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Abstract

We construct closed immersions from initial degenerations of Gr0(d, n)—the open cell

in the Grassmannian Gr(d, n) given by the nonvanishing of all Plücker coordinates—

to limits of thin Schubert cells associated to diagrams induced by the face poset of the

corresponding tropical linear space. These are isomorphisms when (d, n) equals (2, n),

(3, 6) and (3, 7). As an application we prove Gr0(3, 7) is schön, and the Chow quotient

of Gr(3, 7) by the maximal torus in PGL(7) is the log canonical compactification of

the moduli space of 7 points in P2 in linear general position, making progress on a

conjecture of Hacking, Keel, and Tevelev.
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1 Introduction

Let Gr(d, n) be the Grassmannian of d-dimensional subspaces of k
n , for an alge-

braically closed field k, and Gr0(d, n) the open cell given by the nonvanishing of all

Plücker coordinates. We consider its tropicalization TGr0(d, n) through two frame-

works. Via Gröbner theory, the set TGr0(d, n) consists of those w ∈ ∧dRn such that

the initial degeneration inw Gr0(d, n) is nonempty. Alternatively, the set TGr0(d, n)

has a modular interpretation as the space of d-dimensional tropical linear subspaces

of Rn that are realizable over valued extensions of k [37]. The goal of this paper is to

study initial degenerations of Gr0(d, n) via their relation to tropical linear spaces.

Suppose w ∈ TGr0(d, n) and Lw is the corresponding tropical linear space. Then

w induces a regular subdivision �w of the hypersimplex �(d, n) ⊂ Rn into matroid

polytopes, and there is a bijection between the bounded cells of Lw and the internal
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cells of �w, reversing the face order [36]. Equipping TGr0(d, n) with its Gröbner

fan structure, the initial degeneration inw Gr0(d, n) and the matroid subdivision �w

depend only on the cone of TGr0(d, n) that contains w in its relative interior [40].

The collection of all subspaces realizing a matroid M defines a locally closed

subscheme GrM ⊂ Gr(d, n) called the thin Schubert cell of M . Let us describe an

inverse system of thin Schubert cells associated to the matroid subdivision �w. Given

a matroid polytope Q ⊂ �(d, n), write MQ for its matroid and ρMQ
for the rank

function. Any facet of Q has the form Q′ = Q ∩ {
∑

i∈η xi = ρMQ
(η)} for some

η ⊂ [n] := {0, 1, . . . , n− 1}, and MQ′ decomposes as a direct sum of the contraction

MQ/η and restriction MQ |η [11]. If F ∈ Gr(d, n) realizes MQ and µ = [n]\η, then

F ∩ k
µ and F/(F ∩ k

µ) realize MQ/η and MQ |η, respectively. We have a morphism

GrMQ
→ GrMQ′

F �→ (F ∩ k
µ)⊕ F/(F ∩ k

µ).

Thus {GrMQ
| Q ∈ �w} defines an inverse system, and we may form the limit

lim
←−Q∈�w

GrMQ
.

Theorem 1.1 For w ∈ TGr0(d, n), there is a closed immersion

ψw : inw Gr0(d, n) →֒ lim
←−

Q∈�w

GrMQ
.

The morphisms GrMQ
→ GrMQ′

and limit lim
←−Q∈�w

GrMQ
originally appear in [27].

This limit parameterizes collections of subspaces {FQ ∈ GrMQ
| Q ∈ �w} such that,

if Q1 and Q2 share a common face defined by
∑

i∈η xi = ρMQ1
(η) = d − ρMQ2

(µ)

with µ = [n]\η, then

FQ1/(FQ1 ∩ k
µ) = FQ2 ∩ k

η and FQ2/(FQ2 ∩ k
µ) = FQ1 ∩ k

η

under the identifications k
n/k

µ = k
η and k

n/k
η = k

µ.

In the construction of a morphism to lim
←−Q∈�w

GrMQ
, it suffices to construct com-

patible morphisms inw Gr0(d, n) → GrMQ
whenever Q is an internal cell of �w.

Let us sketch a geometric characterization of these morphisms. Choose a k-point x of

inw Gr0(d, n) and set K = k((tR)). By surjectivity of exploded tropicalization [33],

there is a K-point p of Gr0(d, n) such that Trop(p) = x ; because K is a general-

ized power series field, the exploded tropicalization Trop(p) is simply the vector of

lead coefficients. The Plücker vector p defines a linear subspace Fp of Kn such that

Trop(F◦p) = Lw, where F◦p = Fp ∩ (K∗)n . For any v with −v in the bounded cell of

Lw dual to Q, the closure of in−v(F◦p) in k
n , denoted by in−v(F◦p), is a linear real-

ization of MQ . The morphism inw Gr0(d, n) → GrMQ
sends x to in−v(F◦p). We will

produce a scheme-theoretic construction of these morphisms in Sect. 3, and provide

compatibility with this geometric description in Remark 3.6.

Our main application of Theorem 1.1 is to determine smoothness and irreducibil-

ity of initial degenerations of Grassmannians, especially for Gr0(3, 7). Because

TGr0(d, n) is sensitive to the characteristic of the underlying field, we assume that

char k = 0.
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Theorem 1.2 The initial degenerations of Gr0(3, 7) are smooth and irreducible.

The computation of TGr0(3, 7) in [19] allows us to compute the initial degenerations

of Gr0(3, 7) and matroid subdivisions of �(3, 7). Given the size of the initial ideals,

determining smoothness and irreducibility of the inw Gr0(3, 7) directly is impractical,

even with computer assistance. In comparison, thin Schubert cells and the morphisms

between them are easier to describe, as we do in Sects. 4 and 5. Each GrM ⊂ Gr(3, 7)

is smooth and irreducible and the morphisms GrM → GrMQ
are smooth and dominant

with connected fibers, provided Q is not a face of �(3, 7). This allows us to determine

smoothness and irreducibility of lim
←−Q∈�w

GrMQ
; see Examples 6.2 and 6.3 for an

illustration of this analysis. Being a closed immersion of affine schemes, the map ψw :

inw Gr0(d, n) →֒ lim
←−Q∈�w

GrMQ
is an isomorphism whenever lim

←−Q∈�w
GrMQ

is an

integral scheme of dimension d(n− d). While the inequality dim(lim
←−Q∈�w

GrMQ
) ≥

d(n − d) may be strict when d = 3 and n ≥ 9, as demonstrated in Example 8.2, it is

an equality for all w in the (3, 7) case. This will yield a proof of Theorem 1.2, and our

techniques will allow us to prove an analog of this theorem for any GrM ⊂ Gr(d, n)

for (2, n), (3, 6), and (3, 7), see Theorem 6.1.

As a consequence of Theorem 1.2, the variety Gr0(3, 7) is schön in the sense of

Tevelev [40]. This is important because, when X0 is a schön subvariety of a torus,

we may use tropical geometry to construct compactifications of X0 with desirable

properties. Indeed, the closure X of X0 in any toric variety whose fan has support

Trop X0 is a schön compactification [29]. The strata of X are schön, and (X , B :=

X\X0) has toroidal singularities. Hacking, Keel, and Tevelev prove that K X + B

is ample if and only if each irreducible stratum of X is log minimal, and a schön

subvariety of a torus is log minimal if and only if its tropicalization is not invariant

under translation by a rational subspace [16]. They apply this to Y n , the moduli space

of smooth marked del Pezzo surfaces of degree 9 − n for n ≤ 7, demonstrating that

the Sekiguchi cross-ratio variety Y
n

[34,35], introduced by Naruki when n = 6 [31],

is a schön and log canonical compactification of Y n .

While Gr0(d, n) is not log minimal, its quotient X0(d, n) by the free action of the

maximal torus H ⊂ PGL(d) does have this property [26, Proposition 2.20]. Via the

Gelfand–MacPherson correspondence, we interpret X0(d, n) as the moduli space of d

marked points in Pn−1 in linear general position up to the PGL(d)-action. The Chow

quotient Gr(d, n)//H compactifies X0(d, n). Let X(d, n) be its normalization. Kapra-

nov [21] proves X(2, n) ∼= M0,n , the Grothendieck–Knudsen moduli space of genus

0 stable n-marked curves. This compactification of X0(2, n) is schön [40] and log

canonical [25]. Keel and Tevelev prove X(3, n) is not log canonical when n ≥ 9, and

together with Hacking they conjecture X(3, n) is a schön and log canonical compact-

ification for X0(3, n) when n = 6, 7, and 8 [40, Theorem 5.7], [26, Conjecture 1.6].

Luxton handles the n = 6 case by investigating the relationship between X0(3, 6) to

Y 6 [28]. He proves that X0(3, 6) is schön by showing that the toric strata of X(3, 6)

are smooth via a delicate analysis of how the log canonical fan of Y 6 maps onto

Trop X0(3, 6). A direct adaptation of Luxton’s strategy does not carry over to this

setting; see Remark 7.4. Instead, we determine that X0(3, 7) is schön directly from

Theorem 1.2. We use this to verify the above conjecture when n = 7.
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Theorem 1.3 The variety X(3, 7) is a schön and log canonical compactification of

X0(3, 7).

In Sect. 8, we investigate the behavior of initial degenerations of Gr0(3, n) for larger

values of n. Given the relationship between thin Schubert cells and initial degenerations

of Gr0(d, n), it is reasonable to expect that in general Gr0(d, n) will have initial

degenerations that are not smooth or reducible. Indeed, the Perles matroid (see Fig. 2)

is a rank 3 matroid P on [9] such that GrP is reducible. We use this to find an initial

degeneration of Gr0(3, 9) with the same property.

Theorem 1.4 The Grassmannian Gr0(3, 9) has an initial degeneration with two con-

nected components.

We conclude with three appendices. Appendix A gathers various properties of

morphisms that are smooth and dominant with connected fibers. It also includes a

discussion on finite limits of k-schemes. Appendix B contains a table with the data

necessary for the proof of Lemma 6.4. Appendix C, written by María Angélica Cueto,

includes various arguments that reduce the study of thin Schubert cells GrM , and the

morphisms GrM → GrM ′ to the case where M is a simple and connected matroid,

and a treatment of the rank 2 case. It also includes an argument that the limits of thin

Schubert cells over �w may be computed on the smaller poset consisting of cells that

have codimension at most one.

Conventions

The field k is algebraically closed of characteristic 0. We fix the assumption on the

characteristic because of the dependence on computer calculations. However, the proof

of Theorem 1.1 works for all characteristics, and we expect that Theorems 1.2 and 1.4

remain true provided char k �= 2 or 5 respectively.

Computations

The software packagesgfan [20], Macaulay2 [13],polymake [8], andsage [41]

in the proofs of Proposition 3.9, Lemma 6.4, and Lemma 7.3. The matroid subdivisions

in Examples 6.2, 6.3, 8.1, 8.2 and Proposition 8.6 are computed using polymake.

No computation takes longer than a few hours on a standard desktop computer. The

code may be found at the following website.

https://github.com/dcorey2814/initialDegenerationsOfGrassmannians

2 Preliminaries

2.1 Initial degenerations

We recall some facts about initial degenerations and tropicalization of varieties defined

over a trivially valued field from the Gröbner-theoretic perspective, see [30, Chap-

ters 2, 3] for a comprehensive treatment, including the non-trivially valued case.
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Let X be the closed subvariety of Pa = Proj(k[t0, . . . , ta]) with homogeneous ideal

I ⊂ k[t0, . . . , ta]. Assume that X meets the dense torus T . Set X0 = X ∩ T and I0 =

I · k[t±0 , . . . , t±a ]. We will often find it easier to work with Spec(k[t±0 , . . . , t±a ]/I0).

This space is π−1(X0), where π : Aa+1\{0} → Pa is the natural projection. Note that

π−1(X0) ∼= X0 ×Gm .

Let NT = Za+1/Z ·1 denote the cocharacter lattice of T , where 1 = (1, . . . , 1).

For z = (z0, . . . , za), we write t z = t z0 . . . t za . The initial form of f ∈ k[t±0 , . . . , t±a ]

with respect to w ∈ (NT )R := (NT )⊗Z R is

inw f =
∑

z:〈w,z〉 minimal

az t z where f =
∑

az t z .

That is, the (Laurent) polynomial inw f is the sum of all monomials az t z of f with

minimal w-weight. The initial ideals of I0 and I with respect to w are

inw I0 = 〈inw f | f ∈ I0〉 and inw I = 〈inw f | f ∈ I 〉,

respectively. The initial degeneration of X0 with respect to w is

inw X0 = T ∩ Proj(k[t0, . . . , ta]/ inw I ).

There is a complete polyhedral fan �G(X0) in NR, called the Gröbner fan, where

w and w′ belong to the relative interior of the same cone in �G(X0) if and only if

inw I = inw′ I [39, Theorem 1.2]. The tropicalization of X0 is

Trop X0 = {w ∈ (NT )R | inw I0 �= 〈1〉} .

When X0 is irreducible, its tropicalization Trop X0 is the support of a pure dim(X0)-

dimensional subfan of �G(X0). Denote the restriction of �G(X0) to Trop X0 by GX0 .

While inw X0 depends only on the cone of GX0 containing w in its relative interior,

it is possible that inw X0 = inw′ X0 when w and w′ belong to distinct locally closed

cones. In this case, the ideals inw I and inw′ I differ by primary components contained

in 〈t0, . . . , ta〉.

2.2 Matroid polytopes

We assume familiarity with basic notions of matroids and refer the reader to [32] for a

detailed treatment. For brevity, we say that a rank d matroid on [n] is a (d, n)-matroid.

Given a matroid M , we write B(M) for its set of bases and ρM for its rank function.

The uniform (d, n)-matroid is denoted by U (d, n). For η ⊂ [n], the matroid M/η

denotes the contraction of M by η and M |η denotes the restriction of M to η.

