4 + ω2 − 2d34)/2 (0, 1, 1),

v′
2 := v2 − (ω4 − ω2)(0, 0, 1),

v′′
2 := v2 − (ω5 − ω4)(0, 0, 1),

v′
12 := v12 − ε′(1, 1, 0),

v′′
12 := v′′

2 − 2ε′(1, 1, 3),

v′
34 := v′

2 + 2ε(1, 2, 0),

v′′
34 := v34 − ε(1, 2, 3),

v′
21 := v21 + ε′′(0, 1, −1),

v′′
21 := v′

2 − 2ε′′(0, 1, 2),

(6.15)

where 0 ≤ ε ≤ (ω5 + ω2 − 2ω4)/6, 0 ≤ ε′ ≤ (2ω4 − ω5 − ω2)/6 and 0 ≤ ε′′ ≤ (ω5 + 2d34 −
ω4)/6. Whenever the value of ε is maximal, we get v′

34 = v′′
34. Similarly, when ε′ and ε′′

are maximal, it follows that v′
12 = v′′

12 and v′
21 = v′′

21, respectively.

Proof of Theorem 6.8. The result follows by combining Lemma 3.3 with Proposi-

tions 6.10 and 6.11. It is worth noticing that C0,i, C1, and C4 give tropical curves in 

R3 with the same combinatorial type (indicated in Fig. 6.8 by the cell C014). Fig. 3.1

corresponds to a graph in C014. Each special configuration leads to two cells Csp
i and 

Csp2

i for i = 5, 6, 7. The latter is obtained when v′
12 = v′′

12, v′
34 = v′′

34 and v′
21 = v′′

21, 

respectively. ✷

A simple computation shows that inv(Ig,f ) is reduced and irreducible for all ver-

tices and edges in Trop V (Ig,f ). We conclude that the tropical skeleton is isometric 

to the minimal Berkovich skeleton, as predicted by Theorem 1.2. Faithfulness at the 

level of the extended skeleta can be achieved via the vertical modification (6.9) as in 

Type (III).

Example 6.12 (Example 3.4 revisited). As was shown in Fig. 3.1, the curve from Exam-

ple 3.4 is of Type (II). It lies in the witness region Ω(II) with branch points

α1 = ∞, α2 = (3 t5)2, α3 = (11 t2 + 5 t7)2, α4 = (11 t2)2, α5 = (1 + t2)2 and α6 = 0.

By construction, we have natural choices for square-roots of the relevant branch points, 

namely β2 = 3 t5, β3 = 11 t2 + 5 t7, β4 = 11 t2 and β5 = 1 + t2. We re-embed our naïve 

tropicalization via the following algebraic lift from (6.2) of F = max{Y, −4 + X, 2X}:

f(x, y) = y − 11 t2(1 + t2)(11 t2 + 5 y7) x + (1 + t2) x2.

Since β34 = β3 − β4 = −5 t7, the weight vector u from (6.13) becomes
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Fig. 6.8. All combinatorial types of Trop V (Ig,f ) and their (symmetric) poset of specializations, where Csp2

i

is obtained from Csp
i by making the two vertices v′

kl and v′′
kl agree (the adjacent leg ℓ3 has multiplicity 3). 

The four leg directions are ℓ0 = −(2, 1, 1), ℓ1 = (2, 2, 5), ℓ2 = −e2 and ℓ3 = −e3.

u = (0, −2, −7, −5) = −2 1 + 5/3 R123 + 1/3 R123,3 + 4/3 R23,3

so it lies in the cell C0,0 from Fig. 6.2. The top left graph in Fig. 6.8 shows the 

tropical curve Trop V (Ig,f ), in agreement with Fig. 3.1. Since ω = (ω5, ω4, d34, ω2) =

(0, −4, −9, −10), expression (6.4) gives us the vertices v1 = (−10, −14, −14), v2 = v3 =

(−4, −8, −8) and v4 = (0, 0, 0). We use (6.15) to determine all remaining vertices: v12 =

(−5, −9, −14), v′′
2 = (−4, −8, −12), v20 = (−4, −13, −13), and v21 = (−4, −11, −15). ⋄

6.6. Types (V) and (VII)

As discussed earlier in this section, these are the only two types of curves whose naïve 

tropicalization is faithful on the minimal skeleton. As Fig. 6.9 shows, these tropical curves 

have high-multiplicity legs with direction (0, −1). They are the images of four legs on 

the source curves in Fig. 1.2. For Type (VII), the unique multiplicity four leg adjacent 

to v1 is the isometric image of the legs of Σ(X ) marked with α2, . . . , α5. For Type (V), 

the legs marked with α2 and α3 are mapped isometrically onto the multiplicity two leg 

adjacent to v1, while the legs marked with α4 and α5 are mapped to the corresponding 

vertical leg adjacent to v3. In both cases, the legs marked with α1 and α6 are mapped 

isometrically to the legs with directions (−2, −1) and (2, 5), respectively. The next result 
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Fig. 6.9. From left to right: Naïve tropicalizations for Types (V) and (VII) via Newton subdivisions, following 
the notation from Table 6.1.

discusses the behavior of the vertices of the Berkovich skeleta under tropicalization, 

where v1 =(ω2, 3ω2/2 + ω4) and v4 =(ω4, 5ω4/2):

Lemma 6.13. The initial degeneration of the vertex v1 of Trop V (f) for Type (VII) is a 

smooth genus two curve over K̃. The vertex is the image of the unique genus two vertex 

of the extended skeleton of X an under the naïve tropicalization map.

