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Abstract

We construct closed immersions from initial degenerations of Grg(d, n)—the open cell
in the Grassmannian Gr(d, n) given by the nonvanishing of all Pliicker coordinates—
to limits of thin Schubert cells associated to diagrams induced by the face poset of the
corresponding tropical linear space. These are isomorphisms when (d, n) equals (2, n),
(3, 6) and (3, 7). As an application we prove Gro(3, 7) is schon, and the Chow quotient
of Gr(3, 7) by the maximal torus in PGL(7) is the log canonical compactification of
the moduli space of 7 points in P? in linear general position, making progress on a
conjecture of Hacking, Keel, and Tevelev.
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Chow quotient - Log canonical compactification
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1 Introduction

Let Gr(d, n) be the Grassmannian of d-dimensional subspaces of k", for an alge-
braically closed field k, and Gr(d, n) the open cell given by the nonvanishing of all
Pliicker coordinates. We consider its tropicalization TGrg(d, n) through two frame-
works. Via Grobner theory, the set TGrg(d, n) consists of those w € A4R" such that
the initial degeneration in,, Gro(d, n) is nonempty. Alternatively, the set TGro(d, n)
has a modular interpretation as the space of d-dimensional tropical linear subspaces
of R” that are realizable over valued extensions of k [37]. The goal of this paper is to
study initial degenerations of Gro(d, n) via their relation to tropical linear spaces.
Suppose w € TGro(d, n) and L,, is the corresponding tropical linear space. Then
w induces a regular subdivision A, of the hypersimplex A(d, n) C R”" into matroid
polytopes, and there is a bijection between the bounded cells of L,, and the internal
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cells of Ay, reversing the face order [36]. Equipping TGr(d, n) with its Grobner
fan structure, the initial degeneration in,, Gro(d, n) and the matroid subdivision A,
depend only on the cone of TGrg(d, n) that contains w in its relative interior [40].
The collection of all subspaces realizing a matroid M defines a locally closed
subscheme Gry; C Gr(d, n) called the thin Schubert cell of M. Let us describe an
inverse system of thin Schubert cells associated to the matroid subdivision A,,. Given
a matroid polytope Q C A(d, n), write M for its matroid and pp, for the rank
function. Any facet of Q has the form Q' = Q N {Zie,7 xi = pmy ()} for some
nC[n]:={0,1,...,n—1},and My decomposes as a direct sum of the contraction
Mg /7 and restriction Mg|n [11]. If F € Gr(d, n) realizes Mg and p = [n]\n, then
F Nk and F/(F Nk*) realize Mo /n and Mg|n, respectively. We have a morphism

Gruy — Gruy, F (FNK"Y)® F/(F Nk").
Thus {Gry, | Q € Ay} defines an inverse system, and we may form the limit
lim, ., Grmo-

Theorem 1.1 For w € TGr(d, n), there is a closed immersion

Yy :iny, Gro(d, n) — 1(121 GrMQ .
QeAy

The morphisms Gry, — GrMQ, and limit ](iLnQGA Gru,, originally appear in [27].
This limit parameterizes collections of subspaces {Fp € Gry, | Q € Ay} such that,
if Q1 and Q> share a common face defined by Zien Xi = PMy, (n) =d-— PMg, (w)

with u = [n]\n, then
Fo,/(Fg, ﬂk”’)ZFQzﬂkn and FQZ/(ngﬂkM)ZFQl NK"

under the identifications k" /k* = k" and k" /k7 = k*.

In the construction of a morphism to lim Gryy,,, it suffices to construct com-
< QEAw Q

patible morphisms in,, Gro(d, n) — Gr My whenever Q is an internal cell of A,,.
Let us sketch a geometric characterization of these morphisms. Choose a k-point x of
iny, Gro(d, n) and set K = k((tR)). By surjectivity of exploded tropicalization [33],
there is a K-point p of Gro(d, n) such that Trop(p) = x; because K is a general-
ized power series field, the exploded tropicalization Ttop(p) is simply the vector of
lead coefficients. The Pliicker vector p defines a linear subspace F, of K" such that
Trop(F;) = L, where F; = F, N (K*)". For any v with —v in the bounded cell of
L, dual to Q, the closure of in,v(F;j) in kK", denoted by in,U(Fl‘;), is a linear real-
ization of M. The morphism iny, Gro(d, n) — Grpy,, sends x to in_v(F[‘i). We will
produce a scheme-theoretic construction of these morphisms in Sect. 3, and provide
compatibility with this geometric description in Remark 3.6.

Our main application of Theorem 1.1 is to determine smoothness and irreducibil-
ity of initial degenerations of Grassmannians, especially for Gry(3, 7). Because
TGro(d, n) is sensitive to the characteristic of the underlying field, we assume that
chark = 0.
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Theorem 1.2 The initial degenerations of Gro(3, 7) are smooth and irreducible.

The computation of TGr( (3, 7) in [19] allows us to compute the initial degenerations
of Grg(3, 7) and matroid subdivisions of A(3, 7). Given the size of the initial ideals,
determining smoothness and irreducibility of the in,, Gro(3, 7) directly is impractical,
even with computer assistance. In comparison, thin Schubert cells and the morphisms
between them are easier to describe, as we do in Sects. 4 and 5. Each Gry; C Gr(3,7)
is smooth and irreducible and the morphisms Gry; — Gr M, are smooth and dominant
with connected fibers, provided Q is not a face of A(3, 7). This allows us to determine
smoothness and irreducibility of l(ln Och, GrMQ; see Examples 6.2 and 6.3 for an
illustration of this analysis. Being a closed immersion of affine schemes, the map ¢, :
iny, Gro(d, n) — hm im, \, Gru, is an isomorphism whenever hm im, ,, Gruy, is an

integral scheme of dimension d (n — d). While the inequality dlm(hm im , Grm,) >

d(n — d) may be strict when d = 3 and n > 9, as demonstrated in Example 8.2,it1is
an equality for all w in the (3, 7) case. This will yield a proof of Theorem 1.2, and our
techniques will allow us to prove an analog of this theorem for any Gry; C Gr(d, n)
for (2, n), (3, 6), and (3, 7), see Theorem 6.1.

As a consequence of Theorem 1.2, the variety Gr(3, 7) is schon in the sense of
Tevelev [40]. This is important because, when X is a schon subvariety of a torus,
we may use tropical geometry to construct compactifications of X with desirable
properties. Indeed, the closure X of X in any toric variety whose fan has support
Trop Xo is a schon compactification [29]. The strata of X are schon, and (X, B :=
X\Xo) has toroidal singularities. Hacking, Keel, and Tevelev prove that Kx + B
is ample if and only if each irreducible stratum of X is log minimal, and a schon
subvariety of a torus is log minimal if and only if its tropicalization is not invariant
under translation by a rational subspace [16]. They apply this to Y, the moduli space
of smooth marked del Pezzo surfaces of degree 9 — n for n < 7, demonstrating that
the Sekiguchi cross-ratio variety Y" [34,35], introduced by Naruki when n = 6 [31],
is a schon and log canonical compactification of Y".

While Gry(d, n) is not log minimal, its quotient X((d, n) by the free action of the
maximal torus H C PGL(d) does have this property [26, Proposition 2.20]. Via the
Gelfand—MacPherson correspondence, we interpret Xo(d, n) as the moduli space of d
marked points in P*~! in linear general position up to the PGL(d)-action. The Chow
quotient Gr(d, n) // H compactifies Xo(d, n). Let X(d, n) be its normalization. Kapra-
nov [21] proves X(2,n) = ﬁ(), n» the Grothendieck—Knudsen moduli space of genus
0 stable n-marked curves. This compactification of X¢(2, n) is schon [40] and log
canonical [25]. Keel and Tevelev prove X (3, n) is not log canonical when n > 9, and
together with Hacking they conjecture X (3, n) is a schon and log canonical compact-
ification for X¢(3, n) when n = 6, 7, and 8 [40, Theorem 5.7], [26, Conjecture 1.6].
Luxton handles the n = 6 case by investigating the relationship between X (3, 6) to
Y [28]. He proves that X¢(3, 6) is schon by showing that the toric strata of X (3, 6)
are smooth via a delicate analysis of how the log canonical fan of Y maps onto
Trop Xo(3, 6). A direct adaptation of Luxton’s strategy does not carry over to this
setting; see Remark 7.4. Instead, we determine that X(3, 7) is schon directly from
Theorem 1.2. We use this to verify the above conjecture when n = 7.
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Theorem 1.3 The variety X (3,7) is a schon and log canonical compactification of
Xo0(3,7).

In Sect. 8, we investigate the behavior of initial degenerations of Gro (3, n) for larger
values of n. Given the relationship between thin Schubert cells and initial degenerations
of Gro(d, n), it is reasonable to expect that in general Gro(d, n) will have initial
degenerations that are not smooth or reducible. Indeed, the Perles matroid (see Fig. 2)
is a rank 3 matroid P on [9] such that Grp is reducible. We use this to find an initial
degeneration of Gro(3, 9) with the same property.

Theorem 1.4 The Grassmannian Gro(3,9) has an initial degeneration with two con-
nected components.

We conclude with three appendices. Appendix A gathers various properties of
morphisms that are smooth and dominant with connected fibers. It also includes a
discussion on finite limits of k-schemes. Appendix B contains a table with the data
necessary for the proof of Lemma 6.4. Appendix C, written by Maria Angélica Cueto,
includes various arguments that reduce the study of thin Schubert cells Grjs, and the
morphisms Gry; — Gry to the case where M is a simple and connected matroid,
and a treatment of the rank 2 case. It also includes an argument that the limits of thin
Schubert cells over A,, may be computed on the smaller poset consisting of cells that
have codimension at most one.

Conventions

The field k is algebraically closed of characteristic 0. We fix the assumption on the
characteristic because of the dependence on computer calculations. However, the proof
of Theorem 1.1 works for all characteristics, and we expect that Theorems 1.2 and 1.4
remain true provided char k # 2 or 5 respectively.

Computations

The software packages gfan [20], Macaulay?2 [13],polymake [8],and sage [41]
in the proofs of Proposition 3.9, Lemma 6.4, and Lemma 7.3. The matroid subdivisions
in Examples 6.2, 6.3, 8.1, 8.2 and Proposition 8.6 are computed using polymake.
No computation takes longer than a few hours on a standard desktop computer. The
code may be found at the following website.
https://github.com/dcorey2814/initialDegenerationsOfGrassmannians

2 Preliminaries
2.1 Initial degenerations
We recall some facts about initial degenerations and tropicalization of varieties defined

over a trivially valued field from the Grobner-theoretic perspective, see [30, Chap-
ters 2, 3] for a comprehensive treatment, including the non-trivially valued case.
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Let X be the closed subvariety of P = Proj(k[z, ..., t;]) with homogeneous ideal
I C K[tg, ..., 1t,;]. Assume that X meets the dense torus 7. Set Xo = X N T and Iy =
I- k[tgt, el tai]. We will often find it easier to work with Spec(k[tgt, el t[jt]/lo).

This space is 71 (Xo), where 7 : A%t1\{0} — P is the natural projection. Note that
771 X0) = Xo x Gy.

Let Ny = Z*t1/7-1 denote the cocharacter lattice of 7, where 1 = (1,..., ).
For z = (20, . . ., 2q4), we write t* = %0 .. . t%«_The initial form of f € k[toi, e, t;t]
with respectto w € (N7)r := (N1) ®z R is

ing f = Z a,t* where f= Zaztz.

z:{w,z) minimal

That is, the (Laurent) polynomial in,, f is the sum of all monomials a,#* of f with
minimal w-weight. The initial ideals of Iy and I with respect to w are

iny lo = (iny f| f €lo) and iny I =(iny f|f €1),
respectively. The initial degeneration of X with respect to w is
iny, Xo = T NProj(K[zo, ..., 2]/ iny I).

There is a complete polyhedral fan Xg(Xo) in N, called the Grobner fan, where
w and w’ belong to the relative interior of the same cone in g (Xp) if and only if
iny, I = inyy I [39, Theorem 1.2]. The tropicalization of X is

Trop Xo = {w € (N7)r | iny Ip # (1)} .

When X is irreducible, its tropicalization Trop Xy is the support of a pure dim(Xy)-
dimensional subfan of ¥ (X(). Denote the restriction of £g(X¢) to Trop X by Gx,.
While in,, Xo depends only on the cone of Gx, containing w in its relative interior,
it is possible that in,, Xo = in, Xo when w and w’ belong to distinct locally closed
cones. In this case, the ideals in,, / and in,, I differ by primary components contained
in (fy, ..., t,).

2.2 Matroid polytopes

We assume familiarity with basic notions of matroids and refer the reader to [32] for a
detailed treatment. For brevity, we say that a rank d matroid on [r] is a (d, n)-matroid.
Given a matroid M, we write B(M) for its set of bases and pj; for its rank function.
The uniform (d, n)-matroid is denoted by U(d, n). For n C [n], the matroid M /n
denotes the contraction of M by n and M |n denotes the restriction of M to .

