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1. Introduction

Algebraic smooth genus two curves defined over an algebraically closed non-
Archimedean valued field K, with residue field K of char K # 2 can be studied from
three perspectives:

(i) as a planar curve defined by a (dehomogeneized) hyperelliptic equation:

v =u]J@—a); (1.1)

(ii) as a K-point of the space My of smooth genus two curves;
(iii) as a hyperelliptic cover of P}, with six simple branch points aq, ..., as € P).

The hyperelliptic cover is determined, up to isomorphism, by a choice of six branch
points, i.e., by a K-point in the space My ¢ of smooth rational curves with six marked
points.

The top row in Fig. 1.1 contains the three relevant spaces and maps between them.
The first and third characterizations are related by a projection to the z-coordinate and
a forgetful map that disregards the planar embedding of the curve induced by (1.1).

The present paper exploits the aforementioned description to characterize the tropical
and Berkovich non-Archimedean analytic counterparts of smooth genus two curves. It
relies on known comparison methods between the moduli of (stable) algebraic and ab-
stract tropical curves via the vertical tropicalization maps from Fig. 1.1 [1,14,18]. Such
curves come in seven combinatorial types, and they form a poset under degenerations.
Their associated Berkovich skeleta are obtained as dual metric graphs to the central
fiber of a semistable regular model of each input curve over the valuation ring K° of
K [5,51]. Each vertex in the graph is assigned the genus of the corresponding irreducible
component as its weight. The induced poset of skeleta is depicted on the left of Fig. 1.2.
The good reduction case is the only smooth one and it corresponds to Type (VII). The
tropical moduli space of abstract genus two tropical curves My™P is obtained as the im-
age of My(K) under the tropicalization map [1, Theorem 1.2.1]. It has the structure of
a stacky fan with seven cones, each labeled by a type and isomorphic to an orthant of
dimension equal to the number of edges on the skeleton [1,16,18]. We discuss this space
in more detail in Section 2.

The tropical moduli space Mgfgp of rational tropical curves with six marked points
is the space of phylogenetic trees on six leaves of Billera—Holmes—Vogtmann [7]. Tt is
realized as the image of My ¢(K) under the vertical tropicalization map in Fig. 1.1, i.e.,
by taking coordinatewise negative valuations of all K-points of My embedded in the
toric variety defined by the pointed fan Méfgp C RY. This map and the combinatorial
structure of Mgfg P are also discussed in Section 2.
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Fig. 1.1. Three ways to represent genus two curves, their relations, and their tropical analogues.

As in the algebraic case, abstract genus two tropical curves are hyperelliptic: they
admit a tropical hyperelliptic cover of a metric tree with six markings, given by a 2-to-1
harmonic map branched at all six legs of the tree [3,18]. We review this construction
in Section 4. The tropical covers turn the right square of Fig. 1.1 into a commuting
diagram, but the assignment is not explicit: it requires prior knowledge of each Berkovich
skeleton. We bypass this difficulty by factoring the right square of the diagram through
the map ¢. The assignment depends on the valuations of the points aq,...,ag € K* and
their differences:

w; == —val(e;) fori=1,...,6, and d;; :== —val(oy—cy) fori<j, if w; =w;. (1.2)
Here is our first main result, which we discuss in Section 5:

Theorem 1.1. Each point in M, together with an explicit harmonic 2-to-1 map to a
metric tree in Mgfgp is determined by the ordering of the quantities w; and d;; (see Ta-
ble 5.1).

For example, the two maximal cells in M;™P correspond to the orders w; < wy <

w3 < wg < ws < wg (the dumbbell graph (I)) and w; < way < w3 < wy < wy < wg with
d3s < ws (the theta graph (IT)). They are realized as 2-to-1 harmonic covers of the
caterpillar and snowflake trees as shown in Fig. 1.2. Similar results were obtained earlier
by Ren—Sam—Sturmfels [46, Table 3] but with very different methods.

Our proof of Theorem 1.1 is sketched in the right of Fig. 1.2. Starting from TP!,
tropical modifications of TP' at the locations of the points w; dictated by the quantities
d;; allow us to construct the target metric trees. The source curve and the map are
determined by the tropical Riemann—-Hurwitz formula [13]. Proposition 5.2 provides a
list of seven regions in My (K) that surject onto My™P. Algorithms 5.1 and 5.2 take
six arbitrary points in (K*)% and return a linear change of coordinates of P! that sends
these six points to one of these seven witness regions. The same techniques will lead to
a natural extension of Theorem 1.1 to the tropical hyperelliptic locus in M;mp for any
g=2.

The left side of Fig. 1.1 involves embedded tropicalizations. Given the hyperellip-
tic equation (1.1) defining a smooth genus two curve X, the tropical plane curve
Trop X C R? is the dual complex of the Newton subdivision of X. An explicit cal-
culation shown in Table 6.1 proves that the planar tropicalization is always a tree, so it
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Fig. 1.2. From left to right: poset of stable genus two curves, and their weighted dual graphs encoding the
genus and intersections of all components; harmonic 2-to-1 covers of tropical lines with six legs for each
type, and ordering of the valuations of the six branch points. All edge weights in the source curve equal
two or one (indicated). All vertices in the source curves have genus zero, unless otherwise indicated. The
unfilled points in type (II) share initial terms and yield a dashed branch on the metric tree.

does not reflect the genus of our algebraic curve. Thus, outside Types (V) and (VII), the
minimal Berkovich skeleton of X?" will not map isometrically to a subgraph of Trop X
under the hyperelliptic tropicalization map trop: A*"* — Trop X. The forgetful map on
the bottom left of Fig. 1.1 is analogous to the retraction map of X" onto the minimal
Berkovich skeleton: it shrinks all unbounded edges of the tropical curve and contracts
edges adjacent to one-valent vertices if they correspond to a rational initial degenera-
tion of X. The map is further described in Section 3, and it will only be defined if the
tropicalization is faithful.

Faithful tropicalizations are a powerful tool to study non-Archimedean curves through
combinatorial means [5]. In [20], we proposed a program for effectively producing faith-
fulness for curves over non-Archimedean fields, starting in genus one. Our second main
result shows that similar methods can be used to faithfully re-embed genus two curve
in three-space in a uniform fashion. The explicit construction is the subject of Section 6
and it relies on the notion of tropical modifications, which we review in Section 3.

Theorem 1.2. Outside Types (V) and (VII), the naive tropicalization induced by the hy-
perelliptic equation can be repaired in dimension three by adding one equation of the form
z— f(z,y) where f is linear in y and quadratic in x. The re-embedded tropical curve con-
tains an isometric copy of the minimal Berkovich skeleton (see Table 6.1 and Fig. 6.9).

A precise formula for f(z,y) can be found in (6.2). An alternative refinement of
this polynomial, denoted by f(x,y) in (6.5) will sometimes be used to simplify the
combinatorics.

In concrete computations, it is always desirable to bound the ambient dimension
required to achieve faithful tropicalizations on minimal skeleta. In genus two, Wagner [52]
showed that, under certain length restrictions, any Mumford curve (curves with totally
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degenerate reduction, namely Types (I), (II) and (III)) can be embedded faithfully in
dimension three. Starting from the Schottky uniformization [25] of the given Mumford
curve, his techniques involve tropical Jacobians, together with an explicit description of
the Abel-Jacobi map and they apply not only to the minimal Berkovich skeleta but also
to unbounded subgraphs of extended skeleta.

Theorem 1.2 recovers the same dimension bound for every curve of genus two where
the curve is given by its hyperelliptic equation. In addition to contributing a larger class
of curves where the same bound can be attained, our techniques have the additional
advantage of extending to the whole hyperelliptic locus in any genus. Generalizations of
this result to extended skeleta are also treated in Section 6.

Remark 1.3 (Algorithmic faithful tropicalization in genus 2). Theorems 1.1 and 1.2 can
be combined with Algorithms 5.1 and 5.2 to produce an explicit algorithm that inputs
a hyperelliptic equation of the curve X and outputs a faithful tropicalization. Indeed,
starting from the six branch points «s, . .., ag of the cover, we use Algorithms 5.1 and 5.2
to construct an automorphism of the projective line that places the branch points in
one of the seven special configurations described in Table 5.1. This step recovers the
type of the Berkovich skeleton of X2". With this knowledge, after shifting two of the
branch points to be the origin and the point at infinity via Lemma 6.1, we can pick
the appropriate function f(z,y) (which depends on the branch points) that gives the
faithful embedding for the minimal Berkovich skeleton by Theorem 1.2. As a result,
we obtain an explicit projective model for the input curve X in dimension three where
we detect the topological type of its Berkovich analytification through its embedded
tropicalization. In case we wish to recover faithfulness on the extended skeleta we must
refine our choice of f(z,y) and perform further linear re-embeddings. These refined
methods are type-dependent. We explain them in detail in Subsections 6.1-6.6.

A second motivation for Theorems 1.1 and 1.2 and the explicit description of the
diagonal map ¢ from Fig. 1.1 originates in the invariant theory of M5 [33] and the search
for a coordinate system for M2tr°p. Defining complete sets of tropical invariants for each
cell in the tropical hyperelliptic locus from their algebraic counterparts is challenging
already in small genera. The genus one case is well-understood. The j-invariant has its
tropical analog: the tropical j-invariant. It arises as the expected negative valuation of the
j-invariant by using the conductor-discriminant formula for Weierstrass equations [37].
This tropical invariant defines a piecewise linear function on the space of smooth tropical
plane cubics (i.e., the identity on M 1tr°p) and it is crucial in tropical enumerative geometry
of genus one curves [38].

In the algebraic setting, the isomorphism classes of curves of genus two are determined
by the three (absolute) Igusa invariants [33]. They can be expressed as rational functions
on all pairwise differences of the six ramification points [27]. From a computational
perspective, they can be viewed as a coordinate-dependent interpretation of the top row
in Fig. 1.1. We refer to Section 7 for the precise definitions.
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Any point on a maximal cell in M;"P is determined by three edge lengths: Lo, L,

and Lo in Fig. 2.1. In analogy with recent work of Helminck [32], our third main result
relates these three numbers to the tropicalization of the Igusa invariants, but confirms
that these classical invariants are not well suited for tropicalization:

Theorem 1.4. The tropicalization of the Igusa invariants j1, jo and j3 are piecewise linear
functions in M}, with domains of linearity given by the seven cones in My"°". They do
not form a complete set of invariants in M1 since jiég‘)szl—i—Lo—l—Lg foralli=1,2,3,
whereas jlér_‘g) = [1+12Ly+Lo, and jgff_?z jgé’i‘g]:Ll—i—S%Lo—i—Lg whenever char K #2 3.

Replacing js by the new invariant j4 = jo — 4j3 induces a piecewise linear function
on My™% with jul" = Lo + L1 + Ly — min{Lo, L1, L2}, and jud% = L1 +8Lo+ Lo
when char K # 2,3. The tropicalization of the invariants {ji, ja, ja} recovers two of the

three edge lengths on each point in the tropical moduli space. Similar formulas hold if
char K = 3.

The ill-behavior of the Igusa invariants under tropicalizations is similar to a phe-
nomenon occurring in the ring of symmetric polynomials: power sums will never yield a
complete set of tropical invariants. Indeed, their valuation only captures the root with
lowest valuation. In turn, the elementary symmetric functions enable us to recover the
valuation of all roots. Theorem 1.4 manifests again the non-faithfulness of the hyperellip-
tic embedding and shows that faithfulness should be viewed as the natural replacement
for the tropical Igusa invariants. It remains an interesting challenge to find three new
algebraic invariants on M inducing tropical coordinates on each cell of Mztmp.

Supplementary material

Many results in this paper rely on calculations performed with Singular [21] (in-
cluding its tropical.lib library [36]), Macaulay?2 [28], Polymake [24] and Sage [49].
We have created supplementary files so that the reader can reproduce all the claimed
assertions done via explicit computations and numerical examples. The files are available
at:

https://people.math.osu.edu/cueto.5/tropical Geometry GenusTwoCurves/

In addition to all Sage scripts, the website contains all input and output files both as
Sage object files and in plain text. We have also included the supplementary files on the
latest arXiv submission of this paper. They can be obtained by downloading the source.

2. Tropical moduli spaces

In this section, we introduce the objects in the center and right of Fig. 1.1 involving
abstract tropical curves and their moduli spaces.
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Definition 2.1. An abstract tropical curve is a connected metric graph consisting of the
data of a triple I' = (G, g,¢) where G = (V, E, L) is a connected graph G with vertices
V, edges E and unbounded legs L (called markings), together with a weight function
g: V — Z>o on vertices and a length function £: £ — R on edges. Legs are considered
to have infinite length. In the absence of legs, we say the curve has no markings. The
genus of a metric graph I' equals

genus(T") := by (T) + Z g(v), (2.1)
veV

where b1 (I") = |E| — |V|+ 1 is the first Betti number of the graph G. A genus zero curve
is called rational: it corresponds to a metric tree with constant weight function g = 0.

An isomorphism of a tropical curve is an automorphism of the underlying graph G
that respects both the length and weight functions. The combinatorial type of a tropical
curve is obtained by disregarding the metric structure, i.e. it is given by (G, g).

The set of all tropical curves with a given a combinatorial type (G, g) can be param-
eterized by the quotient of an open cone RE; under the action of automorphisms of G
that preserve the weight function g. Cones corresponding to different combinatorial types
can be glued together by collapsing edges and adjusting the genus function accordingly.
Such operations keep track of possible degenerations of the algebraic curves. Fig. 1.2
describes this process for unmarked genus two curves. In this way, the tropical moduli
space M, ;ffl’p (respectively, M, ;mp) of n-marked (respectively, unmarked) curves of genus
g inherits the structure of an abstract cone complex. For more details on tropical moduli
spaces of curves, we refer to [1,16,18,23,44].

In this paper, we focus on two examples: Méfgp and M;™P. The first is the space of
rational tropical curves with six markings. Up to relabeling of the markings, the moduli
space M&rg P has two top-dimensional cells, corresponding to the snowflake and caterpillar
trees on six leaves. The second object of interest is the space of genus two tropical curves
with no marked legs. Fig. 1.2 shows the labeling of the two top-dimensional cones: the
dumbbell and theta graphs, indicated by Types (I) and (II).

The connection between moduli spaces of stable marked curves and their counterparts
in tropical geometry has been studied on various occasions [1,26,46]. The spaces My,
can be identified with a quotient of the open orbit of the cone over the Grassmannian of
planes by the torus (K*)"™ and tropicalized thereafter, as in [46]. In turn, Méfgp becomes
the space of trees on n leaves [48,50] where we assign length zero to all leaf edges, as we
now explain.

Up to an automorphism of P! we may assume that our marked points exclude (1 : 0)
and (0 : 1), so we identify them with a tuple in @ € (K*)". The torus (K*)" acts on

Gro(2,n) by t* (pij)i,j = (tit;pij)i,;- In particular, we get an isomorphism

®: My, — Gro(2,n)/(K*)" C (K1) & /(E*)" ®(a) = (@ — a)i<icjzn:  (2:2)
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Fig. 2.1. Minimal skeleta of genus two curves obtained by applying the forgetful map to the double covers
in the right of Fig. 1.2.

The space Mo,n of stable rational curves with n marked points is the tropical compact-
ification of My, induced by Méfﬁp := Trop Gro(2,n)/R" ¢ R(2)/R™ [50, Theorem 5.5].
Here, R™ C R(G) is the image of the linear map a + (o; + «;); ;. This is precisely the
lineality space of Trop Grg(2,n). It is generated by the n cut-metrics [48].

The lattice spanned by the cut-metrics has index two in its saturation in 7(3). For
this reason, a factor of 1/2 must be added when considering lattice lengths on the space
of trees (see [29, Section 3.1].) In particular, when n = 6, the tropicalization map sends
a tuple « of six distinct points in K™* to the pairwise half-distances between the legs of

the corresponding tree on six leaves:
tIOpZ MO,G(K) — Méfgp C R15/R6 trop(g) == (—Val(ai - aj))1§i<j§6. (23)

All seven combinatorial types of trees with six leaves are depicted in the right
of Fig. 1.2. The poset structure of all labeled seven cells matches that of stable genus
two curves and their tropical counterparts. Furthermore, the space Mémp can be con-
structed from Méfgp via tropical hyperelliptic covers as in Section 4. Indeed, starting
from a metric tree T with six leaves, there is a unique tropical hyperelliptic cover of it by
a tropical curve I' of genus two with six legs. Our genus two abstract tropical curve will
be obtained as the image of I under the tropical forgetful map that contracts all legs and,
in turn, all edges adjacent to one-valent vertices of genus zero [10]. This identification
describes the commuting right square of Fig. 1.1, as proved in [46, Theorem 5.3].