Proof. A simple computation gives inv1
(g) = y2 − x 

∏5
i=2(x − in(αi)). Table 5.1 ensures 

that this initial degeneration is a genus two hyperelliptic curve branched at six distinct 

points: 0, in(α2), . . . , in(α5) and ∞ in P1
K̃

. Therefore, it is smooth. The second claim 

follows directly by continuity and the earlier description of the images of all legs. ✷

Lemma 6.14. The initial degenerations of both vertices of Trop V (g) for Type (V) are 

smooth genus one curves over K̃. These vertices are the images of the genus one vertices 

of the extended skeleton of X an under the naïve tropicalization map.

Proof. A direct computation gives inv1
(g) = y2 − in(α4) in(α5)x(x − in(α2)(x − in(α3)). 

By Table 5.1 we conclude that inv1
(g) defines an elliptic curve over K̃, since it is a 

double cover of (K̃∗)2 branched at four distinct points: 0, in(α2), in(α3) and ∞ in P1
K̃

. 

Expression (6.11) computed for Type (IV) is also valid for Type (V), so inv3
(g) is a 

smooth genus one curve in (K̃∗)2.

Since the images of the legs marked with α2 and α3 meet at v1, we see that v1 is 

the image of the corresponding genus one vertex. Similar arguments prove the claim for 

v3. ✷

Remark 6.15. Techniques from Remark 6.7 can be used here to show that the vertices 

of Trop V (g) have genus one. Computations available in the Supplementary material 

confirm that the valuations of the j-invariants of the restriction of g to the triangles dual 

to v1 and v3 are non-negative for any characteristic of K̃ other than two.

As discussed earlier, the naïve tropicalization is not faithful on the extended skeleta. 

We overcome this via vertical modifications along the tropical polynomials trop(x −
α2) and trop(x − α4). Our next result show that these methods yield faithfulness for 

these tropical curves in dimensions four and five. The Supplementary material provides 

examples illustrating this technique for both types.
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Proposition 6.16. Let X be of Type (VII). Then, the embedding X →֒ (K∗)5 given by

J = 〈g, zi − (x − αi) : i = 2, 3, 4〉 ⊂ K[x±, y±, z±
2 , z±

3 , z±
4 ], (6.16)

induces a faithful tropicalization for the extended skeleton with respect to α1, . . . , α6. The 

tropical curve Trop V (J) has one vertex and six legs, and all tropical multiplicities are 

one.

Proof. The result follows from the Fundamental Theorem of Tropical Geometry [41, 

Theorem 3.2.5] after parameterizing X (K) by the maps:

K ∋ x 	→ (x, ±
(

x

5∏

i=2

(x − αi)
)1/2

, x − α2, x − α3, x − α4). (6.17)

We claim that Trop V (J) has a single vertex v = ω2(1, 5/2, 1, 1, 1) and six legs 

ℓi (i = 1, . . . , 6) with directions (−2, −1, 0, 0, 0), (0, −1, −2, 0, 0), (0, −1, 0, −2, 0), 

(0, −1, 0, 0, −2), (0, −1, 0, 0, 0) and (2, 5, 2, 2, 2). By construction, all tropical multiplici-

ties equal one. Indeed, standard Gröbner bases arguments from [41, Proposition 2.6.1, 

Corollary 2.4.10] ensure that the initial degeneration of the first and last legs equal

inℓ1
(J)=〈y2+x in(α5)

4∏

i=2

zi, zj −in(αj) : j =2, 3, 4〉, inℓ6
(J)=〈y2−x5, zj −x : j =2, 3, 4〉.

Similarly, the initial degenerations with respect to the legs ℓ2, ℓ3 and ℓ4 are

inℓi
(J) = 〈y2−xz2z3z4(x−in(α5)), x−in(αi), zj −(x−in(αj)) : j = 2, 3, 4, j �= i〉 (i = 2, 3, 4),

while inℓ5
(J) = 〈xz2z3z4(x − in(α5)), zj − (x − in(αj)) : j = 2, 3, 4〉. We conclude that all 

six initial degenerations are reduced and irreducible, so mtrop(ℓi) = 1 for all i = 1, . . . , 6.

Finally, inv(J) = 〈y2 − xz2z3z4(x − in(α5)), zj − (x − in(αj)) : j = 2, 3, 4〉, so 

mtrop(v) = 1 as well. A direct computation from (6.17) shows that each leg in Trop V (J)

is the isometric image of the corresponding marked leg of Σ(X ) under the new tropical-

ization. ✷

Proposition 6.17. Let X be of Type (V). Then, the embedding X →֒ (K∗)4 given by

J = 〈g, z2 − (x − α2), z4 − (x − α4)〉 ⊂ K[x±, y±, z±
2 , z±

4 ], (6.18)

induces a faithful tropicalization of the extended Berkovich skeleton of X with respect to 

the six branch points α1, . . . , α6.

Proof. We use the same techniques from Proposition 6.16 and apply two successive 

vertical modifications, starting from trop(x −α4) followed by trop(x −α2). In particular,
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Fig. 6.10. Extended faithfulness for Type (V) via two vertical modifications.

inv1(J) = 〈inv2
(g(x, y)), z2−(x−α2), z4+α4〉, inv3

(J) = 〈inv3
(g(x, y)), z2−x, z4−(x−α4)〉.

Both initial degenerations are smooth by Lemma 6.14.

The vertical modification techniques described in [20, Lemma 2.2, Proposition 2.3] al-

low us to determine Trop V (J) by means of the planar XY -, Z2Y - and Z4Y -projections. 