Letey, ..., e,_1 denote the standard basis of R”, and for a subset A = {Ag, ..., Ar}
of [n],letey = e+ - -+ey,. The hypersimplex A(d, n) is the polytope in R” defined
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by

Ad.n)={ (... 5, ) €ER" | Y xj=d, 0<x;<1¢. 2.1)

i€[n]

The vertices of A(d, n) are the points e, for A € ('Zl) = {o C [n]]||o| = d}. The
matroid polytope of M is

Om=1{00,....5 ) €R" | Y xi=d, Y xi<pu(), nClnly. (22)

i€[n] ien

The vertices of Qs are the points eg for § € B(M). Given a collection of vertices
of A(d, n), its convex hull Q is a matroid polytope if and only if every edge of Q is
parallel to some e; —e; [9, Theorem 4.1]; we write Mo for the corresponding matroid.
In particular, any face of a matroid polytope is a matroid polytope.

Throughout, we will consider the face order on polytopes: Q' < Q whenever Q' is
a face of 0, and Q' < Q when Q’ is a facet of Q. This induces a partial order on the
set of (d, n)-matroids: M’ < M whenever Quy < Quy,and M’ < M if Qpp < Op.
Given n C [n], let M;, = My where Q' = Qy N {Zien xi = pm(n)}. The bases of
M, are

B(My) ={p € BIM)|IBNnl=pm(m}

and the remaining 8 € B(M)\B(M,) satisfy |8Nn| < pa(n). Itis not hard to produce
an isomorphism M, = M /n ® M|n. When M is connected, a nonempty subset 7 is
nondegenerate it M /n and M |n are connected. The following proposition may be
found in [11, Section 2.5].

Proposition 2.1 If M be a connected matroid on [n], then n +— Qpy, is a one-to-one
correspondence between nondegenerate subsets 1 and the facets of Q y.

Finally, we remark that if w € Z" and M,, is the matroid of minimal w-weight as in
[1], then our M, is just M_, ;) where x is the characteristic function.

2.3 Thin Schubert cells

The Grassmannian Gr(d, n) of d-dimensional linear subspaces of k" is a subvariety of
P(A?K™) via the Pliicker embedding. The homogeneous coordinate ring of P(AYK") is
denoted by K[ p; ], the Pliicker ideal by I%" C K[p;.], and the Ath Pliicker coordinate
of F € Gr(d,n) by p,(F). As observed by [9], the variety Gr(d, n) decomposes
into locally closed subschemes Gr; called thin Schubert cells which are indexed by
k-realizable (d, n)-matroids. Set-theoretically,

Gry = {F € Gr(d, n) | p,(F) # 0if and only if € B(M)}.

Observe that Gro(d, n) = Gry (g, ). We realize Gry; as a scheme in the following way.
Define
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By =Kk[p; | A € BIM)] C K[px],

Iy = (197 + (pa13. € (0\BD)) N Bar,

e Sy the multiplicative semigroup of By, generated by p; such that A € B(M), and
o Ry =Sy, Bu/In.

Then

Gry = T (M) N Proj(By/Iy)

where T (M) is the dense torus of Proj(Bjs). For computations, we will often find it
easier to work with Spec(Rys) = Grys xG,,. The ideal Ij; is generated by

Pu(u,v) = D sgn(i; m, v)puuipwi 23)
i:uli, v\ieB(M)

[n]

where pu € (;") is independent and v € ( [n]

d +1) has rank d and not contained in u [30,
Equation 4.4.1]. Here, the function sgn(i; u, v) equals (— 1)¢ where ¢ is the number of
J € vwithi < j plus the number of elements j* €  such thati > j’. The coordinate
ring of Grjs can be presented with far fewer generators and relations by using affine
coordinates with respect to a fixed basis, which we now describe.

Construction 2.2 Suppose M is a k-realizable (d, n)-matroid. Let 8 = {bg < --- <
bg—1} be a basis, let y = {cp < --- < ¢y_g—1} its complement, and let K[x;;] :=
k[x;; |0 <i <d, 0 < j < n—d]. Define a matrix X in the following way. The
submatrix of X formed by the columns from f is the identity matrix, and the submatrix
formed by the columns from y has (i, j)-entry equal to x;;. For example, if 8 = [d],
then

r o - 0 X00 Xo1 ot XOm—d—1

0 1 -~ 0 X X . Xl n—d—
X — 10 11 Ln—d—1

0 0 - 1 x4-10 Xd-11 - Xd—ln-d-1

Given A € ([;]), let X, be d x d the minor of X formed by the columns from A. For
i €[d]and j € [n — d], define A;; € (")) by

rij = (B\{bi}) U {c;}.
Then x;; = (— DX Aij where ¢ is the number of elements of § strictly between b; and
c¢j. We define
e By, = Klxijj | Aij € BIM)] C Klxij],
o If = <XA |5 e ([Z])\B(M)> N B, and

e Sj, the multiplicative semigroup in Bj, generated by X, = ay(X;) for A €
B(M), where 7y : k[x;;] — K[x;i;1/(xij [ 1ij ¢ B(M)) = By, is the quotient
map.

Then the coordinate ring of Gry; is isomorphic to R}, := (SXM)_lij,I/I;,,.
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Thin Schubert cells behave well with respect to duality and direct sum of matroids.
If M* is the dual of M, then Gry+ C Gr(n — d, n), and Gry; = Gry+ under the
isomorphism Gr(d, n) = Gr(n — d, n). If M decomposes as M = M| & M>, then
Gry = Gryy, x Gryy, [23, Proposition 9.4].

2.4 Matroid subdivisions and the tropical Grassmannian

Given a polytope P C R" with vertices ug, ..., ux and w € R+ define
Py, = conv{(u;j, w;) |0 <i < k}.
Any lower face of P, is of the form
facew, 1y(Py) ={x € Py | {x, (v, 1)) < (y, (v, 1)) forall y € Py}

where v € R”. The lower faces of P, project onto P, forming a polyhedral complex
whose support is P. This is called the regular subdivision of P induced by w. The
secondary fan $s(P) of P is the complete fan in R**! where w and w’ belong to the
relative interior of the same cone if and only if they induce the same regular subdivision
on P [10]. The adjacency graph of this subdivision is the graph with vertex vo for
each maximal cell Q and an edge between vg and vy whenever Q and Q' share a
common facet.

Given a (d, n)-matroid M and w € RBM ), we write A M w for the regular sub-
division of Qs induced by w. This subdivision is matroidal, or Ay ., is a matroid
subdivision, if each Q € Ay 4, is a matroid polytope. The Dressian of M is

Dry = {w e RBO | App,y is matroidal} .

When M = U(d, n), we write Ay, = Ayd,n),w and Dr(d, n) = Dry g ny. If Ap .y is
matroid subdivision and Q € Ay, is the projection of face(,,1)((Qm)w), then

B(Mg) = { € BIM) | (v, e5) + wy, < (v, ex) +wy forall A’ € B(M)}).  (2.4)

We abbreviate Trop Grs and Ggr,, by TGry and Gy, respectively. We also abbre-
viate Trop Gro(d, n) and Gy (4,n) by TGro(d, n) and G4 ,, respectively. Denote by .7
the restriction of ¥s(Q u) to Drys; when M = U(d, n), write Sy = Sy.n.

If w € TGryy, then Ay, is matroidal [30, Lemma 4.4.6], and hence TGry, is a
subset of Dr ;. The inclusion TGry; C Dryy induces a morphism of fans Gy — Sy
(when M is the uniform matroid, this is [40, Theorem 5.4]), thus in,, Grps and Apy
depend only on the cone of Gy containing w in its relative interior.

In general, not much is known about Gy — %) outside of a few values of (d, n).
We have TGro(2,n) = Dr(2,n) and G2, = %%,,. Next, we have TGr(3, 6) =
Dr(3, 6) and G3,6 — -#36 is a refinement [37]. The set TGr(3, 7) is properly con-
tained in Dr(3, 7), and G3 7 — .3 7 realizes G3 7 as a refinement of a subfan of .73 7
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[19, Theorems 2.1, 2.2]; here, the char k # 2 assumption is crucial. For n = 6,7,
denote by Yén the restriction of .73 , to TGro(3, n); this is a coarsening of G3 ;.

3 Limits of thin Schubert cells
In this section, we construct closed immersions

in,, Gry < 1<n_n GrMQ
Q€A p,w

for any k-realizable matroid M and w € TGr ), proving Theorem 1.1. We begin with
a discussion of the morphisms between thin Schubert cells. Let Q C A(d, n) be a
matroid polytope, let Q’ the face defined by the equation } ; enXi = pm (1), and let
w = [n]\n. As discussed in the introduction, the map GrMQ — Gry o is given by
F+— (FNk") @ F/(F Nk"). From the canonical isomorphism

NF = AP M (p Ak @ APMe™ F/(F N KH)

we see that Gra, — Gra,, is induced by the projection kBMo) _, kBMg) 127,
Proposition 1.6]. We derive a scheme-theoretic characterizations of these morphisms.

Proposition 3.1 Suppose M' < M are (d, n)-matroids. The inclusion By C By
induces a morphism of schemes gy v @ Gryy — Gryyp. Furthermore, these mor-
phisms satisfy oy 7 = O o M < M' < M and oy y = id.

Proof 1t suffices to consider the case M’ = M,, for some n C [n]. We must show that
1 M, maps to 17 under the inclusion B M, C Byr. We will do this using the generators
for Iy, and Iy given by Eq. (2.3). Suppose u € ( d[zll) is independent in M), and
V€ ( d[i]l) not containing p such that py, (v) = d. Note that p is independent in M
and py (v) = d because B(M;) C B(M). We must show Py, (u, v) = 0or Py (e, v).
If Py, (1, v) # 0, thenthereis aig € v\ such that both uUig and v\ig are in B(M,),

thus |(i U ig) N n| and |(v\ip) N n| both equal r := pps(n). In particular,

1. l[unNnl=r—1land|vNny|l=r+1ifig € n,or
2. luNnl=rand|vNn| =rifiy ¢n.

For each i € v\u, we must show that u Ui and v\i are in B(M,)) if and only if they
are both in B(M). Since B(M,) C B(M), we need only show the “if”’ direction.
Suppose © Ui and v\i are bases of M. By the characterization of Q, in Eq. (2.2),

|(wUi) | <rand|(W\i) Nyl <7 3.D

We show that they both equal r by considering the possibilities of | N n| and |[v N 7|
as above. If ip € n, then [u Nn| =r — 1 and |v N n| =r + 1. By Eq. (3.1), we have
that |(v\i) N 5| = r. In particular, we have i € n,so [(uUi) Nn| =r.Ifip ¢ n, then
l[uNn| =rand|vNn| =r.ByEq.(3.1), we have that |(x Ui) N n| = r. In particular,
we have i ¢ n,so |[(vV\i) Nn| =r. O
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Proposition 3.2 The induced morphism (pﬁl w - Ry — Ry s given by the inclusion
By, C By,

Proof Suppose [d] is a basis of M and M’. Setting I§M = S;,[lk[px/p[d] A €
B(M)]/ Iy, we see that 0 : I:’M — R)C given by 0y (pa/pray) = X, is an isomor-
phism (the inverse sends x;; to py,;; / p[d]) By Proposition 3.1, the morphism ¢z pp is
induced by the ring map ¥y : : Ry — Ry that sends ps. to itself. Therefore, the
composition OV, Mfeﬁ;} sends x;; to itself (for A;; € B(M)), as required. O

Fix a (d, n)-matroid M and w € TGry;. By Proposition 3.1, we have an inverse
system {Gry, | Q € Ay} We may form lim m , A Gruy,, which we denote
M,w

by Grp,w, and write o : Gry o, — GrMQ for the structure morphism. When
M = U(d,n) we write Gr,, = Gry,n),w- Finite limits exist in the category of
affine schemes because this category has fiber products and a terminal object [2,

Proposition 5.21].

Lemma 3.3 Suppose w € TGry and Q € A yy. The inclusion BMQ C By induces
a morphism WM,MQ,w :iny, Gry — GrMQ.

Proof Suppose Q is the projection of face(,,1)((Qm)w). Equation (2.4) records the
bases of M. We must show that / M, Maps to iny, 17 under the inclusion B My C Bu.
For this, it suffices to consider the quadratic generators Pu, (u, v) from Eq. (2.3). Let
u e (d[i]l) with py,(n) =d and v € (d[li]l) independent in M. If Py, (i, v) # 0,
then there is a ip € p\v such that p\ig, v Uip € B(Mg). Because B(Mp) C B(M),
we see that u, v, ig satisfy the same properties for M. We must show

PMQ(/-’Lv U) :inw PM(/‘va) (32)
Observe that for any i, j € p\v,
Up\j + Upuj — Up\i — UypUi = Wy\j + Wyuj — Wy\i — Woui- (3.3)

where u; = (v, e;) + wy. Now, the term p,\; pyu; is a summand in PMQ (u, v) if and
only if u,\; = uu\i, and uyu; = uyuiy- By Eq. (3.3), these equalities hold if and only
if wyn + woui = Wpnip + Wouig- SINCE Wy i, + Wyui, is the smallest such sum, we
have this equality if and only if p,\; pyu; is a summand in iny, Py (@, v). m]

Theorem 3.4 The morphisms WM,MQ,w iny, Gry — GrMQ induce a closed immer-
Sion Yap 4 : 10y, Gryy < Grpyg .