Let e0, . . . , en−1 denote the standard basis of Rn , and for a subset λ = {λ0, . . . , λk}

of [n], let eλ = eλ0+· · ·+eλk
. The hypersimplex �(d, n) is the polytope in Rn defined
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by

�(d, n) =







(x0, . . . , xn−1) ∈ Rn

∣

∣

∣

∣

∣

∣

∑

i∈[n]

xi = d, 0 ≤ xi ≤ 1







. (2.1)

The vertices of �(d, n) are the points eλ for λ ∈
(

[n]
d

)

:= {σ ⊂ [n] | |σ | = d}. The

matroid polytope of M is

QM =







(x0, . . . , xn−1) ∈ Rn

∣

∣

∣

∣

∣

∣

∑

i∈[n]

xi = d,
∑

i∈η

xi ≤ ρM (η), η ⊂ [n]







. (2.2)

The vertices of QM are the points eβ for β ∈ B(M). Given a collection of vertices

of �(d, n), its convex hull Q is a matroid polytope if and only if every edge of Q is

parallel to some ei−e j [9, Theorem 4.1]; we write MQ for the corresponding matroid.

In particular, any face of a matroid polytope is a matroid polytope.

Throughout, we will consider the face order on polytopes: Q′ ≤ Q whenever Q′ is

a face of Q, and Q′ ⋖ Q when Q′ is a facet of Q. This induces a partial order on the

set of (d, n)-matroids: M ′ ≤ M whenever QM ′ ≤ QM , and M ′ ⋖ M if QM ′ ⋖ QM .

Given η ⊂ [n], let Mη = MQ′ where Q′ = QM ∩ {
∑

i∈η xi = ρM (η)}. The bases of

Mη are

B(Mη) = {β ∈ B(M) | |β ∩ η| = ρM (η)},

and the remaining β ∈ B(M)\B(Mη) satisfy |β∩η| < ρM (η). It is not hard to produce

an isomorphism Mη
∼= M/η ⊕ M |η. When M is connected, a nonempty subset η is

nondegenerate if M/η and M |η are connected. The following proposition may be

found in [11, Section 2.5].

Proposition 2.1 If M be a connected matroid on [n], then η �→ QMη is a one-to-one

correspondence between nondegenerate subsets η and the facets of QM .

Finally, we remark that if w ∈ Zn and Mw is the matroid of minimal w-weight as in

[1], then our Mη is just M−χ(η) where χ is the characteristic function.

2.3 Thin Schubert cells

The Grassmannian Gr(d, n) of d-dimensional linear subspaces of k
n is a subvariety of

P(∧d
k

n) via the Plücker embedding. The homogeneous coordinate ring of P(∧d
k

n) is

denoted by k[pλ], the Plücker ideal by I d,n ⊂ k[pλ], and the λth Plücker coordinate

of F ∈ Gr(d, n) by pλ(F). As observed by [9], the variety Gr(d, n) decomposes

into locally closed subschemes GrM called thin Schubert cells which are indexed by

k-realizable (d, n)-matroids. Set-theoretically,

GrM = {F ∈ Gr(d, n) | pλ(F) �= 0 if and only if λ ∈ B(M)}.

Observe that Gr0(d, n) = GrU (d,n). We realize GrM as a scheme in the following way.

Define
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• BM = k[pλ | λ ∈ B(M)] ⊂ k[pλ],

• IM =
(

I d,n +
〈

pλ | λ ∈
(

[n]
d

)

\B(M)
〉)

∩ BM ,

• SM the multiplicative semigroup of BM generated by pλ such that λ ∈ B(M), and

• RM = S−1
M BM/IM .

Then

GrM = T (M) ∩ Proj(BM/IM )

where T (M) is the dense torus of Proj(BM ). For computations, we will often find it

easier to work with Spec(RM ) ∼= GrM ×Gm . The ideal IM is generated by

PM (µ, ν) =
∑

i :µ∪i,ν\i∈B(M)

sgn(i;µ, ν)pµ∪i pν\i (2.3)

where µ ∈
(

[n]
d−1

)

is independent and ν ∈
(

[n]
d+1

)

has rank d and not contained in µ [30,

Equation 4.4.1]. Here, the function sgn(i;µ, ν) equals (−1)ℓ where ℓ is the number of

j ∈ ν with i < j plus the number of elements j ′ ∈ µ such that i > j ′. The coordinate

ring of GrM can be presented with far fewer generators and relations by using affine

coordinates with respect to a fixed basis, which we now describe.

Construction 2.2 Suppose M is a k-realizable (d, n)-matroid. Let β = {b0 < · · · <

bd−1} be a basis, let γ = {c0 < · · · < cn−d−1} its complement, and let k[xi j ] :=

k[xi j | 0 ≤ i < d, 0 ≤ j < n − d]. Define a matrix X in the following way. The

submatrix of X formed by the columns from β is the identity matrix, and the submatrix

formed by the columns from γ has (i, j)-entry equal to xi j . For example, if β = [d],

then

X =









1 0 · · · 0 x00 x01 · · · x0,n−d−1

0 1 · · · 0 x10 x11 · · · x1,n−d−1

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 1 xd−1,0 xd−1,1 · · · xd−1,n−d−1









.

Given λ ∈
(

[n]
d

)

, let Xλ be d × d the minor of X formed by the columns from λ. For

i ∈ [d] and j ∈ [n − d], define λi j ∈
(

[n]
d

)

by

λi j = (β\{bi }) ∪ {c j }.

Then xi j = (−1)ℓ Xλi j
where ℓ is the number of elements of β strictly between bi and

c j . We define

• Bx
M = k[xi j | λi j ∈ B(M)] ⊂ k[xi j ],

• I x
M =

〈

Xλ | λ ∈
(

[n]
d

)

\B(M)
〉

∩ Bx
M , and

• Sx
M the multiplicative semigroup in Bx

M generated by Xλ := πM (Xλ) for λ ∈

B(M), where πM : k[xi j ] → k[xi j ]/〈xi j | λi j /∈ B(M)〉 ∼= Bx
M is the quotient

map.

Then the coordinate ring of GrM is isomorphic to Rx
M := (Sx

M )−1 Bx
M/I x

M .
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Thin Schubert cells behave well with respect to duality and direct sum of matroids.

If M∗ is the dual of M , then GrM∗ ⊂ Gr(n − d, n), and GrM
∼= GrM∗ under the

isomorphism Gr(d, n) ∼= Gr(n − d, n). If M decomposes as M = M1 ⊕ M2, then

GrM
∼= GrM1 ×GrM2 [23, Proposition 9.4].

2.4 Matroid subdivisions and the tropical Grassmannian

Given a polytope P ⊂ Rn with vertices u0, . . . , uk and w ∈ Rk+1, define

Pw = conv{(ui , wi ) | 0 ≤ i ≤ k}.

Any lower face of Pw is of the form

face(v,1)(Pw) = {x ∈ Pw | 〈x, (v, 1)〉 ≤ 〈y, (v, 1)〉 for all y ∈ Pw}

where v ∈ Rn . The lower faces of Pw project onto P , forming a polyhedral complex

whose support is P . This is called the regular subdivision of P induced by w. The

secondary fan �S(P) of P is the complete fan in Rk+1 where w and w′ belong to the

relative interior of the same cone if and only if they induce the same regular subdivision

on P [10]. The adjacency graph of this subdivision is the graph with vertex vQ for

each maximal cell Q and an edge between vQ and vQ′ whenever Q and Q′ share a

common facet.

Given a (d, n)-matroid M and w ∈ RB(M), we write �M,w for the regular sub-

division of QM induced by w. This subdivision is matroidal, or �M,w is a matroid

subdivision, if each Q ∈ �M,w is a matroid polytope. The Dressian of M is

DrM =
{

w ∈ RB(M) |�M,w is matroidal
}

.

When M = U (d, n), we write �w = �U (d,n),w and Dr(d, n) = DrU (d,n). If �M,w is

matroid subdivision and Q ∈ �M,w is the projection of face(v,1)((QM )w), then

B(MQ) = {λ ∈ B(M) | 〈v, eλ〉 + wλ ≤ 〈v, eλ′〉 + wλ′ for all λ′ ∈ B(M)}. (2.4)

We abbreviate Trop GrM and GGrM
by TGrM and GM , respectively. We also abbre-

viate Trop Gr0(d, n) and GU (d,n) by TGr0(d, n) and Gd,n , respectively. Denote by SM

the restriction of �S(QM ) to DrM ; when M = U (d, n), write SM = Sd,n .

If w ∈ TGrM , then �M,w is matroidal [30, Lemma 4.4.6], and hence TGrM is a

subset of DrM . The inclusion TGrM ⊂ DrM induces a morphism of fans GM → SM

(when M is the uniform matroid, this is [40, Theorem 5.4]), thus inw GrM and �M,w

depend only on the cone of GM containing w in its relative interior.

In general, not much is known about GM → SM outside of a few values of (d, n).

We have TGr0(2, n) = Dr(2, n) and G2,n = S2,n . Next, we have TGr0(3, 6) =

Dr(3, 6) and G3,6 → S3,6 is a refinement [37]. The set TGr0(3, 7) is properly con-

tained in Dr(3, 7), and G3,7 → S3,7 realizes G3,7 as a refinement of a subfan of S3,7
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[19, Theorems 2.1, 2.2]; here, the char k �= 2 assumption is crucial. For n = 6, 7,

denote by S ′
3,n the restriction of S3,n to TGr0(3, n); this is a coarsening of G3,n .

3 Limits of thin Schubert cells

In this section, we construct closed immersions

inw GrM →֒ lim
←−

Q∈�M,w

GrMQ

for any k-realizable matroid M and w ∈ TGrM , proving Theorem 1.1. We begin with

a discussion of the morphisms between thin Schubert cells. Let Q ⊂ �(d, n) be a

matroid polytope, let Q′ the face defined by the equation
∑

i∈η xi = ρM (η), and let

µ = [n]\η. As discussed in the introduction, the map GrMQ
→ GrMQ′

is given by

F �→ (F ∩ k
µ)⊕ F/(F ∩ k

µ). From the canonical isomorphism

∧d F ∼= ∧
d−ρMQ

(η)
(F ∩ k

µ)⊗∧
ρMQ

(η)
F/(F ∩ k

µ)

we see that GrMQ
→ GrMQ′

is induced by the projection k
B(MQ) → k

B(MQ′ ) [27,

Proposition I.6]. We derive a scheme-theoretic characterizations of these morphisms.

Proposition 3.1 Suppose M ′ ≤ M are (d, n)-matroids. The inclusion BM ′ ⊂ BM

induces a morphism of schemes ϕM,M ′ : GrM → GrM ′ . Furthermore, these mor-

phisms satisfy ϕM,M ′′ = ϕM ′,M ′′ϕM,M ′ if M ′′ ≤ M ′ ≤ M and ϕM,M = id.

Proof It suffices to consider the case M ′ = Mη for some η ⊂ [n]. We must show that

IMη maps to IM under the inclusion BMη ⊂ BM . We will do this using the generators

for IMη and IM given by Eq. (2.3). Suppose µ ∈
(

[n]
d−1

)

is independent in Mη, and

ν ∈
(

[n]
d+1

)

not containing µ such that ρMη (ν) = d. Note that µ is independent in M

and ρM (ν) = d because B(Mη) ⊂ B(M). We must show PMη (µ, ν) = 0 or PM (µ, ν).

If PMη (µ, ν) �= 0, then there is a i0 ∈ ν\µ such that both µ∪i0 and ν\i0 are in B(Mη),

thus |(µ ∪ i0) ∩ η| and |(ν\i0) ∩ η| both equal r := ρM (η). In particular,

1. |µ ∩ η| = r − 1 and |ν ∩ η| = r + 1 if i0 ∈ η, or

2. |µ ∩ η| = r and |ν ∩ η| = r if i0 /∈ η.

For each i ∈ ν\µ, we must show that µ ∪ i and ν\i are in B(Mη) if and only if they

are both in B(M). Since B(Mη) ⊂ B(M), we need only show the “if” direction.

Suppose µ∪ i and ν\i are bases of M . By the characterization of QM in Eq. (2.2),

|(µ ∪ i) ∩ η| ≤ r and |(ν\i) ∩ η| ≤ r (3.1)

We show that they both equal r by considering the possibilities of |µ∩ η| and |ν ∩ η|

as above. If i0 ∈ η, then |µ ∩ η| = r − 1 and |ν ∩ η| = r + 1. By Eq. (3.1), we have

that |(ν\i) ∩ η| = r . In particular, we have i ∈ η, so |(µ ∪ i) ∩ η| = r . If i0 /∈ η, then

|µ∩η| = r and |ν∩η| = r . By Eq. (3.1), we have that |(µ∪ i)∩η| = r . In particular,

we have i /∈ η, so |(ν\i) ∩ η| = r . ⊓⊔
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Proposition 3.2 The induced morphism ϕ#
M,M ′ : Rx

M ′ → Rx
M is given by the inclusion

Bx
M ′ ⊂ Bx

M .

Proof Suppose [d] is a basis of M and M ′. Setting R̃M = S−1
M k[pλ/p[d] | λ ∈

B(M)]/IM , we see that θM : R̃M → Rx
M given by θM (pλ/p[d]) = Xλ is an isomor-

phism (the inverse sends xi j to pλi j
/p[d]). By Proposition 3.1, the morphism ϕM,M ′ is

induced by the ring map ψM,M ′ : R̃M ′ → R̃M that sends pλ to itself. Therefore, the

composition θMψM,M ′θ−1
M ′ sends xi j to itself (for λi j ∈ B(M)), as required. ⊓⊔

Fix a (d, n)-matroid M and w ∈ TGrM . By Proposition 3.1, we have an inverse

system {GrMQ
| Q ∈ �M,w}. We may form lim

←−Q∈�M,w
GrMQ

, which we denote

by GrM,w, and write ϕQ : GrM,w → GrMQ
for the structure morphism. When

M = U (d, n) we write Grw = GrU (d,n),w. Finite limits exist in the category of

affine schemes because this category has fiber products and a terminal object [2,

Proposition 5.21].

Lemma 3.3 Suppose w ∈ TGrM and Q ∈ �M,w. The inclusion BMQ
⊂ BM induces

a morphism ψM,MQ ,w : inw GrM → GrMQ
.

Proof Suppose Q is the projection of face(v,1)((QM )w). Equation (2.4) records the

bases of MQ . We must show that IMQ
maps to inw IM under the inclusion BMQ

⊂ BM .