The ambient tropical surface Trop V (〈z2 − (x − α2), z4 − (x − α4)〉) consists of five 

two-dimensional cells and it is depicted in Fig. 6.10 together with Trop V (J). As ex-

pected, Trop V (J) consists of two four-valent vertices v1 = (ω2, 3ω2/2 + ω4, ω2, ω4), 

and v3 = (ω4, 5ω4/2, ω4, ω4), joined by an edge with direction (2, 3, 2, 0), with six legs 

ℓ1, . . . , ℓ6. They are the isometric image of the six marked legs of the extended skeleta 

and their directions are: ℓ1 = (−2, −1, 0, 0), ℓ2 = (0, −1, −2, 0), ℓ3 = ℓ5 = (0, −1, 0, 0), 

ℓ4 =(0, −1, 0, −2) and ℓ6 =(2, 5, 2, 2). Similar computations to the ones done in the proof 

of Proposition 6.16 reveal that all tropical multiplicities equal one. ✷

7. Igusa invariants and their tropicalizations

In 1960, Igusa introduced three invariants j1, j2, j3 (called absolute Igusa invariants) 

characterizing isomorphism classes of smooth genus two curves when char K̃ �= 2 [33]. 

These invariants can be expressed as rational functions (with integer coefficients) in the 

pairwise differences of the six branch points defining the hyperelliptic equation (1.1).

It is worth noticing that a curve X with Igusa invariants in K need not be defined over 

K but rather over a field extension. A concrete algorithm for constructing the curve from 

these invariants was developed by Mestre [42]. For alternative methods involving Hilbert 

and Siegel moduli spaces that are better suited for computations over finite fields, as 

well as applications to Cryptography we refer to [39].

In order to give precise formulas for j1, j2 and j3 we first construct four homoge-

neous polynomials A, B, C and D in u and the six branch points α1, . . . , α6. Up to an 

automorphism of P1 we may assume none of the branch points lies at infinity. We write
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∆ij := (αi − αj)2 for i < j, (7.1)

and set the homogeneous degree eight polynomial A in Z[u, α1, . . . , α6] to be

A := u2
∑

{{i,j},{k,l},{m,n}}

∆ij ∆kl ∆mn , (7.2)

where we sum over the 15 tripartitions of [6] = {1, . . . , 6}. Similarly, set

B := u4
∑

{{i,j,k},{l,m,n}}

(∆ij ∆jk ∆ki) (∆lm ∆mn ∆nl) , (7.3)

where we sum over the ten partitions of [6] into two sets of size three. We define C as

C := u6
∑

{{i,j,k},{l,m,n}}
{{i,l},{j,m},{k,n}}

(∆ij ∆jk ∆ki) (∆lm ∆mn ∆nl) (∆il ∆jm ∆kn), (7.4)

where we sum over the 60 ways of defining a pair consisting of a partition [6] = U1 ⊔ U2

into two sets of size 3 and an ordered tripartition where each pair contains exactly one 

element from U1. We interpret this indexing set as a labeling of a Type (V) tree T with 

six leaves, as in Table 5.1. Each set Ui correspond to the leaves attached to each of 

the two vertices of the tree. The planar embedding of T is relevant since the differences 

∆il, ∆jm and ∆kn in each summand of C corresponding to mirror leaves on each side of 

the tree. This description will be used frequently to compute − val(C).

Finally, we let D be the square of the discriminant of the right hand side of (1.1), i.e.

D := u10
∏

1≤i<j≤6

∆ij . (7.5)

The polynomials A, B and C have 141, 1 531 and 8 531 terms, respectively.

Definition 7.1. The three Igusa invariants of the smooth hyperelliptic curve X equal

j1(X ) :=
A5

D
, j2(X ) :=

A3 B

D
, and j3(X ) :=

A2 C

D
. (7.6)

Notice that j1, j2, j3 ∈ Q(α1, . . . , α6). Furthermore, an easy calculation shows that ap-

plying an automorphism on the target P1 of the hyperelliptic cover, and changing the 

equation (1.1) defining X accordingly, yields the same three invariants.

Our objective in this section is to study the behavior of the three Igusa invariants 

under tropicalization and prove the first half of Theorem 1.4. The second half is discussed 

in Section 8. We start by defining the tropical Igusa functions jtrop
i : M trop

2 → R≥0. As it 

occurs with genus one curves and their tropical j-invariant [37], the construction involves 
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a genericity assumption. The precise hypersurfaces to avoid for each combinatorial type 

are discussed in the proof of Theorem 7.3 and are listed in the Supplementary material.

Definition 7.2. Given a genus two abstract tropical curve Γ we define its three tropical 

Igusa invariants as jtrop
i (Γ) := − val(ji(X )) for i = 1, 2, 3 for a generic smooth genus 

two algebraic lift X of Γ.

Note that a generic algebraic lift X of Γ is given by generic values αi which are chosen 

using Table 5.1. By construction, in the non-generic case, the negative valuations will 

be lower than expected. Although it is not evident from the definition, our first result 

shows that these three tropical Igusa functions indeed depend solely on Γ, rather than 

on the isomorphism class of X . Furthermore, they define piecewise linear functions on 

M trop
2 with domains of linearity given by the seven cones describing all combinatorial 

types. Here is the precise statement addressing the first half of Theorem 1.4:

Theorem 7.3. Let X be a genus two hyperelliptic curve defined over K with char K̃ �= 2, 3. 

The tropical Igusa functions equal

(i) jtrop
1 (Γ) = L1 + 12L0 + L2, jtrop

2 (Γ) = jtrop
3 (Γ) = L1 + 8L0 + L2 if Γ is a dumbbell 

curve,

(ii) jtrop
1 (Γ) =jtrop

2 (Γ) =jtrop
3 (Γ) =L1+L0+L2 if Γ is a theta curve,

where L0, L1, L2 denote the lengths on each curve, as in Fig. 2.1. All three formulas 

remain valid under specialization and yield well-defined piecewise linear maps on the 

moduli space M trop
2 with domains of linearity corresponding to the seven combinatorial 

types.