Proof Clearly M. My YM.Myw = WM,MQ/,w, SO Yy 1s defined by the universal
property of Gryy . It is a closed immersion because the induced morphism ‘/fz,w :

. -1 . . ..
h_r)nAM.w Ry — 83 B/ iny, Iy is surjective. O

The following Corollary is an immediate consequence of Theorem 3.4 and Proposition
A.8.
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Corollary 3.5 The closed immersion Yy, : iny, Gryy < Gty is an isomorphism
when Gryy , is integral and of dimension dim Gr ;.

Remark 3.6 'We now show that our definition of ¥, Mow iny, Gry; — Gr M, agrees
with the characterization discussed in the introduction. For simplicity, suppose M =
U (d, n). We refer the reader to [30, Chapter 4] for basic facts about circuits of linear
subspaces. As before, let x be a k-point of iny, Gro(d, n), let K = k%)), and let
p a K-point of Gro(d, n) so that Trop(p) = x. Let F), be the linear subspace of

K" with Pliicker vector p, and [ F, C Klyo, ..., yu—1]) its ideal. Given a subset
= fio, ... igh € (J). let

d
G =Y (=D puvie - iy
k=0

The set {€, | € (d[_’i]l)} is a universal Grobner basis of /r,. Let Fy = F, N (K*)"
and choose a vector v with — v € Trop(F ;) in the cell dual to Q; the bases of Mg
are described by a Formula similar to (2.4). Then in_,(F ;;) is cut out by the linear
equations

iny = Y (=Dfxun i (3.4)

k:u#\,-k minimal

where u; = (v, e;,) + wy. Recall that the support of a linear form is £ = > a;y; is
supp(£) = {i € [n]]a; # 0}. The closure of in_v(F;) in K" is a linear subspace that
realizes a matroid M’ whose circuits are

C(M') = {supp(in_, ,) | € (™)), pw(w) = )

Itiseasy tosee that B(M') = {A € ([Z]) |uy < uy forall A € ([Z])},henceMQ =M.
By Eq. (3.4) and the description of C(M o), we see that the Pliicker vector of the closure
of in,v(F;) in kK" is the projection of x € Ak to KBM0) | This is IﬂM,MQ,w(x), as
required.

Now we show how to compute the coordinate ring of Gry, ,, in Pliicker and affine
coordinates. We will use this in Proposition 3.9 below to compute the dimension of
Gry.y for any k-realizable (2, n), (3, 6), or (3,7) matroid. Let (Aps.,,)"P be the
collection of top dimensional cells in Ay ), and '3z, the adjacency graph of Ay 4,
as defined in Sect. 2.4. For the uniform matroid, we write (A,)"? = (Ayd.n).w)"*P
and I'y, = I'y(4,n),w. There is an inverse system over I'y ,, as in Example A.4, and
Gryw = 1(i£1rM . Gr s by Proposition C.12. Let

Ivw = (ImgBu | Q € (Ap,u)'®) C By

and Ry,w = SA}I B/ In,w- When the polytopes in (A 7 ,)'°P share a common vertex,
let
Lypw = iy By 1 Q € (Amw)'™®) C By
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Given f € B} Q,let? = 7y, (f) viewed as anelement of By, where y,, : K[xij] —
k[x;j1/{xij | 1ij ¢ B(Mg)) = B;,IQ is the quotient map. Let ij,[’w be the multiplicative
semigroup of By, generated by X, foreach & € B(Mg) and Q € (Ap,,,)'°P. Finally,
set Ry, = (Sy.0) " B/ Ly -

Proposition 3.7 For any (d, n)-matroid M and w € Dry,,

Gryw = l(u_n Grypy = T(M) N Proj Ry v

l_‘M,w

If the polytopes in (Ap )P share a common vertex, then Gryy ,, = Spec Ryt

Proof The first isomorphism is established in Proposition C.12. For each Q € Ay
of codimension 0 or 1, we have ring maps R My = Ry and RxMQ — Rj‘w,w induced

by Bm, C By and ij,,Q C By, respectively. These produce morphisms

W h_r)n Ryy — Ry and ¥ : h_r)n RXMQ — Rﬁ,l’w

l_‘M.w l_‘M,w

Now let us construct inverses ® and ®*. For A € B(M) define @ (p,) = (pﬁ,,g (py)

where Q € (Ap,)' P and & € B(M). If Q' is another such polytope, we must show
that €074Q (py) = o o (p2)- When Q” = Q N Q' has codimension 1,

¢§4Q (py) = <P§4Q,/ (py) = <P§4Q, (p3)-

The general case follows from this observation and Lemma C.11. Similarly, for A;; €
B(M) define ®x(x,~j) = (pX,IQ ()Cl'j) where 0 € (AM’w)mp and )&ij € B(MQ) It is
easy to see that © and ©F take elements in Sy and S}, . respectively, to invertible
elements.

Finally, we claim that I3s,, C ker(®). It suffices to show that ®(af) = 0 for
ace SA}IQBMQ and f € Iy, where Q € (Ap.w)*°P. But ©(af) = @(a)wﬁ,lg(f) =0.
This shows that ® is defined on Ry, . A similar argument shows that Iy, C ker(®%).
Therefore ©® and ®* are defined on Ry o, and R;,Lw respectively. One may verify that
they are inverses to W and W* respectively. O

Lemma 3.8 If M is a rank 2 matroid and w € TGr y, then Yy = iny, Gryr — Grag,y
is an isomorphism.

Proof By Theorem 3.4 and Proposition 3.7, the identity on By induces a surjective
map Ry — S;,IIBM/inw Ip, 50 Iy Ciny, Ipy. The set

T ={Pu(p,v) [nl =3, v[=1LuNv =0}
is a universal Grobner basis for I, (when M = U (2, n), this is the set of three-term

Pliicker relations). Let Py (i, v) € 7. If Q € Ay, such that Pum, (u, v) # 0, then
Py (e, v) = iny Py (i, v) by Eq. (3.2), hence Iy, = iny Iy m]
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Proposition3.9 Let M be a k-realizable (2, n), (3,6), or (3,7) matroid and w €
TGrys. Then dim Grpy o, = dim Gr .

Proof The rank 2 case follows from Lemma 3.8, so let M be a (3, 6) or (3, 7) matroid.
By Proposition C.9 we may assume that M is simple. Once Ay 4, is computed, this
calculation may be done by hand, see Examples 6.2 and 6.3. Due to the large number of
cases, we use a computer. The Grobner fan structure on TGr y is computed using gfan,
and it catalogs all cones up to Aut(M)-symmetry. The uniform cases were completed
in [37, Theorem 5.4] for (3, 6), and in [19, Theorem 2.1] for (3, 7). For each cone,
we choose a representative weight vector w and use polymake to compute Ay .
Let g be the product of all p, for A € B(M). Then (Ip;,, : g%°) C By is the
homogeneous ideal of the closure of Grys ,, in Proj(Bys). We use Macaulay?2 to
show that its dimension equals dim Grj;. The saturation was performed one variable
at a time using the saturate function with the Bayer strategy. There are a total
of 67 ideals to check among the simple (3, 6)-matroids, and 2815 ideals in the (3, 7)
case (not counting w = 0). The total process takes a couple of minutes for (3, 6) and
several hours for (3, 7). O

4 Geometry of thin Schubert cells

By Mnév universality, there exist (3, n) matroids whose thin Schubert cells are singular
or reducible, for sufficiently large n. Nevertheless, the thin Schubert cell Gr s is smooth
and irreducible when M is a rank 2 matroid, or a rank 3 matroid on [6] or [7], as we
demonstrate in this section. Let M be a k-realizable matroid. For each rank 1 flat
n of M, choose a non-loop s, € 1, and set S = {s, | nis arank 1 flat}. Then M|S
is a simple matroid, and Gry, is the product of Gry s with an algebraic torus as
discussed in Lemma C.2. Because the only simple (2, n)-matroid is U (2, n), this
leads to a straightforward proof that Gr, is smooth and irreducible in the rank 2 case.
Therefore, we will focus on rank 3 matroids.

Let M be a k-realizable loop-free (3, n)-matroid for n > 3. We can represent M
as a configuration of n points po, ..., pu—1 in P>. The elements i, j are parallel in M
if and only if p;, p; coincide. A subset 8 C [n] is a basis if and only if || = 3 and
p;i are not collinear for i € B, and n C [n] is a rank 2 flat if and only if there is a line
L c P? such that p; € L precisely when i € 5. When drawing these pictures, we will
only draw the points (labeled O, ..., n — 1) and lines through at least 3 rank 1 flats,
see Figs. 1 and 2. With this in mind, we say that 7 is a line of M if n is arank 2 flat and
[n N S| > 3. The set of lines of M, denoted by L(M), completely determines M|S.

All (3, n)-matroids for 3 < n < 7 (up to S,-symmetry) can be found in the online
Database of Matroids

http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/
In showing that Grj; is smooth and irreducible for these matroids, we start with n = 3
and work inductively. At each step, we need only consider simple and connected
matroids by Lemmas C.1 and C.2. However, there are still 8, resp. 21, simple and
connected k-realizable (3, 6), resp. (3, 7)-matroids. We use Lemma 4.1 to handle the
remaining cases.
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In this section and the next, we will need the following definitions. A morphism of
schemes is said to have connected fibers if all of its nonempty fibers are connected. We
say that f : X — Y is a SDC-morphism if it is smooth and dominant with connected
fibers.

Lemma 4.1 Let M be a loop-free k-realizable (3, n)-matroid, let i € [n] be contained
in exactly k lines where 0 < k < 2, and suppose Gr py|(n)\; is integral. The composition
of a dominant open immersion Gry — Grpyi[n)\i fon_k, followed by the projection
away from G?”_k produces a SDC-morphism Gryy — Grpg)(n)\i-

Proof We use affine coordinates as in Construction 2.2. Assume that {0, 1,2} is a
basis of M, leti = n — 1, and suppose first 3 columns of X form the identity matrix.
Suppose n — 1 is not contained in any line. This means that {i, j,n — 1} € B(M) for
0 <i < j<n~—250l} is generated by X; for suitable 1 € (I"3"). Therefore
Rj, is obtained from Rle[n—l][x(:)lfn—4’ xfn_4, xfn_4] by inverting X g for 8 € B(M).
These ring elements are nonzero divisors since they are not 0 (by k-realizability)
and Rp|[»—1) is an integral domain. This localization produces the open immersion
GI‘M —> GrM\[n_l] XG?n.

Suppose n — 1 is contained in exactly one line 1. By applying a suitable permutation,
assume 0, 1 € n. Since A2 j_3 ¢ B(M) when j € 7, the ideal Iy, is generated by
X, for suitable A € ([";1]), and Ry, is obtained from R’“M“nf“[xoi’n%, x]jfn74] by
inverting the nonzero divisors Xg for 8 € B(M), producing the open immersion
GI"M — GrM\[;z—l] XGrzn.

Now assume 7 is contained in exactly two distinct lines 11 and n,. We may assume
0,1 € ny and 2 € ny. Because Ag j_3, A1,j—3 € B(M) when j € m\{n — 1}, the
corresponding xo,j 3, X1, ;3 are invertible in Rj,. Similar to the previous case,

Ry = (SXM)_IRM[,,,”[X({,,,A;,Xffn,4]/(x0,j73X1,n74 —x1,j-3%0.n—4 | J € m2\{2}).

Since |nz| > 3, this ring is isomorphic to (ij,l,)’1 R"Ml[n_l][xfn_l], and we have an
open immersion Gry — Gr|n—1] XGy,. Finally, the map Gry — Grpp—1) is a
SDC-morphism by Proposition A.3 and the fact that the projection away from an_k
is SDC. O

Proposition 4.2 For3 < n <7, the thin Schubert cell Gryy is smooth and irreducible
for any k-realizable (3, n)-matroid M.

Proof The only (3, 3)-matroid is U(3, 3), and its thin Schubert cell consists of a
single point. Next, of the four (3, 4)-matroids up to Ss-symmetry, the matroid U (3, 4)
is the only one that is simple and connected. Since Gro(3, 4) = Gi, it is smooth an
irreducible. That the thin Schubert cells of the remaining three are also smooth and
irreducible follows from Lemmas C.1, C.2, Proposition C.3, and the (3, 3)-case. If M
is a (3, 5)-matroid, then M* is a (2, 5)-matroid, so Gry; is smooth and irreducible by
Proposition C.3 and the isomorphism Grjy; = Gr .