The tropicalization map trop: My(K) — M factors through trop: My™ —»
M;r(’p [1, Theorem 1.2.1]. Under this map, abstract tropical curves correspond to the
minimal Berkovich skeleta: metrized dual graphs of central fibers of semistable regular
models of a smooth curve over the valuation ring K° [5,51].

3. Faithful tropicalization, skeleta and tropical modifications

In this section, we discuss embedded tropicalizations of curves and their relation to
abstract tropical curves and their moduli. Embedded tropical curves are determined by
the negative valuations of all K-points on a curve X inside the multiplicative split torus
(K*)™ [41, Chapter 3]: they are balanced weighted graphs in R™ with rational slopes.
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While this approach is computationally advantageous due to its connection to Grobner
degenerations [35] it also poses a major challenge: tropicalization in this setting strongly
depends on the embedding. Furthermore, certain features of an abstract tropical curve
can be lost under a given choice of coordinates. For example, the naive tropicalization of
a genus two hyperelliptic plane curve induced by (1.1) is a graph I' C R? with b;(T") = 0.

The connection to Berkovich non-Archimedean spaces [6] initiated by Payne [45]
hands us a way to overcome this coordinate-dependency: a faithful tropicalization is
the best candidate to reflect relevant geometric properties of the algebraic curve [5].
An embedding X C (K™*)™ induces a faithful tropicalization if Trop X' contains an iso-
metric copy of the minimal Berkovich skeleton of X" under the tropicalization map
trop: X2 — Trop X'. The latter can be obtained from a given (extended) skeleton by
contracting it to its minimal expression [4].

Just as in the abstract setting, faithful tropicalizations induced by X C (K*)" admit
a tropical forgetful map to M;mp, where g is the arithmetic genus of X. In order to
do so, we must endow the rational weighted balanced graph I' = Trop X in R™ with a
weight function on its vertices. This can be achieved by means of an extended Berkovich
skeleton X(X) coming from a semistable model of X with a horizontal divisor (i.e. the
closure of a divisor of the generic fiber in the model) that is compatible with I" [30,31].
Indeed, to each vertex v in I' we assign the sum of the genera of all semistable vertices
of ¥(X) mapping to v under trop: X(X) — Trop X. The semistable vertices correspond
exactly to the components of the central fiber [4], so we weigh them with the genus of
the associated component.

For planar tropicalizations, a similar ad-hoc rule can be put in practice. If we let I" be
the dual complex of the Newton subdivision of the corresponding curve, each vertex of
I" gets assigned the number of interior lattice points of its dual polygon. This quantity is
the genus of the initial degeneration of the curve induced by the vertex minus the number
of nodes (assuming it is nodal). However, unless our planar embedding is faithful (which
only occurs for Types (V) and (VII)), we will not be able to define a forgetful map on the
tropical side (by collapsing all legs and weight zero one-valent vertices, as we did in the
abstract case) that recovers the image of the Berkovich skeleton under tropicalization.

In the algebraic setting, the forgetful map sending planar genus two smooth hyperel-
liptic curves to points in Ms(K) is surjective if we allow the curves to be defined over
valued field extensions L|K. Since the forgetful map on the associated tropical plane
curves is only defined for Types (V) and (VII), faithfulness becomes an essential prop-
erty to define the left square in Fig. 1.1. A similar behavior in genus three and four was
encountered by Brodsky—Joswig-Morrison—Sturmfels [10, Theorems 5.1 and 7.1]. Sec-
tion 6 and Table 6.1 give explicit effective methods for producing faithful re-embeddings
of smooth planar genus two curves in a suitable torus. The main technique involved is

tropical modifications of R™ along tropical divisors [12,34,43], which we now recall.
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Definition 3.1. Fix a tropical polynomial F' defining a piecewise linear function

FiR" 5 T=RU{~c0} F(X)= max{Cs+AXi+...+ X} in T[Xy, ..., o]
>0

The graph of F' is a rational polyhedral complex of pure dimension n. Unless F' is linear,
the bend locus of F' has codimension 1. At each break codimension-one cell o, we attach
a new cell o spanned by ¢ and —e,1 := (0,...,0,—1). The result is a pure rational
polyhedral complex in R"*!. We call it the tropical modification of R™ along F.

It will often be useful to consider polynomial lifts of F', namely

fl@) = Z cpz’ € K[z, ..., ) where  supp(F) := {f: Cg # —oo} (3.1)
Besupp(F)

satisfies trop(f)(X) := maxg{—val(cg) + f1 X1 + ... + B, X} = F(X) as functions on
R™.

By the Structure Theorem [41, Proposition 3.1.6], any polynomial lift f of F' will allow
us to turn the tropical modification of R™ along F into a weighted balanced complex,
since it will be supported on the tropical hypersurface Trop V' (f). In turn, any tropical
hypersurface Trop V(g) in R™ can be modified along F' in a similar fashion and the
attached cells can be endowed with suitable multiplicities to turn the resulting complex
into a balanced one. For precise multiplicity formulas, we refer to [2, Construction 3.3].

Example 3.2. The leftmost map in Fig. 5.1 describes the tropical modification of R along
the tropical function F' = max{X, — val(az)} = trop(x —az). The result is a tropical line
in R? with vertex (—val(ag), — val(az)). All its tropical multiplicities equal 1. A higher
dimensional analog can be found in Example 3.4. <

Tropical modifications can be used to define re-embeddings of irreducible plane curves
X [12,20,34]. This technique is also known as tropical refinement in parts of the literature.
Consider a tropical polynomial F' € T[X, Y] and a lift f. Given a defining equation g(x, y)
for X, the tropicalization of the ideal

Iygi={g,2— f) C K[a™,y*, 7] (3.2)

is a tropical curve in the modification of R? along F. For almost all lifts f, Trop V(I a.f)
coincides with the modification of Trop V' (g) along F', i.e. we only bend Trop V(g) so
that it fits the graph of F' and attach suitable weighted downward legs. However, for
some special choices of lifts f, the cells of Trop V/(I, ) in the downward cells of the
modification of R™ along F become more interesting. Such choices are determined by
the initial degenerations of g along the bend locus of F. More details can be found
in Section 6.
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In addition to linear tropical polynomials, which were the main players in [20], our
main focus in Section 6 will be modifications of R? along tropical polynomials of the
form

F=max{Y, A+ X, B+ 2X} = trop(f) for A,B € R. (3.3)

The tropical surface Trop V(f) consists of six two-dimensional cells o1, ...,04, as de-
picted in Fig. 3.1. They are defined by the following systems of linear equations and
inequalities:

0y ={Z=2X+B>Y,X>A—B}, 05:={Y =2X +B>ZX>A— B}, (34)
o3:={Z =Y > X+ A,2X + B}, o6 :={Y =X+A>7X<A-B}

Just as it happened in the linear case [20, Lemma 2.2], the choice of F in (3.3) allows us
to recover Trop V (I, f) in R? from the three coordinate projections. This property will
be exploited in Section 6 to certify faithfulness by planar computations.

Lemma 3.3. Given an irreducible curve X C (K*)? defined by a polynomial g € K|x, ]
and a polynomial lift f(z,y) = y — ax — bx®> € Klz,y] of the tropical polynomial F
from (3.3), the tropicalization induced by the ideal I, ; = {g,z — f) C K[z*®,y*,2F] is
completely determined by the tropical plane curves TropV (g), TropV (I, ;N K[zF, 2%)),
and TropV (I, ; N K[y*, zF]).

Proof. Since coordinate projections are monomial maps, functoriality ensures that the
three coordinate projections of Trop V(I ¢) are supported on the three tropical plane
curves in the statement. The tropical space curve is completely determined by its inter-
section with the relative interiors of the six maximal cells of Trop V(). By construction,
each open cell o7 maps to a two-dimensional open region under two out of the three
projections. The precise choices are indicated on Fig. 3.1. Note that overlaps occur only
in the Y Z-projection between two pairs of cells: (01, 04) and (o4, 06).

The tropical multiplicities in all coordinate projections let us recover the support of
Trop V (I4,5) along the bend locus from the generalized push-forward formula for multi-
plicities of Sturmfels—Tevelev in the non-constant coefficients case [5, Corollary 7.3]. O

Example 3.4. Consider the smooth genus two curve in (K*)? defined over C{{t}} by
g(z,y) = y* —x(z — (3°)*)(z — (11¢° + 5t7)%) (x — (11£%)) (2 + (1 + %)),
the tropical polynomial F' = max{Y, —4+ X,2X} and its lift f(z,y) = y— (1+t2)(11t>+

5t7)(11¢?) x + (1+12) 22. The tropicalization induced by I, y C K[z%, y*, 2%] is depicted
in the left of Fig. 3.1 and it lies in the tropical surface in R® obtained by modifying
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F=MAX{Y, A+ X, B+2X}

01

g

A
L,

Fig. 3.1. A tropical modification of R? and its coordinate projections.

R? along F. We reconstruct the tropical curve from the three coordinate projections
shown on the right of the picture, accounting for additivity of multiplicities and the two
false crossings on the Y Z-projection. The naive plane tropicalization agrees with the
XY-projection. The Berkovich skeleton is a theta graph. For further details we refer
to Example 6.12. ¢

4. Tropical hyperelliptic covers of metric trees

Algebraic genus two curves are hyperelliptic and hence can be realized as the source
curve of a 2-to-1 cover of the projective line branched at six points. The analogous
results for tropical hyperelliptic genus g curves and metric trees with n = 2g + 2 legs
and genus zero vertices was first established by Baker—Norine [3] and Chan [19], and
later generalized to admissible covers and harmonic morphisms by Caporaso [15] and
Cavalieri-Markwig-Ranganathan [17]. We restrict the exposition to our case of interest.

Definition 4.1. A map 7: I' — IV is a morphism of metric graphs if 7 sends the vertices
of T to vertices of IV, and the edges (respectively, legs) of T' to edges (respectively, legs)
of IV in a piecewise fashion with integral slopes.

Remark 4.2. Assume the morphism 7 sends an edge e of I' with length ¢(e) onto an
edge ¢’ of I of length £(e’). We may write the map m|_ as h: [0,£(e)] — [0, £(e')] with
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h(t) = w(e)t for some w(e) € Zsg. By construction, w(e) = £(e’)/(e). Similarly, the
map 7 restricted to a leg e of T equals h: [0,00) — [0, 00) with h(t) = w(e)t for some
w(e) € Zso.

Definition 4.3. A map m: ' — T" of metric graphs is harmonic if for each vertex v of T’
and any edge ¢’ adjacent to 7(v), the number

dy := Z w(e) (4.1)
ecE(T)

vEe,n(e)=¢e’

does not depend on the choice of edge ¢’. We call d,, the local degree of the map 7 at v.
The degree of 7 is the sum over all local degrees in the fiber of any vertex v’ € IV.

Definition 4.4. A tropical hyperelliptic cover of a metric tree T by a metric graph I is
a surjective degree two harmonic map 7: I' — T of metric graphs satisfying the local
Riemann-Hurwitz conditions at each v vertex of I':

2—-2¢g(v) =2d, — #{e>v:w(e) =2} (4.2)

Definition 4.5. A branch point of a hyperelliptic cover w: I' — T of a genus zero metric
tree T is a leg or edge of T which is covered by a leg or edge e of T" with weight w(e) = 2.

Since we are interested in metric graphs I' of genus two, we are restricted to covers
of trees T' with precisely six leaves. Each vertex of T has valency between three and
six. The following technical lemma describes the local behavior of a hyperelliptic cover
r—rm.

Lemma 4.6. There are precisely five tropical hyperelliptic covers of a single genus zero
vertex with valency between three and siz with source curve a vertex of genus at most
two.

Proof. We let v/ be the vertex in the target curve and fix a covering vertex v on the
source curve. The result follows by analyzing all possible combinations of genus g(v) and
valency of v'. Replacing each value of g, = 0, 1, or 2 in (4.2) yields all cases in Fig. 4.1. O

Our main result in this section describes the combinatorics of hyperelliptic covers of
trees on six leaves. It implies that the poset structures on Mgfgp and M3 agree, as
shown in [46, Theorem 5.3]. Unlike the latter, our proof is elementary and uses the local
tropical Riemann—Hurwitz conditions (4.2). The general hyperelliptic case is treated

in [8, Lemma 2.4]. Superhyperelliptic curves are discussed in [9]:

Proposition 4.7. Each tree on six leaves is covered by exactly one genus two graph with
six legs via a harmonic 2-to-1 map branched at all six leaf edges as in Fig. 1.2.
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2
1
—949=0
1
2

Fig. 4.1. All possible degree two covers of a single genus zero vertex with valency between three and six by
a single vertex of genus up to two.

Proof. The leaf edges on the trees are branch points, hence they must be covered by
legs of weight two. Lemma 4.6 characterizes the local behavior at each vertex of the tree.
These two facts uniquely determine the combinatorial type of the graph and the cover
itself. 0O

Remark 4.8. Following Remark 4.2, the length of an edge e in T covering an edge ¢’ in
I satisfies ¢(e) = ¢(e’) /w(e). In particular, when two weight-one edges in I' form a loop
that covers a single edge e’ in I/, then the loop has length 2 ¢(¢’).

5. The Classification Theorem and the diagonal map My ¢(K) — My

Throughout this section, we let ag,...,ag be six distinct points in K* defining an
element of My e(K) via the six marking (1 : a1),...,(1 : ag) in P'. We consider the
diagonal map

@: Mo g(K) — My (5.1)

from Fig. 1.1 sending a smooth rational curve X € My ¢(K) to the minimal Berkovich
skeleton p(X) of the unique hyperelliptic curve covering X with branching at (1 :
a1),...,(1: ag), as in Fig. 1.2. This map is well-defined since it only depends on the
equivalence class of a := (ay,...,ag) in (K*)® up to isomorphism. Combining Table 5.1
with Algorithms 5.1 and 5.2 will completely determine . Furthermore, this characteri-
zation depends solely on the relative order of the negative valuations of the entries of o
and some of their differences, as in (1.2). As discussed in Remark 1.3, results in this sec-
tion can be used to take an arbitrary genus two curve given by a hyperelliptic equation
to one of the seven forms corresponding to the seven cones in M;™P.

Since K = K is non-trivially valued by assumption, it follows that the valued group
of K is dense in R [41, Lemma 2.1.12]. As a consequence, we can construct a splitting of
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the valuation map [41, Lemma 2.1.15]. Inspired by the canonical splitting for the Puiseux
series field, we write it as v — t7. We use this notion to define initial forms in K*:

Definition 5.1. Given a splitting v +— 7 of the valuation on K, we define the initial form
in(a) of any a € K* as the class of at~¥(®) in the residue field K of K obtained as
the quotient of the valuation ring by its maximal ideal.

We let w = (wi,...,ws) € RS be the weight vector from (6.13) associated to «
and assume w; < wy < ... < wg. Whenever there is a tie between w; and w;y; and
the corresponding initial forms of «; and ay11 agree, we consider the valuation of the
difference a; — a;41 and notice that d; ;41 := —val(ay — @iq1) < w; = wigq if in(ey) =
in(o41). In this situation, we replace the (i + 1)-st. entry of w by d; i+1.

As a first step towards a complete classification of the image of ¢ and its domains of
linearity, we construct seven regions in the space of branch points whose associated trees
have different combinatorial types:

QW .= {a € Myg(K): weight w € R® satisfies conditions (i) in Table 5.1},  (5.2)

for i € {I,..., VII}. Even though these sets do not cover all tuples of distinct points in
(K*)8 we show that they parameterize all seven cones in M;™P and the harmonic maps
from the metric graphs in My™P to My's® given in Fig. 1.2. Here is the precise statement:

Proposition 5.2. For each i € {I,...,VII}, the diagonal map ¢ from (5.1) restricted to
Q) parameterizes the cone of Type (i) in Mgtmp and induces a hyperelliptic cover of a
tree in Mgfgp by an abstract tropical curve of Type (i) in My™P. Furthermore, the metrics
on both objects are completely determined by piecewise functions on the weight vectors w
of points in each Q) as in the second and fourth column of Table 5.1.

Proof. Starting from a tuple @ € Q%) viewed as a marking on P', we consider the
smooth rational curve X in My and the associated weight vector w € RS. Our goal
is to determine the combinatorial type of the tree Trop X and to express its metric
structure in terms of w. We do so by analyzing each of the seven sets Q") separately.
By Proposition 4.7 we can label each tree by the type of the genus two metric graph
I" covering it. The edge length formulas on I'" indicated on the last column of Table 5.1
are obtained directly from the metric structure on each tree using Remark 4.8. It is
important to emphasize that the tropical Pliicker map will give the half-distance vector
on the tree, as we saw in Section 2.