Remark 7.4. The previous result shows that the three tropical Igusa functions do not 

characterize tropical curves of genus two, not even within a fixed combinatorial type and 

should not be considered tropical analogs of Igusa invariants. Indeed, the second and 

third tropical Igusa functions agree on each cone in M trop
2 , and all three agree on the 

cone of theta curves. In particular, we cannot recover the length data for each tropical 

curve from these three functions.

We would like to comment on the relation of this result with [32]. In [33], Igusa 

introduced ten projective invariants of smooth genus two curves, and the three specific 

quotients j1, j2 and j3. Whenever these quotients do not vanish, they determine a unique 

point in M2 (a smooth curve of genus two) over a field of characteristic different than 

two. In particular, these invariants become coordinates on M2. Our work describes to 

which extent their tropicalizations fail to be coordinates on M trop
2 . Building on earlier 

work of Liu [40], [32] shows that the set of ten invariants suffices to characterize the type 

and lengths of the tropicalization Γ. One should take into account that in [32], the ten 
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invariants are expressed in terms of the coefficients of the hyperelliptic equation (1.1), 

while our three quotients are written in terms of the branch points.

Proof of Theorem 7.3. Consider a generic lift X of our tropical curve Γ. This means, a 

tuple of generic branch points α1, . . . , α6 in K∗ whose valuations satisfy the conditions 

described in Table 5.1 and yield the metric graph Γ. Furthermore, we assume val(α1) = 0, 

and u =1 since u plays no role when defining each ji(X ). By expression (7.6), the tropical 

Igusa functions of Γ equal:





− val(j1(X )) = −5 val(A) + val(D) ,

− val(j2(X )) = −3 val(A) − val(B) + val(D) ,

− val(j3(X )) = −2 val(A) − val(C) + val(D).

(7.7)

We treat each invariant separately, analyzing the contributions of each summand 

in the definition of the four polynomials A, B, C, and D, and checking for potential 

cancellations of the expected initial terms. The proof is completed by discussing the 

behavior of each maximal cells of M trop
2 separately in two lemmas below.

The genericity conditions on X are imposed so that the initial forms of each polynomial 

have the expected valuation after specializing them at the initial forms of each branch 

point. The two maximal cells in M trop
2 require no genericity assumptions, since the 

leading terms of all polynomials involved are monomials.

Type (I) cells: For a Type (I) curve, the negative valuation of each A, B, C, D is obtained 

by computing the initial term on each of these four polynomials with respect to the weight 

vector ω := (ω1, . . . , ω6) ∈ R6 with ω1 < . . . < ω6. Lemma 7.5 ensures that

− val(A) = 2(ω4 + ω5 + ω6),

− val(B) = 4(ω5+ω6) + 2(ω3+ω4),

− val(C) = 6(ω5 + ω6) + 4ω4 + 2ω3,

− val(D) = 2ω2 + 4ω3 + 6ω4 + 8ω5 + 10 ω6.
(7.8)

Combining these values with (7.7) and the formulas for L0, L1 and L2 from Table 5.1

gives:

jtrop
1 (Γ) = 10(ω4 + ω5 + ω6) − (2ω2 + 4ω3 + 6ω4 + 8ω5 + 10ω6)

= 4ω4 + 2ω5 − 2ω2 − 4ω3 = 2(ω5 − ω4) + 6(ω4 − ω3) + 2(ω3 − ω2)

= L1 + 12L0 + L2 ,

jtrop
2 (Γ) = 6(ω4+ω5+ω6) + 4(ω5+ω6) + 2(ω3+ω4) − (2ω2+4ω3+6ω4+8ω5+10ω6)

= 2ω5 + 2ω4 − 2ω3 − 2ω2 = 2(ω5 − ω4) + 4(ω4 − ω3) + 2(ω3 − ω2)

= L1 + 8L0 + L2 ,

jtrop
3 (Γ) = 4(ω4+ω5+ω6) + 6(ω6+ω5)+ 4 ω4 + 2 ω3 − (2ω2+4ω3+6ω4+8ω5+10ω6)

= L1 + 8L0 + L2 = jtrop
2 (Γ) .
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Type (II) cells: Following Table 5.1, the weights for Type (II) curves satisfy

ω1 < ω2 < ω3 = ω4 < ω5 < ω6 and − d34 := val(α3 − α4) > −ω3. (7.9)

For this reason, in order to determine the valuations of A, B, C and D we consider 

the factor ∆34 as a new variable α2
34, and replace each variable α4 by α34 + α3 in all 

four polynomials. A similar strategy was used in Subsection 6.5. We denote the new 

polynomials by

A′, B′, C ′, D′ ∈ Z[α1, α2, α3, α34, α5, α6]. (7.10)

A computation with Sage (available in the Supplementary material) shows that A′, B′

and C ′ have 177, 1 911 and 11 745 terms, respectively.

The weight of the new variable α34 equals d34. We replace our weight vector in R6 by 

ω = (ω1, ω2, ω3, d34, ω5, ω6). By construction, the negative valuation of each A, B, C, D

agrees with that of A′, B′, C ′ and D′. The later equals the ω-weight of the initial form 

of A′, B′, C ′ and D′, respectively. Lemma 7.6 ensures that

− val(A) = 2(ω3 + ω5 + ω6) ,

− val(B) = 4(ω3 + ω5 + ω6) ,

− val(C) = 6(ω3 + ω5 + ω6) ,

− val(D) = 2ω2 + 8ω3 + 2d34 + 8ω5 + 10 ω6.
(7.11)

We conclude that −5 val(A) = −3 val(A) −2 val(B) = −2 val(A) −3 val(C). The formulas 

for the lengths L0, L1, and L2 from Table 5.1 yield

jtrop
1 (Γ) = jtrop

2 (Γ) = jtrop
3 (Γ)

= 10(ω3 + ω5 + ω6) − (2ω2 + 8ω3 + 2d34 + 8ω5 + 10ω6)

= 2ω5 + 2ω3 − 2ω2 − 2d34 = 2(ω5 − ω3) + 2(ω3 − ω2) + 2(ω3 − d34)

= L1 + L0 + L2 .