Next, consider the (3, 6) case. As before, we need only examine the simple and
connected matroids. For every such matroid M, each i € [6] is contained in 2 or
fewer lines of M. Therefore, the thin Schubert cell Grj, is smooth and irreducible by
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Lemma 4.1, Proposition A.1(2), and the previous cases. Finally, if M is any simple
and connected (3, 7)-matroid other than the Fano matroid, then M has an i € [n]
contained in no more than 2 lines. Similar to the (3, 6) case, the thin Schubert cell
Gry is smooth and irreducible. O

5 Morphisms between thin Schubert cells

In this section, we will consider the morphisms @7 37 : Gryy — Grjyy. For arbitrary
matroids M, SDC-properties of the morphisms ¢y are entirely determined by
©m|s,m’|s With S as in the beginning of Sect. 4, hence we need only consider simple
M. These reductions are contained in Appendix C, and yield a straightforward proof
that ¢y p is a SDC-morphism when M is a (2, n)- matroid. Therefore, we focus on
the rank 3 case. For the proof of Theorem 1.2, we will only need to verify that ¢y 5
is a SDC-morphism for pairs M’ < M of (3, 7)-matroids where Qs is not a face
of the hypersimplex. To do this, we will find it convenient to show that @,/ 3 is a
SDC-morphism for all pairs of (3, m)-matroids M’ < M where m < 6. Recall from
Proposition 2.1 that the facets of Qs correspond to the nondegenerate subsets of [n],
when M is connected. We begin with a test for nondegeneracy in the rank 3 setting.

Proposition 5.1 Let M be a simple and connected k-realizable (3, n)-matroid, and
n C [n]. Then n is nondegenerate if and only if either

1. |n| = 1 and M /n is connected, or
2. |nl =n — 1 and M|n is connected, or
3. nis a line.

Proof First, we claim that if n is nondegenerate, then || = 1,n — 1 or 5 is a line. To
that end, fix a subset 1 such that 1 < || < n — 1, and 7 is not a line (n is clearly
degenerate when || = 0 or n). If |n| = 2, then M|n = U(1,1) & U(1, 1), hence
not connected. Otherwise, 2 < || < n — 1 and py(n) = 2 or 3. If ppr(n) = 2, then
there is a line n’ properly containing 5. In this case, every element in n’\n becomes
aloop in M /n. Because M /n has at least 2 elements, having a loop implies that it is
not connected. If pyps(n) = 3, then every element in [r]\7 is a loop in M /7. Since M
is connected, we have n — |n| > 2, thus M /1 is not connected. In all cases, the set n
is degenerate, hence the claim.

If |n| = 1, then M|n = U (1, 1) which is connected, so n is nondegenerate if and
only if M /7 is connected. Similarly, if || = n — 1, then M /n = U(1, 1) which is
connected, so 71 is nondegenerate if and only if M|y is connected. Finally, suppose 7
is a line. Then M|n = UQ2,k) (k > 3)and M/n = U(1, £) (£ > 2), both of which
are connected, so 71 is nondegenerate. O

Lemma 4.1 and the next two lemmas will allow us to trim down the amount of
M’ < M that we will need to check in the proofs of Proposition 5.4 and Proposition
5.5.

Lemma 5.2 Suppose M is simple and connected and 1 is a line of M. If i € [n] is not
contained in any line and Gr py|(»)\; is integral, then My|([n]\i) < M|[n]\i, and we
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have a commutative diagram

Gry — GI’M\[n]\,’ X(GTS1
‘PM,Mnl J,WM\[n]\f,Mqun]\i X7
GrM,7 — GrM”|[n]\,- x Gy,

where the top and bottom arrows are dominant open immersions, and 7 is a coordinate
projection. In particular, if(pMHn]V,Mn‘[n]\,» is a SDC-morphism, then so is OM.M,-

Proof As usual, we use affine coordinates as in Construction 2.2, assume that {0, 1, 2}
is a basis and the first 3 columns of X form the identity matrix. We may also
assume that i = n — 1 and 0,1 € 7. As in the proof of Lemma 4.1, the domi-
nant open immersion Gry < Gruy|[n—1] fon is induced by the inversion of Xg
in Ry 1) X0 n—40 X1 n_4» X2 n_y] for B € B(M). Since M, = M /n & M|n and
M /n has rank 1, all elements of [n]\n become parallel to 2 in M,, in particular
Ao,j—3 = A1,j—3 = 0in Ran for j ¢ n. Similar to RY},, the ring Rﬁ,[n is obtained
from R)/f/[,7|[n71][x;fn—4] by inverting Xg for € B(M,). This localization induces
a dominant open immersion Gr M, = Gr Myln—1] X G,,. The morphism (G?n — Gy
is induced by k[xinf 4] C k[ngnf‘t, xfnf 4 xin%]. Commutativity of the diagram
is now a simple verification at the level of rings. The last statement follows from
Proposition A.3 and the fact that 7 is a SDC-morphism. O

Lemma 5.3 Suppose M is simple and connected, the set n is a line of M, and Gr pq)[n\i
is integral. If i € n is not contained in any other line, then My\; < M|[n]\i, and we
have a commutative diagram

Gry — GI‘M\[”]\[ XGﬁl
WM,M,,l l(/)Mun]\i,Mn\i xid

Gry, — Grpy,, x G2

m

where the top and bottom arrows are dominant open immersions. In particular, if
OM|[nI\i, My is a SDC-morphism, then so is oM. M,

Proof Similar to the proof of Lemma 5.2, we use affine coordinates as in Construc-
tion 2.2, assume that {0, 1, 2} is a basis, the first 3 columns of X form the identity
matrix, seti = n — 1,and 0, 1,n — 1 € 5. As in the proof of Lemma 4.1, the dom-
inant open immersion Gry <> Gryy -1 XG% is induced by the inversion of Xg
in Ry _1)[X0 s> X1 n_yl for B € B(M). Since M,y = M/ & M|n and M /n has
rank 1, all elements of [n]\n become parallel to 2 in M. Because {0, 2, n — 1} and
{1,2,n — 1} remains bases in M,, the terms xo ,—4 and x| ,_4 are still invertible
in Rj“,,n. Similar to R}, the ring ij,,n is obtained from R"Mn\(n_”[x&n_ét, xljfn_“] by
inverting Xg for B € B(M,;). This localization induces a dominant open immersion
Gry, = Gruy,,_y X G2,. Commutativity of the diagram is now a simple verification
at the level of rings. The last statement follows from Proposition A.3. O
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Proposition 5.4 Let M be a (3,n) matroid for 3 < n < 6 and M' < M. Then
om m : Gry — Gryy is a SDC-morphism.

Proof By Lemmas C.1 and C.2, it suffices to consider pairs of matroids of the form
M’ < M where M is simple and connected. The only (3, 3)-matroid is U (3, 3), and
A(3,3) is a point, so there is nothing to check. For n = 4, the only simple and
connected matroid is U (3, 4) so ¢,y is a SDC-morphism by Proposition C.7. The
case n = 5 follows from Proposition C.8 and Lemma C.6.

Finally consider n = 6. We may assume that M and M* are simple by Lemma C.6,
and M' = M, where |n| = 1,n — 1 or n is a line by Proposition 5.1. It suffices to
consider pairs M; < M such that one of the following holds:

1. n = [n]\{i} and i is contained in 3 or more lines (Lemma 4.1),

2. n = {i} and i is contained in 3 or more lines of M* (Lemma C.6), or

3. n € L(M),every i € [n] is contained in a line, (Lemma 5.2) and every j € 7 is
contained in another line (Lemma 5.3).

For (3, 6) matroids (1) and (2) can never happen. Up to symmetry, there is only one
pair that satisfies (3):

L(M) = {{0, 1,3}, {0, 2,4}, {1, 2, 5}, {3, 4, 5}}

and n = {0, 1, 3}. By the isomorphism M, = M /n & M|n, the set {0, 1, 3} is the
only line of M, and 2, 4, 5 are parallel to each other. We use affine coordinates as in
Construction 2.2. Assume that the first 3 columns of X form the identity matrix, so
R;{/I/ = k[x(:)%, xﬁ), xﬁ, xziz] and

£+ o+ + ~ £+
Ry, = Ry, [xg1. X152, X511/ (Xoox12X21 + X01X10%22) = Ry [X75, X511

Then R" — R}, may be identified with the inclusion Ry, C Ry, [x12, x21] and
therefore <p MM, is a SDC-morphism. ]

Proposition 5.5 Let M be a (3, 7)-matroid and M’ < M such that Q' is not a face
of A3, 7). Then ¢y m : Gryy — Gryyr is a SDC-morphism.

Proof By Lemmas C.1, C.5, 5.2 and 5.3, we may assume that M is simple, connected,
every element in [7] is contained in a line, and there is a line  with the property that
every i € n is contained in another line. There are only six such matroids. We list
these in Table 1, together with their nondegenerate subsets (up to symmetry) that define
internal facets, i.e., those facets that are not faces of A(3, 7). This has the effect of
excluding the subsets of size 1 or 6. The representatives of the nondegenerate subsets
are chosen so that {0, 1, 2} is a basis of both M, and M whenever we need to perform
an explicit computation in affine coordinates.

Cases 7.3(1), 7.4(2), 7.5(2), 7.6(2) follow from Lemma 5.2, and case 7.6(1) is
similar to the case worked out in the proof of Proposition 5.4 (indeed, the matroid in
7.6 is obtained by adding an element to a line of this matroid). For these remaining
cases, we proceed by a direct computation using affine coordinates as in Construction
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Table 1 The simple connected rank 3 matroids on [7] relevant to Proposition 5.5, together with nondegen-
erate subsets defining internal facets

L(M) Internal facets (Aut(M)-representatives)
7.1 {0, 1,3}, {0, 2,4}, {1, 2,5}, {2, 3, 6}, {4, 5, 6} (1){0, 1, 3}, (2) {0, 2, 4}
7.2 {0, 1, 3}, {0, 2,4}, {0, 5, 6}, {1, 2, 5}, {1, 4, 6}, (1) {0, 1,3}
{2,3, 6}
73 {0, 1, 3}, {0, 2,4}, {1, 2,5}, {4,5, 6} (1) {0, 1, 3}, (2) {0, 2, 4}
7.4 {0, 1, 3}, {0, 2,4}, {1, 2,5}, {2, 3, 6} (1) {0, 1, 3}, (2) {0, 2, 4}
75 {0, 1, 3}, {0, 2,4}, {1, 2,5}, {1, 4, 6}, {2, 3, 6} (1){0,1,3},(2){1,2,5}
7.6 {0, 1,5},{0,2,3,6},{1,4,6},{3,4,5} (1) {0, 1,5}, (2) {0, 2, 3, 6}

2.2. The first 3 columns of X will always be the identity matrix. As in the proof of
Proposition 5.4, the isomorphism M, = M /n @ M|n gives a simple way to identify
M,
. + + .+ _+ _+
Let M’ < M be the pair in Case 7.1(1). Then R}, = k[xg, x]g. X357, X5;, X53] and
Ry, is the quotient of (ij,l,)’1 R;{,I/[xgtl, xftz, xgg, xf%] by the ideal

(x00x13 — X10X03, X01(X12X23 — X22X13) — X21X12X03) -

Because Xs56 = X12X23 — X20X13 is in S¥,, we have Ry = RM,[xlz, x1i3]. So R}, —
Ry, may be identified with the inclusion R}, C (S3,)~ 1 px ,[xlz, xljg]. Therefore
©pm ym is a SDC-morphism.

Next consider the pair M’ < M in case 7.1(2). Then R;/I, = k[xl%, xoil,xi,xf—;, xﬁ].
By eliminating the variables xgp and x> from R}, we may identify the morphism
RY, — R, with the inclusion RY, C (S3,)7' R}, [x5, x53]. Therefore gy is
SDC. Because the matroid in 7.3 is obtained from M by removing one line, case
7.3(2) is similar.

Finally consider the pair M’ < M in case 7. 2(1) Then RY W= k[ng, xlj%, inl, xziz,
xég] and R is the quotient of (S;,I) lRM, [xo1 , xliz, X030 x13] by the ideal

(X12X23 — X13X22, X01X23 — X21X03, X00X13 — X10X03).
By eliminating the variables x13, xo3, and x12, R"M, — Rj, may be identified with the
inclusion R}, C (Sy,)~ lR"M, [xoil]. Therefore )y p is SDC. Because the matroids in
7.4 and 7.5 are obtained by removing two, resp. one, lines from M, cases 7.4(1) and
7.5(1) are similar. O

6 Smoothness and irreducibility of initial degenerations

Let M be a k-realizable (2, n), (3, 6), or (3, 7) matroid. We compile the results of the
previous sections to prove the following more general version of Theorem 1.2.



Initial degenerations of Grassmannians Page 190f40 57

Theorem 6.1 The initial degenerations iny, Gry; are smooth and irreducible for all
w € TGry.