In what remains, we discuss the second column of the table. The combinatorial
type of each tree is determined by the isomorphism ®: My — Gro(2,6)/(K*)° C
(K*)1®/(K*)® from (2.2) and the four-point conditions (i.e., the tropical 3-term Pliicker
relations [41, Lemma 4.3.6]) on — val(®(a)) € R /RS. We use the lexicographic order
on R,
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Type (I): We claim Trop X is a trivalent caterpillar tree on six leaves with internal edge
lengths ws —wa, w4 —w3 and ws —wa. Indeed, since — val(a; — ;) = wj for ¢ < j we have

—Val(q)(g)) ::(w27w37w47w57wﬁaw37w47w57w67w47w57w67w57w67w6) 6r]:‘rop Gr0(236)/R6'

By construction, the half-distance vector equals — val(®(a)). The four-point condition
implies that the corresponding line in P° is a trivalent caterpillar tree. Linear algebra
recovers the expected lengths on its three bounded edges [41, Remark 4.3.7]. Note that
the lengths assigned to the six legs in the second column of Table 5.1 play no role here:
the associated half-distance vector in R!® is in the same class modulo the lineality space
in Trop Gro(2,6). The claim follows.

Type (II): By construction, ®(«) has negative valuation vector
_Val(q)(g)) = (w2v w3, Wy, Ws, We, W3, W4, Ws, We, d34a W5, We, Ws, We s WG) GTI‘Op Gfo(?,G)/Rﬁ,

where the w; and ds4 are as in (6.13). The four-point conditions imply that the tropical
line in P° is a snowflake tree with internal edges w3 — wa, ws — w3 and ws — ds4, as
indicated on the second column of the table.

Types (III) through (VII): The tropicalization induced by the Pliicker embedding shows
that the metric trees on these lower-dimensional cells of Mgfgp are obtained by special-
izing the trees for Type (I) or Type (II): both the combinatorial type and the metric
are obtained by coarsening either the caterpillar or the snowflake trees. The edge length
formulas match those given in Table 5.1. O

In the remainder of this section we discuss why these seven regions Q) suffice to
classify all smooth genus two tropical curves. Indeed, Algorithms 5.1 and 5.2 describe
an explicit combinatorial procedure that takes six distinct points aq,...,as in K* and
provides linear changes of coordinates in P! producing a tuple of points in one of the
sets Q)| after iteratively combining two steps:

(A) Separate points: We take a coordinate wy, of w and two points «; and «; of valuation
—wy, where val(oy; — ;) is maximal, and make a linear change of coordinates
that turns the tuple a € (K*)% into o/ € (K*)°®, where — val(c}) is the unique
smallest element of w’. The method is described in Lemma 5.3.

(B) Turn around: We change coordinates from one open affine chart of P! to another
by replacing = by 1/x. As a result, — val(ca}) = val(e;) and the relative order of

the valuations on the tuple ¢ is reversed on the new tuple o/.

As was mentioned earlier in this section, our assumptions on K ensures the density
of the value group of K in R and the existence of a splitting v + t7 to the valuation.
‘We use these to properties to separate branch points:
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Table 5.1

Combinatorial types with the corresponding defining valuation conditions, and length data for M(SFZP and
MS™°P. Here, w; = — val(«;), d34 = — val(as — a4), and the edge lengths Lo, L1 and Lo refer to Fig. 2.1.
Type Cover with lengths on M&ré’p Defining conditions Lengths on M3 P

4]

1

W2 w3—w2 Wi—w3 Ws—Wwg 2We—Ws

Wy

w1 <wz <wsg <wyq <ws <we

Lo = (wg —w3)/2
Ll = 2((4.)5 — UJ4)
Lz = 2((4.)3 — UJQ)

w1 wa w3 Wy Wws
1 Wy W3—W2 ws—ws 2we—ws 6 w) < we < w3 < ws < we Lo = 2(ws — d34)
(II) " w3 — d34:: ws w3 = W4 Ll = 2((4.)5 — UJ3)
2 A in(az) = in(ay) Ly = 2(ws — w2)
o s/ Ndu 5
3 4
Wy W2 w3 =wy Ws We
1 wa w3—wWp  ws—ws 2we—Ws 6 w; <wz <ws <ws < ws Lo =0
(III) w w/\w | w w3 = wy L, = 2(w5 — WS)
2 3 3 5 . .
5 ., in(as) # in(ag) Ly = 2(ws — wa)
2 5
w1 w2 w3 =wy Ws We
1 W2 wW3—Wwy Wi—Ww3 2wg—ws 6 wy < wz < ws < wy < we Lo = (wg —w3)/2
v _ _
) wa w3 w4/\w4 W = Ws Li1=0
s A 5 in(ag) # in(as) Ly = 2(ws — w2)
2
w1 wa w3 Wy =Ws We
) wa Wg—Wwa 2w —wy 6 w1 < wz < wy < we Lo = (wg — w2)/2
(V) wz/\w2 uh/\um Wy = W3, W4 = Ws Ly =0
in(az) # in(as) _
2 3 4 5 in(as) # in(as) L2=0
w1 Wo =Wws Wy =ws We
1 w2 w3 —ws 2we —ws3 w1 < wa < wz < we Lo =
w3 = Wyq = Ws L, =
(VI) WIA\WS . 3 4 ' 5 1
37N, in(as) # in(as)
in(as) # in(as) Ly = 2(ws — w2)
inas) # in(as)
w1 ) w3=wy=ws w6
1w 2w —ws 6 w1 < w2 < we Lo =
(VII) wa w2 Wy = w3 = wg = ws Ly =0
2 . .
w2 w25 in(a;) # in(oy) Lo —0
4 % forl<i<j<6 2

w1 ! we

W =W3 =Wq =Ws




474 M.A. Cueto, H. Markwig / Journal of Algebra 517 (2019) 457-512

Lemma 5.3. [Separating points] Consider a repeated coordinate w of w, and write

B = max{val(a;,m — ;) Wy =w; =w form #1} > —w.
Fiz two indices i,j with w;=w;=w and B = val(a; — a;). If in(c; — aj) = ( € K for
some ¢ with val(¢) = 0, choose v € val(K*) with 8 < v < val(e; — a; — (t?). Then, the
linear change of coordinates ¢: Pt — P! defined locally by

Y(r) =z —a; — (P -1 (5.3)

turns the tuple o € (K*)% into o/ € (K*)8, where their coordinatewise negative valuations
w and w' satisfy the following properties:

(1) W, =ws > w; if ws > w;;
(2) Wl =w;, and in(al,) = —in(ay) if ws < w;;
(B) wl=—y<w,=—val(as — ;) <w; ifws =w; and s #i.

Proof. The first claim follows immediately from the strong non-Archimedean triangle
inequality since aj + (t® + ¢ has valuation —w;. A similar argument proves the second
claim. In particular, o/, # 0 whenever w, # w;.

We now prove the third item. Again, val(a; — o — (t?) > 7, so val(a}) = v and
o # 0. Pick s # i with ws = w;. We write

a, = (as—ao;) + (i —aj 7@5),1&.
———
—w;<val(-)<p val(-)=y>8

By the strong non-Archimedean inequality, —w; < val(o)=val(as — ;) < 7, so ol #
0. O

As the next example illustrates, the effect of the coordinate change in Lemma 5.3
can easily be visualized by means of a tropical modification followed by a coordinate
projection.

Example 5.4. Consider points in the Puiseux series field K= C{t}}:
a1 =13, ap =241t a3 =2+1t% as=t"2 as=t"3 and ag =t"*in K*,

where w; = -3, w=wy=w3 =0, wy =2, ws =3, wg =4, 8=C(=1,1<~y=3/2<
val(t?).

To separate s from ag, and place — val(ag) to the very left of R, we reembed the line
in the plane viay = 2 — (2+#%) —t — t3/2. The tropicalization of this planar line together
with its marked points and the projection to the y-coordinate is depicted in Fig. 5.1. <
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Fig. 5.1. Visualizing the coordinate change (A) via tropical modifications.

Our first combinatorial procedure uses a change of coordinates in P! and a relabeling
to produce a new tuple o’ from o with the additional property that the maximum and
minimum values of w’ are attained exactly once. This is the content of Algorithm 5.1.
In turn, Algorithm 5.2 transforms the output of Algorithm 5.1 into a configuration of
points in a suitable region Q(*). We measure improvement by two auxiliary variables:

o the deficiency def(a) of the point configuration defined as the size of the partition
of [6] = {1,...,6} identifying equal coordinates of w,
« a refined partition A taking both the valuation and the initial terms into account.

Our partitions will always have the singletons {1} and {6} since w; and wg remain
isolated after each iteration of Step (A).

Algorithm 5.1: Separate the minimum and maximum values of w.

Input: A tuple a = (a1, ..., ag) of six distinct labeled points in K*.
Assumption: val(K ™) is dense in R and the valuation on K splits via w — ¢%.
Output: A tuple o’ obtained from « by a linear change of coordinates in P! followed by a relabeling,
where — val(a}) < —val(aj) <...<—val(af) < — val(ag).
Relabel the points so that — val(ay) < —val(az) < ... < —val(as) < —val(ag);
o' — a;w + —val(a) = (—val(a)), ..., — val(ag));
Amin < {i: w; = min(w)} ; Amax < {i: w; = max(w’)};
if |Amin| > 1 then
Relabel Apin so that {val(a; — aj): %,j € Amin, @ 7 j} is maximized at i=1,j=2;
o’ + 1(a) where 7 is defined as in (5.3) with w = wy, i =1, j = 2;
w' +— —val(a);
|Amax| > 1 then
a’ + Coordinate change (B) on P! applied to @’ ; Amax + Amin;
Relabel Amax so that {val(a) — a;-): i,7 € Amax,® 7 j} is maximized for i=6, j =5;
a’ + ¢(a’) where ¢ is defined as in (5.3) with w = wg, i =6, j = 5;
o’ + Coordinate change (B) on P! applied to o’;

e
=

return o' .

Proof of Algorithm 5.2. If the input « is already in one of the desired regions Q*) for 7 in
{I,..., VII}, the algorithm outputs the pair (a, ). If not, the deficiency of the partition A
of o gives us precise rules to apply transformations (A) and (B) to improve this invariant
one step at a time. Before each iteration, we use the turn around transformation (B)
followed by a relabeling of [6] (to satisfy —val(a;) < —val(aj41) forall j =1,...,6) to
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Algorithm 5.2: Finding a representative of a tuple o in some Q) for i € {I,..., VII}.

Input: A tuple a = (a1, ..., aq) of six distinct labeled points in K™ with
—val(ag) < —val(az) < ... < —val(as) < — val(ag).
Assumption: val(K ™) is dense in R and the valuation on K splits via w +— t.

Output: A pair (o', ) where i € {I,...,VII} and o' lies in Q) Here, o is obtained from a by a
linear change of coordinates in P! followed by a relabeling of [6] = {1,...,6} if needed.
o +—a ; W« —val(a)) ; d «+ def(a’) := deficiency of o';
A « part(a’) := partition of [6] determined by equality among (w!, in(a}))’s;
while d = 3 do
if |A| = 6 then return (o', VII).
Relabel {2,...,5} so max{val(a] — af) : wj = W} = wy} = val(aj — a3);

a’ « (a’) where ¢ is defined as in (5.3) with w = w}, i =2, j = 3;

Relabel [6] by incr. —val(a’); A + part(a’); w’ < —val(a'); d « def(a’);

while d = 4 do

if |[A| =6, w), = wj, and w) = w{ then return (o', V).

else if |A| = 6, w, < wj then return (o', VI).

else if (|A| =6 and w) < w}) or (|A| <6, wy < wj and in(ab) # in(ay)) or (|A| < 6 and

wh < wy) then

o' + Coordinate change (B) on P! applied to o’ with relabeling of [6];
W' —val(a') ; A< part(e) ; d + def(a);

else
Relabel {2,...,5} so that max{val(a; — a}): w; = W} = wy} =val(ay — aj);
a’ + ¢(a’) where ¢ is defined as in (5.3) with w = wj, 1 =2, j = 3;
Relabel [6] by incr. —val(a’); A <+ part(a’); w’ < —val(a'); d + def(a’);

while d = 5 do

if wy = wj and in(aj) = in(aj) then return (o', I1).

else if w; = w) and in(ay) # in(ay) then return (o, II).

else if w), = w} and in(ah) = in(ay) then

a’ + (a’) where 9 is defined as in (5.3) with w=ws, i=2, j=3;

Relabel [6] by incr. —val(a’) and return (o', I).

else if wj = wl and in(c}) # in(af) then return (o, IV).

else
' + Coordinate change (B) on P! applied to o’ with relabeling of [6];
W' —val(a’) ; A+ part(a);

return (o', I).

reduce ourselves to the case when wy = ws > —val(as — a3) and {val(a; — ;) : w; =
w; = wa} is maximized at ¢ = 2, j = 3. In this situation, the change of coordinates (A)
on P! with w=ws,, i=2, and j =3 turns a to o/ € (K*)% and def(a/) > def(a). After
each such transformation, a relabeling of [6] is performed to ensure the — val(e;) are
ordered increasingly. The process stops in at most four steps. 0O

6. Faithful re-embedding of planar hyperelliptic curves

Up to this point, we have only dealt with abstract tropical curves. In this section,
we turn our attention to embedded tropical plane curves, defined as the dual complex to
Newton subdivisions of (1.1) [11,41,47]. Our objective is to prove Theorem 1.2. Along
the way, we analyze the combinatorics of the re-embedded tropical curves, which will
vary with the type of the input planar hyperelliptic curve. We assume throughout that
the valued group of K is dense in R and we fix a splitting w — t“ of the valuation.
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Our first result allows us to assume that the hyperelliptic cover (1.1) is branched at
both 0 and oo, and that the leading coefficient u equals 1. It ensures that the description
of witness regions from Table 5.1 remains valid in this setting, for w; =—o00 and wg=

Lemma 6.1. After an automorphism of P! sending o' to a, the equation (1.1) becomes

5
g(x,y) :zyQ—ZH(x—ozi)zO Qag,...,a5 € K*, (6.1)
i=2
where w; :== —val(o;) € R, w; =w! — 2w} = 2val(ag) — val(a), ina; = ina/inag? for
alli=2,...,5, and wy < w3 < wy < ws.

Proof. Equation (1.1) is obtained from (6.1) by means of the projective transformation

o(z):=(z—a})/((a}—ag)(z—ag)) and replacing y with y/( x—ag)® |u H aj, — oy )
\ 1<k<s

As discussed in Section 3, the naive tropicalization Trop V(g) induced by (6.1) is
almost never faithful. Our goal in this section is to produce faithful re-embeddings in
(K*)? for all seven witness regions, both at the level of minimal and extended Berkovich
skeleta. We will make full use of the techniques developed in Section 3, in particular
Lemma 3.3, which describe these re-embedded tropical curves by means of the three
coordinate projections.

As we will see, except for Type (II), faithfulness can be achieved in the X Z-plane, since
the relative interior of the cell o4 from (3.4) will contain no point from the re-embedded
tropical curve Trop V (I, ). For this reason, we postpone the treatment of Type (II) to
the end of this section. Furthermore, a refined algebraic lift of the tropical polynomial
F =max{Y,A+ X, B + 2X} from (3.3) will yield faithfulness on the extended skeleta
for Types (I) and (III).

The rest of this section is organized as follows. We start by giving a complete de-
scription of vertices, edges and tropical multiplicities of the zy-tropicalizations, whose
Newton subdivisions are shown in the middle column of Table 6.1 and in Fig. 6.1. We
do so by calculating various initial forms of the input hyperelliptic equation g(z,y). The
explicit values will depend on the genericity of the branch points as, ..., a5 and the re-
lation between the expected valuations of all coefficients in g and their actual valuations.
These computations allow us to determine the function f(z,y) from (6.2) appearing in
Theorem 1.2. Lemma 6.2 confirms the validity of f as a lift of the tropical polynomial
F. A refined choice f(x,y) of this function, described in (6.5), will allow us to control
the combinatorics of the re-embedded tropical curves and achieve faithfulness on the ex-
tended skeleta on certain types of curves. Propositions 6.3, 6.5 and Lemma 6.4 analyze
the combinatorics of the zz-tropicalizations, visible on the right-column of Table 6.1.
The description of the yz-tropicalizations for each type is done on separate subsections.
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In order to find the appropriate lift f(z,y) of the tropical polynomial F', we must
first predict the Newton subdivision of (6.1) for each witness region. This is done by
computing the expected heights of all monomials (i.e., the negative valuation of the
coefficients) in the Newton polytope of ¢g(z,y) in terms of w:

ht(z°) =ht(y*) =0, ht(z Zw“ ht(z sz, ht(z®)=ws +wy and ht(z?)=ws.