Type (III) through (VII) cells: In order to prove the statement for lower dimensional 

cells, we first note that the substitution A, B, C, D for A′, B′, C ′, D′ has no impact when 

computing their valuations on Type (I). Indeed, the weight ω=(ω1, ω2, ω3, d34, ω5, ω6) ∈
R6 satisfies d34 = ω4 and in(α34) = in(α4).

We fix a lower dimensional cell in M trop
2 and pick the weight vector ω in R6, where the 

fourth entry equals ω4, as described in Table 5.1. Consider a sequence of weight vectors 

(ω(n))n∈N corresponding to a Type (I) curve specializing to ω. By continuity and the 

characterization of Gröbner fans of homogeneous polynomials [22], we conclude that the 

ω(n)-initial terms for A, B, C and D are present in the corresponding ω-initial terms. 

Therefore, as long as the initial forms of each polynomial do not vanish after evaluating 

them at in(α), the formulas for the Tropical Igusa functions on Type (I) remain valid for 

the lower dimensional types: the valuation of each polynomial is the expected one. The 
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proof involving Type (II) sequences is similar since ω
(n)
4 = d

(n)
34 → ω3 if we approach a 

curve of Type (III), (VI) or (VII). ✷

The following two lemmas are used in the proof of Theorem 7.3 as well as in Sec-

tion 8. They can be verified via Macaulay2 computations by choosing appropriate 

weight vectors in R6. The required scripts are available in the Supplementary material. 

For completeness, we provide alternative non-computational proofs that help understand 

the behavior of these polynomials under tropicalization. They justify the need to exclude 

char K̃ = 3.

Lemma 7.5. Assume char K̃ �= 2, 3. Given a weight vector ω = (ω1, . . . , ω6) ∈ R6 in the 

relative interior of a Type (I) cell in M trop
2 , we have

inω(A)=6α2
4α2

5α2
6, inω(B)=4α2

3α2
4α4

5α4
6, inω(C)=8α2

3α4
4α6

5α6
6 and inω(D)=α2

2α4
3α6

4α8
5α10

6 .

Proof. By Table 5.1, the weight vector ω = (ω1, . . . , ω6) corresponding to Type (I) 

curves satisfies ω1 < ω2 < . . . < ω6. Since D is given as a product of all expressions ∆ij

from (7.1), and val(αi) > val(αj) for i < j, we get val(∆ij) = −2ωj for i < j, thus

−val(D) = 2ω2 + 4ω3 + 6ω4 + 8ω5 + 10ω6, and inω(D) = α2
2α4

3α6
4α8

5α10
6 .

The computation for inω(A) is more involved, since it requires determining the initial 

term of each summand in A and checking for potential cancellations. Each summand 

∆ij∆kl∆mn of A in expression (7.2) has valuation −2(ωj+ωl+ωn) for i < j, k < l, m < n. 

The conditions on the parameters ωi ensure that the minimal valuation is attained for the 

six tripartitions of the form {{i, 4}, {k, 5}, {m, 6}}. The coefficient associated to α2
4α2

5α2
6

on each of these summands equals one, so no cancellations occur and this monomial 

appears in A with coefficient six. Thus, inω(A) = 6 α2
4α2

5α2
6 if val(6) = 0.

Next, we analyze the summands in B given in (7.3) to determine the initial term of 

B with respect to the weight vector ω. The conditions on ω ensure that the summand 

indexed by the partition {{i, j, k}, {l, m, n}} has valuation −2(ωj + 2ωk + ωm + 2ωn)

for i < j < k and l < m < n. The minimum valuation is achieved when k, n ∈ {5, 6} and 

j, m ∈{3, 4}. The corresponding summands are indexed by the four splits

{1, 3, 5} ⊔ {2, 4, 6} , {2, 3, 5} ⊔ {1, 4, 6} , {1, 4, 5} ⊔ {2, 3, 6} and {2, 4, 5} ⊔ {1, 3, 6}.

On each summand, the monomial α2
3α2

4α4
5α2

6 has coefficient one, so inω(B) = 4 α2
3α2

4α4
5α2

6.

In order to compute inω(C) and − val(C) we use expression (7.4) and analyze the 

valuation of all its 60 summands. The minimum valuation equals −(6(ω6 + ω5) + 4ω4 +

2ω3). This value is obtained for those indices where each element in the pairs {5, 6} and 

{3, 4} belongs to a different set of the split {i, j, k} ⊔{l, m, n}. Moreover, the elements 4, 5

and 6 must lie in different pairs in the tripartition {{i, l}, {j, m}, {k, n}}. A combinatorial 
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analysis allows us to assume 1 = i < j < k and conclude that the summands with 

minimum valuation correspond to the eight ordered tuples:

(i, j, k, l, m, n) = (1, 3, 6, 4, 5, 2) , (1, 4, 5, 6, 2, 3) , (1, 4, 6, 5, 2, 3) , (1, 3, 5, 4, 6, 2) ,

(1, 3, 6, 5, 4, 2) , (1, 4, 5, 6, 3, 2) , (1, 4, 6, 5, 3, 2) , (1, 3, 5, 6, 4, 2) .
(7.12)

On these summands, the monomial α2
3α4

4α6
5α6

6 is monic, so inω(C) = 8 α2
3α4

4α6
5α6

6. ✷

Lemma 7.6. Let A′, B′, C ′, D′ ∈ Z[α1, α2, α3, α34, α5, α6] be the polynomials in (7.10). 