By Corollary 3.5, we must show that Gr, ,, is smooth, irreducible, and has the same
dimension as Gr . Thanks to Proposition C.12, we may compute Gr s, as a limit over
adiagram induced by a graph as in Example A.4. When I'y; ,, is a tree, Proposition A.6
tells us that Gry ,, is smooth and irreducible when Gr My is smooth and irreducible and
PMo.My GrMQ — Gryy , is a SDC-morphism for Q € (AM,w)“’P and Q' < Q not
a face of the hypersimplex. This is illustrated in Example 6.2. However, when "y 4,
is not a tree, this data is insufficient to conclude that Gr)y ,, is smooth and irreducible,
see Remark A.7.

Let n C [n]. In the examples below and in Sect. 8, we encounter the matroids M (1)
and M (n)’ defined by

B ={pe

=2}, B ={p e ®)|1nn=2].

6.1)
A simple computation in affine coordinates yields dim Gry; ;) = n + 2|A| — 7, and
dimGrpyyy = n + |A] — 5. Also, we set f = e, A+ Aey, € AR" for A =
{Al, ..., Aq}.

Example 6.2 Let

w = fo13 + fooa + fose + fi25 + fia6 + f236

and C matroid 7.2 from Table 1. The adjacency graph I'y, is a star tree with vg. as the
central vertex and a leaf vertex vg,, 4, foreach {i, j, k} € £L(C). The edge between C
and M (i jk) corresponds to the matroid M (i jk)'. Because A, is a matroid subdivision
and does not lie in the relative interior of the Fano cone as in [19, Theorem 2.1], the
vector w lies in TGro(3, 7). The isomorphism from Proposition C.12 yields

Gru = Gre X[qGry 0 l_[ Gruiji) -

The thin Schubert cell Gr¢ is smooth and irreducible by Proposition 4.2 and the
Graijry — Grpjxy are SDC-morphisms by Proposition 5.5. From the preceding
comments, we have dim Gry(;jx) = 6 and dim Grys(;jxy = 5. A simple computation
in affine coordinates yields dim Grc = 6. By Proposition A.6, the scheme Gr,, is
smooth and irreducible of dimension 12, as is in,, Gro(3, 7) by Corollary 3.5.

When the maximal cells Q of Ay 4, all share a common vertex, we may determine
whether R}, defines a smooth and irreducible k-scheme by hand, as illustrated in
Example 6. 3 However many matroid subdivisions do not have this property, e.g., the
subdivision A(3, 7) in the previous example.

Example 6.3 Let M be the following matroid

L(M) = {{0, 2,4}, {0,3,6}, {1,2,3}, {1,4,6}, {2,5,6}}.
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M, M

M, My

Fig. 1 The matroids and adjacency graph appearing in Example 6.3

and set

w = — fo13 + f345 — foi6 + f2a5 + faa6 + f234 + fias — f135 — fi136 + f124 + fase.

The subdivision Ajs ,, is matroidal. The matroids of maximal cells and I'js 4, are
illustrated in Fig. 1. Similar to Example 6.2, we see that w € TGr ;. Because {0, 1, 2}
is a basis for each M;, the ring R;, , may be computed using affine coordinates as in
Construction 2.2. Assume that the first 3 columns of the matrix X form the identity.
We have ij,,z = ij,,3 = (0), and

I3, = (x10x23 — X13X20, X01X23 — X21X03), Iy = (x02Xx13 — X03X12).
0 1
Therefore I;f,[’w = (X10X23 — X13X20, X02X13 — X03X12, X01X23 — X21X03). Because

X03, X13 are in S}, , , we may solve for these variables to produce an isomorphism
x  ~gex y—lpr.f oE o o+ o+ £ £+
Maw = (Sprw) ™ KIXgy, Xo2, X105 X125 ¥205 X215 X220 ¥23]-

This realizes Grys,,, as an open subscheme of an. Therefore Gry 4, is smooth and
irreducible of dimension 8, as is in,, Grys by Corollary 3.5.

In general, we use a combination of the above techniques to show that all of the
Gr s,y are smooth and irreducible. Lemma 6.4 handles the case where I"y/ 4, has no
leaves, showing that Gryy ,, is smooth and irreducible by a direct analysis of R;/I, w
(for these subdivisions, all maximal cells share a common vertex). We take care of the
remaining cases using this lemma together with Proposition A.2, which considers the
behavior of smoothness and irreducibility under pullbacks.

Lemma 6.4 Let M be a k-realizable, rank 3-matroid on [6] or [7], and w € TGry,
such that Ty has no leaves. Then Gr p , is smooth and irreducible.

Proof By Proposition C.9, we may assume that M is simple. We will work with affine
coordinates as in Construction 2.2, and follow a strategy similar to Example 6.3. First,
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suppose eg common to all Q € (A M,w)“’P (if such a vertex exists). Let the columns
of X prescribed by 8 be the identity matrix. Let

gxMj: 1_[ X, and gy, = l_[ gi,lj.
reB(M;) QMj maximal

Finally, let J Iiﬁl’w = (I jf,[w : (gi,,yw)oo> C By (saturation here has the effect of
removing the primary components of the irrelevant ideal). By Proposition 3.7, to
show that Gryy o, is smooth an irreducible, it suffices to show that the the quotient of
k[x | Aij € B(M)] by the extension of Jj, , is isomorphic to a Laurent polynomial
rlng Due to the large number of cases that we need to check, we will find it more
convenient to show that K[x;’ ¥ ] J/(J j‘,,w . [xl T 1) has this property.

We proceed by a direct computation, using computer assistance. (We emphasize
that this computation may be carried out by hand for any individual w, once Ajy
is computed. We use a computer due to the large number of cases.) Representatives
w of the cones in Gy were computed in proof of Proposition 3.9, along with the
subdivisions Ajs . We use Macaulay2 to compute the adjacency graphs and
catalog those w such that I'ys ,, has no leaves. There are 17 such graphs among all
simple (3, 6)-matroids, and 877 for (3, 7). For each such (M, w), there is a vertex eg
common all of the Q € (Ap.,,)*°P. We choose such a 8 that is maximal with respect
to the revLex order, compute Jy, , as above, and consider its extension to k[x ]
While this produces a large number of ideals, many end up being the same. For (3, 6)
computing the ideals takes about 15 seconds, and there are 3 unique ideals:

+
(0), (x02x11 — X01X12), (X02x10 — X00X12) C K[x;7].

By solving for x17 in the last two ideals, we see that the quotients k[xl.j;] /(J j{,[’w -k[xif])
are all isomorphic to Laurent polynomial rings. For (3, 7), this computation takes
about 50 min. We list these ideals in Appendix B, together with variables that may
be eliminated to produce an isomorphism of k[xij;] /(J I)\CLw . k[xi?]) with a Laurent
polynomial ring. O

Let G be a connected graph. Given a leaf-vertex v, the branch of G containing v is
the largest full subgraph of G that contains v and does not meet any cycle of G (note
that this is non-standard terminology).

Theorem 6.5 Let w € TGrys where M is ak-realizable (2, n), (3, 6), or (3, 7) matroid.
Then Grpy 4 is smooth and irreducible.

Proof By Proposition C.12, we know that Gry , is isomorphic to a limit over the adja-
cency graph I'jr . Since all relevant thin Schubert cells are smooth and irreducible,
and all relevant morphisms are SDC, we may use Proposition A.6 to conclude that
Gr s,y 1s smooth an irreducible when I'yy 4, is a tree. In particular, this completes the
proof in the d = 2 case.

Now suppose (d,n) = (3,6) or (3, 7). We need only consider those w such that
I, 1s not a tree. We proceed by induction on the largest diameter of a branch of
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I'a,w. When I'yy o, has no leaves, the scheme Gr)y ,, is smooth and irreducible from
Lemma 6.4, hence the base case of the induction.

Let vg,, ..., vg, denote leaf vertices of "y v, let L; = My, , and let L; for the
matroid corresponding to the edge adjacent to vg,. There is a hyperplane H in R"
suchthat Ayy N Hy = A L with Ay, in one of the halfspaces of this hyperplane. The
polytope given by the intersection of Aj; with the other halfspace is also a matroid
polytope: it is the convex hull of the vertices eg such that § € (B(M)\B(Ly)) U
B(L;). The adjacency graph to this subdivision is obtained by removing the vertex
and edge corresponding to Az, and A L, respectively. Repeating this procedure for
the remaining L;’s, we see that the union of the polytopes corresponding to non-leaf
vertices in I"js 4, 1s a matroid polytope. We denote the corresponding matroid by C.
By Proposition A.5 and C.12,

GrM,w ~ Grc,w XHGTL’, HGI‘Li .
1

The k-scheme Grc y is smooth and irreducible by the inductive hypothesis and ¢; .
are SDC-morphisms by Proposition 5.4 and Proposition 5.5. We conclude that Gryy
is smooth and irreducible by Proposition A.2. O

Corollary 6.6 If M is a k-realizable (3, 6) or (3,7) matroid and w € TGry,, then
Ym.w - iny, Gryy — Gryy ) is an isomorphism.

Proof By Theorem 3.4 and Proposition 3.9, the map ¥ ,, is a closed immersion of
affine schemes of the same dimension. Moreover Gryy ,, is integral by Theorem 6.5.
Therefore ¥y 4, is an isomorphism by Proposition A.8. O

Proofs of Theorems 1.2 and 6.1. These theorems follow from Lemma 3.8, Theorem
6.5, and Corollary 6.6. O

Remark 6.7 We are indebted to the anonymous referee for pointing out the follow-
ing consequence of Theorem 6.1. Let Xo be a closed subvariety of an algebraic
torus 7. Denote by X" the Berkovich analytification of X( [3]. The tropicaliza-
tion Trop X is faithful if there is a continuous section to Trop : X§" — Trop Xo. By
[14, Theorem 10.6], the tropicalization Trop Xy is faithful when in,, X¢ is reduced
and irreducible for all w € Trop X(. Together with Theorem 6.1, this implies that the
tropicalization TGr , is faithful for any k-realizable (2, n), (3, 6), or (3, 7)-matroid.

7 The log canonical compactification of X, (3, 7)

We now prove Theorem 1.3, that the normalization of the Chow quotient of Gr(3, 7) by
the maximal torus PGL(7) is the log canonical compactification of X (3, 7). For back-
ground on log minimality and log canonical compactifications, see the introduction of
[16], for the Chow quotient of Gr(d, n), see [21] [26, Section 2], and for schén com-
pactifications, see [15,29,40]. Throughout this section, we use the following notation
for polyhedral fans and toric varieties that is consistent with [7]. Let N be a lattice, let
T its torus, and let X a rational polyhedral fan in Nr. When T is a torus, we write Nt
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for its cocharacter lattice. Given a cone o of X, denote by N, the saturated sublattice
of N generated by 0 N N. Let N(o0) = N /Ny, and Star(o) the star of o, viewed as a
fan in N(o)r. We write X (X) for the toric variety of X.

Let H C PGL(n) be the maximal torus, let M a loop-free matroid, and let 7' (M)
the dense torus of Proj(Bjys). As before, we let {e; | i € [n]} denote the standard basis
of Z" and f) = ey, A--- Aey, for A = {A1,..., Ag}. The cocharacter lattices of H
and 7' (M) isomorphic to Z" /Z-1 and 7B /7.1, respectively. The torus H embeds
into T (M) by

Nu — Nt ej fo (7.1)

ADI

Thus H acts on Proj(B)s) via the action of T (M). This restricts to a free action on
Gr s, and we set Xy = Grys /H. The quotient Gry; — Xy is induced by a monomial
ring map [12, Proposition 2.1], therefore Trop Xy = TGry; /(Ng)R-

Now we focus on M = U(d,n); In this case we write T = T(U(d,n))
and Xo(d,n) = Xya,n)- The Pliicker embedding induces an closed immersion of
Chow quotients Gr(d,n)//H — P(A%K")//H. By [21,22], the normalization of
P(AYK™)//H is the toric variety Yy, 1= X(Zs(d,n)/(Nu)Rr). Let Xs(d, n) be the
closure of Xo(d,n) in Y4 ,. Then Yz, — ]P’(/\dk”)//H induces a birational mor-
phism Xs(d,n) — Gr(d, n)//H, thus both have the same normalization, which we
denote by X(d, n). When n = 6, 7, the space X (3, n) is also the closure of X¢(3, n)
in X(Ygfn) where 5”3”n = A/ (Np)R.

Lemma 7.1 The initial degenerations of Xo(3, 7) are smooth and irreducible. In par-
ticular, the space X (3, 7) is a schon compactification of Xo(3, 7).

Proof Let Nji' denote the saturation of the image of the map from Eq. (7.1). A splitting
of the exact sequence 0 — N;;“ — Nr — Nryg — 0 induces an isomorphism
Gro(d, n) = Xo(d, n) x H. As stated earlier, this is monomial at the level of coordinate
rings. Therefore in,, Gro(3, 7) = ing X¢(3, 7) x H where w is the projection of w to
(Nt1/H)R. The first statement now follows from Theorem 1.2. By [29, Theorem 1.5]
Xs(3,7) is a schén compactification, which is already normal by [40, Theorem 1.4].

m}

Proof of Theorem 1.3 By Lemma 7.1, the space X is a schon compactification of
X0(3,7).Let B the boundary divisor of X((3,7) C X(3, 7). To show that Kx 3,7+ B
is ample, we follow a strategy laid out in [28] based on [16].