These heights determine the induced subdivision, as seen in Table 6.1 and Fig. 6.9.
Notice that outside Types (I) and (II), the expected heights may not be attained. For
example, the coefficient of 2% equals as(autaz)+d ;o5 ;. Unlessin(aa) = —in(ag),
its expected height in Type (III) will be achieved. We indicate these situations by red
points in the Newton polytopes. Nonetheless, these special situations have no effect on
the tropical world: they will only unmark the given lattice point.

The expected heights determine all vertices in Trop V' (g) from Table 6.1 and Fig. 6.9:

w3 + w4 + Ws

2 )71}4:’034’(005*004)(1,2).

w
), Vo=v1+(w3—wa) 1, v3= (w4, 2ws+ =

v1= (w2, wa+ 5

Unless v; = v, the edge e12 joining v; and vy has tropical multiplicity 2. Similar be-
havior occurs for the edge e34 joining v and v4. Notice that the combinatorial types for
Trop V(g) are all distinct, except for Types (II) and (III). However, these two differ as
tropical cycles, since the tropical multiplicities of the vertex v, are distinct: it is one for
Type (III) but two for Type (IT). This follows by computing the initial degenerations
with respect to vs:

iny, (9) = y* +2” in(as)(z — in(as)) (@ — in(au)) € K[z™*, y*].

Indeed, in,,(g) is irreducible if and only if in(as) # in(ay). This holds for Type (III)
but fails for Type (II) as Table 5.1 indicates. In the latter case, in,,(g) has two reduced
components, S0 Mgrop(v2) = 2.

The tropical polynomial F' from (3.3) associated to A := (w3 + w4 +ws)/2 and B :=
wy /2 contains all vertices of Trop V' (g) and the edges between them. Our choice of lifting
for F'is governed by the initial degenerations of Trop V' (g) along the (possibly degenerate)
multiplicity two edges e;s = U102 and e3q = v3v4. Whenever these edges have positive
length, the method unfolds them and produces loops in the re-embedded tropical curve,
as in [20, Theorem 3.4]. We propose:

flz,y) ==y —vV—azagas x+/—as 2% (6.2)

4

Since ing,,(g) = y? + in(azagas) 22 and ine,, (9) = y* + inas 2* we verify:

Lemma 6.2. The polynomial f from (6.2) is a lifting of F' and its initial degenerations
ine,, (f) and ing,, (f) are irreducible components of ine,,(g) and in.,,(g), respectively.
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Table 6.1

Naive tropicalization for cells (I), (II), (III), (IV) and generic (VI), and planar re-embeddings described
by Newton subdivisions. All planar re-embeddings are faithful except for Type (II). The polygon P will
be further subdivided, as in Subsection 6.5. The dashed edges correspond to the refined lift f (6.5) of
the tropical polynomial F. The red points’ heights might be lower than expected for special choices of
@2, ...,as5. The grey points have height —oco. All vertices are described in (6.4) and (6.7). (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

Cells and skeleta Naive tropicalization xz-tropicalization

@

Oa®

(1T)
U1\ W2 = U3~

D

@Q

i g:1 V3

U1

V3 =7]

(VD)

The next result recovers the Newton subdivision of the polynomial
G(x,2):=g(x, 2 + B3PsPBs x — Bsx*) where a;=p? for i =2,3,4 and as=—p32, (6.3)
generating the ideal I, ; N K[z*, 2*] from Table 6.1:
Proposition 6.3. For Types (1), (III), (IV) and (VI), the expected heights of G(z,z) are:
_Wstwstws

2 )
ht(z?) = ws +wy , ht(z?) = wy , ht(z?) = ws + wg + ws.

ht(z%)= ht(z®) =0, ht(xz) ht(x%):% . ht(z) =ws +wi+ws+ws,
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The expected heights for 22, z°, xz and 2z are always achieved. For the remaining mono-
mials, genericity conditions need to be imposed for Types (III) and (VI) (see Table 6.1.)

Proof. An explicit computation with Singular (see the Supplementary material): reveals
that the coeflicients of § from (6.3) equal:

coeff(2°) = — coeff(2%) = 1, coeff(xz) = —2B36485 , coeff(z?2) = 235 ,

4

coeff(z) = —an —ag —ay, coeff(z?) = a5(Bs — B4)? + azay + az(as + ay + as),

coeff(acQ) = —as((as + aq)as + azay) ,  coeff(z) = asagaqas .

The characterization of each witness region in Table 5.1 gives both the expected heights
for each relevant monomial and the genericity conditions required to achieve them:

x%: in(as) +in(ay) # 0 for (ITI) or (VI),
x3: in(as)(in(Bs) — in(B4))? + in(asz) in(ay) # 0 for (VI),
x2: in(ag)+in(ay) #0 for (I1D); (in(az)+in(ay)) in(as) +in(as) in(ay) #0 for (VI). O

The previous result, together with the characterization of all six maximal cells of
Trop V(f) in (3.4) yield explicit formulas for all vertices of the X Z-projections depicted
in Table 6.1:

w3twstw w3twstw ws ws
vy = (wa, w2+%, w2 %), v3= (w4, 2w4+7, 2w4+7)7
v1g = vy = v1 + (w3 —we)/2(1,1,0), vy = v + (w3 —wso)l, (6.4)
v34 = Vs =03 + (w5 —wq)/2(1,2,1), vy = v3 + (w5 —w4)(1,2,2).

The formulas for v12 and vzy are valid for Types (IIT) and (VI) only generically. Fur-
thermore, the description of Type (VI) curves done in Table 6.1 is only generic. Fig. 6.1
shows the combinatorial types of Trop V(g) for special configurations of Type (VI). In
particular, for this type we can only get a triangle as the dual polygon to v in the
Newton subdivision of §(z,y) when the coefficients of 2% and x* are non-generic. We
conclude:

Lemma 6.4. On Type (VI), the initial form in,,_ (0,2 (3(z, 2)) for any X > 0 is monomial
only if in(as) = —in(ay) and 2in(as) = in(Bs384).

In order to address this non-generic behavior and the combinatorics of Trop V' (g) for

all types discussed in Proposition 6.3, it will be convenient to choose a refined lift f of
F on Types (I), (III), (IV) and (VI). We define:

Flz,y)i=y—v—as ag a5 (1+1°) 4++v/—as (1+6t ) 2®  for 0<e,e’ <1, §=0/1. (6.5)
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By construction, Lemma 6.2 holds for f as well, and Trop V(f) =Trop V (f). The param-
eters ¢, &’ depend on the branch points as, . . ., a5, while the choice of § depends solely on
the curve type: 6 = 1 for Types (I) and (III), whereas 6 = 0 for (IV) and (VI). Following
the notation from (6.3), the generator g’ of the ideal I, 7N K[z*, 2*] becomes

(@, 2):=g(@, 2 + BaBaBs (1 + t°)z — B (1 + 6t )a2). (6.6)

Our next result shows that when e and ¢’ are chosen appropriately, f produces faith-
fulness on the whole extended skeleton in Types (I) and (IIT), as Table 6.1 indicates.

Proposition 6.5. For Types (1), (III), (IV) and (VI), the coefficients of §'(x, z) and §(z, z)
agree with the following five exceptions:

coeff(222) =2B5(1+6t° ),  coeff(2?) = —as(az+ay)as — asasay + agogast®(2 + ),
coeff(z2) =—2B3B4B5(1+1°), coeff(z?)=—ay — a3 — ay + asdt® (24 6t°),

coeff(z3) = as(Bs — Ba)? + azay + an(as + oy + o) — 20053384 (t° + 5t + 6t€+5/) .
The heights of xz and x°z agree with those in Proposition 6.3. The expected height of x>

is ws +wy and it is achieved for Type (VI) only when val(as(B3 — B1)? + azay) = —2wy.
Moreover, if 0 < e < (w3 —w2)/2 and 0 < &’ < (w5 —wa)/2 (if ws # wy)), then

o ht(2?) = ws +wy + w3 — € > ws + wy + wo for all four types,

o ht(x?) = ws — &' for Types (I) and (II),

o ht(z?) = wy for Type (IV), and

e ht(z*) < w4 for Type (VI). Equality is achieved if and only if in(az) # — in(ay).

Proof. The result follows by direct computation (see the Supplementary material). The
conditions on € (and &’ for (I) and (III)) guarantee that the heights of 22 and x* satisfy:

ht(z)+ht(2®) < ht(x)+exp ht(2®) <2ht(z?) and ht(z?®)+ht(z°) < exp ht(z?) <2ht(z?).

Under these constraints, the point z2 lies above the plane spanned by z,z3 and zz in
the extended Newton polygon. Therefore, the triangle in the Newton subdivision with
vertices z, 3 and xz will be subdivided by an edge joining 2z and 2. For Types (I) and
(IIT), our choice of &’ produces the same effect for x* and the facet spanned by 22, z°

and z2z. O

Proposition 6.5 implies that when the expected height of z3 is attained, the refined
modifications replace v12 and v3z4 by two pairs of vertices, as seen in Table 6.1:

vig=v1 +&(1,1,0), vig=vs —(1,1,2), vga=v4 — £'(1,2,3) and v, =wv3 +¢'(1,2,1).
(6.7)
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s

Fig. 6.1. Non-generic zz-tropicalizations for Type (VI) with respect to the height of 23. The rightmost is
non-generic with respect to z* as well.

Remark 6.6. The combinatorial types arising from §(z,z) and §'(z, z) for non-generic

Type (VI) curves is more subtle. All possible Newton subdivisions are shown in Fig. 6.1

and they depend on the behavior of 2% and 2*. Our bound for € given in Proposition 6.5

allows us to split the vertex vys into two or three vertices. There are three cases to

analyze:

(1)

When 23 is non-generic but marked and the behavior of x* is generic (as in the
leftmost picture), there will be no high-multiplicity leg in the direction (0,0, —1)
and the zz-tropicalization will be faithful on the whole extended skeleton. Precise
formulas for v12, v}, and v}, will depend on the heights of 2® and z*.

When z? is generic and 22 is unmarked (as in the middle picture), the vertex vis
splits into two vertices, with coordinates

vi2 = v +¢(1,1,0) Vg = (wg — /2, (Fws/2 — €)/2, (5wy — 3¢)/2).

A multiplicity two leg in the direction of (0,0, —1) is attached to the vertex vi,, so
faithfulness on the extended skeleton induced by ¢’ is not guaranteed. If we consider
g instead, then v12 = v, and the leg has multiplicity three. The precise coordinates
of v12 will depend on the height of x3.

When 2* and 23 are both non-generic, we cannot predict the combinatorics of the
Newton subdivision of §. We bypass this difficulty by choosing the refined lift f
from (6.5) with 6 =1 and ¢, ¢’ satisfying:

0<e<é <min{wy —wa/2,wy + val(ag + ay)}.

In this case, convexity shows that the zz-tropicalization of I, 7 has a unique high-
multiplicity leg dual to the segment with endpoints z? and z°, as in the rightmost
picture. The remaining legs are adjacent to vy and v4 and lie in the cells o7 and os.
The heights of z2, 22 and z* in the right-most picture in Fig. 6.1 become 3ws — &,
2wy — e’ and wy — &, respectively. Furthermore, the vertices of Trop V (I, ’. f—) in og are
v = (wa2, w2 + 3ws /2, wa + 3ws/2), v4 = (w3, bws /2, 5wz /2) and

V12 = U1 +€(1a150)7 ’U/12:1}47€/3(1,1,4).

The remainder of this section is devoted to the proof of Theorem 1.2, which we do by

a detailed case-by-case analysis. Following [5, Theorem 5.24] we certify faithfulness for
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I and I o.f by verifying that the tropical multiplicities of all vertices and edges on the
tropical (extended) skeleton under the forgetful map equal one. The Poincaré-Lelong
formula [4, Theorem 5.15] will help us analyze the tropicalizations

trop: 3(X) — Trop V(1. ¢) and trop’: ¥(X) — Trop VI, ) (6.8)

where ¥(X') denotes the extended skeleton of X*" with respect to the six branch points.
They correspond to the source curves on the left of Fig. 1.2. For all types except (V)
and (VII), the legs in (X)) marked with a; = 0 and ag = oo are mapped isometrically
to the legs attached to v1 and vs with directions (-2, —1,—1) and (2,5, 5), respectively.

Whenever faithfulness on ¥(X) cannot be achieved via f or f, we overcome this issue
by employing vertical modifications along tropical polynomials of the form trop(z — «;).
Example 6.12 provides a detailed explanation of our re-embedding methods presented
briefly in Example 3.4. The Supplementary material includes a complete list of examples
(with scripts) for each combinatorial type, considering generic and special branch point
behaviors. The interested reader can simply change the parameters as, and (;’s on the
script corresponding to a fixed curve type to produce new examples.

6.1. Proof for Type (I)

From the X Z-projections of both Trop V' (I, ) and Trop V(I ;) given in Table 6.1
we know that the maximal cell o4 does not meet any of these two curves. Thus, we
can ignore the Y Z-projection when reconstructing the space curves using Lemma 3.3: it
suffices to attach a leg in the direction (0, —1,0) to the vertices vy, v9,v3 and vy in the
charts o1 and os.

From Table 6.1, we see that all vertices and edges in Trop V (g) and Trop V(g§') have
tropical multiplicities one, since their initial degenerations are reduced and irreducible.
This shows that both zz-tropicalizations are faithful on the minimal skeleta. Further-
more, all legs in Trop V' (§') have multiplicity one, thus the refined modification induces a
faithful tropicalization on the whole tropical curve. This is not the case for Trop V(I f)
since there are two multiplicity two legs in the direction (0,0, —1).

The tropicalization maps in (6.8) can be read off from the combinatorics of both
re-embedded curves. The legs attached to vy, v, v3 and v4 are the isometric images of
the legs marked with as, a3, a4 and a5 under the tropicalization maps. These legs get
contracted under the X Z-projections. 0O

6.2. Proof for Type (III)

The XY- and X Z-projections reveal that o4 intersects both tropical curves
Trop V(Iy,f) and Trop V(I 7) along the ray o1 Moz Noy. Thus, we can use Table 6.1 to
reconstruct the space curves.
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All trivalent vertices in the X Z-projections of both space curves have tropical multi-
plicities 1. By [20, Corollary 2.14], we can confirm that vy has also multiplicity one by
showing that the discriminants A of in,, (g(z, z)) and in,2(g’(z, 2)) do not vanish. The
explicit descriptions of §(z,z) and §'(z, z) from Propositions 6.3 and 6.5 give

A =in(coeff(x2)) in(coeff (z%2)) —in(coeff (z*)) in(coeff(2?)) =in(as ) (in(B3) +in(B4) )* #0.

From the Newton subdivisions, we see that all bounded edges of both X Z-projections
have tropical multiplicity one, so both planar re-embeddings are faithful on the minimal
skeleta. Since all legs on Trop V(§’) have also multiplicity one, we conclude that the
X Z-projection for the refined modification is also faithful on the extended skeleton.

As with Type (I), the tropicalization (6.8) maps the legs of 3(X) marked by s
and a5 isometrically onto the leg adjacent to v, and v4 in the cells o7 and oy. Since
Mirop(V2) = 2, the legs marked with a3 and oy are mapped isometrically onto the leg
adjacent to vg, so these tropicalizations in R? are not faithful on the extended skeleta.
This can be repaired in dimension four by a vertical modification along X = wy, via the
ideal

J=1 f—|—<u—(x—a4)>CK[xi,yi,zi,ui]. (6.9)

9,

The tropical curve Trop V(J) in R* is obtained from Trop V(I 4.7) by four simple opera-
tions:

(i) points p = (p1,p2,p3) in Trop V (I, 7) with p1 < wy lift to points of the form (p,wa);
(i)
(i)
(iv) the multiplicity two leg with direction (0, —1,0) adjacent to vs splits into two mul-

tiplicity one legs ¢3 and ¢4, with directions (0, —1,0,0) and (0, —1,0, —2): these are
the images of the corresponding legs in ¥(X’) under the tropicalization map. Indeed,

points p = (p1,p2,p3) in Trop V(I 7) with p1 > wy lift to points (p, p1);
the vertex vs in Trop V'(J) has coordinates (w4, 2ws + ws/2, 2wy + ws/2,wy);

ing, (J) = (—:1:2 in(as)(x —in(ag))u, u — z + in(ay), z + in(Bs f4f3)x — in(ﬁ5)x2>,
ing, (J) = (y2 —z%in(as)(z — in(az))u, —x + in(ay), 2 + in(Bs Baf3)r — in(ﬁ5)x2>.