Given a weight vector ω = (ω1, ω2, ω3, d34, ω5, ω6) ∈ R6 inducing a point in the relative 

interior of a Type (II) cell in M trop
2 , we have

inω(A′) = 8 α2
3α2

5α2
6 ,

inω(B′) = 4 α4
3α4

5α4
6 ,

inω(C ′) = 8 α6
3α6

5α6
6 ,

inω(D′) = α2
2α8

3α2
34α8

5α10
6 .

Proof. We start with D′. Since the weight vector ω satisfies (7.9), formula (7.5) implies

−val(∆ij) =





2d34 if (i, j) = (3, 4),

2 ωj if j �= 4,

2 ω3 if j = 4, i < 3,

for i < j,

because − val(α34+α3−αj) = ωmax{j,3} for j �= 3, 4. We conclude that − val(D′) = 2 ω2+

8 ω3+2 d34+8 ω5+10 ω6. Furthermore, the term realizing this valuation is α2
2α8

3α2
34α8

5α10
6 , 

hence it equals inω(D′).

To compute inω(A′) we proceed analogously. For each tripartition not involving {3, 4}, 

the valuation of the corresponding summand equals −2(ωj + ωl + ωn), assuming i < j, 

k < l, and m < n. As in Type (I), the minimum is achieved at −2(ω3 + ω5 + ω6), when 

j = 3 or 4, l = 5, and n = 6, namely for the 8 tripartitions

{{1, ∗}, {2, 5}, {∗, 6}}, {{1, ∗}, {2, 6}, {∗, 5}}, {{1, 5}, {2, ∗}, {∗, 6}}, {{1, 6}, {2, ∗}, {∗, 5}}.

Notice that since inω(α34 + α3) = inω(α3), it is easy to verify that the coefficient of 

α2
3α2

5α6 on these eight summands equals 1.

On the contrary, if {3, 4} is a pair in the tripartition (say the middle one), the valuation 

of each such summand equals −2(ωj + d34 + ωn), which is strictly larger than −2(ω3 +

ω5 + ω6). We conclude that inω(A′) = 8 α2
3α2

5α6.

We proceed similarly for the polynomial B′, distinguishing between splits where 3 and 

4 belong to different subsets or not. In the first case, there are four summands realizing 

the minimum valuation −2(2ω3 + 2ω5 + 2ω6), corresponding to the splits where 5 and 6

also are in different subsets. They all contribute one monomial α4
3α4

5α4
6 to B′, each with 

coefficient 1.
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On the contrary, if 3 and 4 lie in the same subset, the minimum valuation for these 

summands is −2(ω2 + d34 + 2ω5 + 2ω6) and it is obtained when 5 and 6 are in different 

subsets (as in Type (I)). The conditions on ω ensure that ω2 + d34 < 2ω3, so inω(B′) =

4α4
3α4

5α4
6.

Finally, we compute inω(C ′). For each summand of C ′ corresponding to a split with 

3 and 4 in different subsets, the valuation is the same as the one computed for Type (I). 

The expected valuation is −6(ω6 + ω5 + ω3) and it is attained at the eight tuples below:

(i, j, k, l, m, n) = (1, 3, 6, 4, 5, 2) , (1, 4, 5, 6, 2, 3) , (1, 4, 6, 5, 2, 3) , (1, 3, 5, 4, 6, 2) ,

(1, 3, 6, 5, 2, 4) , (1, 4, 5, 3, 6, 2) , (1, 4, 6, 3, 5, 2) , (1, 3, 5, 6, 2, 4) .

The first group corresponds to the four tuples on the top row of (7.12) since the variable 

α34 does not appear on those summands. The second group correspond to tuples where 

4 is opposed to 5 or 6 but this loss is compensated by 3 winning over 1 and 2. Notice 

that these terms did not contribute for the Type (I) cell. Collectively, these eight tuples 

contribute the monomial 8 α6
3α6

5α6
6.

For the remaining 24 summands in C ′, where 3 and 4 lie in the same set, the possi-

ble ω-initial forms are α6
6α4

5α2
34α4

3α2
2, α6

6α6
5α2

34α2
3α2

2, and α6
6α4

5α2
34α6

3. Their valuation is 

strictly bigger that −6(ω6 + ω5 + ω3), therefore inω(C ′) = 8α6
3α6

5α6
6. ✷

In the rest of this section, we discuss the behavior of the tropical Igusa invariants when 

char K̃ = 3. Notice that in this case, we cannot predict the valuation of the polynomial 

A on the relative interior of the Type (I) cell, since the initial form of A in Lemma 7.5

has a coefficient with non-zero valuation.

Theorem 7.7. Let char K̃ =3 and Γ be a curve of Type (I), (IV) or (V). Then:

(1) If 1 − ω4 ≤ ω3, then the formulas for all jtrop
i (Γ) from Theorem 7.3 hold.

(2) If 1 − ω4 > ω3, then jtrop
1 (Γ) = jtrop

2 (Γ) = L1 + 2L0 + L2, whereas jtrop
3 (Γ) =

L1 + 4L0 + L2.

If Γ is a (specialization of a) Type (II) curve, the formulas from Theorem 7.3 hold.

Proof. If Γ is a Type (II) curve, or a specialization thereof, the formulas for all initial 

forms in Lemma 7.6 remain valid in characteristic 3. Therefore, the same genericity 

assumptions imposed in Theorem 7.3 yield the formulas for the tropical Igusa invariants 

for these curves.