For each cone o € 5”3” 7, let X denote the locally closed stratum of X (3, 7) in
the corresponding torus orbit of X (5@” ;). There is an isomorphism in,, X¢(3,7) =
X, x Ty, for any w in the relative interior of o [18, Lemma 3.6], so each X, is
smooth and irreducible by Lemma 7.1. Because X (3, 7) is a schon compactification,
the pair (X(3,7), B) has at worst toroidal singularities [40, Theorem 1.4]. By [16,
Theorem 9.1], the divisor K x(3,7) + B is ample if and only if each X, is log minimal.
We know that Xo(3, 7) is log minimal by [26, Proposition 2.18], so we need only
consider the X, for o # 0.

By [30, Lemma 3.3.6] Trop X, is the underlying set of Star(c) in N(o)r. The
stratum X, is schon because its closure in X (Star(c)) is a schon compactification.
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Therefore, the stratum X, is either log minimal or preserved by a nontrivial subtorus
S C Twn(o) [16, Theorem 3.1], which occurs if and only if Trop X, is invariant under
translation by the subspace (Ns)r C N(o)r [24, Lemma 5.2]. So it suffices to show
that each Trop X, is not invariant under translation by any rational subspace of N (o).
We prove this in Lemma 7.3, using the necessary condition for such subspaces in
Lemma 7.2. O

Lemma 7.2 Suppose X is a rational polyhedral fan in Ny that is invariant under
translation by the linear subspace V. C Nr. Then V. C (Ny)Rr for every maximal
cone o of X.

Proof 1f o is amaximal cone such that V- ¢ N, thendim(V + N, ) > dimX, therefore
V cannot preserve X. O

Lemma 7.3 Foreachcone o of 3 4, the set Trop X, is not preserved under translation
by any rational subspace of N (0)R.

Proof The case o = 0 follows from the fact that Xy(3, 7) is schon and log minimal
as in the proof of Theorem 1.3, so we focus on o # 0. By Lemma 7.2, to prove that
Trop(X,) is not preserved under translation by any rational subspace of N (o)R it
suffices to show

(No)r = [ | (No)r (72)

where the intersection is taken over all maximal cones t € Star(o). By symmetry, it
suffices to show Eq. (7.2) for a collection of S7-orbit representatives of the o.

The Grobner fan Gz 7 was computed in gfan (as before), and we use sage to
compute yg’ - by grouping together those cones that correspond to the same matroid
subdivision of A(3,7). The f-vector (starting at dimension 0) for 5”3” 7 up to §7-
symmetry is

f(&@’f7 mod S7) = (1, 5, 30, 107, 217, 218, 94).

For each representative we compute Star(o) and the intersection in Eq. (7.2), also
in sage. This part of the computation may be completed in under 5 min on a standard
desktop computer. O

Remark 7.4 A direct adaptation of Luxton’s methods for proving that X (3, 6) is schon
does not work for X¢(3, 7), as we now describe. For a degree 9 — n del Pezzo surface
S,leteq, ..., ey, h denote the standard generators of Pic S, and K = 3h — ) _¢; the
canonical class. In this remark, we focus on the cases n = 6, 7. The subspace K L
contains the root system E,, let A be the Z-lattice generated by E,. Seta;; = ¢; —e;.
Forn =6,let p =2h — ) e;,and forn =7, let B; =2h — Zi# e;.

As in the introduction, denote by Y"* the moduli space of smooth marked del Pezzo
surfaces of degree 9 — n, and denote by F,, its log canonical fan, whose support is
Trop Y". We recall the description of F,, in [16]. There is an exact sequences of free
abelian groups

0— Sym?>AY & zE+ % N(E,) = 0

where ¢ (f) = Zae(E,,)+ f () - «. Given a root subsystem O, let ¥ (©) = Y ¥ («)
where the sum is over the positive roots of ®. The set of A; root subsystems of E,, is
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Fig.2 From left to right: the Fano matroid, the Pappus matroid, and the Perles matroid

denoted by A; and let
R(Eg) = A; U (A x Ay x Ap), R(E7) = A1 u Ay b (A x A3) U A7.

The rays of F,, are ¢ (®) for any ® € R(E,), and ¥ (1), ..., ¥ () span a cone if
and only if
®; L @j,@i C @j, 0r®j C O;

When n = 7, exclude the “Fano” simplices spanned by 7 mutually orthogonal A
subsystems.

The open immersion Y" < X((3, n) induces a surjective map 7 : Trop Y" —
Trop Xo (3, n) [40, Proposition 3.1]. When n = 6, the map 7 is induced by a quotient
of N(Es)r by spang{y(B)}. One step to prove that Xo(3, 6) is schon in Luxton’s
thesis was to show that the morphism of toric varieties X (Fg) — X (5”3” ¢) is smooth,
see [28, Theorem 4.2.2]. When n = 7, the map = : TropY”" — Trop Xo(3, n) is
induced by a quotient of N(E7)r by spang{y¥(81), ..., ¥(B7)}. We claim that the
morphism X (F7) — X (473”’7) is not smooth. Let @1 = {%a;;} (an A;-subsystem)
and ©y = {£o;;, =B;, £B;} (an Az-subsystem). Because ®1 C ®», we have that
o= spanR>0{w(®1), Y (®,)} is a cone in F7. Then & maps both rays ¥ (01), ¥ (02)
to the sameiray T in Trop X¢(3, 7). Therefore the restriction of X (F7) — X (5@” ;) to
the toric open sets U, — Uy is not smooth.

8 Behavior for higher Grassmannians

The algebraic properties of both the initial degenerations and the maps between thin
Schubert cells that played a central role in the proof of Theorem 1.2 fail to hold outside
d,n) = (2,n), (3,6), (3,7) and their duals. In this section, we give examples for
d = 3 and n = 8, 9 that show our proof-techniques will not apply beyond the cases
treated earlier. We begin by showing how the analog of Proposition 3.9 does not hold
when chark =2 orn > 9.

Example 8.1 For this example, suppose k = F». The analog of Proposition 3.9 does
not hold in this setting. Let F' be the Fano matroid, i.e., the matroid whose set of lines
is

L(F) ={{0, 1,3}, {0,2,4}, {0,5,6}, {1,2,5}, {1,4,6}, {2,3,6}, {3,4,5}}
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as illustrated in Fig. 2. Let wr € A37Z7 be the vector

wr = fo13 + fo2a + fose + fizs + fia6 + f236 + f345.

This point lies in TGro(3, 7), as it is the coordinatewise 7-adic valuation of the Pliicker
coordinates of the [F4((¢))-valued matrix

1 ¢+ 1
1 ¢+ 1 1+4¢

1 0
0 1
0 0 t 1 1 1+at

—_ o O

where a € F4\{0, 1}. The adjacency graph I',, is a star tree whose central node is vg
and has a leaf vertex vg,,;,, foreach {i, j, k} € L(F). The edge adjacent to vg,,
corresponds to M (ijk)’. A computation in affine coordinates yields dim Grrp = 6,
hence dim Gr,, = 13 by Proposition A.8.

Example 8.2 The analog of Proposition 3.9 is also not true for other (d, n), even in

characteristic 0. Consider the case (d, n) = (3, 9) and let Mp, be the Pappus matroid,
i.e., that matroid set of lines is

L(Mpy) = {{0, 1, 3}, {0, 2, 4}, {0,7, 8}, {1, 2,5},
{1,6,8},{2,6,7}, {3,4,6}, {3,5,7}, {4,5,8}}

as illustrated in Fig. 2. Let wp, € A3Z be the vector defined by

wpa = fo13 + fo2a + fors + fi2s + fies + fa67 + f346 + f357 + fass.

This point lies in TGrg (3, 9) as it is the coordinatewise 7-adic valuation of the Pliicker
coordinates of the Q((7))-valued matrix

1 00 2 1 t 14t -1
01 0 =3 ¢ 1 -1 1-£ 1
0 0 1 2t 3 =2 1 1 1+1

The adjacency graph I'y, is a star tree whose central node is vg Mpy and has a leaf
verteX Vo i for each {i, j, k} € L(Mp,). The edge adjacent to VQ iy COITE-
sponds to M (ijk)’. A computation in affine coordinates yields dim Grys, = 10,
hence dim Gr,, = 19 by Proposition A.8.

Question 8.3 Does the analog of Proposition 3.9 hold for (3, 8)-matroids?

Next, we discuss the general behavior of the maps ¢y pr: Gryy — Gryy for
M’ < M. Recall that ¢y is a SDC-morphism whenever M’ is a (3, 6)-matroid, or
M is a (3, 7)-matroid and A ;- is not a face of A(3, 7). When M’ is a face of A(3,7),
then ¢y ) may fail to be dominant.
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Example 8.4 Let M be the (3, 7)-matroid with lines
LM) ={{0,3,6}, {1,4,6}, {2,5,6}}.

and M’ = Mjs). In a projective realization of M, the lines 03, 14, and 25 all meet
at the point 6. Observe that 6 becomes a loop in M’, and M’ = U(3,6) @ U(0, 1).
A projective realization of U (3, 6) does not require that 03, 14, and 25 all meet at
a common point. Such a condition defines a codimension 1 subscheme of Gry(3, 6).
Therefore @ps, 3 is not dominant. Extending the ground set by adding points in linear
general position, we get non-dominant morphisms @7 for any realizable (3, n)
matroid with n > 7. By adding elements to the ground set parallel to any of the
{0, ..., 6}, one may produce non-dominant morphisms @y for n > 8 where Ay
is not a face of A(3, n).

We end with an example of an initial degeneration of Gry(3, 9) that is reducible,
proving Theorem 1.4. Consider the Perles matroid P of nine points and nine lines

L(P) = {{0,1,2,3},{0, 4,8}, {1,4,7}, {0, 5, 6},
{1,5,8},{3,4,5},{2,5,7}, {2, 6, 8}, {3, 6, 7}}.
This is depicted in Fig. 2. First, we parameterize its thin Schubert cell.

Proposition 8.5 The thin Schubert cell Gr p is isomorphic to X p X Gi and
Xp = Speck[zF]/(z2 — z — 1)).

In particular, the thin Schubert cell Gr p has two connected components.

Proof As discussed in the beginning of Sect. 7, the maximal torus H C PGLgy(K) acts
freely on Grp and Grp = X p x H. To compute X p, we use affine coordinates similar
to Construction 2.2. Let X be the matrix with (1, 0, 0), (0, 1, 0), (0,0, 1) and (1, 1, 1),
in columns 0, 1,4 and 5, respectively. The H-action allows us to set one nonzero entry
of each remaining column to be 1. A standard calculation yields

1 0 —z 1 01 1I—-z 0 1
X=10 1 1 1 0 1 z 0
00 0 0 1 11
where z2 — z — 1 = 0. Therefore X p has the required form. O

Let wp € A3Z° be the vector
wp = for2 + f013 + fo23 + f123 + foas + f147 + fiss + fa57 + fa68 + f367. (8.1)
Proposition 8.6 The vector wp from Eq. (8.1) induces a dominant open immersion

Gry, <> Spec(k[z]/(z> —z — 1)) x G18.
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In particular, the scheme Gry,, is smooth and has two connected components.

Proof The adjacency graph I'y,, is a star tree on nine leaves with central node vg,.
Foreach A € L(P), there is a leaf vertex V040 connected tovg,,and Qp N Q) =
O M.y, where M (1) and M (1) are defined in Eq. (6.1). By Proposition C.12,

erP = Grp XHA&L(P) Gryiy 1_[ GrM()») :
reL(P)

The embedding in the statement will be obtained by combining the associativity of
fiber products with Proposition 8.5, Proposition A.5 and the following two claims.

1. GI‘p XGrM(A)/ GrM(A) = Grp X(Grm for A € E(P) N {{O, 1, 2, 3}}, and
2. Grp Xgr MO123) Gr(0123) embeds into Grp XG’zn as a dense open subscheme.

Both verification are similar. We show the second one since it is more subtle. To
simplify notation, let M = M (0123) and M’ = M (0123)’. We use affine coordinates
as in Construction 2.2. Let X be the matrix of variables x;; such that the columns 0,1,4
form the identity. Then Ry, = §'~'Z[x;; |ij # 02, 12]and R}, = ™' Ry, [x3, x5,
where S’ is generated by X34 and S is generated by X3, X123. From this we conclude
that

Grp xGr,, Gty = Spec(S™' Rp[x3, x5;1).