These two identities follow from standard Grébner bases techniques over valued fields,
in particular [41, Proposition 2.6.1, Corollary 2.4.10]. Notice that the UY -projection and
its Newton subdivision can be easily obtained by the change of variables u = x + ay4.
Indeed, the result is a hyperelliptic genus two curve covering P!, whose six branch points
have negative valuations —oo,wy, wy, wy, ws and co. As a consequence, we subdivide
its Newton polytope along an edge joining y? and u*. Similar reasoning applies to the
U Z-projection. 0O
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6.3. Proof for Type (IV)

The XY-and X Z-projections from Table 6.1 confirm that the two tropical space
curves contain no points in o4. Furthermore, both curves can be obtained from their
X Z-projections by attaching a leg in the direction (0, —1,0) to the vertices vy, ve and vs.
The leg attached to vs has multiplicity two, and it is the image of the legs marked with
ay and a5 in 3(X). The legs marked with ay and a3 are mapped isometrically onto the
legs adjacent to v; and vs in ¢7. Both curves have a multiplicity two leg ¢ with direction
(0,0,—1) attached to vs:

5
ing(Ig,r) = ing(Iy 7) = <y2 -’ H(x —in(a;)),y + in(B36485) — in(ﬁ5)1‘2> . (6.10)

=4

The vertex v3 is the image of the unique genus one vertex in the Berkovich skeleton, and
it is dual to the unique genus one triangle in the Newton subdivision of g. Furthermore:

Claim 1. The initial degeneration in,,(g) defines a smooth elliptic curve in (IN(*)2

Indeed, a direct computation and the Type (IV) defining conditions from Table 5.1
reveal

iy, (9) = y* —2°(z —in(au)) (z —in(as)) = 2*((y/2)* —z(z —in(as))(z ~in(as)), (6.11)
so its projectivization is a double cover of P% branched at four distinguished points.

Remark 6.7. An alternative proof for Claim 1 can be given in terms of j-invariants, by
considering the plane cubic curve X’ defined by the truncation ¢’ of g corresponding to
all monomials in the triangle dual to v3 in the Newton subdivision of g. By construction,
Trop V(¢’) is the star of Trop V(g) along vs. A direct computation with Singular and
Sage (available in the Supplementary material) confirms that for any characteristic of
K other than two, the j-invariant of X’ has non-negative valuation, so X’ has good
reduction and the vertex of X(X’) maps to vs.

The previous discussion confirms that faithfulness occurs at the level of the minimal
skeleta but fails for the extended one, due to the presence of the multiplicity two leg
¢ in o9 adjacent to vs. This can be fixed using a vertical modification and the ideal J
from (6.9). The same procedure from Subsection 6.2 allows us to recover Trop V' (.J) from
Trop V(I 7) and Trop V(I f), where the role of £3 is replaced by a leg ¢5. The following
identities hold:

ing, (J) = <fx3(x —in(as))u,u — x + in(ay), 2z + in(B38405)x — in(ﬂ5)x2>,
ing, (J) = (y* — 23 in(as)u, — + in(ay), 2 + in(BsBaBs )z — in(Bs)z?).
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The legs ¢4 and {5 adjacent to vsz have directions (0,—1,0,—2) and (0,—1,0,0) and
they are isometric images of the legs in X(X) marked with ay and as, respectively. By
combining (6.10) with the identity in¢(J) = in¢({, 7)+(u—2z+in(as)) we see that the leg
¢ from Trop V/(I, ;) survives in Trop V(.J): it has direction (0,0, —1,0) and multiplicity
two. O

6.4. Proof for Type (VI)

From Table 6.1 we see that the vertex vy is dual to the unique genus one lattice
polygon in the Newton subdivision of g. As in Type (IV), vs is the image of the unique
genus one vertex in the Berkovich skeleton under the xy- and xz-tropicalizations.

Claim 2. The initial degeneration in,,(g) defines a smooth elliptic curve in (I~(*)2

Indeed, the conditions from Table 5.1 reveal that in,,(g) = #2((y/x)? — [[_s(z —
in(w;)), so its projectivization is a double cover of IP’%{V branched at four distinguished
points.

By construction, the naive tropicalization maps the legs marked with as, a4, a5 in
(X&) isometrically to the leg adjacent to vy with direction (0, —1). The next initial form
computation reveals that this leg is the projection of a multiplicity three leg ¢ with
direction (0, —1,0) adjacent to ve which is the image of the aforementioned marked legs
in 2(X):

5

ing(Ig,¢) = ing(Ig)f) = (z? H(m —in(y)), z + in(BsBafBs)x — in(Bs)z?). (6.12)

=3

As was discussed earlier, the combinatorics of the xz-tropicalizations depend heavily
on the genericity of the coefficients of 3 and z* in both §(z, z) and §'(x,z). A careful
case-by-case analysis confirms that all vertices have multiplicity one. Furthermore,

invz (Ig,f) = invz (Ig,f) = <inU2 (9)7 2=y + in(ﬁ3ﬁ465)x - in(ﬁ5)x2>.

Since all bounded edges also have multiplicity one, we conclude that the xz-tropicali-
zations are faithful on the minimal skeleton. In what follows, we describe the combina-
torics of both space curves in each relevant case and analyze faithfulness on the extended
skeleton. The genericity conditions for both 23 and z* are described in Propositions 6.3
and 6.5.

Case 1: generic for 2°. Extended faithfulness cannot be guaranteed since each star of vy
contains a multiplicity two leg in o5 with direction (0,0, —1). The vertex vi2 = v}, of
Trop V(I4,5) also has a multiplicity two leg in o with the same direction.

Case 2: non-generic for x3, generic for z*. The two possible xz-tropicalizations are
obtained from the Newton subdivision of § and §’ in the left and center of Fig. 6.1. They
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depend on whether 22 is marked or not. Both cases were discussed in Remark 6.6. In the
marked case, the xz-tropicalization Trop V(g’) is not faithful on the extended skeleton.
Indeed, the high multiplicity leg attached to vi2 = v/ in the direction (0,0, —1) induces
an initial degeneration with two distinct reduced components, and faithfulness fails for
the extended skeleton. It can be repaired by a vertical modification along this leg and a
lift induced by one of these two components.

Similarly, in the unmarked case, Proposition 6.5 shows that the high multiplicity leg
attached to v, in the direction (0,0,—1) induces an initial degeneration with reduced
distinct components. So extended faithfulness fails for the xz-tropicalization. Vertical
modifications along this leg adapted to these components will repair this situation in
dimension three for I, ¢ and four for I, ¢.

Finally, the multiplicity of the leg ¢ described in (6.12) and Lemma 3.3 ensure that
the leg attached to the vertex vy in both xz-tropicalizations is the projection of a sin-
gle multiplicity two leg in the direction (0,0, —1) attached to ve. This completes the
description of the combinatorics of both space curves.

Case 3: non-generic for both z3 and z*. As discussed in Remark 6.6, the Newton sub-
division of § cannot be predicted, so we focused on the refined modification and the
embedding [ o7 The Newton subdivision of §’, depicted in the right of Fig. 6.1 shows
that no point of Trop(I, ;) lies in the relative interior of 4. The star of v, consists of
the multiplicity three leg ¢ with direction (0,—1,0), the leg ¢s with direction (2,5,5)
and two bounded edges with directions (—1,—1,—1) and (-1, —1, —3), respectively. The
vertex vy is adjacent to a unique leg, with direction (—2,—1,—1). By Proposition 6.5,
the vertex v}, is adjacent to a multiplicity two leg with direction (0,0, —1) whose ini-
tial degeneration has two distinct reduced components. The zz-tropicalization is not
faithful on the extended skeleton. This can be repaired by a vertical modification along
max{Z, (5wy — 3¢)/2}, adapted to one of these components.

As with Type (III), the extended skeleton 3(X) can only be revealed by means of
vertical modifications through v, designed to separate the images of the legs marked
with ag, ay and as. We use the ideal

J=1,5+ (23— (z—a3z),za —(x—au)) C Klz®,yF, 2%, 25, 25).
The leg ¢ in the star of vy in Trop V(Iy,¢) and Trop V(I f) is replaced by three mul-
tiplicity one legs ({3, ¢4 and ¢5), with directions (0,—1,0,—2,0), (0,—1,0,0,—2), and
(0,—1,0,0,0), each coming from the expected marked leg in ¥(X). O

6.5. Proof for Type (II)

Throughout this section, and to simplify the exposition, we assume char K #* 2,3.
A refinement of our methods will be required in characteristic three.

The Type (II) cone manifests itself as the most combinatorially challenging cell of
M3™P. Tt is the only case for which the chart o4 in the tropical modification of R?
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contains points of the re-embedded tropical curve Trop V(I f) in its relative interior.
In particular, information from all three coordinate projections is necessary to recover
the space curve using Lemma 3.3. Furthermore, as was already observed in Fig. 3.1,
depending on the values of the three edge lengths in the theta graph, the Y Z-projection
of Trop V' (I, 5) introduces extra crossings and higher multiplicities that need to be un-
raveled in the reconstruction process. Here is our main result:

Theorem 6.8. In Type (II) the tropical curves TropV (I, ) come in 18 combinatorial
types, depicted in Fig. 6.8. These graphs are determined by a subdivision of the Type (II)
cone along its baricenter. Precise coordinates for all vertices are given in (6.15).

The proof of this result is computational and it involves genericity conditions of the
branch points giving each graph. As usual, examples for all cases are provided in the
Supplementary material.

The condition in(ag) = in(ay) characterizing the witness Type (IT) region in Table 5.1
suggests a new strategy to determine the combinatorics of Trop V' (I, ;) by controlling
the value of d34. We introduce a new variable 34 := 3 — 34 and redefine the third branch
point as az := (B4+ B34)?, where — val(B34) = dzs+val(ay)/2 = — val(az —ayq) +val(By).
The hyperelliptic equation becomes g(x,y) = y*> —z(z — 83)(x — (B4 + P34)?) (x — 87) (v +
B2), and the lifting f from (6.2) of the tropical polynomial F' from (3.3) equals

f(x,y) =y — B5(Bs + B3a)Ba + Bs 2>

The weight vector v € R* encoding the negative valuation of the four parameters
equals:

u = (— val(65), — Val(ﬁ4)7 — \7341(53,4)7 — Val(ﬁg)) = ((U5/2, w4/2, d34 — w4/2, 0.)2/2).

(6.13)

We set u; = —val(f3;) for each i = 5,4,34,2 and write the coordinates of R* in that
order. The Type (II) cone is then determined by the following inequalities:

us > Ug, Ug > Uzq, and  ug > uo. (6.14)

An easy Sage computation reveals that the closure of this cone is spanned by three
vectors (R1, Ro and Rs in Fig. 6.2) and has a one-dimensional lineality space generated
by the all-ones vector. We are solely interested in its interior, since its various proper
faces correspond to other curve types in Ms.

On the algebraic side, the interplay between the combinatorics of Trop V(I ¢) and the
weight vector u is determined by the projection to R* of the Grobner fan of the extended
ideal Ig,fK[B?, ﬁf, ﬁ:ﬁ, Qi, %, y*, 2*]. Since the computation of this fan with build-in
Sage functions does not terminate, we turn to Lemma 3.3 and compute Trop V(I ¢) by
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Ry

Rl = (1707070)
Ry = (070a07 _1)
R; = (0707 _170)

R23 = R2 +R3

Ri233 = Ria3+ 13
Ro33 = Roz+ 3

489

Fig. 6.2. Refined subdivision of the Type (II) cone induced by all possible Newton subdivisions of the
yz-projection after removing the one-dimensional lineality space. The first index of each cone reflects the
label within the subdivision by leading terms of coefficients as in Table 6.2. The blue cones have max-
imal dimension four, the red cones have dimension three and the purple cone has dimension two. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 6.2

From top to bottom: Expected leading terms for all relevant coefficients of h(y, z) (14 total) and g(z, z)
(three total) on the nine cones C; coarsening the refined subdivision of the Type (II) Cone in Fig. 6.2. Each

b; is the initial form of the parameter ;.

Monomials Leading Terms Weights Cones
2b3 b3 wa + 3ws /2 [0, 2, 7]
yt 2b2, b3 2d34 — wa + 3ws /2 [1, 3, 5]
2b3 (b3 +b3) wa + 3ws /2 [4, 6, 8]
Y3z —2b2b3 w4 + 3ws /2 all
y222, yz, 2% bg (coeffs 4, —4, 1, resp.) Sws /2 all
—b2 b2 bd w2 + 2(ws + ws) 0]
—b, b} by 2(d3q + ws) + wa (1]
b3 bS 2w + 3ws 2]
. b3, b8 4dzs — 2w4 + 3ws 3]
Y —b5 b3 (b3, + b3) wa + 2(wa + ws) [4]
by by (—b3 + bs baa) (b3 + bs bsa) 2(dsq + ws) + wa (5]
bg (b2, +b2)* 2wy + 3ws 6]
b3 b2 (—b3 + bs ba) (b3 + bs ba) wa + 2(ws + ws) (7]
b (b34 +b3) (=b3 + b3 b3y + b3 b3) wa + 2(wa + ws) (8]
bg bi bg (coeffs 2, —3, 1 resp.) wa + wa + 3ws [0, 2,7
y2z, yz?, 23 bs, b3 b8 (coeffs —6, 9, —3, resp.) 2d34 + 3ws [1, 3, 5]
by bS (303, — b3) (coeffs —2, 3, —1, resp.) w2 + wq + 3ws [4, 6, 8]
y? —4b2 b2, b] bY 2d34 +wa +ws+Tws /2 all
yz, 22 b§4 b?l bg (coeffs 2, —1, resp.) 2d34+2ws+Tws /2 all
Y,z bg b§4 bi b? (coeffs 1, —1, resp.) 2d34+ws +3ws +4ws all
z* —2 bi 2wy all
by 2w, [0, 1, 4]
—b2 b2 w2 + ws (2]
3 —bg4 bg 2d34 + ws — Wyq [3]
x —(=b2 + b bgy) (b2 + b bss) 2wy (5]
—b2 (b2, + b2) wa + ws [6]
— (b3 + bs bz) (b3 + bs ba) 2wa [7]
—(=bj + b3 b3, + b3 b3) 2w4 (8]
22 2 b% bi bg wo + wyq + ws all
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means of the three coordinate projections as we vary u. In the remainder of this section we
describe the interplay between the weight vector u and the (z, z)- and (y, z)-subdivisions.

Following earlier notation, we call §(x,2) = g(z, 2 + (B4 + B34)BaBsz — B52%) and let
h(y, z) be the generator of I, s N K[y, z|. The latter is determined by an easy elimination
ideal computation using Singular, available in the Supplementary material. Its extremal
monomials are y, z,y> and 2°. The coefficients of both § and h lie in Z|Bs, B4, B34, B2]. The
first column of Table 6.2 shows the 17 terms of both polynomials with non-monomial
coefficients. The second column shows the factorization of the leading terms of these
non-monomial coefficients for each of the nine cones in Lemma 6.9 and justifies our
characteristic assumption on K. The u-weights give the expected heights of all relevant
coefficients of § and h (indicated in the third column.) The table also provides the precise
conditions on the initial forms of S5, 84, 834 and B2 under which these heights are lower
than expected.

The (y, z)- and (z, z)-Newton subdivisions of I, ; will be determined by the valuations
of these 17 coefficients. The answer will vary with u in a piecewise linear fashion. At
first glance, the domains of linearity are determined by the common refinement of the
Type (II) cone in R* and the Grébner fan of the product of all these 17 non-monomial
coefficients. The latter has f-vector (1,21,54,35), so the refinement is performed by
intersecting the Type (II) cone with the 35 chambers in the fan. The next statement
describes this naive subdivision of the Type (II) cone into four triangles determined by
the baricenters Ri23 and Rs3 from Fig. 6.2. Its proof is computational, and the required
scripts are available in the Supplementary material.

Lemma 6.9. The Grébner fans of all 17 non-monomial coefficients of § and h induce a
subdivision of the Type (II) cone into nine cones. Following Fig. 6.2 they are:

Co:=Rso(Ra3,R123,R3) PR-1, C;:=Ry(Ra3,R123,R2)BR-1, Co:=Rs(R1,R123,R3)®R-1,
C3:=Rso(R1,R123,R2) ®R-1, C4:=Rso(Ra3, Ri23) ®R-1, C5:=Rso(Ri23, R2) DR 1,
Co:=Rso(Ri23, R1) ®R-1,  Cr:=Ryo(Ri23, R3) DR-1,  Cg:=R5o(Ri23) DR-1.