In what remains, we treat the remaining three types: (I), (IV) and (V). As discussed 

above, the initial form of A will not have a uniform value on each of these cones when 

char K̃ = 3. We bypass this difficulty by writing A as an integer combination of four 

polynomials with coefficients ±1 and disjoint supports, comparing the valuation of their 

initial forms, and considering possible ties and cancellations. A calculation available on 
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the Supplementary material yields A = 4A4 + 6A6 + 12A12 + 120A120. Any ω in the 

relative interior of the Type (I), (IV) or (V) cells gives

inω(A4) = −α2
6α2

5α4α3 ,

inω(A6) = α2
6α2

5α2
4 ,

inω(A12) = α2
6α5α4α3α2 ,

inω(A120) = −α6α5α4α3α2α1.
(7.13)

Since ω1 < ω2 < . . . < ω6 in Type (I), we conclude that inω(A6) > inω(A12), inω(A120)

so we need only compare the weights of A4 and 6A6. There are two cases to analyze:

Case 1: If 1 −ω4 ≤ −ω3, our genericity assumptions ensure that val(6α4 −4α3) = 1 −ω4. 

Thus val(A) is the one predicted in Lemma 7.5. The formulas for the tropical 

Igusa invariants described in Theorem 7.3 remain valid in this setting.

Case 2: If 1 − ω4 > −ω3, we conclude that inω(A) = 4 inω(A4), and so − val(A) =

2ω6 + 2ω5 + ω4 + ω3. The expressions for val(B), val(C), and val(D) obtained 

from Lemma 7.5 and arithmetic manipulations as in the proof of Theorem 7.3

yield the desired expressions for the Igusa invariants on the Type (I) cone. ✷

Remark 7.8. If 1 − ω4 = −ω3 and in(6α4) = in(−4α3) the above methods do not allow 

us to compute − val(A). We bypass this difficulty by using three Laurent monomials in 

the 3 Igusa invariants where the polynomial A is canceled out. Lemma 7.5 yields:

5jtrop
2 (Γ) − 3jtrop

1 (Γ) = 2 val(D) − 5 val(B) = 2L1 + 4L0 + 2L2 ,

3jtrop
3 (Γ) − 2jtrop

1 (Γ) = 3 val(D) − 5 val(C) = 3L1 + 16L0 + 3L2 ,

3jtrop
3 (Γ) − 2jtrop

2 (Γ) = val(D) + 2 val(B) − 3 val(C) = L1 + 8L0 + L2.

The matrix describing the three integer linear combination of jtrop
1 , jtrop

2 and jtrop
3 has 

rank two, so we can only express the last two invariants in terms of jtrop
1 .

8. A new Igusa invariant

As was shown in Remark 7.4, the fact that the tropical Igusa functions do not yield 

coordinates on M trop
2 raises a natural question: can we replace j1, j2, j3 by an alternative 

set of three algebraic invariants better suited for tropicalization? Given the expressions 

in Theorem 7.3 we propose to replace j3 with a linear expression in j1, j2, j3 whose 

initial form corresponding to a weight vector of Type (I) or (II) appears as a result 

of a cancellation in the initial forms of the ji’s. In other words, we aim to compute a 

Khovanskii basis of the ring of invariants of M2.

The computation of val(A), val(B) and val(C) on Types (I) and (II) in expres-

sions (7.8) and (7.11) gives the linear relation

− val(A) − val(B) = − val(C).
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Therefore, a cancellation might be produced among leading terms via the expressions

Qλ := A B − λC (for Type (I)) and Q′
λ := A′ B′ − λC ′ (for Type (II)) , (8.1)

for suitable λ ∈ K∗. For generic choices of λ, a Sage calculation shows that Qλ ∈
Q[α1, α2, α3, α4, α5, α6] has 12 567 terms, whereas Q′

λ ∈ Q[α1, α2, α3, α34, α5, α6] has 

11 891.

By Lemmas 7.5 and 7.6 we know that for char K̃ �= 2, 3:

On Type (I): inω(A) inω(B) = 24 α2
3α4

4α6
5α6

6 = 3 inω(C) so λ = 3 .

On Type (II): inω′(A′) inω′(B′) = 32 α6
3α6

5α6
6 = 4 inω′(C ′) so λ = 4.

(8.2)

These relations shows which values of λ will produce cancellations between the ω-leading 

terms of AB and C in Qλ and Q′
λ. This choice yields a new Igusa invariant in Type (I):

j′
3 :=

Q3A2

D
=

A3B

D
− 3

A2C

D
= j2 − 3j3.

The tropicalization of j′
3 equals − val(j3) and it is determined by the ω-initial form of 

Q3. A Macaulay2 computation finds the initial terms:

inω(Q3) = 8 α6
6α6

5α3
4α3

3, so − val(Q3) = 6(ω6 + ω5) + 3(ω4 + ω3).

Combining this expression with (7.8) and the length formula from Table 5.1 yields

j′ trop
3 = 6(ω6 + ω5) + 3(ω4 + ω3) + 4(ω4 + ω5 + ω6) − (2ω2 + 4ω3 + 6ω4 + 8ω5 + 10 ω6)

= 2ω5 + ω4 − ω3 − 2ω2 = 2(ω5 − ω4) + 3(ω4 − ω3) + 2(ω3 − ω2) =L1 + 6L0 + L2 .

The new function j′ trop
3 fails to provide new length data for Type (I) curves. For this 

reason, we turn to the Type (II) cell and work with Q4, as predicted by (8.1). We set:

j4 :=
Q4A2

D
=

A3B

D
− 4

A2C

D
= j2 − 4j3. (8.3)

By construction jtrop
4 = jtrop

3 on Type (I) curves if char K̃ �= 2, 3.