For this, it suffices to consider the quadratic generators PMQ
(µ, ν) from Eq. (2.3). Let

µ ∈
(

[n]
d+1

)

with ρMQ
(µ) = d and ν ∈

(

[n]
d−1

)

independent in MQ . If PMQ
(µ, ν) �= 0,

then there is a i0 ∈ µ\ν such that µ\i0, ν ∪ i0 ∈ B(MQ). Because B(MQ) ⊂ B(M),

we see that µ, ν, i0 satisfy the same properties for M . We must show

PMQ
(µ, ν) = inw PM (µ, ν). (3.2)

Observe that for any i, j ∈ µ\ν,

uµ\ j + uν∪ j − uµ\i − uν∪i = wµ\ j + wν∪ j − wµ\i − wν∪i . (3.3)

where uλ = 〈v, eλ〉 +wλ. Now, the term pµ\i pν∪i is a summand in PMQ
(µ, ν) if and

only if uµ\i = uµ\i0 and uν∪i = uν∪i0 . By Eq. (3.3), these equalities hold if and only

if wµ\i + wν∪i = wµ\i0 + wν∪i0 . Since wµ\i0 + wν∪i0 is the smallest such sum, we

have this equality if and only if pµ\i pν∪i is a summand in inw PM (µ, ν). ⊓⊔

Theorem 3.4 The morphisms ψM,MQ ,w : inw GrM → GrMQ
induce a closed immer-

sion ψM,w : inw GrM →֒ GrM,w.

Proof Clearly ϕMQ ,MQ′
ψM,MQ ,w = ψM,MQ′ ,w

, so ψM,w is defined by the universal

property of GrM,w. It is a closed immersion because the induced morphism ψ#
M,w :

lim
−→�M,w

RM ′ → S−1
M BM/ inw IM is surjective. ⊓⊔

The following Corollary is an immediate consequence of Theorem 3.4 and Proposition

A.8.
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Corollary 3.5 The closed immersion ψM,w : inw GrM →֒ GrM,w is an isomorphism

when GrM,w is integral and of dimension dim GrM .

Remark 3.6 We now show that our definition of ψM,MQ ,w : inw GrM → GrMQ
agrees

with the characterization discussed in the introduction. For simplicity, suppose M =

U (d, n). We refer the reader to [30, Chapter 4] for basic facts about circuits of linear

subspaces. As before, let x be a k-point of inw Gr0(d, n), let K = k((tR)), and let

p a K-point of Gr0(d, n) so that Trop(p) = x . Let Fp be the linear subspace of

Kn with Plücker vector p, and IFp ⊂ K[y0, . . . , yn−1]) its ideal. Given a subset

µ = {i0, . . . , id} ∈
(

[n]
d+1

)

, let

ℓµ =

d
∑

k=0

(−1)k pµ\ik
· yik

.

The set {ℓµ |µ ∈
(

[n]
d+1

)

} is a universal Gröbner basis of IFp . Let F◦p = Fp ∩ (K∗)n

and choose a vector v with − v ∈ Trop(F◦p) in the cell dual to Q; the bases of MQ

are described by a Formula similar to (2.4). Then in−v(F◦p) is cut out by the linear

equations

in−v ℓµ =
∑

k:uµ\ik
minimal

(−1)k xµ\ik
· yik

(3.4)

where uλ = 〈v, eλ〉 + wλ. Recall that the support of a linear form is ℓ =
∑

ai yi is

supp(ℓ) = {i ∈ [n] | ai �= 0}. The closure of in−v(F◦p) in k
n is a linear subspace that

realizes a matroid M ′ whose circuits are

C(M ′) = {supp(in−v ℓµ) |µ ∈
(

[n]
d+1

)

, ρM (µ) = d}

It is easy to see that B(M ′) = {λ ∈
(

[n]
d

)

| uλ ≤ uλ′ for all λ′ ∈
(

[n]
d

)

}, hence MQ = M ′.

By Eq. (3.4) and the description of C(MQ), we see that the Plücker vector of the closure

of in−v(F◦p) in k
n is the projection of x ∈ ∧d

k
n to k

B(MQ). This is ψM,MQ ,w(x), as

required.

Now we show how to compute the coordinate ring of GrM,w in Plücker and affine

coordinates. We will use this in Proposition 3.9 below to compute the dimension of

GrM,w for any k-realizable (2, n), (3, 6), or (3, 7) matroid. Let (�M,w)top be the

collection of top dimensional cells in �M,w, and ŴM,w the adjacency graph of �M,w,

as defined in Sect. 2.4. For the uniform matroid, we write (�w)top = (�U (d,n),w)top

and Ŵw = ŴU (d,n),w. There is an inverse system over ŴM,w as in Example A.4, and

GrM,w
∼= lim
←−ŴM,w

GrM ′ by Proposition C.12. Let

IM,w = 〈IMQ
BM | Q ∈ (�M,w)top〉 ⊂ BM

and RM,w = S−1
M BM/IM,w. When the polytopes in (�M,w)top share a common vertex,

let

I x
M,w = 〈I

x
MQ

Bx
M | Q ∈ (�M,w)top〉 ⊂ Bx

M
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Given f ∈ Bx
MQ

, let f = πMQ
( f ) viewed as an element of Bx

M , where πMQ
: k[xi j ] →

k[xi j ]/〈xi j |λi j /∈ B(MQ)〉 ∼= Bx
MQ

is the quotient map. Let Sx
M,w be the multiplicative

semigroup of Bx
M generated by Xλ for each λ ∈ B(MQ) and Q ∈ (�M,w)top. Finally,

set Rx
M,w = (Sx

M,w)−1 Bx
M/I x

M,w.

Proposition 3.7 For any (d, n)-matroid M and w ∈ DrM ,

GrM,w
∼= lim
←−
ŴM,w

GrM ′ ∼= T (M) ∩ Proj RM,w

If the polytopes in (�M,w)top share a common vertex, then GrM,w
∼= Spec Rx

M,w.

Proof The first isomorphism is established in Proposition C.12. For each Q ∈ �M,w

of codimension 0 or 1, we have ring maps RMQ
→ RM,w and Rx

MQ
→ Rx

M,w induced

by BMQ
⊂ BM and Bx

MQ
⊂ Bx

M respectively. These produce morphisms

� : lim
−→
ŴM,w

RMQ
−→ RM,w and �x : lim

−→
ŴM,w

Rx
MQ

−→ Rx
M,w

Now let us construct inverses � and �x . For λ ∈ B(M) define �(pλ) = ϕ#
MQ

(pλ)

where Q ∈ (�M,w)top and λ ∈ B(MQ). If Q′ is another such polytope, we must show

that ϕ#
MQ

(pλ) = ϕ#
MQ′

(pλ). When Q′′ = Q ∩ Q′ has codimension 1,

ϕ#
MQ

(pλ) = ϕ#
MQ′′

(pλ) = ϕ#
MQ′

(pλ).

The general case follows from this observation and Lemma C.11. Similarly, for λi j ∈

B(M) define �x (xi j ) = ϕ#
MQ

(xi j ) where Q ∈ (�M,w)top and λi j ∈ B(MQ). It is

easy to see that � and �x take elements in SM and Sx
M,w, respectively, to invertible

elements.

Finally, we claim that IM,w ⊂ ker(�). It suffices to show that �(a f ) = 0 for

a ∈ S−1
MQ

BMQ
and f ∈ IMQ

where Q ∈ (�M,w)top. But �(a f ) = �(a)ϕ#
MQ

( f ) = 0.

This shows that � is defined on RM,w . A similar argument shows that I x
M,w ⊂ ker(�x ).

Therefore � and �x are defined on RM,w and Rx
M,w respectively. One may verify that

they are inverses to � and �x respectively. ⊓⊔

Lemma 3.8 If M is a rank 2 matroid and w ∈ TGrM , then ψM,w : inw GrM → GrM,w

is an isomorphism.

Proof By Theorem 3.4 and Proposition 3.7, the identity on BM induces a surjective

map RM,w → S−1
M BM/ inw IM , so IM,w ⊂ inw IM . The set

T = {PM (µ, ν) | |µ| = 3, |ν| = 1, µ ∩ ν = ∅}

is a universal Gröbner basis for IM (when M = U (2, n), this is the set of three-term

Plücker relations). Let PM (µ, ν) ∈ T . If Q ∈ �M,w such that PMQ
(µ, ν) �= 0, then

PMQ
(µ, ν) = inw PM (µ, ν) by Eq. (3.2), hence IM,w = inw IM . ⊓⊔
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Proposition 3.9 Let M be a k-realizable (2, n), (3, 6), or (3, 7) matroid and w ∈

TGrM . Then dim GrM,w = dim GrM .

Proof The rank 2 case follows from Lemma 3.8, so let M be a (3, 6) or (3, 7) matroid.

By Proposition C.9 we may assume that M is simple. Once �M,w is computed, this

calculation may be done by hand, see Examples 6.2 and 6.3. Due to the large number of

cases, we use a computer. The Gröbner fan structure on TGrM is computed usinggfan,

and it catalogs all cones up to Aut(M)-symmetry. The uniform cases were completed

in [37, Theorem 5.4] for (3, 6), and in [19, Theorem 2.1] for (3, 7). For each cone,

we choose a representative weight vector w and use polymake to compute �M,w.

Let g be the product of all pλ for λ ∈ B(M). Then (IM,w : g∞) ⊂ BM is the

homogeneous ideal of the closure of GrM,w in Proj(BM ). We use Macaulay2 to

show that its dimension equals dim GrM . The saturation was performed one variable

at a time using the saturate function with the Bayer strategy. There are a total

of 67 ideals to check among the simple (3, 6)-matroids, and 2815 ideals in the (3, 7)

case (not counting w = 0). The total process takes a couple of minutes for (3, 6) and

several hours for (3, 7). ⊓⊔

4 Geometry of thin Schubert cells

By Mnëv universality, there exist (3, n) matroids whose thin Schubert cells are singular

or reducible, for sufficiently large n. Nevertheless, the thin Schubert cell GrM is smooth

and irreducible when M is a rank 2 matroid, or a rank 3 matroid on [6] or [7], as we

demonstrate in this section. Let M be a k-realizable matroid. For each rank 1 flat

η of M , choose a non-loop sη ∈ η, and set S = {sη | η is a rank 1 flat}. Then M |S

is a simple matroid, and GrM is the product of GrM|S with an algebraic torus as

discussed in Lemma C.2. Because the only simple (2, n)-matroid is U (2, n), this

leads to a straightforward proof that GrM is smooth and irreducible in the rank 2 case.

Therefore, we will focus on rank 3 matroids.

Let M be a k-realizable loop-free (3, n)-matroid for n ≥ 3. We can represent M

as a configuration of n points p0, . . . , pn−1 in P2. The elements i, j are parallel in M

if and only if pi , p j coincide. A subset β ⊂ [n] is a basis if and only if |β| = 3 and

pi are not collinear for i ∈ β, and η ⊂ [n] is a rank 2 flat if and only if there is a line

L ⊂ P2 such that pi ∈ L precisely when i ∈ η. When drawing these pictures, we will

only draw the points (labeled 0, . . . , n − 1) and lines through at least 3 rank 1 flats,

see Figs. 1 and 2. With this in mind, we say that η is a line of M if η is a rank 2 flat and

|η ∩ S| ≥ 3. The set of lines of M , denoted by L(M), completely determines M |S.

All (3, n)-matroids for 3 ≤ n ≤ 7 (up to Sn-symmetry) can be found in the online

Database of Matroids

http://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/

In showing that GrM is smooth and irreducible for these matroids, we start with n = 3

and work inductively. At each step, we need only consider simple and connected

matroids by Lemmas C.1 and C.2. However, there are still 8, resp. 21, simple and

connected k-realizable (3, 6), resp. (3, 7)-matroids. We use Lemma 4.1 to handle the

remaining cases.
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In this section and the next, we will need the following definitions. A morphism of

schemes is said to have connected fibers if all of its nonempty fibers are connected. We

say that f : X → Y is a SDC-morphism if it is smooth and dominant with connected

fibers.

Lemma 4.1 Let M be a loop-free k-realizable (3, n)-matroid, let i ∈ [n] be contained

in exactly k lines where 0 ≤ k ≤ 2, and suppose GrM|[n]\i is integral. The composition

of a dominant open immersion GrM →֒ GrM|[n]\i ×G3−k
m , followed by the projection

away from G3−k
m produces a SDC-morphism GrM → GrM|[n]\i .

Proof We use affine coordinates as in Construction 2.2. Assume that {0, 1, 2} is a

basis of M , let i = n − 1, and suppose first 3 columns of X form the identity matrix.

Suppose n − 1 is not contained in any line. This means that {i, j, n − 1} ∈ B(M) for

0 ≤ i < j ≤ n − 2, so I x
M is generated by Xλ for suitable λ ∈

(

[n−1]
3

)

. Therefore

Rx
M is obtained from Rx

M|[n−1][x
±
0,n−4, x±1,n−4, x±2,n−4] by inverting Xβ for β ∈ B(M).

These ring elements are nonzero divisors since they are not 0 (by k-realizability)

and RM|[n−1] is an integral domain. This localization produces the open immersion

GrM →֒ GrM|[n−1]×G3
m .

Suppose n−1 is contained in exactly one line η. By applying a suitable permutation,

assume 0, 1 ∈ η. Since λ2, j−3 /∈ B(M) when j ∈ η, the ideal I x
M is generated by

Xλ for suitable λ ∈
(

[n−1]
3

)

, and Rx
M is obtained from Rx

M|[n−1][x
±
0,n−4, x±1,n−4] by

inverting the nonzero divisors Xβ for β ∈ B(M), producing the open immersion

GrM →֒ GrM|[n−1]×G2
m .

Now assume n is contained in exactly two distinct lines η1 and η2. We may assume

0, 1 ∈ η1 and 2 ∈ η2. Because λ0, j−3, λ1, j−3 ∈ B(M) when j ∈ η2\{n − 1}, the

corresponding x0, j−3, x1, j−3 are invertible in Rx
M . Similar to the previous case,

Rx
M = (Sx

M )−1 Rx
M|[n−1][x

±
0,n−4, x±1,n−4]/〈x0, j−3x1,n−4 − x1, j−3x0,n−4 | j ∈ η2\{2}〉.

Since |η2| ≥ 3, this ring is isomorphic to (Sx
M )−1 Rx

M|[n−1][x
±
1,n−1], and we have an

open immersion GrM →֒ GrM|[n−1]×Gm . Finally, the map GrM → GrM|[n−1] is a

SDC-morphism by Proposition A.3 and the fact that the projection away from G3−k
m

is SDC. ⊓⊔

Proposition 4.2 For 3 ≤ n ≤ 7, the thin Schubert cell GrM is smooth and irreducible

for any k-realizable (3, n)-matroid M.