Since the xqg, X01, X10, and x1; are units in R}, we see that X(»>3 and X {»3 are not zero

.di\./is.ors .in the abf).ve ring. Therefore the natural map R7, [)czjt0 s xzil ]— §°! R} [xzio, xzil ]
is injective and (ii) holds. m]

Lemma 8.7 We have an isomorphism iny,, Gro(3,9) = Gry,,.

Proof Because v, : iny, Gro(3, 9) < Gry,, is a closed immersion of affine schemes
of the same dimension and Gr,,, is reduced, it suffices to show that the image of
Yy p meets the two connected components of Gr,,, by Proposition A.8. Consider the
following k((#))-valued matrix

1 0 —a 1 0 1 l—a t 1
X@:=10 1 1 14t O 1 1 a 3t
0 0 1« 2t 1 1+4+¢ 142t 1 1+3¢

where a = b, b are the distinct solutions to z2 — z — 1 = 0. Let pa be the Pliicker
vector of X (a). One may verify that the coordinatewise valuation of p, is wp. The
exploded tropicalization Ttop(p,) is an element of in,, Gro(3, 9) [33, Lemma 3.2],
and ¥ p , maps Trop(pp) and Trop(pp) to different connected components of Gry, ),
as required. O

Proof of Theorem 1.4 Proposition 8.6 and Lemma 8.7 yield a dominant open immer-
sion iny,, Gro(3,9) < Spec(k[z]/(z> — z — 1)) x G.8. Therefore in,,, Gro(3,9) is
smooth with two connected components. O
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A Some functorial properties of SDC-morphisms

Throughout this section, all k-schemes are of finite-type over k. Recall from the
beginning of Sect. 4 that a SDC-morphism of k-schemes is one that is smooth and
dominant with connected fibers. In this section, we will catalog properties of SDC-
morphisms used throughout the paper. First, we discuss how to deduce smoothness or
connectedness of a k-scheme X from properties of a morphism X — Y and Y.

Proposition A.1 Let X, Y be k-schemes as above.

1. If f : X — Y is a dominant morphism with connected fibers and Y is irreducible,
then X connected.
2. If f : X — Y is a SDC-morphism and Y is smooth and irreducible, then so is X.

Proof Let V be the image of f. Since f is dominant and Y is irreducible, the scheme V
is also irreducible, and therefore f : X — V is a surjective morphism with connected
fibers. We conclude that X is connected by [38, Tag 0378]. Finally, (2) follows easily
from (1). O

Next, we explore how SDC-morphisms behave under base change. This proposition
is crucial in the proof of Theorem 1.2 as it will allow us to deduce smoothness and irre-
ducibility of initial degenerations by studying thin Schubert cells and the morphisms
between them.

Proposition A.2 Suppose we have a pullback diagram

Wxy X —"sx

1)

W-——->7,

and that W x z X is nonempty. The following properties hold:

1. If f is smooth and W is a smooth k-scheme, then W x z X is smooth.
2. If f is a SDC-morphism and W is irreducible, then f’ is also a SDC-morphism.
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3. If f is a SDC-morphism and W is smooth and irreducible, then W x z X is smooth
and irreducible.

Proof To simplify notation, set V := W xz Y. If f and W — Speck are smooth
morphisms, then so is V' — Spec k since smoothness is preserved under composition
and base-change. This proves (1).

Now suppose f is a SDC-morphism and W is irreducible. So f' : V. — W is
smooth, in particular flat. By [17, Exercise I11.9.1] f” is also open. This means that
f'(V) is a nonempty open subscheme of W, which is dense by the irreducibility of
W.For w € f'(V), the fiber V,, is nonempty and isomorphic to Xj ), which is
connected, hence (2). Statement (3) follows from this and Proposition A.1(2). O

Proposition A.3 SDC-morphisms satisfy the following.

1. A dominant open immersion U — X is a SDC-morphism.
2 If f: X > Yand g : Y — Z are SDC-morphisms, then gf : X — Zisa
SDC-morphism.

Proof Statement (1) is clear, so consider (2). It is well known that smoothness and
dominance are preserved under composition, so we need only show that g f has con-
nected fibers. Let z € Z, and X (resp. Y;) be the scheme-theoretic fiber of gf (resp.
g)over z. Let f, : X, — Y. be the morphism obtained by pulling back f along the
inclusion Y; — Y. Since Y, is smooth and connected, it is irreducible. By Proposition
A.2(2), the map f;, is a SDC-morphism. Therefore X, is connected by Proposition
A.1(1), as required. O

Many of the limits that appear in this paper come from graphs in the following
way. Let C be a category that has finite limits, e.g, the category of k-schemes k- sch,
and G a connected graph, possibly with loops or multiple edges. We regard each edge
e € E(G) as a pair of half-edges. Let us define a quiver Q(G). The set of vertices
of Q(G) is V(G) U E(G); we write g, (v € V(G)), resp. qg. (e € E(G)), for the
corresponding vertex of Q. For every half edge & of e incident to v, there is an arrow
qh * qv — (.- Inparticular, if e is a loop edge, then there are two arrows from g, to g,.
Viewing Q(G) as a category in the usual way, a diagram of type Q(G) in a category
Cis afunctor X : Q(G) — C. We write X, = X(qy), Xe = X(q.), o» = X(qp) and

Xc = Lln 0(G) X. For example, Fig. 3 exhibits a graph and its corresponding diagram.

Example A.4 Let I"y,,, be the adjacency graph to a matroid subdivision Ay ,,. Let
M, resp. M,, denote the matroid corresponding to the vertex v, resp. edge e, of I"ps 4,
and ¢y, m, : Gry, — Gry, whenever e is incident to v. The data of Gry,, Gry,,
and @, M, defines a diagram of type Q(I"y,4,) in k- sch.

Now, let us consider how this construction behaves with respect to contracting a
connected subgraph. Let F' be a connected subgraph of G, and G/ F the graph obtained
by contracting F to a single vertex vp. Let X = l(ir_nQ(F) Xandleté, : Xr — X,
and & : Xr — X, be the structure morphisms. Set Y;,, = X, and ¥, = X, for the
remaining v in V(G /F). Similarly, let Y, = X, for the edges e € E(G/F).If h is
a half edge in G/F incident vr, set ¥, = ¢;&,. Otherwise, let ¥, = ¢p,. The data
(Yy, Ye, ¥p) defines a diagram Y of type Q(G/F).
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Fig.3 A graph and its associated diagram

U1

Proposition A.5 We have an isomorphism

IimX = limY.
<~ <
G G/F

Proof To simplify notation, set Y,/ = l(iglG/F Y. Lety : Yg/Fr — Yy and A, :
YG/r — Y. denote the structure morphisms of this limit. We show that Y, F satisfies
the universal property for 1(111 G X. First, we must define morphisms oy, : Yg/r — Xy
and o : Yg/F — X, that commute with each ¢j. This is achieved by setting «, =
Eyhyp, (resp. o, = &,hy) Wwhen v € V(F) (resp. e € E(F)), and ay = A, (resp.
o, = A) otherwise. One may verify that g0, = 0.

Now suppose that we have a collection of morphisms 6, : M — X, and 6, : M —
X, such that ¢,0, = 0, for every g, : g, — ¢ in Q(G). We will show that there is a
unique morphism 6 : M — Y, F such that

o, =0, and O, = O, (A1)

forall v € V(G) and e € E(G), respectively. By the universal property of X r, there
is a unique morphism 6, : M — Yy, such that §,6,, = 6, and £.0,, = 6. If hisa
half edge in G/ F incident to vr, then

Whevp = Whév'gvp = @pby = b,.

Otherwise, we have y,0, = 0, since ¥, = @p,. By the universal property of Yg,F,
there is a unique morphism 6 : M — Y, satisfying 1,0 = 6, and .0 = 6.
Now we establish the equalities in Eq. (A.1). When v € V(F),

ayf = év)"vpe = gvevp = Oy.

A similar argument shows that «.0 = 6, when e € E(F). The cases where v €
V(G)\V(F)ore € E(G)\E(F) follow from the identifications &, = A, and oz, = Ae.
Finally, the uniqueness of 8 follows from the uniqueness of 67 and the universal
property of Y, F. O
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Proposition A.6 Suppose G is a tree. Let X be diagram of type Q(G) in k- sch such
X, and X, are smooth and irreducible k-schemes, and for each half edge h, the map
X(h) : Xy — X, is a SDC-morphism. Then X g is smooth and irreducible. Moreover,

dimXg = Z X, — Z X,.

veV(G) e€E(G)

Proof We proceed by induction on the number of vertices. When G consists of a single
vertex, there is nothing to show. Now suppose that the lemma is true for all trees with
fewer vertices than G. Let w be a one valent vertex of G, let e the adjacent edge, and
let G’ the graph consisting of the remaining vertices and edges. By Proposition A.5,

XG = Xw XX, X(;/.

It is smooth and irreducible by Proposition A.2 and the inductive hypothesis. Because
X, — X, is smooth of relative dimension dimX,, — dimX,, so is Xg — X/., and
therefore

dimXg = dimX,, — dimX, + dimX

by [17, Corollary 9.6]. By the inductive hypothesis, we get the required formula for
dimXg. O

Remark A.7 An arbitrary finite limit over a diagram of smooth and irreducible k-
schemes in which every morphism is SDC-need not be irreducible. Let h = x> — y> 4+
x + JT and X = Spec((h)_lk[x, y]). Define two morphisms f, g : X — Speck[z]
by:

@ =x" -y +x g'(2) = x.

One may verify that f and g are SDC-morphisms between smooth and irreducible
k-schemes. However, the equalizer of f and g is

Spec((h)~'Kk[x, y1/(x* — y?))
which is neither smooth nor irreducible.

We end with a proposition on when a closed immersion of affine schemes is an
isomorphism.

Proposition A.8 Suppose ¢ : X — Y is a closed immersion of affine schemes, and Y
is integral. If dimX = dimY, then ¢ is an isomorphism.

Proof Let n be the Krull dimension of X and Y. Because ¢ is a closed immersion and
Y is integral, the induced morphism on rings is of the form ¢* : R — R/I for some
integral domain R and ideal / C R. A maximal chain of prime ideals po C p1 C
-+ C p, in R/I lifts to a maximal chain of prime ideals q9p € q1 € --- € g, in R
with I C q,. Because R is an integral domain, we have qo = (0). So I = (0), and
therefore ¢ is the identity. O
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B Data for Lemma 6.4

In Table 2, we list the ideals that appear as Jj, , for subdivisions of A ,, such that
M is a simple, connected k-realizable (3, 7)-matroid and I'js ,, has no leaves, as in
the proof of Lemma 6.4. We consider all of these as ideals in the ring

kxj10<i<2 0<j<3].

We write k[xi?] for short. Many of the polynomials that appear are of the form X;; ¢ :=
XikXj¢ — Xi¢Xjk. In the second column, we list variables that may be eliminated to
produce an isomorphism of k[xl.j;] /J 1)16/1,w with a Laurent polynomial ring. For example,
consider the last row. In this case,

it = (Xo1.23, X02,03, X12,12, X 12,02, X12,01)-

We use the form X1 23 to solve for xqp, the form Xg; 03 to solve for x¢3, the form
X 12,12 to solve for x11, and finally the form X2 02 to solve for x2>. This produces an
isomorphism k[xf;]/J;;,w — k[x}; | ij # 02,03, 11,22].

C Maps between thin Schubert cells and inverse limits (written by
Maria Angélica Cueto)

In this appendix, we discuss how to reduce the study of geometric properties of thin
Schubert cells to the case of simple and connected matroids. Because the only simple
rank 2 matroid is U (2, n), this analysis gives us a complete understanding of Gry,
in the rank 2 case, and simplifies the study of rank 3 matroids in Sects. 4 and 5. In
the following subsection, we show that the limit of thin Schubert cell Gry, ,, induced
by a matroid subdivision Ay ,, depends only on the adjacency graph of Ajs . This
allows one to apply the results from Appendix A to study Grjy ., as in Sect. 6.

C.1 Reduction to simple and connected matroids

The following two Lemmas demonstrate that thin Schubert cells are compatible with
decomposition into connected components and removal of loops and parallel elements.
Lemma C.1 appears [23, Proposition 9.4] without proof, and Lemma C.2 will appear
in an upcoming paper [5]. For the reader’s convenience, we sketch their proofs.

LemmaCl If M = M| & My, then Gryy = Gry, X Gry,. In particular, we have
Gry = Grygr where T C [n] is the set of non-loop elements.