In what follows we discuss the combinatorics of the Newton subdivisions of §g. The
next result summarizes our findings, depicted in Fig. 6.3:

Proposition 6.10. There are eight combinatorial types of unmarked Newton subdivisions
of . The monomial x> in §(x,z) is the sole responsible for non-generic behavior, which
only occurs in the cells C; fori=15,6,7,8.

Proof. By Table 6.1, the Newton subdivision of g is determined by all possible subdi-
visions of the parallelogram P. To find the generic subdivision on each cell, we take
as a sample weight vector u the average of its spanning rays. We compute an exam-
ple of parameters fs, ..., B2 with coordinatewise negative valuation u and pick initial
forms b; = in(p;) ensuring the corresponding leading terms in Table 6.2 do not van-
ish. We compute the corresponding plane tropical curve and its dual subdivision with
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V12 =
V12 V34
> o
all Cy, C1, C4 and generic Cs all C3 Cs non-generic
L N 9
/ 7 . /
v vh hS > V)
] U34 ’034 \\= ’1]34 )
all Co and generic Cg Cg non-generic all C; and Cg

Fig. 6.3. All eight subdivisions of the parallelogram P from Table 6.1. The generic and non-generic behavior
of 2% on the four relevant cells are indicated by a red dot. The dashed lines correspond to two combinatorial
types arising for non-generic initial forms. If absent, both vertices agree with v12 and w34, accordingly. For
non-generic C7, > is unmarked. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

the tropical.lib package in Singular. All examples and scripts are available in the
Supplementary material.

To certify that each generic subdivision is valid on the entire cell, we compute explicit
formulas for all the vertices dual to polygons in the subdivision, in terms of the weights of
the monomials on P being maximized (these weights are provided in Table 6.2). Finally,
the inequalities defining each of the nine cells confirm that these vertices maximize the
same monomials for every weight vector in the given cell.

To address non-generic behavior on the cells Cs, Cs,C7 and Cg, we need only to focus
on the monomial z3. We list all possible subdivisions of P that can arise by lowering z3
and construct numerical examples showing which ones are realized. O

Since the linear inequalities between the expected heights of each relevant monomial in
h(y, z) can vary within each cell, the methods used for § will not suffice to determine all
possible Newton subdivisions of h. A refined subdivision of the Type (II) cone induced
by a subdivision of Cy, Co and the relative interior of their common facet C; will be
required to address this point and the effect of non-generic choices of S-parameters.

To this end, we construct nine polynomials h; for i = 0, ..., 8, obtained by replacing
each coefficient of h by its leading term on the corresponding cone C;. We compute the
Grobner fan % of each h; in R%, and intersect each C; with the projection of all maximal
cells in ¥ to the four -coordinates. These calculations are easily performed since each
fan has at most 16 chambers and lineality space R-1. The result of this subdivision
process is depicted in Fig. 6.2.

Next, we describe all possible Newton subdivisions of h. As with Proposition 6.10, the
proof is computational in nature and requires a careful analysis for non-generic cases.

Proposition 6.11. Each cell in Fig. 6.2 will give rise to one generic subdivision of h(y, z),
with further possibilities if genericity conditions are detected in Table 6.2. Figs. 6.4
through 0.7 depict all possible outcomes, grouped conveniently.
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Before providing the details of the proof for each cell, we point out some common
features of the various subdivisions and clarify notation. In all cases, we only indicate
vertices of Trop V' (I, ¢) rather than false crossings arising from certain parallelograms
(seen, for example, in the subdivision of @)1 in Fig. 6.6.) False crossings may also appear
from a polygon with at least two parallel edges when a vertex in g maps to the interior of
an edge or leg in g4. This is seen in the polygon 4 in the same figure: the Y Z-projection
of the vertex v15 in gg lies in the projection of the leg with direction (0,0, —1) adjacent
to the vertex wvgy in oy4.

In addition to these false crossings, the Y Z-projection has other undesirable effects:
we will see vertices in o4 hidden in edges of Trop V'(h), overlapping of vertices, as well
as higher multiplicity edges and legs coming in two flavors:

(i) Multiplicity one edges and legs inherit higher multiplicities in the yz-tropicalization
due to the push-forward formula for multiplicities. This occurs for the leg with
direction (2,5,5) in o3 adjacent to vy which inherits multiplicity 5 in Trop V' (h).

(ii) Two edges or legs (one in o4 and one in og) overlap in the yz-tropicalization, and
their multiplicities get added accordingly. This will always be the case for the edges
joining z* and y2?2? in all Newton subdivisions of h. On the tropical side, this was
observed already in Fig. 3.1.

(iif) Vertices in o4 lie in relative interiors of edges in Trop V' (h). This occurs for the
vertex ve and the cells Co;: vo maximizes the edge between 2% and y?z? in Fig. 6.4.
(iv) A vertex in o4 and one in og become the same vertex in Trop V(h). This will
be indicated in all figures by equalities between labeling vertices dual to a given

polygon.

Proof of Proposition 6.11. To determine the generic subdivisions we proceed by direct
computation, as in the proof of Proposition 6.10. The results for each one of the 17
cells are shown in Figs. 6.4 through 6.7, where superscripts gen indicate generic param-
eters.

Next, we discuss the labeling of all polygons in the generic subdivisions. By Lemma 3.3,
we can place the vertices of Trop V(I ) we already know from Table 6.1 and Fig. 6.3
as duals to polygons or edges in the subdivision. The remaining unlabeled poly-
gons correspond to either false crossings or vertices in o4. The false crossings cor-
respond to parallelograms, and we leave them blank. The others get labeled with
blue vertices of the form wy; with ¢ = 0,1 to emphasize that they come from
g4.

In order to determine all non-generic subdivisions, we look for vanishing of expected
leading terms in Table 6.2 that will lower the corresponding monomials. In most cases,
the resulting special subdivisions (marked with the superscript sp on the figures) will
differ from the generic ones in only a few polygons. We treat each cell separately to pre-
dict these special behaviors and construct numerical examples to confirm these potential
subdivisions do occur.
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Qoo @
Qos T vy
2
\ Qo %

Co,0, Co,1 and Co 3

Fig. 6.4. All possible subdivisions corresponding to weight vectors in the cells Cy,; for i = 0,...,4. The
polygon Qq,; indicates the subdivision of the polygon @ on Cp, ;. Unlabeled polygons correspond to false
crossings. Blue vertices come from o4. The notation on the remaining vertices is compatible with that
of Table 6.1 and Fig. 6.3. (For interpretation of the colors in the figure(s), the reader is referred to the web

version of this article.)
Q2.1 Q2,2
V20
V20 V20
Cs

02,07 C2,1 and 02,2

Fig. 6.5. All possible subdivisions for the cells C2,; for ¢ = 0,1,2 and Cs. Red (respectively pink) dots
indicate marked (resp. unmarked) monomials whose behavior varies with the genericity conditions. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We start with the cell C4. The monomials affected are y* (if b2, = —b2), and 32, yz2
and 22 (if 3b3, = b3). From Fig. 6.6 we see that lowering any of these four monomials
will have no effect on the generic subdivision since these points were already unmarked
(the unmarking of y* was indicated in pink). Therefore, there will be a single Newton
subdivision for C4, namely the generic one.

Special subdivisions on the cell C5 are determined by the behavior of 3> whenever
b3 = 4bsbzs. This monomial is marked in Q¢°", as seen in Fig. 6.6. When the height
of this monomial is reduced, an edge between yz and y* arises. Furthermore, with the
exception of 33, the heights of all points in the triangle 7' with vertices y, yz and y*
are known from Table 6.2. Depending on the height of 32, there will be two possible
subdivisions: either T is a polygon in the subdivision, or it gets divided along an edge
between y3 and yz. Numerical examples confirm that both cases do occur.

The cell Cg has the same defining genericity conditions as Cy, with the addition that y*
drops height whenever 3 does. Since 32 is marked, the lowering of the monomials 23,2z
and yz will not change the subdivision, so we can disregard this genericity condition,
and only require b3, = —b3 for special behavior.

Furthermore, since y and y* are both marked in Q4" as we see in Fig. 6.6, for
special parameters, an edge joining y? and y?z2 will appear and give rise to a tri-
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Q1 ’Ué/ Q3

V21
V13 v~ \U4

1
Qa V21 Vg
V12

Q

7
Usa

Fig. 6.6. All possible subdivisions for the cells C; for ¢ = 1, 3,4, 5, 6. The polygon @ gets subdivided differently
on each cell. The subscript gen correspond to generic parameters 85, 84, 834 and B2, whereas the superscript
sp indicate special ones. As with Fig. 6.3, dotted lines correspond to extra possible subdivisions. When
absent, the corresponding vertices agree.

Bgen
v
V20 21
V20 BsP

Q7.0 Q7.1 Q7.2

Fig. 6.7. All possible subdivisions for the cells C7; for ¢ = 0,1, 2.

angle T with vertices y2, 3222 and y°. We claim that T can only be further subdi-
vided by an edge between y?z? and y* leading to the two possibilities for QgF shown
in the figure. The reason for this lies in Lemma 3.3 and Proposition 6.10. Since
v12 = (2wg + w5/2,wa + wy + ws5/2), this vertex lies in o4 N o5. Therefore, all cells
in a subdivision of T will come from vertices in o5, namely the vertices v}, and v%,
in Fig. 6.3. Unless these two agree, the edge between them in Trop V(g) is dual to an
edge with slope —2 in a subdivision of T. By convexity, there is only one option for such
an edge.

The analysis of non-genericity for the cells C7; with ¢ = 0,1,2 is simpler that ear-
lier cases since only the monomial y3 imposes restrictions on the parameters. Only
if b3 = +bybs this monomial will be lower than expected. If so, due to the mark-
ing of y* in the polygon BY" from Fig. 6.7, an edge between y?z and y* will ap-
pear for special parameters. Depending on the height of y3, we will have one extra
edge joining y?z and y3. This yields the two possible configurations B°P in the fig-
ure.

Finally, we discuss the subdivisions for non-generic parameters coming from Cg. The
same six monomials from Cg are responsible for special choices of parameters. Since
these six monomials were not vertices in the generic subdivision in Fig. 6.5, lower-
ing them will not alter the subdivision, except for unmarking y* and y* accordingly.
Thus, the generic and the special Newton subdivisions agree for Cg. This concludes our
proof. O
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Formulas for all vertices in Trop V' (I, ¢) can be given in terms of the vertices v1, v, v4
from (6.4) (where ws = wy) and the weight vector (ws,ws, d3q,ws) from Table 5.1:

v12 = v1 + (w5 —w2)/2(1,1,0), vy = vy — (w5 — wy)(0,0,1),

v34 :=vg — (w5 —w2)/2(1,2,3), vy =12 —&'(1,1,0),

V34 = Uy — (OJ5 + wyq — 2d34)/2 (]., 2, 3), ’U/1/2 = U/2/ — 25,(].7 1, 3),

Vog ‘= Vg — (LU4 — 613,4)(07 1, 1), Ué4 = UIQ + 28(1, 2, 0)7 (615)
vy 1= vh — (3ws + 2ws — 2d34)/2(0,1,1), v, := w34 —£(1,2,3),

U9y 1= Ué — (LU4 + wo — 2d34)/2 (0, 1, 1), Uél =91 + E”(O, 1, —1),
vh 1= vy — (wg — w2)(0,0,1), vl = v —2e"(0,1,2),

where 0 < ¢ < (w5 +wa —2w4)/6, 0 < e’ < (2wy —ws —w2)/6 and 0 < &” < (w5 + 2d34 —
wy)/6. Whenever the value of ¢ is maximal, we get v5, = v%,. Similarly, when ¢’ and &”
are maximal, it follows that v{, = v{, and v}, = v}, respectively.

Proof of Theorem 6.8. The result follows by combining Lemma 3.3 with Proposi-
tions 6.10 and 6.11. It is worth noticing that Cy;, Ci, and C4 give tropical curves in
R3 with the same combinatorial type (indicated in Fig. 6.8 by the cell Cp14). Fig. 3.1
corresponds to a graph in Cp14. Each special configuration leads to two cells C;” and
C;7* for i = 5,6,7. The latter is obtained when vi, = vf,, v, = v4, and vh; = 04,
respectively. O

A simple computation shows that in, (I ;) is reduced and irreducible for all ver-
tices and edges in Trop V(I, ). We conclude that the tropical skeleton is isometric
to the minimal Berkovich skeleton, as predicted by Theorem 1.2. Faithfulness at the
level of the extended skeleta can be achieved via the vertical modification (6.9) as in
Type (III).

Example 6.12 (Example 3./ revisited). As was shown in Fig. 3.1, the curve from Exam-
ple 3.4 is of Type (II). It lies in the witness region QU7 with branch points

a =00, ag = (3t°)2, az = (1112 +517)%, ay = (11132, a5 = (1 +t*)? and ag = 0.
By construction, we have natural choices for square-roots of the relevant branch points,
namely By = 3t°, B3 = 11t2 + 57, B4 = 11t? and f5 = 1 + t2. We re-embed our naive
tropicalization via the following algebraic lift from (6.2) of F' = max{Y, -4 + X,2X}:

flz,y) =y — 1A+ (112 +5y )z + (1 + %) 2.

Since 834 = 3 — B4 = —5t7, the weight vector u from (6.13) becomes
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sp Sp2
Ce and Cg

Fig. 6.8. All combinatorial types of Trop V (I, ) and their (symmetric) poset of specializations, where C;?2
is obtained from C;? by making the two vertices v}, and v}, agree (the adjacent leg ¢3 has multiplicity 3).
The four leg directions are £g = —(2,1,1), £1 = (2,2,5), 2 = —ez and £3 = —es.

u = (0, —2, —7, —5) =-21+ 5/3 R123 + 1/3 R12373 + 4/3 R23’3

so it lies in the cell Cop from Fig. 6.2. The top left graph in Fig. 6.8 shows the
tropical curve Trop V(I, f), in agreement with Fig. 3.1. Since w = (ws,wa, d34,w2) =
(0, —4, -9, —10), expression (6.4) gives us the vertices v; = (=10, —14, —14), vo = v3 =
(—4,-8,-8) and vy = (0,0,0). We use (6.15) to determine all remaining vertices: vis =
(=5,—9,—14), v/ = (—4,—8,—12), vao = (—4, —13,—13), and vy = (—4,—11,-15). o

6.6. Types (V) and (VII)

As discussed earlier in this section, these are the only two types of curves whose naive
tropicalization is faithful on the minimal skeleton. As Fig. 6.9 shows, these tropical curves
have high-multiplicity legs with direction (0,—1). They are the images of four legs on
the source curves in Fig. 1.2. For Type (VII), the unique multiplicity four leg adjacent
to vy is the isometric image of the legs of ¥(X) marked with as,...,as. For Type (V),
the legs marked with as and ag are mapped isometrically onto the multiplicity two leg
adjacent to vy, while the legs marked with a4 and a5 are mapped to the corresponding
vertical leg adjacent to vs. In both cases, the legs marked with «; and ag are mapped
isometrically to the legs with directions (=2, —1) and (2, 5), respectively. The next result
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Fig. 6.9. From left to right: Naive tropicalizations for Types (V) and (VII) via Newton subdivisions, following
the notation from Table 6.1.

discusses the behavior of the vertices of the Berkovich skeleta under tropicalization,
where v; = (ws, 3ws/2 + wy) and vy = (wy, Swy/2):

Lemma 6.13. The initial degeneration of the vertex vy of TropV (f) for Type (VII) is a
smooth genus two curve over K. The vertex is the image of the unique genus two vertex
of the extended skeleton of X*™ under the naive tropicalization map.

Proof. A simple computation gives in,, (g) = y* —z H?ZQ(I —in(ey)). Table 5.1 ensures
that this initial degeneration is a genus two hyperelliptic curve branched at six distinct
points: 0, in(as),...,in(as) and oo in Pl}?' Therefore, it is smooth. The second claim
follows directly by continuity and the earlier description of the images of all legs. O

Lemma 6.14. The initial degenerations of both vertices of TropV (g) for Type (V) are
smooth genus one curves over K. These vertices are the images of the genus one vertices
of the extended skeleton of X*™ under the naive tropicalization map.

Proof. A direct computation gives in,, (¢) = y? — in(ay) in(as)z(z — in(az)(x — in(az)).
By Table 5.1 we conclude that in,, (g) defines an elliptic curve over K, since it is a
double cover of (K*)2 branched at four distinct points: 0, in(as), in(as) and oo in Pl}?'
Expression (6.11) computed for Type (IV) is also valid for Type (V), so in,,(g) is a
smooth genus one curve in (K*)2.