Proof The only (3, 3)-matroid is U (3, 3), and its thin Schubert cell consists of a

single point. Next, of the four (3, 4)-matroids up to S4-symmetry, the matroid U (3, 4)

is the only one that is simple and connected. Since Gr0(3, 4) ∼= G3
m , it is smooth an

irreducible. That the thin Schubert cells of the remaining three are also smooth and

irreducible follows from Lemmas C.1, C.2, Proposition C.3, and the (3, 3)-case. If M

is a (3, 5)-matroid, then M∗ is a (2, 5)-matroid, so GrM is smooth and irreducible by

Proposition C.3 and the isomorphism GrM
∼= GrM∗ .

Next, consider the (3, 6) case. As before, we need only examine the simple and

connected matroids. For every such matroid M , each i ∈ [6] is contained in 2 or

fewer lines of M . Therefore, the thin Schubert cell GrM is smooth and irreducible by
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Lemma 4.1, Proposition A.1(2), and the previous cases. Finally, if M is any simple

and connected (3, 7)-matroid other than the Fano matroid, then M has an i ∈ [n]

contained in no more than 2 lines. Similar to the (3, 6) case, the thin Schubert cell

GrM is smooth and irreducible. ⊓⊔

5 Morphisms between thin Schubert cells

In this section, we will consider the morphisms ϕM,M ′ : GrM → GrM ′ . For arbitrary

matroids M , SDC-properties of the morphisms ϕM,M ′ are entirely determined by

ϕM|S,M ′|S with S as in the beginning of Sect. 4, hence we need only consider simple

M . These reductions are contained in Appendix C, and yield a straightforward proof

that ϕM,M ′ is a SDC-morphism when M is a (2, n)- matroid. Therefore, we focus on

the rank 3 case. For the proof of Theorem 1.2, we will only need to verify that ϕM,M ′

is a SDC-morphism for pairs M ′ ⋖ M of (3, 7)-matroids where QM ′ is not a face

of the hypersimplex. To do this, we will find it convenient to show that ϕM,M ′ is a

SDC-morphism for all pairs of (3, m)-matroids M ′ ≤ M where m ≤ 6. Recall from

Proposition 2.1 that the facets of QM correspond to the nondegenerate subsets of [n],

when M is connected. We begin with a test for nondegeneracy in the rank 3 setting.

Proposition 5.1 Let M be a simple and connected k-realizable (3, n)-matroid, and

η ⊂ [n]. Then η is nondegenerate if and only if either

1. |η| = 1 and M/η is connected, or

2. |η| = n − 1 and M |η is connected, or

3. η is a line.

Proof First, we claim that if η is nondegenerate, then |η| = 1, n − 1 or η is a line. To

that end, fix a subset η such that 1 < |η| < n − 1, and η is not a line (η is clearly

degenerate when |η| = 0 or n). If |η| = 2, then M |η ∼= U (1, 1) ⊕ U (1, 1), hence

not connected. Otherwise, 2 < |η| < n − 1 and ρM (η) = 2 or 3. If ρM (η) = 2, then

there is a line η′ properly containing η. In this case, every element in η′\η becomes

a loop in M/η. Because M/η has at least 2 elements, having a loop implies that it is

not connected. If ρM (η) = 3, then every element in [n]\η is a loop in M/η. Since M

is connected, we have n − |η| ≥ 2, thus M/η is not connected. In all cases, the set η

is degenerate, hence the claim.

If |η| = 1, then M |η ∼= U (1, 1) which is connected, so η is nondegenerate if and

only if M/η is connected. Similarly, if |η| = n − 1, then M/η ∼= U (1, 1) which is

connected, so η is nondegenerate if and only if M |η is connected. Finally, suppose η

is a line. Then M |η ∼= U (2, k) (k ≥ 3) and M/η ∼= U (1, ℓ) (ℓ ≥ 2), both of which

are connected, so η is nondegenerate. ⊓⊔

Lemma 4.1 and the next two lemmas will allow us to trim down the amount of

M ′ ⋖ M that we will need to check in the proofs of Proposition 5.4 and Proposition

5.5.

Lemma 5.2 Suppose M is simple and connected and η is a line of M. If i ∈ [n] is not

contained in any line and GrM|[n]\i is integral, then Mη|([n]\i) ≤ M |[n]\i , and we
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have a commutative diagram

GrM GrM|[n]\i ×G3
m

GrMη GrMη|[n]\i ×Gm

ϕM,Mη ϕM|[n]\i,Mη |[n]\i×π

where the top and bottom arrows are dominant open immersions, and π is a coordinate

projection. In particular, if ϕM|[n]\i,Mη|[n]\i is a SDC-morphism, then so is ϕM,Mη .

Proof As usual, we use affine coordinates as in Construction 2.2, assume that {0, 1, 2}

is a basis and the first 3 columns of X form the identity matrix. We may also

assume that i = n − 1 and 0, 1 ∈ η. As in the proof of Lemma 4.1, the domi-

nant open immersion GrM →֒ GrM|[n−1]×G3
m is induced by the inversion of Xβ

in Rx
M|[n−1][x

±
0,n−4, x±1,n−4, x±2,n−4] for β ∈ B(M). Since Mη

∼= M/η ⊕ M |η and

M/η has rank 1, all elements of [n]\η become parallel to 2 in Mη, in particular

λ0, j−3 = λ1, j−3 = 0 in Rx
Mη

for j /∈ η. Similar to Rx
M , the ring Rx

Mη
is obtained

from Rx
Mη|[n−1][x

±
2,n−4] by inverting Xβ for β ∈ B(Mη). This localization induces

a dominant open immersion GrMη →֒ GrMη|[n−1]×Gm . The morphism G3
m → Gm

is induced by k[x±2,n−4] ⊂ k[x±0,n−4, x±1,n−4, x±2,n−4]. Commutativity of the diagram

is now a simple verification at the level of rings. The last statement follows from

Proposition A.3 and the fact that π is a SDC-morphism. ⊓⊔

Lemma 5.3 Suppose M is simple and connected, the set η is a line of M, and GrM|[n]\i

is integral. If i ∈ η is not contained in any other line, then Mη\i ≤ M |[n]\i , and we

have a commutative diagram

GrM GrM|[n]\i ×G2
m

GrMη GrMη\i
×G2

m

ϕM,Mη ϕM|[n]\i,Mη\i
×id

where the top and bottom arrows are dominant open immersions. In particular, if

ϕM|[n]\i,Mη\i
is a SDC-morphism, then so is ϕM,Mη .

Proof Similar to the proof of Lemma 5.2, we use affine coordinates as in Construc-

tion 2.2, assume that {0, 1, 2} is a basis, the first 3 columns of X form the identity

matrix, set i = n − 1, and 0, 1, n − 1 ∈ η. As in the proof of Lemma 4.1, the dom-

inant open immersion GrM →֒ GrM|[n−1]×G2
m is induced by the inversion of Xβ

in Rx
M|[n−1][x

±
0,n−4, x±1,n−4] for β ∈ B(M). Since Mη

∼= M/η ⊕ M |η and M/η has

rank 1, all elements of [n]\η become parallel to 2 in Mη. Because {0, 2, n − 1} and

{1, 2, n − 1} remains bases in Mη, the terms x0,n−4 and x1,n−4 are still invertible

in Rx
Mη

. Similar to Rx
M , the ring Rx

Mη
is obtained from Rx

Mη\{n−1}
[x±0,n−4, x±1,n−4] by

inverting Xβ for β ∈ B(Mη). This localization induces a dominant open immersion

GrMη →֒ GrMη\{n−1} ×G2
m . Commutativity of the diagram is now a simple verification

at the level of rings. The last statement follows from Proposition A.3. ⊓⊔
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Proposition 5.4 Let M be a (3, n) matroid for 3 ≤ n ≤ 6 and M ′ ≤ M. Then

ϕM,M ′ : GrM → GrM ′ is a SDC-morphism.

Proof By Lemmas C.1 and C.2, it suffices to consider pairs of matroids of the form

M ′ ⋖ M where M is simple and connected. The only (3, 3)-matroid is U (3, 3), and

�(3, 3) is a point, so there is nothing to check. For n = 4, the only simple and

connected matroid is U (3, 4) so ϕM,M ′ is a SDC-morphism by Proposition C.7. The

case n = 5 follows from Proposition C.8 and Lemma C.6.

Finally consider n = 6. We may assume that M and M∗ are simple by Lemma C.6,

and M ′ = Mη where |η| = 1, n − 1 or η is a line by Proposition 5.1. It suffices to

consider pairs Mη ⋖ M such that one of the following holds:

1. η = [n]\{i} and i is contained in 3 or more lines (Lemma 4.1),

2. η = {i} and i is contained in 3 or more lines of M∗ (Lemma C.6), or

3. η ∈ L(M), every i ∈ [n] is contained in a line, (Lemma 5.2) and every j ∈ η is

contained in another line (Lemma 5.3).

For (3, 6) matroids (1) and (2) can never happen. Up to symmetry, there is only one

pair that satisfies (3):

L(M) = {{0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {3, 4, 5}}

and η = {0, 1, 3}. By the isomorphism Mη
∼= M/η ⊕ M |η, the set {0, 1, 3} is the

only line of Mη and 2, 4, 5 are parallel to each other. We use affine coordinates as in

Construction 2.2. Assume that the first 3 columns of X form the identity matrix, so

Rx
M ′ = k[x±00, x±10, x±11, x±22] and

Rx
M = Rx

M ′ [x
±
01, x±12, x±21]/ 〈x00x12x21 + x01x10x22〉 ∼= Rx

M ′ [x
±
12, x±21].

Then Rx
Mη
→ Rx

M may be identified with the inclusion Rx
Mη
⊂ Rx

Mη
[x±12, x±21] and

therefore ϕM,Mη is a SDC-morphism. ⊓⊔

Proposition 5.5 Let M be a (3, 7)-matroid and M ′ ≤ M such that QM ′ is not a face

of �(3, 7). Then ϕM,M ′ : GrM → GrM ′ is a SDC-morphism.

Proof By Lemmas C.1, C.5, 5.2 and 5.3, we may assume that M is simple, connected,

every element in [7] is contained in a line, and there is a line η with the property that

every i ∈ η is contained in another line. There are only six such matroids. We list

these in Table 1, together with their nondegenerate subsets (up to symmetry) that define

internal facets, i.e., those facets that are not faces of �(3, 7). This has the effect of

excluding the subsets of size 1 or 6. The representatives of the nondegenerate subsets

are chosen so that {0, 1, 2} is a basis of both Mη and M whenever we need to perform

an explicit computation in affine coordinates.

Cases 7.3(1), 7.4(2), 7.5(2), 7.6(2) follow from Lemma 5.2, and case 7.6(1) is

similar to the case worked out in the proof of Proposition 5.4 (indeed, the matroid in

7.6 is obtained by adding an element to a line of this matroid). For these remaining

cases, we proceed by a direct computation using affine coordinates as in Construction



57 Page 18 of 40 D. Corey

Table 1 The simple connected rank 3 matroids on [7] relevant to Proposition 5.5, together with nondegen-

erate subsets defining internal facets

L(M) Internal facets (Aut(M)-representatives)

7.1 {0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {2, 3, 6}, {4, 5, 6} (1) {0, 1, 3}, (2) {0, 2, 4}

7.2 {0, 1, 3}, {0, 2, 4}, {0, 5, 6}, {1, 2, 5}, {1, 4, 6}, (1) {0, 1, 3}

{2, 3, 6}

7.3 {0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {4, 5, 6} (1) {0, 1, 3}, (2) {0, 2, 4}

7.4 {0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {2, 3, 6} (1) {0, 1, 3}, (2) {0, 2, 4}

7.5 {0, 1, 3}, {0, 2, 4}, {1, 2, 5}, {1, 4, 6}, {2, 3, 6} (1) {0, 1, 3}, (2) {1, 2, 5}

7.6 {0, 1, 5}, {0, 2, 3, 6}, {1, 4, 6}, {3, 4, 5} (1) {0, 1, 5}, (2) {0, 2, 3, 6}

2.2. The first 3 columns of X will always be the identity matrix. As in the proof of

Proposition 5.4, the isomorphism Mη
∼= M/η ⊕ M |η gives a simple way to identify

Mη.

Let M ′ ⋖ M be the pair in Case 7.1(1). Then Rx
M ′ = k[x±00, x±10, x±21, x±22, x±23] and

Rx
M is the quotient of (Sx

M )−1 Rx
M ′ [x

±
01, x±12, x±03, x±13] by the ideal

〈x00x13 − x10x03, x01(x12x23 − x22x13)− x21x12x03〉 .

Because X056 = x12x23− x22x13 is in Sx
M , we have Rx

M
∼= Rx

M ′ [x
±
12, x±13]. So Rx

M ′ →

Rx
M may be identified with the inclusion Rx

M ′ ⊂ (Sx
M )−1 Rx

M ′ [x
±
12, x±13]. Therefore

ϕM,M ′ is a SDC-morphism.

Next consider the pair M ′⋖M in case 7.1(2). Then Rx
M ′ = k[x±10, x±01, x±21, x±12, x±13].

By eliminating the variables x00 and x22 from Rx
M , we may identify the morphism

Rx
M ′ → Rx

M with the inclusion Rx
M ′ ⊂ (Sx

M )−1 Rx
M ′ [x

±
03, x±23]. Therefore ϕM,M ′ is

SDC. Because the matroid in 7.3 is obtained from M by removing one line, case

7.3(2) is similar.

Finally consider the pair M ′ ⋖ M in case 7.2(1). Then Rx
M ′ = k[x±00, x±10, x±21, x±22,

x±23] and Rx
M is the quotient of (Sx

M )−1 Rx
M ′ [x

±
01, x±12, x±03, x±13] by the ideal

〈x12x23 − x13x22, x01x23 − x21x03, x00x13 − x10x03〉.

