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ABSTRACT

While demographic attributes, such as age, gender, and location,

have been extensively studied, most previous studies usually com-

bine different sources of data, such as the user’s biography, pictures,

posts, and the user’s network to obtain reasonable inference accura-

cies. However, it is not always practical to collect all those different

forms of data. Therefore, in this paper, we consider methods for

inferring age that only use Twitter posts (tweet text and emojis).

We propose a hierarchical attention neural model that integrates in-

dependent linguistic knowledge gained from text and emojis when

making a prediction. This hierarchical model is able to capture the

intra-post relationship between these different post components, as

well as the inter-post relationships of a user’s posts. Our empirical

evaluation using a data set generated from Wikidata demonstrates

that our model achieves better performance than the state-of-the-

art models, and still performs well when the number of posts per

user is reduced in the training data set.
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1 INTRODUCTION

Demographic inference of age, gender, location and occupation

using social media data has been extensively studied [1, 3, 8, 9, 15,

20, 22, 28]. The most prevalent studies use different combinations of

user biography, posts, images, network, etc. However, for some use

cases, it is not always practical to collect all these different types

of data. For example, if a researcher uses the Twitter Streaming

API, he/she may collect posts based on a keyword or hashtag. If

the hashtag of interest is actively used, then millions of users may

be connected to the posts, making it difficult to get profile and
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network data for each user. Therefore, we consider the problem of

demographic inference in a constrained data environment, where

we have 10s to 100s of posts associated with each user, but no other

account information. More specifically, in this paper, we investigate

the viability of using only post content to infer age bins of different

Twitter users. Ultimately, we ask, are there sufficient linguistic dif-

ferences in posts among users in different age groups to distinguish

them? Given previous work that highlights the importance of emo-

jis for gender inference [23], we are also interested in understanding

the role emojis play for age inference and their importance within

deep learning models. Finally, we consider the variation in activity

level of Twitter users. According to Pew Research, the median user

posts a tweet once a month, while more prolific users post over 150

times per month[32]. Given this wide range in user engagement,

we are interested in determining how many posts are needed to

maintain a high level of accuracy. Given our goals, we propose

a deep learning hierarchical network that attempts to model the

inter-post and intra-post relationships of both post text and emojis

independently, before combining the knowledge.

Our contributions in the paper are as follows. (1) Our model

explores inter-post relationships by using BERT and a hierarchical

network with attention. (2) We incorporate emojis into the deep

learning model more directly than has been done in previous lit-

erature. (3) We investigate the effect on F1 score of using different

numbers of posts for users in the training data. (4) We release our

preprocessed Wikidata data set for researchers to use.

2 RELATED LITERATURE

Algorithms for age inference can be divided into two groups: clas-

sic supervised learning models and deep learning models. Classic

supervised models that have performed particularly well on this

task include logistical regression, random forest, and support vector

machines. Some of these models use user profile information (biog-

raphy and/or profile image) to determine age group [4, 33]. Others

build models using ngrams from posts as features or ngrams con-

structed from both the biography and post [19, 24]. Rosenthal and

McKeown [27] also incorporate stylistic features, e.g. punctuation.

More recently, researchers have found deep learning models to

be useful for this task. Wang and colleagues [33] investigate using

profile-based features, such as profile image, within deep learn-

ing models to achieve state of the art performance. A graph-based

Recursive Neural Networks (RNN) [7] using word embeddings to

represent posts is proposed by Kim et al. [11]. Their model in-

corporates not only the posts of a user, but also the posts of a

user’s network. Liu et al. [15] incorporate user biographies and

post content into their deep learning model by using sentence-level

embeddings generated for each tweet from both original BERT and

a fine-tuned BERT to capture semantically similar sentences. Our
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