Since the images of the legs marked with as and a3 meet at vi, we see that vy is
the image of the corresponding genus one vertex. Similar arguments prove the claim for
vs. O

Remark 6.15. Techniques from Remark 6.7 can be used here to show that the vertices
of Trop V(g) have genus one. Computations available in the Supplementary material
confirm that the valuations of the j-invariants of the restriction of g to the triangles dual
to v; and vz are non-negative for any characteristic of K other than two.

As discussed earlier, the naive tropicalization is not faithful on the extended skeleta.
We overcome this via vertical modifications along the tropical polynomials trop(z —
) and trop(z — ay). Our next result show that these methods yield faithfulness for
these tropical curves in dimensions four and five. The Supplementary material provides
examples illustrating this technique for both types.
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Proposition 6.16. Let X be of Type (VII). Then, the embedding X — (K*)5 given by
J={g,2z —(x—a;): i=2,3,4) C K[zt yF, 25, 25 25, (6.16)

induces a faithful tropicalization for the extended skeleton with respect to ay,. .., aq. The
tropical curve TropV (J) has one vertex and siz legs, and all tropical multiplicities are
one.

Proof. The result follows from the Fundamental Theorem of Tropical Geometry [41,
Theorem 3.2.5] after parameterizing X' (K) by the maps:

5 1/2
K9x|—>(x7i(xH(x—ozi)) , T — g, T — 3, T — Q). (6.17)
i=2

We claim that TropV(J) has a single vertex v = wo(1,5/2,1,1,1) and six legs
¢ (i = 1,...,6) with directions (—2,-1,0,0,0), (0,—1,—2,0,0), (0,—1,0,-2,0),
(0,-1,0,0,-2), (0,—1,0,0,0) and (2,5,2,2,2). By construction, all tropical multiplici-
ties equal one. Indeed, standard Grébner bases arguments from [41, Proposition 2.6.1,
Corollary 2.4.10] ensure that the initial degeneration of the first and last legs equal

4
ingl(J)=<y2—|—a:in(a5)Hzi, zi—in(aj): j=2,3,4), ing, (J)=(y*—2°, z;—x: j=2,3,4).
i=2

Similarly, the initial degenerations with respect to the legs ¢, f3 and ¢4 are
ing, (J) = (y* —x202324 (x—in(as)), z—in(ay), zj—(z—in(ay)): 7 =2,3,4,7 #14) (1 =2,3,4),

while ing, (J) = (z222324(x —in(as)), z; — (x —in(a;)): j = 2,3,4). We conclude that all
six initial degenerations are reduced and irreducible, so myyop(¢;) =1 for alli=1,...,6.

Finally, in,(J) = (y?> — z29z324(x — in(as)),z; — (x — in(ey)): j = 2,3,4), so
Mirop(v) = 1 as well. A direct computation from (6.17) shows that each leg in Trop V' (J)
is the isometric image of the corresponding marked leg of 3(X) under the new tropical-
ization. O

Proposition 6.17. Let X be of Type (V). Then, the embedding X — (K*)* given by
J={(g,20 — (& — ), 24 — (z — au)) C K[z, yT, 25, 27, (6.18)

induces a faithful tropicalization of the extended Berkovich skeleton of X with respect to
the siz branch points aq, ..., «g.

Proof. We use the same techniques from Proposition 6.16 and apply two successive
vertical modifications, starting from trop(z — ) followed by trop(z — az). In particular,
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o11:={X < Zo=ws, Zy=w4}
o13:={X=wy > 7y, Zy=ws}
o12 : ={X =25 > wo, Zy=uw,}
032 = {X=Zo=wy > Z4}
092 :={X=2Zo=274 > w4}

Fig. 6.10. Extended faithfulness for Type (V) via two vertical modifications.

iny, (J) = (i, (9(2,)), 22— (r—2), za ), iny,(J) = (i, (9(7, ), 22—, 24— (2 —01)).

Both initial degenerations are smooth by Lemma 6.14.

The vertical modification techniques described in [20, Lemma 2.2, Proposition 2.3] al-
low us to determine Trop V(J) by means of the planar XY-, ZoY - and Z,Y -projections.
The ambient tropical surface Trop V({ze — (x — a2),24 — (x — ay))) consists of five
two-dimensional cells and it is depicted in Fig. 6.10 together with Trop V(J). As ex-
pected, Trop V(J) consists of two four-valent vertices vq1 = (w2, 3wa/2 4+ w4, wa, wy),
and vz = (w4, dws/2,wy,wy), joined by an edge with direction (2,3,2,0), with six legs
l1,...,0s. They are the isometric image of the six marked legs of the extended skeleta
and their directions are: ¢; = (—=2,—1,0,0), 5 = (0,—1,—2,0), ¢35 = ¢; = (0,—1,0,0),
£,=(0,—1,0,—2) and £5=(2,5,2,2). Similar computations to the ones done in the proof
of Proposition 6.16 reveal that all tropical multiplicities equal one. O

7. Igusa invariants and their tropicalizations

In 1960, Tgusa introduced three invariants ji, j2, j3 (called absolute Iqusa invariants)
characterizing isomorphism classes of smooth genus two curves when char K # 2 [33].
These invariants can be expressed as rational functions (with integer coefficients) in the
pairwise differences of the six branch points defining the hyperelliptic equation (1.1).

It is worth noticing that a curve X with Igusa invariants in K need not be defined over
K but rather over a field extension. A concrete algorithm for constructing the curve from
these invariants was developed by Mestre [42]. For alternative methods involving Hilbert
and Siegel moduli spaces that are better suited for computations over finite fields, as
well as applications to Cryptography we refer to [39].

In order to give precise formulas for ji,jo and j3 we first construct four homoge-
neous polynomials A, B,C and D in u and the six branch points ay,...,ag. Up to an
automorphism of P! we may assume none of the branch points lies at infinity. We write
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Aij = (Oli — O[j)2 for i < 7, (71)
and set the homogeneous degree eight polynomial A in Z[u, a1, ..., as] to be
A =2 > Aij At A (7.2)
Hid bk} {m,n}}
where we sum over the 15 tripartitions of [6] = {1,...,6}. Similarly, set
B :=u? > (Aij Aji Agi) (Apm A Ari) (7.3)

{{#.5.k},{l;m,n}}

where we sum over the ten partitions of [6] into two sets of size three. We define C' as

C:=u’ > (Aij Aji Api) (Aim A Ant) (Dit Ajim Agn), (7.4)

{4k} {l,m,n}}
it} {gm} {k.n}}

where we sum over the 60 ways of defining a pair consisting of a partition [6] = Uy U U
into two sets of size 3 and an ordered tripartition where each pair contains exactly one
element from U;. We interpret this indexing set as a labeling of a Type (V) tree T with
six leaves, as in Table 5.1. Each set U; correspond to the leaves attached to each of
the two vertices of the tree. The planar embedding of T is relevant since the differences
A, Ajy, and Ay, in each summand of C' corresponding to mirror leaves on each side of
the tree. This description will be used frequently to compute — val(C').

Finally, we let D be the square of the discriminant of the right hand side of (1.1), i.e.

D= ulo H A” (75)

1<i<j<6

The polynomials A, B and C have 141, 1531 and 8 531 terms, respectively.

Definition 7.1. The three Igusa invariants of the smooth hyperelliptic curve X equal

) AS ) A3 B ) A%2C
X)) = j2(X):= 5=, and (&)= —. (7.6)
Notice that j1,jo,j3 € Q(au,...,ag). Furthermore, an easy calculation shows that ap-

plying an automorphism on the target P! of the hyperelliptic cover, and changing the
equation (1.1) defining X accordingly, yields the same three invariants.

Our objective in this section is to study the behavior of the three Igusa invariants
under tropicalization and prove the first half of Theorem 1.4. The second half is discussed
in Section 8. We start by defining the tropical Igusa functions j; " : My"® — Rs. As it
occurs with genus one curves and their tropical j-invariant [37], the construction involves
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a genericity assumption. The precise hypersurfaces to avoid for each combinatorial type
are discussed in the proof of Theorem 7.3 and are listed in the Supplementary material.

Definition 7.2. Given a genus two abstract tropical curve I' we define its three tropical
Igqusa invariants as j;"°°(T') := —val(j;(X)) for i = 1,2,3 for a generic smooth genus

two algebraic lift X of T

Note that a generic algebraic lift X of I" is given by generic values a; which are chosen
using Table 5.1. By construction, in the non-generic case, the negative valuations will
be lower than expected. Although it is not evident from the definition, our first result
shows that these three tropical Igusa functions indeed depend solely on I', rather than
on the isomorphism class of X. Furthermore, they define piecewise linear functions on
]\42““’p with domains of linearity given by the seven cones describing all combinatorial
types. Here is the precise statement addressing the first half of Theorem 1.4:

Theorem 7.3. Let X' be a genus two hyperelliptic curve defined over K with char K #2,3.
The tropical Igusa functions equal

(1) jfTOp(F) = Ll =+ 12L0 —+ LQ, jérop(l—\) = ngOp(F) = L1 —+ SLO + L2 ’Lf F s a dumbbell
curve,
(ii) 417°P(0) =4 °P(T) =45 P (T) = L1+ Lo+ Ly if T is a theta curve,

where Lo, L1, Lo denote the lengths on each curve, as in Fig. 2.1. All three formulas
remain valid under specialization and yield well-defined piecewise linear maps on the
moduli space Mgmp with domains of linearity corresponding to the seven combinatorial

types.

Remark 7.4. The previous result shows that the three tropical Igusa functions do not
characterize tropical curves of genus two, not even within a fixed combinatorial type and
should not be considered tropical analogs of Igusa invariants. Indeed, the second and

P and all three agree on the

third tropical Igusa functions agree on each cone in M2t
cone of theta curves. In particular, we cannot recover the length data for each tropical

curve from these three functions.

We would like to comment on the relation of this result with [32]. In [33], Igusa
introduced ten projective invariants of smooth genus two curves, and the three specific
quotients 71, 72 and j3. Whenever these quotients do not vanish, they determine a unique
point in My (a smooth curve of genus two) over a field of characteristic different than
two. In particular, these invariants become coordinates on Msy. Our work describes to
which extent their tropicalizations fail to be coordinates on M3 "°P. Building on earlier
work of Liu [40], [32] shows that the set of ten invariants suffices to characterize the type
and lengths of the tropicalization I'. One should take into account that in [32], the ten
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invariants are expressed in terms of the coefficients of the hyperelliptic equation (1.1),
while our three quotients are written in terms of the branch points.

Proof of Theorem 7.3. Consider a generic lift X of our tropical curve I'. This means, a
tuple of generic branch points aj,...,ag in K* whose valuations satisty the conditions
described in Table 5.1 and yield the metric graph I'. Furthermore, we assume val(a;) = 0,
and v =1 since u plays no role when defining each j;(X'). By expression (7.6), the tropical
Igusa functions of I' equal:

—val(j1 (X)) = =5val(A) + val(D),

—val(j2 (X)) = —3val(A4) — val(B) + val(D), (7.7
—val(j3(&X)) = —2val(A4) — val(C) + val(D).

We treat each invariant separately, analyzing the contributions of each summand
in the definition of the four polynomials A, B,C, and D, and checking for potential

cancellations of the expected initial terms. The proof is completed by discussing the

behavior of each maximal cells of M,™P separately in two lemmas below.

The genericity conditions on X" are imposed so that the initial forms of each polynomial
have the expected valuation after specializing them at the initial forms of each branch
point. The two maximal cells in M;*P require no genericity assumptions, since the
leading terms of all polynomials involved are monomials.

Type (I) cells: For a Type (I) curve, the negative valuation of each A, B, C, D is obtained
by computing the initial term on each of these four polynomials with respect to the weight
vector w = (wi,...,ws) € R® with w; < ... < we. Lemma 7.5 ensures that

—val(A)

= 2(&)4 + ws + wﬁ), 7V&1(C) = 6(&)5 + wg) + 4{.«]4 + 2&13,
—val(B) = 4(ws+ws) + 2(ws+wy), —val(D) = 2wy + 4wz + 6wy + 8wy + 10 ws.

(7.8)

Combining these values with (7.7) and the formulas for Lo, L; and Lo from Table 5.1
gives:
F1P(T) = 10(ws + ws + we) — (2wa + 4ws + 6wy + Sws + 10ws)
= 4wy + 2ws — 2wg — 4wz = 2(ws — wy) + 6(wy — w3) + 2(w3 — w2)
— L, +12Lg + Lo,
j;mp(F) = 6(ws+ws+we) + 4(ws+we) + 2(wz+ws) — (2wa +4ws + 6wy +8ws +10ws )
= 2ws5 + 2wy — 2wz — 2we = 2(w5 — wa) + 4(ws — w3) + 2(ws — w2)
— Ly 4+ 8L + Lo,
35 P(T) = 4(wy+ws+we) + 6(ws+ws )+ 4wy + 2wz — (2wa 44wz +6w, +8ws +10we)
= L1 +8Lo + Lo = j,P(I).
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Type (II) cells: Following Table 5.1, the weights for Type (II) curves satisfy
w1 <wy <wsg=wy <ws <wg and — dgg = val(as — ay) > —ws. (7.9)

For this reason, in order to determine the valuations of A, B,C and D we consider
the factor Ass as a new variable a§4, and replace each variable ay by ass + ag in all
four polynomials. A similar strategy was used in Subsection 6.5. We denote the new
polynomials by

AI,B/,C/,D/ € Z[al,ag,ag,a34,a5,a6]. (710)

A computation with Sage (available in the Supplementary material) shows that A’, B’
and C’ have 177, 1911 and 11 745 terms, respectively.

The weight of the new variable as4 equals dss. We replace our weight vector in RS by
w = (w1, ws,ws, d3q,ws,ws). By construction, the negative valuation of each A, B,C, D
agrees with that of A’, B, C’ and D’. The later equals the w-weight of the initial form
of A/, B',C" and D', respectively. Lemma 7.6 ensures that

—val(A) (ws +ws +ws), —val(C) =6(ws + ws + wg) ,

=2
(7.11)
—val(B) = 4(ws + w5 + wg), —val(D) = 2ws + 8wz + 2d34 + 8ws + 10 wg.
We conclude that —5val(4) = —3val(A) —2val(B) = —2val(A) —3val(C). The formulas
for the lengths Lo, L1, and Lo from Table 5.1 yield

7P(0) = j;"*P(F) = 43P (D)
= 10(ws3 + w5 + we) — (2wa + 8ws + 2d34 + 8ws + 10wsg)
= 2ws + 2w3 — 2wg — 2d34 = 2(ws — w3) + 2(ws — wa) + 2(w3 — ds4)
=Li+ Lo+ Lo.

Type (III) through (VII) cells: In order to prove the statement for lower dimensional
cells, we first note that the substitution A, B,C, D for A’, B’,C’, D’ has no impact when
computing their valuations on Type (I). Indeed, the weight w= (w1, ws,ws, d34,ws,ws) €
RS satisfies d34 = w4 and in(aszy) = in(ay).

We fix a lower dimensional cell in M3 and pick the weight vector w in R®, where the
fourth entry equals wy, as described in Table 5.1. Consider a sequence of weight vectors
(w™),en corresponding to a Type (I) curve specializing to w. By continuity and the
characterization of Grobner fans of homogeneous polynomials [22], we conclude that the
w(™-initial terms for A, B,C and D are present in the corresponding w-initial terms.
Therefore, as long as the initial forms of each polynomial do not vanish after evaluating
them at in(a), the formulas for the Tropical Igusa functions on Type (I) remain valid for
the lower dimensional types: the valuation of each polynomial is the expected one. The
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proof involving Type (II) sequences is similar since win) = déz) — wg if we approach a

curve of Type (III), (VI) or (VII). O

The following two lemmas are used in the proof of Theorem 7.3 as well as in Sec-
tion 8. They can be verified via Macaulay2 computations by choosing appropriate
weight vectors in R®. The required scripts are available in the Supplementary material.
For completeness, we provide alternative non-computational proofs that help understand
the behavior of these polynomials under tropicalization. They justify the need to exclude
char K = 3.

Lemma 7.5. Assume char K # 2,3. Given a weight vector w = (wy,...,wg) € R® in the
relative interior of a Type (I) cell in My™P, we have

in, (A)=6a3a2ad, in,(B)=4a3aiasag, ing(C)=8a3ajalal and in,(D)=a3as3a5asad.
Proof. By Table 5.1, the weight vector w = (w1,...,ws) corresponding to Type (I)

curves satisfies w; < wp < ... < wg. Since D is given as a product of all expressions A;;
from (7.1), and val(a;) > val(cy;) for i < j, we get val(A;;) = —2w; for i < j, thus

—val(D) = 2wy + 4ws + 6wy + 8ws + 10wg, and  in, (D) = aZazaSadag’.