Since we are interested in the behavior of jtrop
4 on the Type (II) cell, we work with Q′

4

instead of Q4. A Sage calculation reveals that Q′
4 ∈ Q[α1, α2, α3, α34, α5, α6] has 11 379

terms. The possible weight vectors ω = (ω1, ω2, ω3, d34, ω5, ω6) ∈ R6 giving Type (II) 

curves form a six-dimensional open cone in R6, whose closure we denote by Θ.

The possible valuations of Q4 are determined by the Gröbner fan of Q′
4. A Sage com-

putation shows that its f -vector equals (1, 32, 174, 396, 420, 168). We are interested in 

the intersection of the Gröbner fan of Q′
4 with the relative interior of the cone Θ. The 

following lemma shows that Θ gets subdivided into three maximal pieces
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Θ0 := Θ ∩ {d34 ≥ ω2, ω5+d34 ≥ 2ω3} , Θ1 := Θ ∩ {2ω3 ≥ ω5+ω2, 2ω3 ≥ ω5 + d34},

Θ2 := Θ ∩ {ω2 ≥ d34, ω5+ω2 ≥ 2ω3} .

(8.4)

Lemma 8.1. The pieces Θ0, Θ1 and Θ2 in (8.4) determine the ω-initial form of Q′
4:

inω(Q′
4) =





−8α6
6α6

5α2
34α4

3 if ω ∈ rel int(Θ0) ,

−8α6
6α4

5α8
3 if ω ∈ rel int(Θ1) ,

−8α6
6α6

5α4
3α2

2 if ω ∈ rel int(Θ2) .

On the intersection of Θi and Θj, the initial form is obtained by adding the forms for 

each piece. On the triple intersection, the initial form equals the sum of the three forms.

Proof. The proof is computational, and all the required Sage scripts are included in 

the Supplementary material. Since the computation of the Gröbner fan of Q4 using

Sage halts, we replace Q′
4 by the sum of its extremal monomials and calculate its Gröbner 

fan. We then compute the intersection of this fan with Θ and check that only three of its 

maximal cones intersect Θ in dimension six. We consider a sample interior point in the 

relative interior of each piece (e.g. the sum of its extremal rays) and determine the initial 

forms of Q′
4 on each Θi using Macaulay2. The equalities defining Θi are determined by

Sage. The last claim in the statement follows from the defining properties of Gröbner 

fans. ✷

The pieces Θ0, Θ1 and Θ2 have a natural interpretation in terms of length data:

Lemma 8.2. Given i = 0, 1, 2, the inequalities defining Θi single out the minimal edge 

length Li of the corresponding theta graph.

In particular, the subdivision (8.4) of Θ is compatible with the automorphisms of this 

cone induced by permutations of the underlying theta graph. The proof of this result 

follows from the length formulas in Table 5.1. Below is the main result in this section:

Theorem 8.3. Let X be a curve in M2, defined over K with char K̃ �= 2, and generic with 

respect to its (abstract) tropicalization Γ. The tropical Igusa function jtrop
4 equals

(i) jtrop
4 (Γ) = jtrop

3 (Γ) if Γ is a dumbbell curve, and

(ii) jtrop
4 (Γ) =L0 + L1 + L2 − min{L0, L1, L2} if Γ is a theta curve,

where L0, L1, L2 denote the lengths on each curve as in Fig. 2.1. The formulas remain 

valid under specialization and yield well-defined piecewise linear maps on M trop
2 .
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Proof. The formula for Type (I) will depend on the characteristic of K̃ and will be 

obtained from Theorems 7.3 and 7.7. A simple inspection shows that in all cases jtrop
4 ≤

jtrop
3 . The genericity of X ensures that no cancellations occur and thus, j4

trop = j3
trop.

To prove the statement on the Type (II) cell, we notice that j4 differs from j3 by 

replacing C ′ with Q′
4, so jtrop

4 = jtrop
3 + val(C ′) − val(Q′

4). Lemma 8.1 and (7.11) gives

val(C ′)−val(Q′
4) =





−6(ω6 + ω5 + ω3) + 6(ω6 + ω5) + 2d34 + 4ω3 = −L0 if ω ∈ Θ0,

−6(ω6 + ω5 + ω3) + 6ω6 + 4ω5 + 8ω3 = −L1 if ω ∈ Θ1,

−6(ω6 + ω5 + ω3) + 6(ω6 + ω5) + 4ω3 + 2ω2 = −L2 if ω ∈ Θ2.

By Lemma 8.2 and Theorem 7.3 we conclude that on Type (II) curves

j4
trop = j3

trop − min{L0, L1, L3} = L0 + L1 + L2 − min{L0, L1, L3}.

Analogous arguments as the ones provided in the proof of Theorem 7.3 and the genericity 

of X ensure that the given formulas are valid under specialization. ✷

The Igusa functions j1, j2, j4 characterize isomorphism types in M2. The tropical Igusa 

functions jtrop
1 , jtrop

2 and jtrop
4 allow us to recover partial length data for each point 

in M trop
2 , once we determine the combinatorial type of the curve using Theorem 1.1

and Table 5.1. The methods presented in this section will not produce a complete set 

of tropical invariants on M trop
2 . Indeed, we have exploited the unique relation among 

the valuations of A, B, and C to build j4 and no further combination of A, B, C would 

produce a cancellation of initial terms. It remains an interesting challenge to develop an 

alternative approach to generate a new algebraic invariant on M2 inducing the missing 

tropical invariant on each cell of M trop
2 .
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