By eliminating the variables x13, x03, and x12, Rx
M ′ → Rx

M may be identified with the

inclusion Rx
M ′ ⊂ (Sx

M )−1 Rx
M ′ [x

±
01]. Therefore ϕM,M ′ is SDC. Because the matroids in

7.4 and 7.5 are obtained by removing two, resp. one, lines from M , cases 7.4(1) and

7.5(1) are similar. ⊓⊔

6 Smoothness and irreducibility of initial degenerations

Let M be a k-realizable (2, n), (3, 6), or (3, 7) matroid. We compile the results of the

previous sections to prove the following more general version of Theorem 1.2.
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Theorem 6.1 The initial degenerations inw GrM are smooth and irreducible for all

w ∈ TGrM .

By Corollary 3.5, we must show that GrM,w is smooth, irreducible, and has the same

dimension as GrM . Thanks to Proposition C.12, we may compute GrM,w as a limit over

a diagram induced by a graph as in Example A.4. When ŴM,w is a tree, Proposition A.6

tells us that GrM,w is smooth and irreducible when GrMQ
is smooth and irreducible and

ϕMQ ,MQ′
: GrMQ

→ GrMQ′
is a SDC-morphism for Q ∈ (�M,w)top and Q′ ⋖ Q not

a face of the hypersimplex. This is illustrated in Example 6.2. However, when ŴM,w

is not a tree, this data is insufficient to conclude that GrM,w is smooth and irreducible,

see Remark A.7.

Let η ⊂ [n]. In the examples below and in Sect. 8, we encounter the matroids M(η)

and M(η)′ defined by

B(M(η)) =
{

β ∈
(

[n]
3

)

∣

∣

∣
|β ∩ η| ≥ 2

}

, B(M(η)′) =
{

β ∈
(

[n]
3

)

∣

∣

∣
|β ∩ η| = 2

}

.

(6.1)

A simple computation in affine coordinates yields dim GrM(η) = n + 2|λ| − 7, and

dim GrM(η)′ = n + |λ| − 5. Also, we set fλ = eλ1 ∧ · · · ∧ eλd
∈ ∧dRn for λ =

{λ1, . . . , λd}.

Example 6.2 Let

w = f013 + f024 + f056 + f125 + f146 + f236

and C matroid 7.2 from Table 1. The adjacency graph Ŵw is a star tree with vQC
as the

central vertex and a leaf vertex vQM(i jk)
for each {i, j, k} ∈ L(C). The edge between C

and M(i jk) corresponds to the matroid M(i jk)′. Because �w is a matroid subdivision

and does not lie in the relative interior of the Fano cone as in [19, Theorem 2.1], the

vector w lies in TGr0(3, 7). The isomorphism from Proposition C.12 yields

Grw ∼= GrC ×
∏

GrM(i jk)′

∏

GrM(i jk) .

The thin Schubert cell GrC is smooth and irreducible by Proposition 4.2 and the

GrM(i jk) → GrM(i jk)′ are SDC-morphisms by Proposition 5.5. From the preceding

comments, we have dim GrM(i jk) = 6 and dim GrM(i jk)′ = 5. A simple computation

in affine coordinates yields dim GrC = 6. By Proposition A.6, the scheme Grw is

smooth and irreducible of dimension 12, as is inw Gr0(3, 7) by Corollary 3.5.

When the maximal cells Q of �M,w all share a common vertex, we may determine

whether Rx
M,w defines a smooth and irreducible k-scheme by hand, as illustrated in

Example 6.3. However, many matroid subdivisions do not have this property, e.g., the

subdivision �(3, 7) in the previous example.

Example 6.3 Let M be the following matroid

L(M) = {{0, 2, 4}, {0, 3, 6}, {1, 2, 3}, {1, 4, 6}, {2, 5, 6}}.
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Fig. 1 The matroids and adjacency graph appearing in Example 6.3

and set

w = − f013 + f345 − f016 + f245 + f246 + f234 + f145 − f135 − f136 + f124 + f456.

The subdivision �M,w is matroidal. The matroids of maximal cells and ŴM,w are

illustrated in Fig. 1. Similar to Example 6.2, we see that w ∈ TGrM . Because {0, 1, 2}

is a basis for each Mi , the ring Rx
M,w may be computed using affine coordinates as in

Construction 2.2. Assume that the first 3 columns of the matrix X form the identity.

We have I x
M2
= I x

M3
= 〈0〉, and

I x
M0
= 〈x10x23 − x13x20, x01x23 − x21x03〉, I x

M1
= 〈x02x13 − x03x12〉.

Therefore I x
M,w = 〈x10x23 − x13x20, x02x13 − x03x12, x01x23 − x21x03〉. Because

x03, x13 are in Sx
M,w, we may solve for these variables to produce an isomorphism

Rx
M,w

∼= (Sx
M,w)−1

k[x±01, x±02, x±10, x±12, x±20, x±21, x±22, x±23].

This realizes GrM,w as an open subscheme of G8
m . Therefore GrM,w is smooth and

irreducible of dimension 8, as is inw GrM by Corollary 3.5.

In general, we use a combination of the above techniques to show that all of the

GrM,w are smooth and irreducible. Lemma 6.4 handles the case where ŴM,w has no

leaves, showing that GrM,w is smooth and irreducible by a direct analysis of Rx
M,w

(for these subdivisions, all maximal cells share a common vertex). We take care of the

remaining cases using this lemma together with Proposition A.2, which considers the

behavior of smoothness and irreducibility under pullbacks.

Lemma 6.4 Let M be a k-realizable, rank 3-matroid on [6] or [7], and w ∈ TGrM

such that ŴM,w has no leaves. Then GrM,w is smooth and irreducible.

Proof By Proposition C.9, we may assume that M is simple. We will work with affine

coordinates as in Construction 2.2, and follow a strategy similar to Example 6.3. First,
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suppose eβ common to all Q ∈ (�M,w)top (if such a vertex exists). Let the columns

of X prescribed by β be the identity matrix. Let

gx
M j
=

∏

λ∈B(M j )

Xλ and gx
M,w =

∏

QM j
maximal

gx
M j

.

Finally, let J x
M,w =

(

I x
M,w : (g

x
M,w)∞

)

⊂ BM (saturation here has the effect of

removing the primary components of the irrelevant ideal). By Proposition 3.7, to

show that GrM,w is smooth an irreducible, it suffices to show that the the quotient of

k[x±i j | λi j ∈ B(M)] by the extension of J x
M,w is isomorphic to a Laurent polynomial

ring. Due to the large number of cases that we need to check, we will find it more

convenient to show that k[x±i j ]/(J x
M,w · k[x

±
i j ]) has this property.

We proceed by a direct computation, using computer assistance. (We emphasize

that this computation may be carried out by hand for any individual w, once �M,w

is computed. We use a computer due to the large number of cases.) Representatives

w of the cones in GM were computed in proof of Proposition 3.9, along with the

subdivisions �M,w. We use Macaulay2 to compute the adjacency graphs and

catalog those w such that ŴM,w has no leaves. There are 17 such graphs among all

simple (3, 6)-matroids, and 877 for (3, 7). For each such (M, w), there is a vertex eβ

common all of the Q ∈ (�M,w)top. We choose such a β that is maximal with respect

to the revLex order, compute J x
M,w as above, and consider its extension to k[x±i j ].

While this produces a large number of ideals, many end up being the same. For (3, 6),

computing the ideals takes about 15 seconds, and there are 3 unique ideals:

〈0〉, 〈x02x11 − x01x12〉, 〈x02x10 − x00x12〉 ⊂ k[x±i j ].

By solving for x12 in the last two ideals, we see that the quotients k[x±i j ]/(J x
M,w ·k[x

±
i j ])

are all isomorphic to Laurent polynomial rings. For (3, 7), this computation takes

about 50 min. We list these ideals in Appendix B, together with variables that may

be eliminated to produce an isomorphism of k[x±i j ]/(J x
M,w · k[x±i j ]) with a Laurent

polynomial ring. ⊓⊔

Let G be a connected graph. Given a leaf-vertex v, the branch of G containing v is

the largest full subgraph of G that contains v and does not meet any cycle of G (note

that this is non-standard terminology).

Theorem 6.5 Let w ∈ TGrM where M is a k-realizable (2, n), (3, 6), or (3, 7) matroid.

Then GrM,w is smooth and irreducible.

Proof By Proposition C.12, we know that GrM,w is isomorphic to a limit over the adja-

cency graph ŴM,w. Since all relevant thin Schubert cells are smooth and irreducible,

and all relevant morphisms are SDC, we may use Proposition A.6 to conclude that

GrM,w is smooth an irreducible when ŴM,w is a tree. In particular, this completes the

proof in the d = 2 case.

Now suppose (d, n) = (3, 6) or (3, 7). We need only consider those w such that

ŴM,w is not a tree. We proceed by induction on the largest diameter of a branch of
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ŴM,w. When ŴM,w has no leaves, the scheme GrM,w is smooth and irreducible from

Lemma 6.4, hence the base case of the induction.

Let vQ1 , . . . , vQk
denote leaf vertices of ŴM,w, let L i = MQi

, and let L ′i for the

matroid corresponding to the edge adjacent to vQi
. There is a hyperplane Hk in Rn

such that �M ∩ Hk = �L ′k
, with �Lk

in one of the halfspaces of this hyperplane. The

polytope given by the intersection of �M with the other halfspace is also a matroid

polytope: it is the convex hull of the vertices eβ such that β ∈ (B(M)\B(Lk)) ∪

B(L ′k). The adjacency graph to this subdivision is obtained by removing the vertex

and edge corresponding to �Lk
and �L ′k

respectively. Repeating this procedure for

the remaining L i ’s, we see that the union of the polytopes corresponding to non-leaf

vertices in ŴM,w is a matroid polytope. We denote the corresponding matroid by C .

By Proposition A.5 and C.12,

GrM,w ≃ GrC,w ×
∏

GrL′
i

∏

GrL i
.

The k-scheme GrC,w is smooth and irreducible by the inductive hypothesis and ϕL i ,L
′
i

are SDC-morphisms by Proposition 5.4 and Proposition 5.5. We conclude that GrM,w

is smooth and irreducible by Proposition A.2. ⊓⊔

Corollary 6.6 If M is a k-realizable (3, 6) or (3, 7) matroid and w ∈ TGrM , then

ψM,w : inw GrM → GrM,w is an isomorphism.

Proof By Theorem 3.4 and Proposition 3.9, the map ψM,w is a closed immersion of

affine schemes of the same dimension. Moreover GrM,w is integral by Theorem 6.5.

Therefore ψM,w is an isomorphism by Proposition A.8. ⊓⊔

Proofs of Theorems 1.2 and 6.1. These theorems follow from Lemma 3.8, Theorem

6.5, and Corollary 6.6. ⊓⊔

Remark 6.7 We are indebted to the anonymous referee for pointing out the follow-

ing consequence of Theorem 6.1. Let X0 be a closed subvariety of an algebraic

torus T . Denote by X an
0 the Berkovich analytification of X0 [3]. The tropicaliza-

tion Trop X0 is faithful if there is a continuous section to Trop : X an
0 → Trop X0. By

[14, Theorem 10.6], the tropicalization Trop X0 is faithful when inw X0 is reduced

and irreducible for all w ∈ Trop X0. Together with Theorem 6.1, this implies that the

tropicalization TGrM is faithful for any k-realizable (2, n), (3, 6), or (3, 7)-matroid.

7 The log canonical compactification of X0(3, 7)

We now prove Theorem 1.3, that the normalization of the Chow quotient of Gr(3, 7) by

the maximal torus PGL(7) is the log canonical compactification of X0(3, 7). For back-

ground on log minimality and log canonical compactifications, see the introduction of

[16], for the Chow quotient of Gr(d, n), see [21] [26, Section 2], and for schön com-

pactifications, see [15,29,40]. Throughout this section, we use the following notation

for polyhedral fans and toric varieties that is consistent with [7]. Let N be a lattice, let

TN its torus, and let � a rational polyhedral fan in NR. When T is a torus, we write NT
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for its cocharacter lattice. Given a cone σ of �, denote by Nσ the saturated sublattice

of N generated by σ ∩ N . Let N (σ ) = N/Nσ , and Star(σ ) the star of σ , viewed as a

fan in N (σ )R. We write X(�) for the toric variety of �.

Let H ⊂ PGL(n) be the maximal torus, let M a loop-free matroid, and let T (M)

the dense torus of Proj(BM ). As before, we let {ei | i ∈ [n]} denote the standard basis

of Zn and fλ = eλ1 ∧ · · · ∧ eλd
for λ = {λ1, . . . , λd}. The cocharacter lattices of H

and T (M) isomorphic to Zn/Z·1 and ZB(M)/Z·1, respectively. The torus H embeds

into T (M) by

NH → NT (M) ei �→
∑

λ∋i

fλ. (7.1)

Thus H acts on Proj(BM ) via the action of T (M). This restricts to a free action on

GrM , and we set X M = GrM /H . The quotient GrM → X M is induced by a monomial

ring map [12, Proposition 2.1], therefore Trop X M = TGrM /(NH )R.

Now we focus on M = U (d, n); In this case we write T = T (U (d, n))

and X0(d, n) = XU (d,n). The Plücker embedding induces an closed immersion of

Chow quotients Gr(d, n)//H →֒ P(∧d
k

n)//H . By [21,22], the normalization of

P(∧d
k

n)//H is the toric variety Yd,n := X(�S(d, n)/(NH )R). Let XS(d, n) be the

closure of X0(d, n) in Yd,n . Then Yd,n → P(∧d
k

n)//H induces a birational mor-

phism XS(d, n) → Gr(d, n)//H , thus both have the same normalization, which we

denote by X(d, n). When n = 6, 7, the space X(3, n) is also the closure of X0(3, n)

in X(S ′′
3,n) where S ′′

3,n = S3,n/(NH )R.

Lemma 7.1 The initial degenerations of X0(3, 7) are smooth and irreducible. In par-

ticular, the space X(3, 7) is a schön compactification of X0(3, 7).

Proof Let N sat
H denote the saturation of the image of the map from Eq. (7.1). A splitting

of the exact sequence 0 → N sat
H → NT → NT /H → 0 induces an isomorphism

Gr0(d, n) ∼= X0(d, n)×H . As stated earlier, this is monomial at the level of coordinate

rings. Therefore inw Gr0(3, 7) ∼= inw̃ X0(3, 7)× H where w̃ is the projection of w to

(NT /H )R. The first statement now follows from Theorem 1.2. By [29, Theorem 1.5]

XS(3, 7) is a schön compactification, which is already normal by [40, Theorem 1.4].