The computation for in, (A) is more involved, since it requires determining the initial
term of each summand in A and checking for potential cancellations. Each summand
Ajj A Apyy, of Ain expression (7.2) has valuation —2(w;+w;+wy,) fori < j, k <i,m < n.
The conditions on the parameters w; ensure that the minimal valuation is attained for the
six tripartitions of the form {{i,4}, {k,5},{m,6}}. The coefficient associated to ajaZa?
on each of these summands equals one, so no cancellations occur and this monomial
appears in A with coefficient six. Thus, in,(A) = 6 aJa2ad if val(6) = 0.

Next, we analyze the summands in B given in (7.3) to determine the initial term of
B with respect to the weight vector w. The conditions on w ensure that the summand
indexed by the partition {{¢,j,k},{l,m,n}} has valuation —2(w; + 2wk + Wy, + 2wy,)
for i < j <k and [ <m <n. The minimum valuation is achieved when k,n € {5,6} and
j,me{3,4}. The corresponding summands are indexed by the four splits

{1,3,5) U{2,4,6},{2,3,5} U {1,4,6},{1,4,5} U{2,3,6} and {2,4,5} L {1,3,6}.
On each summand, the monomial a3a?aia? has coefficient one, so in,, (B) = 4 aZajadad.

In order to compute in,(C) and —val(C) we use expression (7.4) and analyze the
valuation of all its 60 summands. The minimum valuation equals —(6(wg + ws) + 4wy +
2w3). This value is obtained for those indices where each element in the pairs {5,6} and
{3,4} belongs to a different set of the split {3, j, k}U{l, m,n}. Moreover, the elements 4, 5
and 6 must lie in different pairs in the tripartition {{7,}, {j, m}, {k,n}}. A combinatorial
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analysis allows us to assume 1 = 7 < j < k and conclude that the summands with
minimum valuation correspond to the eight ordered tuples:

(i’j7k"l7m7n) = (173’67475’2)7 (17475’67273)’ (17476’5)273)’ (1737574’672)7

(7.12)
(1,3,6,5,4,2), (1,4,5,6,3,2), (1,4,6,5,3,2), (1,3,5,6,4,2).
On these summands, the monomial cdajaad is monic, so in, (C) = 8a3ajafal. O

Lemma 7.6. Let A', B',C', D" € Z[ai, @z, a3, asq, a5, a6] be the polynomials in (7.10).
Given a weight vector w = (w1, wa,ws, d3s,ws,ws) € RS inducing a point in the relative
interior of a Type (II) cell in My, we have

in,(A") = 8a2aia?, iny(C') =8aSalal,

. / 4.4 4 - / 2.8 2 8 10
in,(B') =4 asa5ag, in,(D') = aza505,0505" .

Proof. We start with D’. Since the weight vector w satisfies (7.9), formula (7.5) implies

2d34 if (Zaj) = (334)7
7V&1(Aij) = ij 1f] 7é 4’ for 1 < j,
2wy ifj=4,i<3,

because — val(azs+a3—0a;) = Waxy;,3} for j # 3,4. We conclude that —val(D’) = 2wa+
8ws+2 dsq+8ws+10ws. Furthermore, the term realizing this valuation is a3a§a3,afad?,
hence it equals in, (D).

To compute in,, (A’) we proceed analogously. For each tripartition not involving {3, 4},
the valuation of the corresponding summand equals —2(w; + w; + wy, ), assuming i < j,
k <1, and m < n. As in Type (I), the minimum is achieved at —2(ws 4+ w5 + wg), when
j=3or4,l=0>5,and n = 6, namely for the 8 tripartitions

{{1,53,{2,5}, {%, 61}, {{1,%},{2,6}, {51}, {{1,5},{2, %}, {» 6}}, {{1,6},{2,+}, {*,5}}.

Notice that since in,(a34 + a3) = in,(as), it is easy to verify that the coefficient of
a3aZag on these eight summands equals 1.

On the contrary, if {3,4} is a pair in the tripartition (say the middle one), the valuation
of each such summand equals —2(w; + d3a + wy,), which is strictly larger than —2(ws +
ws +wg). We conclude that ing, (A4’) = 8 aZaZag.

We proceed similarly for the polynomial B’, distinguishing between splits where 3 and
4 belong to different subsets or not. In the first case, there are four summands realizing
the minimum valuation —2(2ws + 2ws + 2ws), corresponding to the splits where 5 and 6
also are in different subsets. They all contribute one monomial ajasag to B, each with
coefficient 1.
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On the contrary, if 3 and 4 lie in the same subset, the minimum valuation for these
summands is —2(wz + ds4 + 2ws + 2we) and it is obtained when 5 and 6 are in different
subsets (as in Type (I)). The conditions on w ensure that we + d34 < 2ws, so in,(B') =
dadagag.

Finally, we compute in, (C"). For each summand of C’ corresponding to a split with
3 and 4 in different subsets, the valuation is the same as the one computed for Type (I).

The expected valuation is —6(wg + ws + w3) and it is attained at the eight tuples below:

(i?j7k’l7m7n) = (173’6747572)? (1?475’67273)’ (]‘747675)2?3)3 (1)3,574)672)7
(1,3,6,5,2,4), (1,4,5,3,6,2), (1,4,6,3,5,2), (1,3,5,6,2,4).

The first group corresponds to the four tuples on the top row of (7.12) since the variable
a34 does not appear on those summands. The second group correspond to tuples where
4 is opposed to 5 or 6 but this loss is compensated by 3 winning over 1 and 2. Notice
that these terms did not contribute for the Type (I) cell. Collectively, these eight tuples
contribute the monomial 8 aafal.

For the remaining 24 summands in C’, where 3 and 4 lie in the same set, the possi-
ble w-initial forms are alaia?,aia?; alafa?,a2a?, and afada2,af. Their valuation is
strictly bigger that —6(wg + ws + w3), therefore in, (C’) = 8afalal. O

In the rest of this section, we discuss the behavior of the tropical Igusa invariants when
char K = 3. Notice that in this case, we cannot predict the valuation of the polynomial
A on the relative interior of the Type (I) cell, since the initial form of A in Lemma 7.5
has a coefficient with non-zero valuation.

Theorem 7.7. Let char K =3 and T be a curve of Type (I), (IV) or (V). Then:

(1) If 1 — wy < ws, then the formulas for all j7°P(T) from Theorem 7.3 hold.
(2) If 1 —wy > ws, then ji°P(T) = ji°P(T) = Ly + 2Ly + Lo, whereas j5°°(T) =
Ly +4Ly+ Ls.

If T is a (specialization of a) Type (II) curve, the formulas from Theorem 7.3 hold.

Proof. If T is a Type (II) curve, or a specialization thereof, the formulas for all initial
forms in Lemma 7.6 remain valid in characteristic 3. Therefore, the same genericity
assumptions imposed in Theorem 7.3 yield the formulas for the tropical Igusa invariants
for these curves.

In what remains, we treat the remaining three types: (I), (IV) and (V). As discussed
above, the initial form of A will not have a uniform value on each of these cones when
char K = 3. We bypass this difficulty by writing A as an integer combination of four
polynomials with coefficients +1 and disjoint supports, comparing the valuation of their
initial forms, and considering possible ties and cancellations. A calculation available on
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the Supplementary material yields A = 444 4+ 646 + 12415 + 120A159. Any w in the
relative interior of the Type (I), (IV) or (V) cells gives

inw(A4) = —a%agoqag, ing(Alg) = a§a5a4a3a2,

. 5 9 9 . (7.13)
in,(As) = agazay, ing(Aig) = —asasasazazo;.

Since wy < wa < ... < wg in Type (I), we conclude that in, (Ag) > ing, (A12),in,(A120)
so we need only compare the weights of A4 and 6Ag. There are two cases to analyze:

Case 1: If 1 —wy < —ws, our genericity assumptions ensure that val(6cy —4ag) = 1 —wy.
Thus val(A) is the one predicted in Lemma 7.5. The formulas for the tropical
Igusa invariants described in Theorem 7.3 remain valid in this setting.

Case 2: If 1 — ws > —ws, we conclude that iny,(A) = 4in,(A4), and so —val(4) =
2we + 2ws + w4 + ws. The expressions for val(B), val(C), and val(D) obtained
from Lemma 7.5 and arithmetic manipulations as in the proof of Theorem 7.3
yield the desired expressions for the Igusa invariants on the Type (I) cone. O

Remark 7.8. If 1 —wy = —w3 and in(6ay) = in(—4a3) the above methods do not allow
us to compute — val(A4). We bypass this difficulty by using three Laurent monomials in
the 3 Tgusa invariants where the polynomial A is canceled out. Lemma 7.5 yields:

575 °P(T) — 353°P(T") = 2val(D) — 5val(B) = 2L, +4Lo + 2Ls,
375 °P(T) — 24y"°P(T) = 3val(D) — 5val(C) = 3Ly + 16 Lo + 3L,
375 °P(T) — 245°P(T) = val(D) + 2val(B) — 3val(C) = Ly + 8L + L.

The matrix describing the three integer linear combination of j;*°P, 75 and j5™P has

. . . .t
rank two, so we can only express the last two invariants in terms of j;"°P.

8. A new Igusa invariant

As was shown in Remark 7.4, the fact that the tropical Igusa functions do not yield
coordinates on Mgmp raises a natural question: can we replace j1, jo, j3 by an alternative
set of three algebraic invariants better suited for tropicalization? Given the expressions
in Theorem 7.3 we propose to replace j3 with a linear expression in ji, jo,j3 whose
initial form corresponding to a weight vector of Type (I) or (II) appears as a result
of a cancellation in the initial forms of the j;’s. In other words, we aim to compute a
Khovanskii basis of the ring of invariants of Ms.

The computation of val(A),val(B) and val(C) on Types (I) and (II) in expres-
sions (7.8) and (7.11) gives the linear relation

—val(A4) — val(B) = —val(C).



508 M.A. Cueto, H. Markwig / Journal of Algebra 517 (2019) 457-512

Therefore, a cancellation might be produced among leading terms via the expressions
Q):=AB-\C (for Type (I)) and @Q):=A"B'—\C" (for Type (II)), (8.1)

for suitable A € K*. For generic choices of A\, a Sage calculation shows that Q) €
Qlou, a2, az, au, a5, o] has 12567 terms, whereas Q) € Qlou, ag, o, (g4, 5, ] has
11 891.

By Lemmas 7.5 and 7.6 we know that for char K #2,3:

On Type (I):  in,(A) in,(B) = 24a2ajalal =3 in,(O) so A=3

(8.2)
On Type (IT):  in,/(A’) iny (B') = 32a5alal =4 in, (C) so A=4.

These relations shows which values of A will produce cancellations between the w-leading
terms of AB and C' in @ and Q). This choice yields a new Igusa invariant in Type (I):

S QA 4B A

Ja D D D = j2 — 3Js3.

The tropicalization of j; equals —val(j3) and it is determined by the w-initial form of

R3. A Macaulay2 computation finds the initial terms:

in,(Q3) = 8042@?0420@, so —val(Q3) = 6(wg + ws) + 3(ws + w3).

Combining this expression with (7.8) and the length formula from Table 5.1 yields

./ tro

.73 P— 6(w6 + CU5) + 3(&14 —+ LLJ3) + 4(0.)4 —+ Wws + w6) — (2&]2 —+ 4&)3 —+ GW4 —+ 8LLJ5 —+ 10 w6)
= 2w5 + Wy — wg — 2wy = 2(&)5 — UJ4) + 3(&)4 - W3) + 2(&)3 — WQ) =L1+6Ly+ Lo.

The new function jé TP fails to provide new length data for Type (I) curves. For this
reason, we turn to the Type (II) cell and work with Qy4, as predicted by (8.1). We set:

_ QA _AB A%
-~ D D D

Ja: = j2 — 4J3- (8.3)

By construction j;°® = j5°® on Type (I) curves if char K # 2, 3.

Since we are interested in the behavior of 5"°® on the Type (II) cell, we work with Q,
instead of Q4. A Sage calculation reveals that Q) € Q[ay, ag, a3, a4, a5, ag] has 11379
terms. The possible weight vectors w = (w1, ws, ws, d3s, ws,ws) € RS giving Type (I1)
curves form a six-dimensional open cone in R%, whose closure we denote by ©.

The possible valuations of Q4 are determined by the Grébner fan of Q). A Sage com-
putation shows that its f-vector equals (1,32,174,396,420,168). We are interested in
the intersection of the Grobner fan of Q) with the relative interior of the cone ©. The
following lemma shows that © gets subdivided into three maximal pieces
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O0:= 0 N{dss > wa, ws+dszs > 2wz}, O1:= O N{2w3 > ws+ws, 2ws > w5 + dsa},

O,:=0 N {wg > d3y, Ws+wo > 2&}3} .
(8.4)

Lemma 8.1. The pieces ©g, 01 and Oy in (8.4) determine the w-initial form of Q) :

—8a8afa3,a} if  w €relint(Oy) ,
in, (Q}) = ¢ —8alaiad if werelint(6y),
—8afafaial if  w €relint(O2) .

On the intersection of ©; and ©;, the initial form is obtained by adding the forms for
each piece. On the triple intersection, the initial form equals the sum of the three forms.

Proof. The proof is computational, and all the required Sage scripts are included in
the Supplementary material. Since the computation of the Grébner fan of @4 using
Sage halts, we replace @) by the sum of its extremal monomials and calculate its Grobner
fan. We then compute the intersection of this fan with © and check that only three of its
maximal cones intersect © in dimension six. We consider a sample interior point in the
relative interior of each piece (e.g. the sum of its extremal rays) and determine the initial
forms of @) on each ©; using Macaulay2. The equalities defining ©; are determined by
Sage. The last claim in the statement follows from the defining properties of Grébner
fans. O

The pieces Og, ©1 and O, have a natural interpretation in terms of length data:

Lemma 8.2. Given i = 0,1,2, the inequalities defining O; single out the minimal edge
length L; of the corresponding theta graph.

In particular, the subdivision (8.4) of © is compatible with the automorphisms of this
cone induced by permutations of the underlying theta graph. The proof of this result
follows from the length formulas in Table 5.1. Below is the main result in this section:

Theorem 8.3. Let X be a curve in Mo, defined over K with char K # 2, and generic with

P

respect to its (abstract) tropicalization T'. The tropical Iqusa function jﬁw equals

(i) j§P(D) = ji°P(T) if T is a dumbbell curve, and
(i) ji°P(D)=Lo + L1 + Ly — min{Lg, L1, Ly} if T is a theta curve,

where Lo, Ly, Lo denote the lengths on each curve as in Fig. 2.1. The formulas remain
valid under specialization and yield well-defined piecewise linear maps on M;mp.
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Proof. The formula for Type (I) will depend on the characteristic of K and will be
obtained from Theorems 7.3 and 7.7. A simple inspection shows that in all cases j;"P <

75°P. The genericity of X ensures that no cancellations occur and thus, jio % = jzo%.

To prove the statement on the Type (II) cell, we notice that j, differs from j3 by
replacing ¢’ with @, so j§*P = ji"P + val(C") — val(Q,). Lemma 8.1 and (7.11) gives

—6(w6 + ws + UJ3) + 6(w6 + LLJ5) + 2d34 + dws = —Lg ifwe @0,
Val(cl)*val(Qﬁl) = *6(&]6 + ws + UJ3) + 6wg + 4dws + 8ws = — L1 if we 0y,
76(&)6 + ws + u)3) + 6(w6 + w5) + 4wz 4+ 2we = — Lo if w € Os.

By Lemma 8.2 and Theorem 7.3 we conclude that on Type (IT) curves
j4g;0p = jgé;Op - min{Lo, Ll, Lg} = LQ + L1 + L2 - min{Lo, Ll, Lg}

Analogous arguments as the ones provided in the proof of Theorem 7.3 and the genericity
of X ensure that the given formulas are valid under specialization. O

The Igusa functions j1, jo, j4 characterize isomorphism types in Ms. The tropical Igusa
functions ji"°P, 75" and j;'°" allow us to recover partial length data for each point
in M;OP, once we determine the combinatorial type of the curve using Theorem 1.1
and Table 5.1. The methods presented in this section will not produce a complete set
of tropical invariants on Mztmp. Indeed, we have exploited the unique relation among
the valuations of A, B, and C' to build j; and no further combination of A, B, C' would
produce a cancellation of initial terms. It remains an interesting challenge to develop an
alternative approach to generate a new algebraic invariant on Ms inducing the missing

tropical invariant on each cell of Mj™P.
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