Proof Suppose X and X, are matrices giving rise to the rings Rﬁ,ll and Rﬁh as in
Construction 2.2. Let X be the block matrix with X; and X» on the diagonal. Then
Ry = wal ® Rj‘Wz. The second statement follow from M = M|T & U0, |T|). O

Given a matroid M, we define a simple matroid by removing loops and parallel
elements in the following way. Let 7y, . . ., nx be the rank 1 flats of M, choose nonloop
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Table 2 Here are the unique ideals nontrivial ideals that appear in the proof of Lemma 6.4

Ideals X;j to eliminate
X12,01 x21

Xo1,12 x12

X12,12 X2

X02,23 x23

X01,03 x13

X01,23 x13

X12,23 x23

X01,02 X12
X02X10%21 + X00X11X22 x22
X00X12%21 + X01X10X22 x22
X00X13%22 + X02X10X23 x23
X02X10X21 — X00X12X2] — X01X10X22 x22
X02X11X20 — X01X12X20 — X00X11%X22 x2
X03X10X22 — X00X13X22 — X02X10X23 x23
X03X10X22 — X00X13¥22 + X00X12%23 x23
X02X10X21 — X00X12X21 — X01X10X22 + X00X11X22 x11

X02,23, X12,01 X21, %23
X02,02; X12,01 X215 %22
X01,03, X12,01 X13, X21
X02,03, X12,01 x21, X23
X02,13, Xo01,02 X125 %23
Xo2,12, X12,01 X01, X22
X02,13, X12,01 X10, X23
Xo1,13, Xo1,02 X12, X13
X12,13, X00X12X21 + X01X10%22 x22, X23
X01,13, X02X10X21 — X00X12X21 — X01X10X22 X13, X22
X12,13, X02X10X21 — X01X10X22 + X00X11X22 X02, X23
X01,12, X03X10X22 — X00X13X22 — X02X10X23 X12, X23
X02,03, Xo1,12, X12,01 X12, X21, X23
Xo1,13> X02,02: X12,01 X13, X22, X21
X02,13, X02,02: X12,01 X10, X22, X23
X12,12, X12,02: X12,01 X22, X21
X12,03, X01,23, X02X11%20 + X01X10X22 — X00X11X22 X005 X125 %23
X01,03: X02,02: —X12,01 — X02X13X21 + X03X11X22 X005 X015 X13
X02,03: X12,125 X12,02, X12,01 X115 %22, X23
X02,13, X01,12, X12,01, X03X12%20 — X02X10X23 X12, X215 X23
X02,02, X12,01, X01X13%22 + X02X11X23, X01X13X20 + X00X11%23 X005 X105 X22

X12,23, X02,13: X02,02, X12,01>
X00X03X11X12 — X01X02X10X13
Xo01,23, X02,03, X12,12, X12,02: X12,01

X00> X135 X20, X22,
X23
X02, X03, X11, X22
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elements s; € n; and set S = {s1, ..., sx}. Then M|S is a simple matroid. Let £ be the
number of loops in M.

Lemma C.2 We have an isomorphism Gry = Gryy s XG"m—k—f_

Proof By Lemma C.1, we may assume that M has no loops. Suppose i, j are parallel
in M, then Gry = Gry,,,; XGy,. Suppose i and j are parallel, and let 1, 12 € ( d[f]l)
such that p; U {i} and g U {j} are bases of M for k = 1, 2. The quadratic generator
from Eq. (3.1) yields

Py (i Ui, j}, 142) = puiUi PuoUj — PuiUj PusUi

This means that p,u;/puu; is independent of . At the level of rings, the desired
isomorphism Ry, ® K[t*] = Ry is given by

RM[/:J\[’ ® k[ti] —> Ry
Pr®1— py ifi ¢,
1®1 1+ puui/puuj ifrA=pUli}.

The Lemma now follows by induction on the number of parallel elements in M. O

Because the uniform matroid U (2, n) is the only simple (2, [#])-matroid, and affine
coordinates realize Gro(2, n) as a open subscheme of an algebraic torus, we have the
following.

Proposition C.3 If M is a rank 2 matroid then
Gry = Gro(2, k) x G ¢, (C.1)

where k is the number of rank 1 flats and € the number of loops. In particular, the thin
Schubert cell Gryy is smooth and irreducible.

Next, we show the morphisms ¢y pr : Gryy — Gryp are compatible with the
following operations: decomposition of matroids into connected components, removal
of loops and parallel elements, and duality. This will allow us to restrict our attention
to pairs M’ < M where M is simple, connected, and d = ry([n]) < |n/2].

LemmaC4 IfM' < M and M = My & My, then M' = M| & M with M| < M; for
i =1, 2. Furthermore, we have gy yp = Omy M| X Py My

Proof Recall that Q) = Qu, X Qu, if and only if M = M| @& M>. Thus, a face of
O y must be of the form Om < Quy for M] < M; fori =1,2s0 M' = M| @ M. The
statement regarding ¢y p follows by combining this decomposition with Proposition
3.2 and Lemma C.1. O
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LemmaC.5 If M' < M, then we have M'|S < M|S and the restrictions fit into the
commutative diagram:

= n—k—¢
GI‘M E—— GI‘M|S X(Gm

(,JM‘M,l lwmw/sxid (C2)

Gryy — GrM/|S XG;’;k_E.

Proof The top horizontal map in (C.2) arises from the isomorphism Grys
Grys XG%_k_l described in Lemma C.2. Since M’ < M, rank-one flats in
yield rank-one flats in M’ we have M’|S < M|S. The same lemma yields Gr,
Gry|s xG7¥=¢_ This determines the bottom horizontal map.

ol R

Now we ensure the compatibility of M’ < M with the duality operation and the
isomorphism

¥ :Gr(d,n) = Gr(n —d,n) (pp)p > ((—1)1EED pecy g

induced from P(AYK") = P(A""9K"). Here, the symbol (B, B€) is a permutation of
S, in one-line notation and 8¢ = [r] \. B. On affine patches, the correspondence for
matrices is explicit: for example, a d x n matrix (/4|X) in {pq) # 0} is identified
with the (n — d) x n matrix (—X"|1,—q) in {pja1c # 0}.

Lemma C.6 IfM/ < M then (M")* < M* and OM* (M'y* = Yo OM.M' © w_l.

Proof By definition, we have Quy+ = conv({l —eg: B € B(M)}) =1 — Quy.In
particular, if Oy is aface of Oy, then Q) = 1= Qpyr) < (1 — Qm) = Qu+, as
required. The isomorphism v identifies each pg € K[Gr(d, n)] with pge € k[Gr(n —
d, n)]. The expression @y« (y/yx = ¥ o @y mr © ¥~ ! follows from this observation.

O

Asan application, we prove that ¢ 5 is a SDC-morphism whenever M = U (d, n)
or M is arank 2 matroid.

Proposition C.7 Forany M’ < M := U(d, n), the map ¢y pp: Gro(d, n) — Gryy
is a SDC-morphism.

Proof By Proposition A.3, it suffices to show that ¢y 3y is a SDC morphism when
M’ < M. The nondegenerate subsets of M are of the form {i} or [n]\i for some i € [n].

If M' = My, then (M')* = M[’;]\i where M* = U(n — d, n). By Lemma C.6, it

suffices to consider just M’ = M, (). In this case, we have Ry, = (S"M,)_IBM/

and RY,, = (S§) 'R, IxE,_, |i € [d]]. Therefore Gry C G~ and Gry C

i,n—4
Ggf == are open subvarieties, and ¢,y is induced by a coordinate projection
fo (n=d) _, (GglX (=d=D which is clearly a SDC-morphism. The result now follows

from Proposition A.3. O
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Proposition C.8 For (2, [n])-matroids M' < M, the map @y y is a SDC-morphism.

Proof Because every simple rank 2 matroid is uniform, the Proposition follows from
Lemmas C.4, C.5, and C.7. |

Our final result in this subsection say that the reduction to simple matroids as above
is compatible taking initial degenerations and inverse limits.

Proposition C.9 Fix w € TGrys and let W be the projection of w to RB(M|S)/R~1.
Then w € TGr s and

in,, Gry = ing Grys Xan—k—e Gry,w = Grys,i sz_k_l

Proof The assertion on initial degenerations follows from the fact that the isomor-
phism Gry = Grus xGJ,*~¢ from Lemma C.2 is induced by a monomial map
on coordinate rings. The isomorphism of limits follows from this Lemma and the

description of the coordinate ring of Gryy ,, in Proposition 3.7. O

C.2 Limits of thin Schubert cells via adjacency graphs

Recall that the matroid subdivision A y ,, yields a system of maps PMg.My - Gry 0>

.GrMQ,. whenever Q' < Q that s.ati.sfy PMo.Myr = PM oy, Myr M. My and oy M, =
id. This allows us to form the limit

Gruw ==lim < Gru, (C.3)

Rather than keeping track of the full face poset of Ajs ,, it is desirable to restrict
ourselves to cells of codimension 0 and 1. The following construction mimics the
definition of adjacency graphs for triangulations of polytopes [6, Definition 4.5.10],
so we use the same name.

Definition C.10 Given w in Dryy, let 'y o, be the adjacency graph of Ay ., defined as
follows. The graph I"ys ,, has a vertex v foreach Q in TCy; ,,. Two vertices vg,, v,
are connected by an edge if Q1 N Q> is a facet of both cells. Similarly, given a cell F
of Ay y,weletT AI”:Lw be the full subgraph of I'y ,, generated by those vertices vg
of 'prp with F < Q.

Our next lemma shows that the graphs defined above are connected. It will play a
crucial role in Proposition C.12 below.

Lemma C.11 For any w € Drys and any cell F of Ay, the graphs U py oy, and Ff,, w
are connected.

Proof The first claim follows by convexity and is valid for the adjacency graph associ-
ated to a pure-dimensional polyhedral subdivision of any polytope. We argue for Q y
and Ay ,,. Indeed, given two vertices vy, , v, of Iy, choose two points x1, x2, with
x; € rel int(Q;) so that the segment [x, x2] does not meet any cell whose codimension
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is 2 or greater. Since Qs is convex, the [x1, x3] lies in rel int(Q ). All but finitely
many points in [x1, x2] lie in the relative interior of top-dimensional cells. We label the
encountered cells as we move from x; towards x; by Q1 =: 0, Q1. ..., O} = Q0.
The collection {Q}}; yields a path from vg, to vo, in T'ay 4.

A similar argument can be used to prove the statement for I" A?w. Let E C R" be
the affine span of Q. Given F in Ay, write s := dimF and pick a point p in its
relative interior. We let H be the orthogonal complement to the linear subspace F — p
in E — p,and Q a (m — s)-dimensional cube in H centered at the origin with diameter
0<exl.

We consider the full-dimensional polytope P’ := (Q + p) N Qs in H + p, and the
polyhedral subdivision on P’ induced by Ay .. Each cell in this subdivision equals
Q' N Qu for some Q’, and has dimension (s — dimQy + dimQ). By construction,
a matroid polytope Q’ yields a vertex or edge of T AZ’w if and only if Q" € Ay
and Q' N (Q + p) # @. Thus, the graph 'y, agrees with the adjacency graph of
the subdivision of P’. Since the latter is connected by the discussion above, the result
follows. O

The adjacency graph I'js,, encodes a subsystem of the inverse system Gras,
from (C.3) as in Example A.4. Our final result shows that Grys ,, agrees with the
inverse system induced by I'az .

Proposition C.12 Let M be a k-realizable (d, [n])-matroid and w € TGr ;. Then,

Gryw = lim Gry . (C.4)
l—‘M‘w

Proof We write Grg,l’w for the inverse limit on the right-hand side of Eq. (C.4). Given
M’ labeling a cell of 'y y,, we write h};/[,: Grll;l’ » —> Gryy for the associated mor-
phism. Since I'j ,, determines a subsystem of Ay ,,, the universal property of Gr};,[,w
guarantees the existence of a morphism ¢ : Grps,, — Gr}:,l’w. Next, we build a
morphism ¢ : Gr;[’w — Gry w.

First, we construct morphisms gr: Grg,,’ w —> Grp for each cell QF of Ay y,
satisfying gy = @a.m» o gy for each pair of cells in Ay, with M’ < M”. The
morphism ¢ will be unique determined once we establish the compatibility of all g¢’s
with the subdivision Ay .

Let 7F be the set of vertices of the graph Ff,[’w. Set gr = @m' F o h;], where
vy € V. We must show this morphism is independent of our choice of M’. Suppose
vy € Vi as well. Since I f,,yw is connected by Lemma C.11, we can find a collection
of vertices VO, = VQgs VQys - -5 VO = VO, where (vg;, vg,,,) is an edge of
Ff,l,w foreachi = 0,...,k — 1. We write M; := Qu; and M;iy1) := Mg;n0;.ss
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note that F < Q; N Q;41 for each i. The definition of inverse limit yields k diagrams

- Gry, oM. F
Iy,
y W(Hl)
r
r hMi(i+I) PMj(it1).F
GrM,w GrM[(H—]) > Grp, (C.5)

hzrw\\\ %M(Hl)

i1

DM 1 F
Grum, !

where all four triangles commute. It follows that @ f o h};/[/ =@Qmr.Fo h};,[,,, SO gF
is well-defined.

Finally, the identity grr = @F pr o gF for each pair F/ < F in Ay, follows

from a similar commutative diagram argument after choosing a vertex M’ in T’ 151 W
These two properties determine ¢. The universal property of both schemes Gr)y ,, and

GrrM’w ensures that ¢ = ¥ !, as desired. -
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