⊓⊔

Proof of Theorem 1.3 By Lemma 7.1, the space X is a schön compactification of

X0(3, 7). Let B the boundary divisor of X0(3, 7) ⊂ X(3, 7). To show that K X(3,7)+B

is ample, we follow a strategy laid out in [28] based on [16].

For each cone σ ∈ S ′′
3,7, let Xσ denote the locally closed stratum of X(3, 7) in

the corresponding torus orbit of X(S ′′
3,7). There is an isomorphism inw X0(3, 7) ∼=

Xσ × TNσ for any w in the relative interior of σ [18, Lemma 3.6], so each Xσ is

smooth and irreducible by Lemma 7.1. Because X(3, 7) is a schön compactification,

the pair (X(3, 7), B) has at worst toroidal singularities [40, Theorem 1.4]. By [16,

Theorem 9.1], the divisor K X(3,7)+ B is ample if and only if each Xσ is log minimal.

We know that X0(3, 7) is log minimal by [26, Proposition 2.18], so we need only

consider the Xσ for σ �= 0.

By [30, Lemma 3.3.6] Trop Xσ is the underlying set of Star(σ ) in N (σ )R. The

stratum Xσ is schön because its closure in X(Star(σ )) is a schön compactification.
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Therefore, the stratum Xσ is either log minimal or preserved by a nontrivial subtorus

S ⊂ TN (σ ) [16, Theorem 3.1], which occurs if and only if Trop Xσ is invariant under

translation by the subspace (NS)R ⊂ N (σ )R [24, Lemma 5.2]. So it suffices to show

that each Trop Xσ is not invariant under translation by any rational subspace of N (σ )R.

We prove this in Lemma 7.3, using the necessary condition for such subspaces in

Lemma 7.2. ⊓⊔

Lemma 7.2 Suppose � is a rational polyhedral fan in NR that is invariant under

translation by the linear subspace V ⊂ NR. Then V ⊂ (Nσ )R for every maximal

cone σ of �.

Proof If σ is a maximal cone such that V �⊂ Nσ then dim(V+Nσ ) > dim�, therefore

V cannot preserve �. ⊓⊔

Lemma 7.3 For each coneσ ofS ′′
3,7, the set Trop Xσ is not preserved under translation

by any rational subspace of N (σ )R.

Proof The case σ = 0 follows from the fact that X0(3, 7) is schön and log minimal

as in the proof of Theorem 1.3, so we focus on σ �= 0. By Lemma 7.2, to prove that

Trop(Xσ ) is not preserved under translation by any rational subspace of N (σ )R it

suffices to show

(Nσ )R =
⋂

(Nτ )R (7.2)

where the intersection is taken over all maximal cones τ ∈ Star(σ ). By symmetry, it

suffices to show Eq. (7.2) for a collection of S7-orbit representatives of the σ .

The Gröbner fan G3,7 was computed in gfan (as before), and we use sage to

compute S ′′
3,7 by grouping together those cones that correspond to the same matroid

subdivision of �(3, 7). The f -vector (starting at dimension 0) for S ′′
3,7 up to S7-

symmetry is

f (S ′′
3,7 mod S7) = (1, 5, 30, 107, 217, 218, 94).

For each representative we compute Star(σ ) and the intersection in Eq. (7.2), also

in sage. This part of the computation may be completed in under 5 min on a standard

desktop computer. ⊓⊔

Remark 7.4 A direct adaptation of Luxton’s methods for proving that X0(3, 6) is schön

does not work for X0(3, 7), as we now describe. For a degree 9− n del Pezzo surface

S, let e1, . . . , en, h denote the standard generators of Pic S, and K = 3h −
∑

ei the

canonical class. In this remark, we focus on the cases n = 6, 7. The subspace K⊥

contains the root system En , let � be the Z-lattice generated by En . Set αi j = ei − e j .

For n = 6, let β = 2h −
∑

ei , and for n = 7, let β j = 2h −
∑

i �= j ei .

As in the introduction, denote by Y n the moduli space of smooth marked del Pezzo

surfaces of degree 9 − n, and denote by Fn its log canonical fan, whose support is

Trop Y n . We recall the description of Fn in [16]. There is an exact sequences of free

abelian groups

0 → Sym2 �∨
φ
−→ Z(En)+

ψ
−→ N (En) → 0

where φ( f ) =
∑

α∈(En)+
f (α) · α. Given a root subsystem �, let ψ(�) =

∑

ψ(α)

where the sum is over the positive roots of �. The set of Ai root subsystems of En is
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Fig. 2 From left to right: the Fano matroid, the Pappus matroid, and the Perles matroid

denoted by Ai and let

R(E6) = A1 ⊔ (A2 ×A2 ×A2), R(E7) = A1 ⊔A2 ⊔ (A3 ×A3) ⊔A7.

The rays of Fn are ψ(�) for any � ∈ R(En), and ψ(�1), . . . , ψ(�k) span a cone if

and only if

�i ⊥ � j ,�i ⊂ � j , or � j ⊂ �i

When n = 7, exclude the “Fano” simplices spanned by 7 mutually orthogonal A1

subsystems.

The open immersion Y n →֒ X0(3, n) induces a surjective map π : Trop Y n →

Trop X0(3, n) [40, Proposition 3.1]. When n = 6, the map π is induced by a quotient

of N (E6)R by spanR{ψ(β)}. One step to prove that X0(3, 6) is schön in Luxton’s

thesis was to show that the morphism of toric varieties X(F6) → X(S ′′
3,6) is smooth,

see [28, Theorem 4.2.2]. When n = 7, the map π : Trop Y n → Trop X0(3, n) is

induced by a quotient of N (E7)R by spanR{ψ(β1), . . . , ψ(β7)}. We claim that the

morphism X(F7) → X(S ′′
3,7) is not smooth. Let �1 = {±αi j } (an A1-subsystem)

and �2 = {±αi j ,±βi ,±β j } (an A2-subsystem). Because �1 ⊂ �2, we have that

σ = spanR≥0
{ψ(�1), ψ(�2)} is a cone in F7. Then π maps both rays ψ(�1), ψ(�2)

to the same ray τ in Trop X0(3, 7). Therefore the restriction of X(F7) → X(S ′′
3,7) to

the toric open sets Uσ → Uτ is not smooth.

8 Behavior for higher Grassmannians

The algebraic properties of both the initial degenerations and the maps between thin

Schubert cells that played a central role in the proof of Theorem 1.2 fail to hold outside

(d, n) = (2, n), (3, 6), (3, 7) and their duals. In this section, we give examples for

d = 3 and n = 8, 9 that show our proof-techniques will not apply beyond the cases

treated earlier. We begin by showing how the analog of Proposition 3.9 does not hold

when char k = 2 or n ≥ 9.

Example 8.1 For this example, suppose k = F2. The analog of Proposition 3.9 does

not hold in this setting. Let F be the Fano matroid, i.e., the matroid whose set of lines

is

L(F) = {{0, 1, 3}, {0, 2, 4}, {0, 5, 6}, {1, 2, 5}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}}
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as illustrated in Fig. 2. Let wF ∈ ∧
3Z7 be the vector

wF = f013 + f024 + f056 + f125 + f146 + f236 + f345.

This point lies in TGr0(3, 7), as it is the coordinatewise t-adic valuation of the Plücker

coordinates of the F4((t))-valued matrix





1 0 0 1 1 t 1

0 1 0 1 t 1 1+ t

0 0 1 t 1 1 1+ at





where a ∈ F4\{0, 1}. The adjacency graph Ŵw is a star tree whose central node is vQF

and has a leaf vertex vQM(i jk)
for each {i, j, k} ∈ L(F). The edge adjacent to vQM(i jk)

corresponds to M(i jk)′. A computation in affine coordinates yields dim GrF = 6,

hence dim Grw = 13 by Proposition A.8.

Example 8.2 The analog of Proposition 3.9 is also not true for other (d, n), even in

characteristic 0. Consider the case (d, n) = (3, 9) and let MPa be the Pappus matroid,

i.e., that matroid set of lines is

L(MPa) = {{0, 1, 3}, {0, 2, 4}, {0, 7, 8}, {1, 2, 5},

{1, 6, 8}, {2, 6, 7}, {3, 4, 6}, {3, 5, 7}, {4, 5, 8}}

as illustrated in Fig. 2. Let wPa ∈ ∧
3Z9 be the vector defined by

wPa = f013 + f024 + f078 + f125 + f168 + f267 + f346 + f357 + f458.

This point lies in TGr0(3, 9) as it is the coordinatewise t-adic valuation of the Plücker

coordinates of the Q((t))-valued matrix





1 0 0 2 1 t 1+ t −1 1

0 1 0 −3 t 1 −1 1− t2 1

0 0 1 2t 3 −2 1 1 1+ t





The adjacency graph Ŵw is a star tree whose central node is vQMPa
and has a leaf

vertex vQM(i jk)
for each {i, j, k} ∈ L(MPa). The edge adjacent to vQM(i jk)

corre-

sponds to M(i jk)′. A computation in affine coordinates yields dim GrMPa = 10,

hence dim Grw = 19 by Proposition A.8.

Question 8.3 Does the analog of Proposition 3.9 hold for (3, 8)-matroids?

Next, we discuss the general behavior of the maps ϕM,M ′ : GrM → GrM ′ for

M ′ ≤ M . Recall that ϕM,M ′ is a SDC-morphism whenever M ′ is a (3, 6)-matroid, or

M is a (3, 7)-matroid and �M ′ is not a face of �(3, 7). When M ′ is a face of �(3, 7),

then ϕM,M ′ may fail to be dominant.
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Example 8.4 Let M be the (3, 7)-matroid with lines

L(M) = {{0, 3, 6}, {1, 4, 6}, {2, 5, 6}}.

and M ′ = M[5]. In a projective realization of M , the lines 03, 14, and 25 all meet

at the point 6. Observe that 6 becomes a loop in M ′, and M ′ ∼= U (3, 6) ⊕ U (0, 1).

A projective realization of U (3, 6) does not require that 03, 14, and 25 all meet at

a common point. Such a condition defines a codimension 1 subscheme of Gr0(3, 6).

Therefore ϕM,M ′ is not dominant. Extending the ground set by adding points in linear

general position, we get non-dominant morphisms ϕM,M ′ for any realizable (3, n)

matroid with n ≥ 7. By adding elements to the ground set parallel to any of the

{0, . . . , 6}, one may produce non-dominant morphisms ϕM,M ′ for n ≥ 8 where �M ′

is not a face of �(3, n).

We end with an example of an initial degeneration of Gr0(3, 9) that is reducible,

proving Theorem 1.4. Consider the Perles matroid P of nine points and nine lines

L(P) = {{0, 1, 2, 3}, {0, 4, 8}, {1, 4, 7}, {0, 5, 6},

{1, 5, 8}, {3, 4, 5}, {2, 5, 7}, {2, 6, 8}, {3, 6, 7}}.

This is depicted in Fig. 2. First, we parameterize its thin Schubert cell.

Proposition 8.5 The thin Schubert cell GrP is isomorphic to X P ×G8
m and

X P
∼= Spec(k[z±]/〈z2 − z − 1〉).

In particular, the thin Schubert cell GrP has two connected components.

Proof As discussed in the beginning of Sect. 7, the maximal torus H ⊂ PGL9(k) acts

freely on GrP and GrP
∼= X P ×H . To compute X P , we use affine coordinates similar

to Construction 2.2. Let X be the matrix with (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1),

in columns 0, 1, 4 and 5, respectively. The H -action allows us to set one nonzero entry

of each remaining column to be 1. A standard calculation yields

X :=





1 0 −z 1 0 1 1− z 0 1

0 1 1 1 0 1 1 z 0

0 0 0 0 1 1 1 1 1



 .

where z2 − z − 1 = 0. Therefore X P has the required form. ⊓⊔

Let wP ∈ ∧
3Z9 be the vector

wP = f012 + f013 + f023 + f123 + f048 + f147 + f158 + f257 + f268 + f367. (8.1)

Proposition 8.6 The vector wP from Eq. (8.1) induces a dominant open immersion

GrwP
→֒ Spec(k[z]/〈z2 − z − 1〉)×G18

m .
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In particular, the scheme GrwP
is smooth and has two connected components.

Proof The adjacency graph ŴwP
is a star tree on nine leaves with central node vQ P

.

For each λ ∈ L(P), there is a leaf vertex vQM(λ)
connected to vQ P

, and Q P ∩QM(λ) =

QM(λ)′ , where M(λ) and M(λ)′ are defined in Eq. (6.1). By Proposition C.12,

GrwP
∼= GrP ×

∏

λ∈L(P) GrM(λ)′

∏

λ∈L(P)

GrM(λ) .

The embedding in the statement will be obtained by combining the associativity of

fiber products with Proposition 8.5, Proposition A.5 and the following two claims.

1. GrP ×GrM(λ)′
GrM(λ)

∼= GrP ×Gm for λ ∈ L(P) � {{0, 1, 2, 3}}, and

2. GrP ×GrM(0123)′
GrM(0123) embeds into GrP ×G2

m as a dense open subscheme.

Both verification are similar. We show the second one since it is more subtle. To

simplify notation, let M = M(0123) and M ′ = M(0123)′. We use affine coordinates

as in Construction 2.2. Let X be the matrix of variables xi j such that the columns 0,1,4

form the identity. Then Rx
M ′
∼= S′−1Z[x±i j | i j �= 02, 12] and Rx

M
∼= S−1 Rx

M ′ [x
±
20, x±21],

where S′ is generated by X234 and S is generated by X023, X123. From this we conclude

that

GrP ×GrM ′
GrM

∼= Spec(S−1 Rx
P [x

±
20, x±21]).

Since the x00, x01, x10, and x11 are units in Rx
P , we see that X023 and X123 are not zero

divisors in the above ring. Therefore the natural map Rx
P [x

±
20, x±21] → S−1 Rx

P [x
±
20, x±21]

is injective and (ii) holds. ⊓⊔

Lemma 8.7 We have an isomorphism inwP
Gr0(3, 9) ∼= GrwP

.

Proof Because ψwP
: inw Gr0(3, 9) →֒ GrwP

is a closed immersion of affine schemes

of the same dimension and GrwP
is reduced, it suffices to show that the image of

ψwP
meets the two connected components of GrwP

by Proposition A.8. Consider the

following k((t))-valued matrix

X(a) :=





1 0 −a 1 0 1 1− a t 1

0 1 1 1+ t 0 1 1 a 3t

0 0 t 2t 1 1+ t 1+ 2t 1 1+ 3t



 .

where a = b, b̄ are the distinct solutions to z2 − z − 1 = 0. Let pa be the Plücker

vector of X(a). One may verify that the coordinatewise valuation of pa is wP . The

exploded tropicalization Trop(pa) is an element of inw Gr0(3, 9) [33, Lemma 3.2],

and ψP,w maps Trop(pb) and Trop(pb̄) to different connected components of GrwP
,

as required. ⊓⊔

Proof of Theorem 1.4 Proposition 8.6 and Lemma 8.7 yield a dominant open immer-

sion inwP
Gr0(3, 9) →֒ Spec(k[z]/〈z2 − z − 1〉)×G18

m . Therefore inwP
Gr0(3, 9) is

smooth with two connected components. ⊓⊔
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A Some functorial properties of SDC-morphisms

Throughout this section, all k-schemes are of finite-type over k. Recall from the

beginning of Sect. 4 that a SDC-morphism of k-schemes is one that is smooth and

dominant with connected fibers. In this section, we will catalog properties of SDC-

morphisms used throughout the paper. First, we discuss how to deduce smoothness or

connectedness of a k-scheme X from properties of a morphism X → Y and Y .

Proposition A.1 Let X , Y be k-schemes as above.

1. If f : X → Y is a dominant morphism with connected fibers and Y is irreducible,

then X connected.

2. If f : X → Y is a SDC-morphism and Y is smooth and irreducible, then so is X.

Proof Let V be the image of f . Since f is dominant and Y is irreducible, the scheme V

is also irreducible, and therefore f : X → V is a surjective morphism with connected

fibers. We conclude that X is connected by [38, Tag 0378]. Finally, (2) follows easily

from (1). ⊓⊔

Next, we explore how SDC-morphisms behave under base change. This proposition

is crucial in the proof of Theorem 1.2 as it will allow us to deduce smoothness and irre-

ducibility of initial degenerations by studying thin Schubert cells and the morphisms

between them.

Proposition A.2 Suppose we have a pullback diagram

W ×Z X
h′

f ′

X

f

W
h

Z ,

and that W ×Z X is nonempty. The following properties hold:

1. If f is smooth and W is a smooth k-scheme, then W ×Z X is smooth.

2. If f is a SDC-morphism and W is irreducible, then f ′ is also a SDC-morphism.
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3. If f is a SDC-morphism and W is smooth and irreducible, then W ×Z X is smooth

and irreducible.

Proof To simplify notation, set V := W ×Z Y . If f and W → Spec k are smooth

morphisms, then so is V → Spec k since smoothness is preserved under composition

and base-change. This proves (1).

Now suppose f is a SDC-morphism and W is irreducible. So f ′ : V → W is

smooth, in particular flat. By [17, Exercise III.9.1] f ′ is also open. This means that

f ′(V ) is a nonempty open subscheme of W , which is dense by the irreducibility of

W . For w ∈ f ′(V ), the fiber Vw is nonempty and isomorphic to Xh(w), which is

connected, hence (2). Statement (3) follows from this and Proposition A.1(2). ⊓⊔

Proposition A.3 SDC-morphisms satisfy the following.

1. A dominant open immersion U →֒ X is a SDC-morphism.

2. If f : X → Y and g : Y → Z are SDC-morphisms, then g f : X → Z is a

SDC-morphism.

Proof Statement (1) is clear, so consider (2). It is well known that smoothness and

dominance are preserved under composition, so we need only show that g f has con-

nected fibers. Let z ∈ Z , and Xz (resp. Yz) be the scheme-theoretic fiber of g f (resp.

g) over z. Let fz : Xz → Yz be the morphism obtained by pulling back f along the

inclusion Yz → Y . Since Yz is smooth and connected, it is irreducible. By Proposition

A.2(2), the map fz is a SDC-morphism. Therefore Xz is connected by Proposition

A.1(1), as required. ⊓⊔

Many of the limits that appear in this paper come from graphs in the following

way. Let C be a category that has finite limits, e.g, the category of k-schemes k- sch,

and G a connected graph, possibly with loops or multiple edges. We regard each edge

e ∈ E(G) as a pair of half-edges. Let us define a quiver Q(G). The set of vertices

of Q(G) is V (G) ∪ E(G); we write qv (v ∈ V (G)), resp. qe (e ∈ E(G)), for the

corresponding vertex of Q. For every half edge h of e incident to v, there is an arrow

qh : qv → qe. In particular, if e is a loop edge, then there are two arrows from qv to qe.

Viewing Q(G) as a category in the usual way, a diagram of type Q(G) in a category

C is a functor X : Q(G) → C. We write Xv = X(qv), Xe = X(qe), ϕh = X(qh) and

XG = lim
←−Q(G)

X . For example, Fig. 3 exhibits a graph and its corresponding diagram.

Example A.4 Let ŴM,w be the adjacency graph to a matroid subdivision �M,w. Let

Mv , resp. Me, denote the matroid corresponding to the vertex v, resp. edge e, of ŴM,w,

and ϕMv,Me : GrMv → GrMe whenever e is incident to v. The data of GrMv , GrMe ,

and ϕMv,Me defines a diagram of type Q(ŴM,w) in k- sch.

Now, let us consider how this construction behaves with respect to contracting a

connected subgraph. Let F be a connected subgraph of G, and G/F the graph obtained

by contracting F to a single vertex vF . Let X F = lim
←−Q(F)

X and let ξv : X F → Xv

and ξe : X F → Xe be the structure morphisms. Set YvF
= X F , and Yv = Xv for the

remaining v in V (G/F). Similarly, let Ye = Xe for the edges e ∈ E(G/F). If h is

a half edge in G/F incident vF , set ψh = ϕhξv . Otherwise, let ψh = ϕh . The data

(Yv, Ye, ψh) defines a diagram Y of type Q(G/F).
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Fig. 3 A graph and its associated diagram

Proposition A.5 We have an isomorphism

lim
←−

G

X ∼= lim
←−
G/F

Y .

Proof To simplify notation, set YG/F = lim
←−G/F

Y . Let λv : YG/F → Yv and λe :

YG/F → Ye denote the structure morphisms of this limit. We show that YG/F satisfies

the universal property for lim
←−G

X . First, we must define morphisms αv : YG/F → Xv

and αe : YG/F → Xe that commute with each ϕh . This is achieved by setting αv =

ξvλvF
, (resp. αe = ξeλvF

) when v ∈ V (F) (resp. e ∈ E(F)), and αv = λv (resp.

αe = λe) otherwise. One may verify that ϕhαv = αe.

Now suppose that we have a collection of morphisms θv : M → Xv and θe : M →

Xe such that ϕhθv = θe for every qh : qv → qe in Q(G). We will show that there is a

unique morphism θ : M → YG/F such that

θαv = θv and θαe = θe (A.1)

for all v ∈ V (G) and e ∈ E(G), respectively. By the universal property of X F , there

is a unique morphism θvF
: M → YvF

such that ξvθvF
= θv and ξeθvF

= θe. If h is a

half edge in G/F incident to vF , then

ψhθvF
= ϕhξvθvF

= ϕhθv = θe.

Otherwise, we have ψhθv = θe since ψh = ϕh . By the universal property of YG/F ,

there is a unique morphism θ : M → YG/F satisfying λvθ = θv and λeθ = θe.

Now we establish the equalities in Eq. (A.1). When v ∈ V (F),

αvθ = ξvλvF
θ = ξvθvF

= θv.

A similar argument shows that αeθ = θe when e ∈ E(F). The cases where v ∈

V (G)\V (F) or e ∈ E(G)\E(F) follow from the identifications αv = λv and αe = λe.

Finally, the uniqueness of θ follows from the uniqueness of θF and the universal

property of YG/F . ⊓⊔
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Proposition A.6 Suppose G is a tree. Let X be diagram of type Q(G) in k- sch such

Xv and Xe are smooth and irreducible k-schemes, and for each half edge h, the map

X(h) : Xv → Xe is a SDC-morphism. Then XG is smooth and irreducible. Moreover,

dimXG =
∑

v∈V (G)

Xv −
∑

e∈E(G)

Xe.

Proof We proceed by induction on the number of vertices. When G consists of a single

vertex, there is nothing to show. Now suppose that the lemma is true for all trees with

fewer vertices than G. Let w be a one valent vertex of G, let e the adjacent edge, and

let G ′ the graph consisting of the remaining vertices and edges. By Proposition A.5,

XG
∼= Xw ×Xe XG ′ .

It is smooth and irreducible by Proposition A.2 and the inductive hypothesis. Because

Xw → Xe is smooth of relative dimension dimXw − dimXe, so is XG → X ′G , and

therefore

dimXG = dimXw − dimXe + dimXG ′

by [17, Corollary 9.6]. By the inductive hypothesis, we get the required formula for

dimXG . ⊓⊔

Remark A.7 An arbitrary finite limit over a diagram of smooth and irreducible k-

schemes in which every morphism is SDC-need not be irreducible. Let h = x2− y2+

x + 1
4

and X = Spec((h)−1
k[x, y]). Define two morphisms f , g : X → Spec k[z]

by:

f #(z) = x2 − y2 + x g#(z) = x .

One may verify that f and g are SDC-morphisms between smooth and irreducible

k-schemes. However, the equalizer of f and g is

Spec((h)−1
k[x, y]/〈x2 − y2〉)

which is neither smooth nor irreducible.

We end with a proposition on when a closed immersion of affine schemes is an

isomorphism.

Proposition A.8 Suppose ϕ : X →֒ Y is a closed immersion of affine schemes, and Y

is integral. If dimX = dimY , then ϕ is an isomorphism.

Proof Let n be the Krull dimension of X and Y . Because ϕ is a closed immersion and

Y is integral, the induced morphism on rings is of the form ϕ# : R → R/I for some

integral domain R and ideal I ⊂ R. A maximal chain of prime ideals p0 � p1 �

· · · � pn in R/I lifts to a maximal chain of prime ideals q0 � q1 � · · · � qn in R

with I ⊂ q0. Because R is an integral domain, we have q0 = 〈0〉. So I = 〈0〉, and

therefore ϕ# is the identity. ⊓⊔
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B Data for Lemma 6.4

In Table 2, we list the ideals that appear as J x
M,w for subdivisions of �M,w such that

M is a simple, connected k-realizable (3, 7)-matroid and ŴM,w has no leaves, as in

the proof of Lemma 6.4. We consider all of these as ideals in the ring

k[x±i j | 0 ≤ i ≤ 2, 0 ≤ j ≤ 3].

We write k[x±i j ] for short. Many of the polynomials that appear are of the form X i j,kℓ :=

xik x jℓ − xiℓx jk . In the second column, we list variables that may be eliminated to

produce an isomorphism of k[x±i j ]/J x
M,w with a Laurent polynomial ring. For example,

consider the last row. In this case,

J x
M,w = 〈X01,23, X02,03, X12,12, X12,02, X12,01〉.

We use the form X01,23 to solve for x02, the form X02,03 to solve for x03, the form

X12,12 to solve for x11, and finally the form X12,02 to solve for x22. This produces an

isomorphism k[x±i j ]/J x
M,w → k[x±i j | i j �= 02, 03, 11, 22].

C Maps between thin Schubert cells and inverse limits (written by
María Angélica Cueto)

In this appendix, we discuss how to reduce the study of geometric properties of thin

Schubert cells to the case of simple and connected matroids. Because the only simple

rank 2 matroid is U (2, n), this analysis gives us a complete understanding of GrM

in the rank 2 case, and simplifies the study of rank 3 matroids in Sects. 4 and 5. In

the following subsection, we show that the limit of thin Schubert cell GrM,w induced

by a matroid subdivision �M,w depends only on the adjacency graph of �M,w. This

allows one to apply the results from Appendix A to study GrM,w as in Sect. 6.

C.1 Reduction to simple and connectedmatroids

The following two Lemmas demonstrate that thin Schubert cells are compatible with

decomposition into connected components and removal of loops and parallel elements.

Lemma C.1 appears [23, Proposition 9.4] without proof, and Lemma C.2 will appear

in an upcoming paper [5]. For the reader’s convenience, we sketch their proofs.

Lemma C.1 If M = M1 ⊕ M2, then GrM
∼= GrM1 ×GrM2 . In particular, we have

GrM
∼= GrM|T where T ⊂ [n] is the set of non-loop elements.

Proof Suppose X1 and X2 are matrices giving rise to the rings Rx
M1

and Rx
M2

as in

Construction 2.2. Let X be the block matrix with X1 and X2 on the diagonal. Then

Rx
M
∼= Rx

M1
⊗ Rx

M2
. The second statement follow from M ∼= M |T ⊕U (0, |T |). ⊓⊔

Given a matroid M , we define a simple matroid by removing loops and parallel

elements in the following way. Let η1, . . . , ηk be the rank 1 flats of M , choose nonloop
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Table 2 Here are the unique ideals nontrivial ideals that appear in the proof of Lemma 6.4

Ideals xi j to eliminate

X12,01 x21

X01,12 x12

X12,12 x22

X02,23 x23

X01,03 x13

X01,23 x13

X12,23 x23

X01,02 x12

x02x10x21 + x00x11x22 x22

x00x12x21 + x01x10x22 x22

x00x13x22 + x02x10x23 x23

x02x10x21 − x00x12x21 − x01x10x22 x22

x02x11x20 − x01x12x20 − x00x11x22 x22

x03x10x22 − x00x13x22 − x02x10x23 x23

x03x10x22 − x00x13x22 + x00x12x23 x23

x02x10x21 − x00x12x21 − x01x10x22 + x00x11x22 x11

X02,23, X12,01 x21, x23

X02,02, X12,01 x21, x22

X01,03, X12,01 x13, x21

X02,03, X12,01 x21, x23

X02,13, X01,02 x12, x23

X02,12, X12,01 x01, x22

X02,13, X12,01 x10, x23

X01,13, X01,02 x12, x13

X12,13, x00x12x21 + x01x10x22 x22, x23

X01,13, x02x10x21 − x00x12x21 − x01x10x22 x13, x22

X12,13, x02x10x21 − x01x10x22 + x00x11x22 x02, x23

X01,12, x03x10x22 − x00x13x22 − x02x10x23 x12, x23

X02,03, X01,12, X12,01 x12, x21, x23

X01,13, X02,02, X12,01 x13, x22, x21

X02,13, X02,02, X12,01 x10, x22, x23

X12,12, X12,02, X12,01 x22, x21

X12,03, X01,23, x02x11x20 + x01x10x22 − x00x11x22 x00, x12, x23

X01,03, X02,02,−X12,01 − x02x13x21 + x03x11x22 x00, x01, x13

X02,03, X12,12, X12,02, X12,01 x11, x22, x23

X02,13, X01,12, X12,01, x03x12x20 − x02x10x23 x12, x21, x23

X02,02, X12,01, x01x13x22 + x02x11x23, x01x13x20 + x00x11x23 x00, x10, x22

X12,23, X02,13, X02,02, X12,01, x00, x13, x20, x22,

x00x03x11x12 − x01x02x10x13 x23

X01,23, X02,03, X12,12, X12,02, X12,01 x02, x03, x11, x22
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elements si ∈ ηi and set S = {s1, . . . , sk}. Then M |S is a simple matroid. Let ℓ be the

number of loops in M .

Lemma C.2 We have an isomorphism GrM
∼= GrM|S ×Gn−k−ℓ

m .

Proof By Lemma C.1, we may assume that M has no loops. Suppose i, j are parallel

in M , then GrM
∼= GrM[n]\i

×Gm . Suppose i and j are parallel, and let µ1, µ2 ∈
(

[n]
d−1

)

such that µk ∪ {i} and µk ∪ { j} are bases of M for k = 1, 2. The quadratic generator

from Eq. (3.1) yields

PM (µ1 ∪ {i, j}, µ2) = pµ1∪i pµ2∪ j − pµ1∪ j pµ2∪i

This means that pµ∪i/pµ∪ j is independent of µ. At the level of rings, the desired

isomorphism RM[n]\i
⊗ k[t±] ∼= RM is given by

RM[n]\i
⊗ k[t±] −→ RM

pλ ⊗ 1 �→ pλ if i /∈ λ,

1⊗ t �→ pµ∪i/pµ∪ j if λ = µ ∪ {i}.

The Lemma now follows by induction on the number of parallel elements in M . ⊓⊔

Because the uniform matroid U (2, n) is the only simple (2, [n])-matroid, and affine

coordinates realize Gr0(2, n) as a open subscheme of an algebraic torus, we have the

following.

Proposition C.3 If M is a rank 2 matroid then

GrM
∼= Gr0(2, k)×Gn−k−ℓ

m . (C.1)

where k is the number of rank 1 flats and ℓ the number of loops. In particular, the thin

Schubert cell GrM is smooth and irreducible.

Next, we show the morphisms ϕM,M ′ : GrM → GrM ′ are compatible with the

following operations: decomposition of matroids into connected components, removal

of loops and parallel elements, and duality. This will allow us to restrict our attention

to pairs M ′ ≤ M where M is simple, connected, and d = rM ([n]) ≤ ⌊n/2⌋.

Lemma C.4 If M ′ ≤ M and M = M1 ⊕ M2, then M ′ = M ′
1 ⊕ M ′

2 with M ′
i ≤ Mi for

i = 1, 2. Furthermore, we have ϕM,M ′ = ϕM1,M ′
1
× ϕM2,M ′

2
.

Proof Recall that QM = QM1 × QM2 if and only if M = M1 ⊕ M2. Thus, a face of

QM must be of the form QM ′
1
×QM ′

2
for M ′

i ≤ Mi for i = 1, 2 so M ′ = M ′
1⊕M ′

2. The

statement regarding ϕM,M ′ follows by combining this decomposition with Proposition

3.2 and Lemma C.1. ⊓⊔
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Lemma C.5 If M ′ ≤ M, then we have M ′|S ≤ M |S and the restrictions fit into the

commutative diagram:

GrM

∼=

ϕM,M ′

GrM|S ×Gn−k−ℓ
m

ϕM|S,M ′ |S×id

GrM ′

∼=
GrM ′|S ×Gn−k−ℓ

m .

(C.2)

Proof The top horizontal map in (C.2) arises from the isomorphism GrM ≃

GrM|S ×Gn−k−ℓ
m described in Lemma C.2. Since M ′ ≤ M , rank-one flats in M

yield rank-one flats in M ′ we have M ′|S ≤ M |S. The same lemma yields GrM
∼=

GrM ′|S ×Gn−k−ℓ
m . This determines the bottom horizontal map. ⊓⊔

Now we ensure the compatibility of M ′ ≤ M with the duality operation and the

isomorphism

ψ : Gr(d, n) → Gr(n − d, n) (pβ)β �→ ((−1)sign(β,βc) pβc )βc

induced from P(∧d
k

n) ∼= P(∧n−d
k

n). Here, the symbol (β, βc) is a permutation of

Sn in one-line notation and βc = [n]� β. On affine patches, the correspondence for

matrices is explicit: for example, a d × n matrix (Id |X) in {p[d] �= 0} is identified

with the (n − d)× n matrix (−X t |In−d) in {p[d]c �= 0}.

Lemma C.6 If M ′ ≤ M then (M ′)∗ ≤ M∗ and ϕM∗,(M ′)∗ = ψ ◦ ϕM,M ′ ◦ ψ−1.

Proof By definition, we have QM∗ = conv({1 − eβ : β ∈ B(M)}) = 1 − QM . In

particular, if QM ′ is a face of QM , then Q(M ′)∗ = (1− QM ′) ≺ (1− QM ) = QM∗ , as

required. The isomorphism ψ identifies each pβ ∈ k[Gr(d, n)] with pβc ∈ k[Gr(n −

d, n)]. The expression ϕM∗,(M ′)∗ = ψ ◦ ϕM,M ′ ◦ ψ−1 follows from this observation.

⊓⊔

As an application, we prove that ϕM,M ′ is a SDC-morphism whenever M = U (d, n)

or M is a rank 2 matroid.

Proposition C.7 For any M ′ ≤ M := U (d, n), the map ϕM,M ′ : Gr0(d, n) → GrM ′

is a SDC-morphism.

Proof By Proposition A.3, it suffices to show that ϕM,M ′ is a SDC morphism when

M ′⋖ M . The nondegenerate subsets of M are of the form {i} or [n]\i for some i ∈ [n].

If M ′ = M{i}, then (M ′)∗ = M∗
[n]\i where M∗ ∼= U (n − d, n). By Lemma C.6, it

suffices to consider just M ′ = M[n]\{i}. In this case, we have Rx
M ′ = (Sx

M ′)
−1 BM ′

and Rx
M ′ = (Sx

M )−1 Rx
M ′ [x

±
i,n−4 | i ∈ [d] ]. Therefore GrM ⊂ G

d×(n−d)
m and GrM ⊂

G
d×(n−d−1)
m are open subvarieties, and ϕM,M ′ is induced by a coordinate projection

G
d×(n−d)
m → G

d×(n−d−1)
m , which is clearly a SDC-morphism. The result now follows

from Proposition A.3. ⊓⊔



Initial degenerations of Grassmannians Page 37 of 40 57

Proposition C.8 For (2, [n])-matroids M ′ ≤ M, the map ϕM,M ′ is a SDC-morphism.

Proof Because every simple rank 2 matroid is uniform, the Proposition follows from

Lemmas C.4, C.5, and C.7. ⊓⊔

Our final result in this subsection say that the reduction to simple matroids as above

is compatible taking initial degenerations and inverse limits.

Proposition C.9 Fix w ∈ TGrM and let w̃ be the projection of w to RB(M|S)/R ·1.

Then w̃ ∈ TGrM|S and

inw GrM ≃ inw̃ GrM|S ×Gn−k−ℓ
m GrM,w

∼= GrM|S,w̃ ×Gn−k−ℓ
m

Proof The assertion on initial degenerations follows from the fact that the isomor-

phism GrM
∼= GrM|S ×Gn−k−ℓ

m from Lemma C.2 is induced by a monomial map

on coordinate rings. The isomorphism of limits follows from this Lemma and the

description of the coordinate ring of GrM,w in Proposition 3.7. ⊓⊔

C.2 Limits of thin Schubert cells via adjacency graphs

Recall that the matroid subdivision �M,w yields a system of maps ϕMQ ,MQ′
: GrMQ

→

GrMQ′
whenever Q′ ≤ Q that satisfy ϕMQ ,MQ′′

= ϕMQ′ ,MQ′′
ϕMQ ,MQ′

and ϕMQ ,MQ
=

id. This allows us to form the limit

GrM,w := lim ←−
MQ∈�M,w

GrMQ
(C.3)

Rather than keeping track of the full face poset of �M,w it is desirable to restrict

ourselves to cells of codimension 0 and 1. The following construction mimics the

definition of adjacency graphs for triangulations of polytopes [6, Definition 4.5.10],

so we use the same name.

Definition C.10 Given w in DrM , let ŴM,w be the adjacency graph of �M,w defined as

follows. The graph ŴM,w has a vertex vQ for each Q in TCM,w. Two vertices vQ1 , vQ2

are connected by an edge if Q1 ∩ Q2 is a facet of both cells. Similarly, given a cell F

of �M,w, we let ŴF
M,w be the full subgraph of ŴM,w generated by those vertices vQ

of ŴM,w with F ≤ Q.

Our next lemma shows that the graphs defined above are connected. It will play a

crucial role in Proposition C.12 below.

Lemma C.11 For any w ∈ DrM and any cell F of �M,w, the graphs ŴM,w and ŴF
M,w

are connected.

Proof The first claim follows by convexity and is valid for the adjacency graph associ-

ated to a pure-dimensional polyhedral subdivision of any polytope. We argue for QM

and �M,w. Indeed, given two vertices vQ1 , vQ2 of ŴM,w, choose two points x1, x2, with

xi ∈ rel int(Qi ) so that the segment [x1, x2] does not meet any cell whose codimension



57 Page 38 of 40 D. Corey

is 2 or greater. Since QM is convex, the [x1, x2] lies in rel int(QM ). All but finitely

many points in [x1, x2] lie in the relative interior of top-dimensional cells. We label the

encountered cells as we move from x1 towards x2 by Q1 =:Q
′
0, Q′1, . . . , Q′k := Q2.

The collection {Q′i }i yields a path from vQ1 to vQ2 in ŴM,w.

A similar argument can be used to prove the statement for ŴF
M,w. Let E ⊂ Rn be

the affine span of QM . Given F in �M,w, write s := dimF and pick a point p in its

relative interior. We let H be the orthogonal complement to the linear subspace F− p

in E− p, and Q a (m− s)-dimensional cube in H centered at the origin with diameter

0 < ε ≪ 1.

We consider the full-dimensional polytope P ′ := (Q+ p)∩QM in H + p, and the

polyhedral subdivision on P ′ induced by �M,w. Each cell in this subdivision equals

Q′ ∩ QM for some Q′, and has dimension (s − dimQM + dimQ). By construction,

a matroid polytope Q′ yields a vertex or edge of ŴF
M,w if and only if Q′ ∈ �M,w

and Q′ ∩ (Q + p) �= ∅. Thus, the graph ŴM,w agrees with the adjacency graph of

the subdivision of P ′. Since the latter is connected by the discussion above, the result

follows. ⊓⊔

The adjacency graph ŴM,w encodes a subsystem of the inverse system GrM,w

from (C.3) as in Example A.4. Our final result shows that GrM,w agrees with the

inverse system induced by ŴM,w.

Proposition C.12 Let M be a k-realizable (d, [n])-matroid and w ∈ TGrM . Then,

GrM,w
∼= lim
←−
ŴM,w

GrM ′ . (C.4)

Proof We write GrŴM,w for the inverse limit on the right-hand side of Eq. (C.4). Given

M ′ labeling a cell of ŴM,w, we write hŴ
M ′ : GrŴM,w → GrM ′ for the associated mor-

phism. Since ŴM,w determines a subsystem of �M,w, the universal property of GrŴM,w

guarantees the existence of a morphism ψ : GrM,w → GrŴM,w. Next, we build a

morphism φ : GrŴM,w → GrM,w.

First, we construct morphisms gF : GrŴM,w → GrF for each cell QF of �M,w,

satisfying gM ′′ = ϕM ′,M ′′ ◦ gM ′ for each pair of cells in �M,w with M ′ ≤ M ′′. The

morphism φ will be unique determined once we establish the compatibility of all gF ’s

with the subdivision �M,w.

Let VF be the set of vertices of the graph ŴF
M,w. Set gF := ϕM ′,F ◦ hŴ

M ′ where

vM ′ ∈ VF . We must show this morphism is independent of our choice of M ′. Suppose

vM ′′ ∈ VF as well. Since ŴF
M,w is connected by Lemma C.11, we can find a collection

of vertices vQM ′
=: vQ0 , vQ1 , . . . , vQk

:= vQM ′′
where (vQi

, vQi+1
) is an edge of

ŴF
M,w for each i = 0, . . . , k − 1. We write Mi := QMi

and Mi(i+1) := MQi∩Qi+1
;
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note that F ≤ Qi ∩ Qi+1 for each i . The definition of inverse limit yields k diagrams

GrMi

ϕMi ,Mi(i+1)

ϕMi ,F

GrŴM,w

hŴ
Mi

hŴ
Mi+1

hŴ
Mi(i+1)

GrMi(i+1)

ϕMi(i+1),F

GrF ,

GrMi+1

ϕMi+1,Mi(i+1)

ϕMi+1,F

(C.5)

where all four triangles commute. It follows that ϕM ′,F ◦ hŴ
M ′ = ϕM ′′,F ◦ hŴ

M ′′ , so gF

is well-defined.

Finally, the identity gF ′ = ϕF,F ′ ◦ gF for each pair F ′ ≤ F in �M,w follows

from a similar commutative diagram argument after choosing a vertex M ′ in ŴF
M,w.

These two properties determine φ. The universal property of both schemes GrM,w and

GrŴM,w ensures that φ = ψ−1, as desired. ⊓⊔
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